Actual source code: ex3.c
1: static char help[] = "Solves a simple time-dependent linear PDE (the heat equation).\n\
2: Input parameters include:\n\
3: -m <points>, where <points> = number of grid points\n\
4: -time_dependent_rhs : Treat the problem as having a time-dependent right-hand side\n\
5: -use_ifunc : Use IFunction/IJacobian interface\n\
6: -debug : Activate debugging printouts\n\
7: -nox : Deactivate x-window graphics\n\n";
9: /* ------------------------------------------------------------------------
11: This program solves the one-dimensional heat equation (also called the
12: diffusion equation),
13: u_t = u_xx,
14: on the domain 0 <= x <= 1, with the boundary conditions
15: u(t,0) = 0, u(t,1) = 0,
16: and the initial condition
17: u(0,x) = sin(6*pi*x) + 3*sin(2*pi*x).
18: This is a linear, second-order, parabolic equation.
20: We discretize the right-hand side using finite differences with
21: uniform grid spacing h:
22: u_xx = (u_{i+1} - 2u_{i} + u_{i-1})/(h^2)
23: We then demonstrate time evolution using the various TS methods by
24: running the program via
25: ex3 -ts_type <timestepping solver>
27: We compare the approximate solution with the exact solution, given by
28: u_exact(x,t) = exp(-36*pi*pi*t) * sin(6*pi*x) +
29: 3*exp(-4*pi*pi*t) * sin(2*pi*x)
31: Notes:
32: This code demonstrates the TS solver interface to two variants of
33: linear problems, u_t = f(u,t), namely
34: - time-dependent f: f(u,t) is a function of t
35: - time-independent f: f(u,t) is simply f(u)
37: The parallel version of this code is ts/tutorials/ex4.c
39: ------------------------------------------------------------------------- */
41: /*
42: Include "petscts.h" so that we can use TS solvers. Note that this file
43: automatically includes:
44: petscsys.h - base PETSc routines petscvec.h - vectors
45: petscmat.h - matrices
46: petscis.h - index sets petscksp.h - Krylov subspace methods
47: petscviewer.h - viewers petscpc.h - preconditioners
48: petscksp.h - linear solvers petscsnes.h - nonlinear solvers
49: */
51: #include <petscts.h>
52: #include <petscdraw.h>
54: /*
55: User-defined application context - contains data needed by the
56: application-provided call-back routines.
57: */
58: typedef struct {
59: Vec solution; /* global exact solution vector */
60: PetscInt m; /* total number of grid points */
61: PetscReal h; /* mesh width h = 1/(m-1) */
62: PetscBool debug; /* flag (1 indicates activation of debugging printouts) */
63: PetscViewer viewer1, viewer2; /* viewers for the solution and error */
64: PetscReal norm_2, norm_max; /* error norms */
65: Mat A; /* RHS mat, used with IFunction interface */
66: PetscReal oshift; /* old shift applied, prevent to recompute the IJacobian */
67: } AppCtx;
69: /*
70: User-defined routines
71: */
72: extern PetscErrorCode InitialConditions(Vec, AppCtx *);
73: extern PetscErrorCode RHSMatrixHeat(TS, PetscReal, Vec, Mat, Mat, void *);
74: extern PetscErrorCode IFunctionHeat(TS, PetscReal, Vec, Vec, Vec, void *);
75: extern PetscErrorCode IJacobianHeat(TS, PetscReal, Vec, Vec, PetscReal, Mat, Mat, void *);
76: extern PetscErrorCode Monitor(TS, PetscInt, PetscReal, Vec, void *);
77: extern PetscErrorCode ExactSolution(PetscReal, Vec, AppCtx *);
79: int main(int argc, char **argv)
80: {
81: AppCtx appctx; /* user-defined application context */
82: TS ts; /* timestepping context */
83: Mat A; /* matrix data structure */
84: Vec u; /* approximate solution vector */
85: PetscReal time_total_max = 100.0; /* default max total time */
86: PetscInt time_steps_max = 100; /* default max timesteps */
87: PetscDraw draw; /* drawing context */
88: PetscInt steps, m;
89: PetscMPIInt size;
90: PetscReal dt;
91: PetscBool flg, flg_string;
93: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
94: Initialize program and set problem parameters
95: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
97: PetscFunctionBeginUser;
98: PetscCall(PetscInitialize(&argc, &argv, (char *)0, help));
99: PetscCallMPI(MPI_Comm_size(PETSC_COMM_WORLD, &size));
100: PetscCheck(size == 1, PETSC_COMM_WORLD, PETSC_ERR_WRONG_MPI_SIZE, "This is a uniprocessor example only!");
102: m = 60;
103: PetscCall(PetscOptionsGetInt(NULL, NULL, "-m", &m, NULL));
104: PetscCall(PetscOptionsHasName(NULL, NULL, "-debug", &appctx.debug));
105: flg_string = PETSC_FALSE;
106: PetscCall(PetscOptionsGetBool(NULL, NULL, "-test_string_viewer", &flg_string, NULL));
108: appctx.m = m;
109: appctx.h = 1.0 / (m - 1.0);
110: appctx.norm_2 = 0.0;
111: appctx.norm_max = 0.0;
113: PetscCall(PetscPrintf(PETSC_COMM_SELF, "Solving a linear TS problem on 1 processor\n"));
115: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
116: Create vector data structures
117: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
119: /*
120: Create vector data structures for approximate and exact solutions
121: */
122: PetscCall(VecCreateSeq(PETSC_COMM_SELF, m, &u));
123: PetscCall(VecDuplicate(u, &appctx.solution));
125: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
126: Set up displays to show graphs of the solution and error
127: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
129: PetscCall(PetscViewerDrawOpen(PETSC_COMM_SELF, 0, "", 80, 380, 400, 160, &appctx.viewer1));
130: PetscCall(PetscViewerDrawGetDraw(appctx.viewer1, 0, &draw));
131: PetscCall(PetscDrawSetDoubleBuffer(draw));
132: PetscCall(PetscViewerDrawOpen(PETSC_COMM_SELF, 0, "", 80, 0, 400, 160, &appctx.viewer2));
133: PetscCall(PetscViewerDrawGetDraw(appctx.viewer2, 0, &draw));
134: PetscCall(PetscDrawSetDoubleBuffer(draw));
136: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
137: Create timestepping solver context
138: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
140: PetscCall(TSCreate(PETSC_COMM_SELF, &ts));
141: PetscCall(TSSetProblemType(ts, TS_LINEAR));
143: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
144: Set optional user-defined monitoring routine
145: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
147: if (!flg_string) PetscCall(TSMonitorSet(ts, Monitor, &appctx, NULL));
149: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
151: Create matrix data structure; set matrix evaluation routine.
152: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
154: PetscCall(MatCreate(PETSC_COMM_SELF, &A));
155: PetscCall(MatSetSizes(A, PETSC_DECIDE, PETSC_DECIDE, m, m));
156: PetscCall(MatSetFromOptions(A));
157: PetscCall(MatSetUp(A));
159: flg = PETSC_FALSE;
160: PetscCall(PetscOptionsGetBool(NULL, NULL, "-use_ifunc", &flg, NULL));
161: if (!flg) {
162: appctx.A = NULL;
163: PetscCall(PetscOptionsGetBool(NULL, NULL, "-time_dependent_rhs", &flg, NULL));
164: if (flg) {
165: /*
166: For linear problems with a time-dependent f(u,t) in the equation
167: u_t = f(u,t), the user provides the discretized right-hand-side
168: as a time-dependent matrix.
169: */
170: PetscCall(TSSetRHSFunction(ts, NULL, TSComputeRHSFunctionLinear, &appctx));
171: PetscCall(TSSetRHSJacobian(ts, A, A, RHSMatrixHeat, &appctx));
172: } else {
173: /*
174: For linear problems with a time-independent f(u) in the equation
175: u_t = f(u), the user provides the discretized right-hand-side
176: as a matrix only once, and then sets the special Jacobian evaluation
177: routine TSComputeRHSJacobianConstant() which will NOT recompute the Jacobian.
178: */
179: PetscCall(RHSMatrixHeat(ts, 0.0, u, A, A, &appctx));
180: PetscCall(TSSetRHSFunction(ts, NULL, TSComputeRHSFunctionLinear, &appctx));
181: PetscCall(TSSetRHSJacobian(ts, A, A, TSComputeRHSJacobianConstant, &appctx));
182: }
183: } else {
184: Mat J;
186: PetscCall(RHSMatrixHeat(ts, 0.0, u, A, A, &appctx));
187: PetscCall(MatDuplicate(A, MAT_DO_NOT_COPY_VALUES, &J));
188: PetscCall(TSSetIFunction(ts, NULL, IFunctionHeat, &appctx));
189: PetscCall(TSSetIJacobian(ts, J, J, IJacobianHeat, &appctx));
190: PetscCall(MatDestroy(&J));
192: PetscCall(PetscObjectReference((PetscObject)A));
193: appctx.A = A;
194: appctx.oshift = PETSC_MIN_REAL;
195: }
196: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
197: Set solution vector and initial timestep
198: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
200: dt = appctx.h * appctx.h / 2.0;
201: PetscCall(TSSetTimeStep(ts, dt));
203: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
204: Customize timestepping solver:
205: - Set the solution method to be the Backward Euler method.
206: - Set timestepping duration info
207: Then set runtime options, which can override these defaults.
208: For example,
209: -ts_max_steps <maxsteps> -ts_max_time <maxtime>
210: to override the defaults set by TSSetMaxSteps()/TSSetMaxTime().
211: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
213: PetscCall(TSSetMaxSteps(ts, time_steps_max));
214: PetscCall(TSSetMaxTime(ts, time_total_max));
215: PetscCall(TSSetExactFinalTime(ts, TS_EXACTFINALTIME_STEPOVER));
216: PetscCall(TSSetFromOptions(ts));
218: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
219: Solve the problem
220: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
222: /*
223: Evaluate initial conditions
224: */
225: PetscCall(InitialConditions(u, &appctx));
227: /*
228: Run the timestepping solver
229: */
230: PetscCall(TSSolve(ts, u));
231: PetscCall(TSGetStepNumber(ts, &steps));
233: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
234: View timestepping solver info
235: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
237: PetscCall(PetscPrintf(PETSC_COMM_SELF, "avg. error (2 norm) = %g, avg. error (max norm) = %g\n", (double)(appctx.norm_2 / steps), (double)(appctx.norm_max / steps)));
238: if (!flg_string) {
239: PetscCall(TSView(ts, PETSC_VIEWER_STDOUT_SELF));
240: } else {
241: PetscViewer stringviewer;
242: char string[512];
243: const char *outstring;
245: PetscCall(PetscViewerStringOpen(PETSC_COMM_WORLD, string, sizeof(string), &stringviewer));
246: PetscCall(TSView(ts, stringviewer));
247: PetscCall(PetscViewerStringGetStringRead(stringviewer, &outstring, NULL));
248: PetscCheck((char *)outstring == (char *)string, PETSC_COMM_WORLD, PETSC_ERR_PLIB, "String returned from viewer does not equal original string");
249: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Output from string viewer:%s\n", outstring));
250: PetscCall(PetscViewerDestroy(&stringviewer));
251: }
253: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
254: Free work space. All PETSc objects should be destroyed when they
255: are no longer needed.
256: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
258: PetscCall(TSDestroy(&ts));
259: PetscCall(MatDestroy(&A));
260: PetscCall(VecDestroy(&u));
261: PetscCall(PetscViewerDestroy(&appctx.viewer1));
262: PetscCall(PetscViewerDestroy(&appctx.viewer2));
263: PetscCall(VecDestroy(&appctx.solution));
264: PetscCall(MatDestroy(&appctx.A));
266: /*
267: Always call PetscFinalize() before exiting a program. This routine
268: - finalizes the PETSc libraries as well as MPI
269: - provides summary and diagnostic information if certain runtime
270: options are chosen (e.g., -log_view).
271: */
272: PetscCall(PetscFinalize());
273: return 0;
274: }
275: /* --------------------------------------------------------------------- */
276: /*
277: InitialConditions - Computes the solution at the initial time.
279: Input Parameter:
280: u - uninitialized solution vector (global)
281: appctx - user-defined application context
283: Output Parameter:
284: u - vector with solution at initial time (global)
285: */
286: PetscErrorCode InitialConditions(Vec u, AppCtx *appctx)
287: {
288: PetscScalar *u_localptr, h = appctx->h;
289: PetscInt i;
291: PetscFunctionBeginUser;
292: /*
293: Get a pointer to vector data.
294: - For default PETSc vectors, VecGetArray() returns a pointer to
295: the data array. Otherwise, the routine is implementation dependent.
296: - You MUST call VecRestoreArray() when you no longer need access to
297: the array.
298: - Note that the Fortran interface to VecGetArray() differs from the
299: C version. See the users manual for details.
300: */
301: PetscCall(VecGetArrayWrite(u, &u_localptr));
303: /*
304: We initialize the solution array by simply writing the solution
305: directly into the array locations. Alternatively, we could use
306: VecSetValues() or VecSetValuesLocal().
307: */
308: for (i = 0; i < appctx->m; i++) u_localptr[i] = PetscSinScalar(PETSC_PI * i * 6. * h) + 3. * PetscSinScalar(PETSC_PI * i * 2. * h);
310: /*
311: Restore vector
312: */
313: PetscCall(VecRestoreArrayWrite(u, &u_localptr));
315: /*
316: Print debugging information if desired
317: */
318: if (appctx->debug) {
319: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Initial guess vector\n"));
320: PetscCall(VecView(u, PETSC_VIEWER_STDOUT_SELF));
321: }
323: PetscFunctionReturn(PETSC_SUCCESS);
324: }
325: /* --------------------------------------------------------------------- */
326: /*
327: ExactSolution - Computes the exact solution at a given time.
329: Input Parameters:
330: t - current time
331: solution - vector in which exact solution will be computed
332: appctx - user-defined application context
334: Output Parameter:
335: solution - vector with the newly computed exact solution
336: */
337: PetscErrorCode ExactSolution(PetscReal t, Vec solution, AppCtx *appctx)
338: {
339: PetscScalar *s_localptr, h = appctx->h, ex1, ex2, sc1, sc2, tc = t;
340: PetscInt i;
342: PetscFunctionBeginUser;
343: /*
344: Get a pointer to vector data.
345: */
346: PetscCall(VecGetArrayWrite(solution, &s_localptr));
348: /*
349: Simply write the solution directly into the array locations.
350: Alternatively, we culd use VecSetValues() or VecSetValuesLocal().
351: */
352: ex1 = PetscExpScalar(-36. * PETSC_PI * PETSC_PI * tc);
353: ex2 = PetscExpScalar(-4. * PETSC_PI * PETSC_PI * tc);
354: sc1 = PETSC_PI * 6. * h;
355: sc2 = PETSC_PI * 2. * h;
356: for (i = 0; i < appctx->m; i++) s_localptr[i] = PetscSinScalar(sc1 * (PetscReal)i) * ex1 + 3. * PetscSinScalar(sc2 * (PetscReal)i) * ex2;
358: /*
359: Restore vector
360: */
361: PetscCall(VecRestoreArrayWrite(solution, &s_localptr));
362: PetscFunctionReturn(PETSC_SUCCESS);
363: }
364: /* --------------------------------------------------------------------- */
365: /*
366: Monitor - User-provided routine to monitor the solution computed at
367: each timestep. This example plots the solution and computes the
368: error in two different norms.
370: This example also demonstrates changing the timestep via TSSetTimeStep().
372: Input Parameters:
373: ts - the timestep context
374: step - the count of the current step (with 0 meaning the
375: initial condition)
376: time - the current time
377: u - the solution at this timestep
378: ctx - the user-provided context for this monitoring routine.
379: In this case we use the application context which contains
380: information about the problem size, workspace and the exact
381: solution.
382: */
383: PetscErrorCode Monitor(TS ts, PetscInt step, PetscReal time, Vec u, void *ctx)
384: {
385: AppCtx *appctx = (AppCtx *)ctx; /* user-defined application context */
386: PetscReal norm_2, norm_max, dt, dttol;
388: PetscFunctionBeginUser;
389: /*
390: View a graph of the current iterate
391: */
392: PetscCall(VecView(u, appctx->viewer2));
394: /*
395: Compute the exact solution
396: */
397: PetscCall(ExactSolution(time, appctx->solution, appctx));
399: /*
400: Print debugging information if desired
401: */
402: if (appctx->debug) {
403: PetscCall(PetscPrintf(PETSC_COMM_SELF, "Computed solution vector\n"));
404: PetscCall(VecView(u, PETSC_VIEWER_STDOUT_SELF));
405: PetscCall(PetscPrintf(PETSC_COMM_SELF, "Exact solution vector\n"));
406: PetscCall(VecView(appctx->solution, PETSC_VIEWER_STDOUT_SELF));
407: }
409: /*
410: Compute the 2-norm and max-norm of the error
411: */
412: PetscCall(VecAXPY(appctx->solution, -1.0, u));
413: PetscCall(VecNorm(appctx->solution, NORM_2, &norm_2));
414: norm_2 = PetscSqrtReal(appctx->h) * norm_2;
415: PetscCall(VecNorm(appctx->solution, NORM_MAX, &norm_max));
417: PetscCall(TSGetTimeStep(ts, &dt));
418: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Timestep %3" PetscInt_FMT ": step size = %g, time = %g, 2-norm error = %g, max norm error = %g\n", step, (double)dt, (double)time, (double)norm_2, (double)norm_max));
420: appctx->norm_2 += norm_2;
421: appctx->norm_max += norm_max;
423: dttol = .0001;
424: PetscCall(PetscOptionsGetReal(NULL, NULL, "-dttol", &dttol, NULL));
425: if (dt < dttol) {
426: dt *= .999;
427: PetscCall(TSSetTimeStep(ts, dt));
428: }
430: /*
431: View a graph of the error
432: */
433: PetscCall(VecView(appctx->solution, appctx->viewer1));
435: /*
436: Print debugging information if desired
437: */
438: if (appctx->debug) {
439: PetscCall(PetscPrintf(PETSC_COMM_SELF, "Error vector\n"));
440: PetscCall(VecView(appctx->solution, PETSC_VIEWER_STDOUT_SELF));
441: }
443: PetscFunctionReturn(PETSC_SUCCESS);
444: }
445: /* --------------------------------------------------------------------- */
446: /*
447: RHSMatrixHeat - User-provided routine to compute the right-hand-side
448: matrix for the heat equation.
450: Input Parameters:
451: ts - the TS context
452: t - current time
453: global_in - global input vector
454: dummy - optional user-defined context, as set by TSetRHSJacobian()
456: Output Parameters:
457: AA - Jacobian matrix
458: BB - optionally different preconditioning matrix
459: str - flag indicating matrix structure
461: Notes:
462: Recall that MatSetValues() uses 0-based row and column numbers
463: in Fortran as well as in C.
464: */
465: PetscErrorCode RHSMatrixHeat(TS ts, PetscReal t, Vec X, Mat AA, Mat BB, void *ctx)
466: {
467: Mat A = AA; /* Jacobian matrix */
468: AppCtx *appctx = (AppCtx *)ctx; /* user-defined application context */
469: PetscInt mstart = 0;
470: PetscInt mend = appctx->m;
471: PetscInt i, idx[3];
472: PetscScalar v[3], stwo = -2. / (appctx->h * appctx->h), sone = -.5 * stwo;
474: PetscFunctionBeginUser;
475: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
476: Compute entries for the locally owned part of the matrix
477: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
478: /*
479: Set matrix rows corresponding to boundary data
480: */
482: mstart = 0;
483: v[0] = 1.0;
484: PetscCall(MatSetValues(A, 1, &mstart, 1, &mstart, v, INSERT_VALUES));
485: mstart++;
487: mend--;
488: v[0] = 1.0;
489: PetscCall(MatSetValues(A, 1, &mend, 1, &mend, v, INSERT_VALUES));
491: /*
492: Set matrix rows corresponding to interior data. We construct the
493: matrix one row at a time.
494: */
495: v[0] = sone;
496: v[1] = stwo;
497: v[2] = sone;
498: for (i = mstart; i < mend; i++) {
499: idx[0] = i - 1;
500: idx[1] = i;
501: idx[2] = i + 1;
502: PetscCall(MatSetValues(A, 1, &i, 3, idx, v, INSERT_VALUES));
503: }
505: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
506: Complete the matrix assembly process and set some options
507: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
508: /*
509: Assemble matrix, using the 2-step process:
510: MatAssemblyBegin(), MatAssemblyEnd()
511: Computations can be done while messages are in transition
512: by placing code between these two statements.
513: */
514: PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
515: PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
517: /*
518: Set and option to indicate that we will never add a new nonzero location
519: to the matrix. If we do, it will generate an error.
520: */
521: PetscCall(MatSetOption(A, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_TRUE));
523: PetscFunctionReturn(PETSC_SUCCESS);
524: }
526: PetscErrorCode IFunctionHeat(TS ts, PetscReal t, Vec X, Vec Xdot, Vec r, void *ctx)
527: {
528: AppCtx *appctx = (AppCtx *)ctx; /* user-defined application context */
530: PetscFunctionBeginUser;
531: PetscCall(MatMult(appctx->A, X, r));
532: PetscCall(VecAYPX(r, -1.0, Xdot));
533: PetscFunctionReturn(PETSC_SUCCESS);
534: }
536: PetscErrorCode IJacobianHeat(TS ts, PetscReal t, Vec X, Vec Xdot, PetscReal s, Mat A, Mat B, void *ctx)
537: {
538: AppCtx *appctx = (AppCtx *)ctx; /* user-defined application context */
540: PetscFunctionBeginUser;
541: if (appctx->oshift == s) PetscFunctionReturn(PETSC_SUCCESS);
542: PetscCall(MatCopy(appctx->A, A, SAME_NONZERO_PATTERN));
543: PetscCall(MatScale(A, -1));
544: PetscCall(MatShift(A, s));
545: PetscCall(MatCopy(A, B, SAME_NONZERO_PATTERN));
546: appctx->oshift = s;
547: PetscFunctionReturn(PETSC_SUCCESS);
548: }
550: /*TEST
552: test:
553: args: -nox -ts_type ssp -ts_dt 0.0005
555: test:
556: suffix: 2
557: args: -nox -ts_type ssp -ts_dt 0.0005 -time_dependent_rhs 1
559: test:
560: suffix: 3
561: args: -nox -ts_type rosw -ts_max_steps 3 -ksp_converged_reason
562: filter: sed "s/ATOL/RTOL/g"
563: requires: !single
565: test:
566: suffix: 4
567: args: -nox -ts_type beuler -ts_max_steps 3 -ksp_converged_reason
568: filter: sed "s/ATOL/RTOL/g"
570: test:
571: suffix: 5
572: args: -nox -ts_type beuler -ts_max_steps 3 -ksp_converged_reason -time_dependent_rhs
573: filter: sed "s/ATOL/RTOL/g"
575: test:
576: requires: !single
577: suffix: pod_guess
578: args: -nox -ts_type beuler -use_ifunc -ts_dt 0.0005 -ksp_guess_type pod -pc_type none -ksp_converged_reason
580: test:
581: requires: !single
582: suffix: pod_guess_Ainner
583: args: -nox -ts_type beuler -use_ifunc -ts_dt 0.0005 -ksp_guess_type pod -ksp_guess_pod_Ainner -pc_type none -ksp_converged_reason
585: test:
586: requires: !single
587: suffix: fischer_guess
588: args: -nox -ts_type beuler -use_ifunc -ts_dt 0.0005 -ksp_guess_type fischer -pc_type none -ksp_converged_reason
590: test:
591: requires: !single
592: suffix: fischer_guess_2
593: args: -nox -ts_type beuler -use_ifunc -ts_dt 0.0005 -ksp_guess_type fischer -ksp_guess_fischer_model 2,10 -pc_type none -ksp_converged_reason
595: test:
596: requires: !single
597: suffix: fischer_guess_3
598: args: -nox -ts_type beuler -use_ifunc -ts_dt 0.0005 -ksp_guess_type fischer -ksp_guess_fischer_model 3,10 -pc_type none -ksp_converged_reason
600: test:
601: requires: !single
602: suffix: stringview
603: args: -nox -ts_type rosw -test_string_viewer
605: test:
606: requires: !single
607: suffix: stringview_euler
608: args: -nox -ts_type euler -test_string_viewer
610: TEST*/