Actual source code: cusparsematimpl.h

  1: #pragma once

  3: #include <petscpkg_version.h>
  4: #include <../src/vec/vec/impls/seq/cupm/vecseqcupm.hpp>
  5: #include <../src/sys/objects/device/impls/cupm/cupmthrustutility.hpp>
  6: #include <petsc/private/petsclegacycupmblas.h>

  8: #include <cusparse_v2.h>

 10: #include <algorithm>
 11: #include <vector>

 13: #include <thrust/device_vector.h>
 14: #include <thrust/device_ptr.h>
 15: #include <thrust/device_malloc_allocator.h>
 16: #include <thrust/transform.h>
 17: #include <thrust/functional.h>
 18: #include <thrust/sequence.h>
 19: #include <thrust/system/system_error.h>

 21: #if defined(PETSC_USE_COMPLEX)
 22:   #if defined(PETSC_USE_REAL_SINGLE)
 23: const cuComplex PETSC_CUSPARSE_ONE  = {1.0f, 0.0f};
 24: const cuComplex PETSC_CUSPARSE_ZERO = {0.0f, 0.0f};
 25:     #define cusparseXcsrilu02_bufferSize(a, b, c, d, e, f, g, h, i)  cusparseCcsrilu02_bufferSize(a, b, c, d, (cuComplex *)e, f, g, h, i)
 26:     #define cusparseXcsrilu02_analysis(a, b, c, d, e, f, g, h, i, j) cusparseCcsrilu02_analysis(a, b, c, d, (cuComplex *)e, f, g, h, i, j)
 27:     #define cusparseXcsrilu02(a, b, c, d, e, f, g, h, i, j)          cusparseCcsrilu02(a, b, c, d, (cuComplex *)e, f, g, h, i, j)
 28:     #define cusparseXcsric02_bufferSize(a, b, c, d, e, f, g, h, i)   cusparseCcsric02_bufferSize(a, b, c, d, (cuComplex *)e, f, g, h, i)
 29:     #define cusparseXcsric02_analysis(a, b, c, d, e, f, g, h, i, j)  cusparseCcsric02_analysis(a, b, c, d, (cuComplex *)e, f, g, h, i, j)
 30:     #define cusparseXcsric02(a, b, c, d, e, f, g, h, i, j)           cusparseCcsric02(a, b, c, d, (cuComplex *)e, f, g, h, i, j)
 31:   #elif defined(PETSC_USE_REAL_DOUBLE)
 32: const cuDoubleComplex PETSC_CUSPARSE_ONE  = {1.0, 0.0};
 33: const cuDoubleComplex PETSC_CUSPARSE_ZERO = {0.0, 0.0};
 34:     #define cusparseXcsrilu02_bufferSize(a, b, c, d, e, f, g, h, i)  cusparseZcsrilu02_bufferSize(a, b, c, d, (cuDoubleComplex *)e, f, g, h, i)
 35:     #define cusparseXcsrilu02_analysis(a, b, c, d, e, f, g, h, i, j) cusparseZcsrilu02_analysis(a, b, c, d, (cuDoubleComplex *)e, f, g, h, i, j)
 36:     #define cusparseXcsrilu02(a, b, c, d, e, f, g, h, i, j)          cusparseZcsrilu02(a, b, c, d, (cuDoubleComplex *)e, f, g, h, i, j)
 37:     #define cusparseXcsric02_bufferSize(a, b, c, d, e, f, g, h, i)   cusparseZcsric02_bufferSize(a, b, c, d, (cuDoubleComplex *)e, f, g, h, i)
 38:     #define cusparseXcsric02_analysis(a, b, c, d, e, f, g, h, i, j)  cusparseZcsric02_analysis(a, b, c, d, (cuDoubleComplex *)e, f, g, h, i, j)
 39:     #define cusparseXcsric02(a, b, c, d, e, f, g, h, i, j)           cusparseZcsric02(a, b, c, d, (cuDoubleComplex *)e, f, g, h, i, j)
 40:   #endif
 41: #else
 42: const PetscScalar PETSC_CUSPARSE_ONE  = 1.0;
 43: const PetscScalar PETSC_CUSPARSE_ZERO = 0.0;
 44:   #if defined(PETSC_USE_REAL_SINGLE)
 45:     #define cusparseXcsrilu02_bufferSize cusparseScsrilu02_bufferSize
 46:     #define cusparseXcsrilu02_analysis   cusparseScsrilu02_analysis
 47:     #define cusparseXcsrilu02            cusparseScsrilu02
 48:     #define cusparseXcsric02_bufferSize  cusparseScsric02_bufferSize
 49:     #define cusparseXcsric02_analysis    cusparseScsric02_analysis
 50:     #define cusparseXcsric02             cusparseScsric02
 51:   #elif defined(PETSC_USE_REAL_DOUBLE)
 52:     #define cusparseXcsrilu02_bufferSize cusparseDcsrilu02_bufferSize
 53:     #define cusparseXcsrilu02_analysis   cusparseDcsrilu02_analysis
 54:     #define cusparseXcsrilu02            cusparseDcsrilu02
 55:     #define cusparseXcsric02_bufferSize  cusparseDcsric02_bufferSize
 56:     #define cusparseXcsric02_analysis    cusparseDcsric02_analysis
 57:     #define cusparseXcsric02             cusparseDcsric02
 58:   #endif
 59: #endif

 61: #if PETSC_PKG_CUDA_VERSION_GE(9, 0, 0)
 62:   #define csrsvInfo_t              csrsv2Info_t
 63:   #define cusparseCreateCsrsvInfo  cusparseCreateCsrsv2Info
 64:   #define cusparseDestroyCsrsvInfo cusparseDestroyCsrsv2Info
 65:   #if defined(PETSC_USE_COMPLEX)
 66:     #if defined(PETSC_USE_REAL_SINGLE)
 67:       #define cusparseXcsrsv_buffsize(a, b, c, d, e, f, g, h, i, j)          cusparseCcsrsv2_bufferSize(a, b, c, d, e, (cuComplex *)(f), g, h, i, j)
 68:       #define cusparseXcsrsv_analysis(a, b, c, d, e, f, g, h, i, j, k)       cusparseCcsrsv2_analysis(a, b, c, d, e, (const cuComplex *)(f), g, h, i, j, k)
 69:       #define cusparseXcsrsv_solve(a, b, c, d, e, f, g, h, i, j, k, l, m, n) cusparseCcsrsv2_solve(a, b, c, d, (const cuComplex *)(e), f, (const cuComplex *)(g), h, i, j, (const cuComplex *)(k), (cuComplex *)(l), m, n)
 70:     #elif defined(PETSC_USE_REAL_DOUBLE)
 71:       #define cusparseXcsrsv_buffsize(a, b, c, d, e, f, g, h, i, j)          cusparseZcsrsv2_bufferSize(a, b, c, d, e, (cuDoubleComplex *)(f), g, h, i, j)
 72:       #define cusparseXcsrsv_analysis(a, b, c, d, e, f, g, h, i, j, k)       cusparseZcsrsv2_analysis(a, b, c, d, e, (const cuDoubleComplex *)(f), g, h, i, j, k)
 73:       #define cusparseXcsrsv_solve(a, b, c, d, e, f, g, h, i, j, k, l, m, n) cusparseZcsrsv2_solve(a, b, c, d, (const cuDoubleComplex *)(e), f, (const cuDoubleComplex *)(g), h, i, j, (const cuDoubleComplex *)(k), (cuDoubleComplex *)(l), m, n)
 74:     #endif
 75:   #else /* not complex */
 76:     #if defined(PETSC_USE_REAL_SINGLE)
 77:       #define cusparseXcsrsv_buffsize cusparseScsrsv2_bufferSize
 78:       #define cusparseXcsrsv_analysis cusparseScsrsv2_analysis
 79:       #define cusparseXcsrsv_solve    cusparseScsrsv2_solve
 80:     #elif defined(PETSC_USE_REAL_DOUBLE)
 81:       #define cusparseXcsrsv_buffsize cusparseDcsrsv2_bufferSize
 82:       #define cusparseXcsrsv_analysis cusparseDcsrsv2_analysis
 83:       #define cusparseXcsrsv_solve    cusparseDcsrsv2_solve
 84:     #endif
 85:   #endif
 86: #else /* PETSC_PKG_CUDA_VERSION_GE(9, 0, 0) */
 87:   #define csrsvInfo_t              cusparseSolveAnalysisInfo_t
 88:   #define cusparseCreateCsrsvInfo  cusparseCreateSolveAnalysisInfo
 89:   #define cusparseDestroyCsrsvInfo cusparseDestroySolveAnalysisInfo
 90:   #if defined(PETSC_USE_COMPLEX)
 91:     #if defined(PETSC_USE_REAL_SINGLE)
 92:       #define cusparseXcsrsv_solve(a, b, c, d_IGNORED, e, f, g, h, i, j, k, l, m_IGNORED, n_IGNORED) cusparseCcsrsv_solve((a), (b), (c), (cuComplex *)(e), (f), (cuComplex *)(g), (h), (i), (j), (cuComplex *)(k), (cuComplex *)(l))
 93:       #define cusparseXcsrsv_analysis(a, b, c, d, e, f, g, h, i, j_IGNORED, k_IGNORED)               cusparseCcsrsv_analysis((a), (b), (c), (d), (e), (cuComplex *)(f), (g), (h), (i))
 94:     #elif defined(PETSC_USE_REAL_DOUBLE)
 95:       #define cusparseXcsrsv_solve(a, b, c, d_IGNORED, e, f, g, h, i, j, k, l, m_IGNORED, n_IGNORED) \
 96:         cusparseZcsrsv_solve((a), (b), (c), (cuDoubleComplex *)(e), (f), (cuDoubleComplex *)(g), (h), (i), (j), (cuDoubleComplex *)(k), (cuDoubleComplex *)(l))
 97:       #define cusparseXcsrsv_analysis(a, b, c, d, e, f, g, h, i, j_IGNORED, k_IGNORED) cusparseZcsrsv_analysis((a), (b), (c), (d), (e), (cuDoubleComplex *)(f), (g), (h), (i))
 98:     #endif
 99:   #else /* not complex */
100:     #if defined(PETSC_USE_REAL_SINGLE)
101:       #define cusparseXcsrsv_solve                                     cusparseScsrsv_solve
102:       #define cusparseXcsrsv_analysis(a, b, c, d, e, f, g, h, i, j, k) cusparseScsrsv_analysis(a, b, c, d, e, f, g, h, i)
103:     #elif defined(PETSC_USE_REAL_DOUBLE)
104:       #define cusparseXcsrsv_solve                                     cusparseDcsrsv_solve
105:       #define cusparseXcsrsv_analysis(a, b, c, d, e, f, g, h, i, j, k) cusparseDcsrsv_analysis(a, b, c, d, e, f, g, h, i)
106:     #endif
107:   #endif
108: #endif /* PETSC_PKG_CUDA_VERSION_GE(9, 0, 0) */

110: #if PETSC_PKG_CUDA_VERSION_GE(11, 0, 0)
111:   #define cusparse_csr2csc cusparseCsr2cscEx2
112:   #if defined(PETSC_USE_COMPLEX)
113:     #if defined(PETSC_USE_REAL_SINGLE)
114:       #define cusparse_scalartype                                                             CUDA_C_32F
115:       #define cusparse_csr_spgeam(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) cusparseCcsrgeam2(a, b, c, (cuComplex *)d, e, f, (cuComplex *)g, h, i, (cuComplex *)j, k, l, (cuComplex *)m, n, o, p, (cuComplex *)q, r, s, t)
116:       #define cusparse_csr_spgeam_bufferSize(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) \
117:         cusparseCcsrgeam2_bufferSizeExt(a, b, c, (cuComplex *)d, e, f, (cuComplex *)g, h, i, (cuComplex *)j, k, l, (cuComplex *)m, n, o, p, (cuComplex *)q, r, s, t)
118:     #elif defined(PETSC_USE_REAL_DOUBLE)
119:       #define cusparse_scalartype CUDA_C_64F
120:       #define cusparse_csr_spgeam(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) \
121:         cusparseZcsrgeam2(a, b, c, (cuDoubleComplex *)d, e, f, (cuDoubleComplex *)g, h, i, (cuDoubleComplex *)j, k, l, (cuDoubleComplex *)m, n, o, p, (cuDoubleComplex *)q, r, s, t)
122:       #define cusparse_csr_spgeam_bufferSize(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) \
123:         cusparseZcsrgeam2_bufferSizeExt(a, b, c, (cuDoubleComplex *)d, e, f, (cuDoubleComplex *)g, h, i, (cuDoubleComplex *)j, k, l, (cuDoubleComplex *)m, n, o, p, (cuDoubleComplex *)q, r, s, t)
124:     #endif
125:   #else /* not complex */
126:     #if defined(PETSC_USE_REAL_SINGLE)
127:       #define cusparse_scalartype            CUDA_R_32F
128:       #define cusparse_csr_spgeam            cusparseScsrgeam2
129:       #define cusparse_csr_spgeam_bufferSize cusparseScsrgeam2_bufferSizeExt
130:     #elif defined(PETSC_USE_REAL_DOUBLE)
131:       #define cusparse_scalartype            CUDA_R_64F
132:       #define cusparse_csr_spgeam            cusparseDcsrgeam2
133:       #define cusparse_csr_spgeam_bufferSize cusparseDcsrgeam2_bufferSizeExt
134:     #endif
135:   #endif
136: #else /* PETSC_PKG_CUDA_VERSION_GE(11, 0, 0) */
137:   #if defined(PETSC_USE_COMPLEX)
138:     #if defined(PETSC_USE_REAL_SINGLE)
139:       #define cusparse_csr_spmv(a, b, c, d, e, f, g, h, i, j, k, l, m)                        cusparseCcsrmv((a), (b), (c), (d), (e), (cuComplex *)(f), (g), (cuComplex *)(h), (i), (j), (cuComplex *)(k), (cuComplex *)(l), (cuComplex *)(m))
140:       #define cusparse_csr_spmm(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)               cusparseCcsrmm((a), (b), (c), (d), (e), (f), (cuComplex *)(g), (h), (cuComplex *)(i), (j), (k), (cuComplex *)(l), (m), (cuComplex *)(n), (cuComplex *)(o), (p))
141:       #define cusparse_csr2csc(a, b, c, d, e, f, g, h, i, j, k, l)                            cusparseCcsr2csc((a), (b), (c), (d), (cuComplex *)(e), (f), (g), (cuComplex *)(h), (i), (j), (k), (l))
142:       #define cusparse_hyb_spmv(a, b, c, d, e, f, g, h)                                       cusparseChybmv((a), (b), (cuComplex *)(c), (d), (e), (cuComplex *)(f), (cuComplex *)(g), (cuComplex *)(h))
143:       #define cusparse_csr2hyb(a, b, c, d, e, f, g, h, i, j)                                  cusparseCcsr2hyb((a), (b), (c), (d), (cuComplex *)(e), (f), (g), (h), (i), (j))
144:       #define cusparse_hyb2csr(a, b, c, d, e, f)                                              cusparseChyb2csr((a), (b), (c), (cuComplex *)(d), (e), (f))
145:       #define cusparse_csr_spgemm(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) cusparseCcsrgemm(a, b, c, d, e, f, g, h, (cuComplex *)i, j, k, l, m, (cuComplex *)n, o, p, q, (cuComplex *)r, s, t)
146:       #define cusparse_csr_spgeam(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s)    cusparseCcsrgeam(a, b, c, (cuComplex *)d, e, f, (cuComplex *)g, h, i, (cuComplex *)j, k, l, (cuComplex *)m, n, o, p, (cuComplex *)q, r, s)
147:     #elif defined(PETSC_USE_REAL_DOUBLE)
148:       #define cusparse_csr_spmv(a, b, c, d, e, f, g, h, i, j, k, l, m) cusparseZcsrmv((a), (b), (c), (d), (e), (cuDoubleComplex *)(f), (g), (cuDoubleComplex *)(h), (i), (j), (cuDoubleComplex *)(k), (cuDoubleComplex *)(l), (cuDoubleComplex *)(m))
149:       #define cusparse_csr_spmm(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) \
150:         cusparseZcsrmm((a), (b), (c), (d), (e), (f), (cuDoubleComplex *)(g), (h), (cuDoubleComplex *)(i), (j), (k), (cuDoubleComplex *)(l), (m), (cuDoubleComplex *)(n), (cuDoubleComplex *)(o), (p))
151:       #define cusparse_csr2csc(a, b, c, d, e, f, g, h, i, j, k, l)                            cusparseZcsr2csc((a), (b), (c), (d), (cuDoubleComplex *)(e), (f), (g), (cuDoubleComplex *)(h), (i), (j), (k), (l))
152:       #define cusparse_hyb_spmv(a, b, c, d, e, f, g, h)                                       cusparseZhybmv((a), (b), (cuDoubleComplex *)(c), (d), (e), (cuDoubleComplex *)(f), (cuDoubleComplex *)(g), (cuDoubleComplex *)(h))
153:       #define cusparse_csr2hyb(a, b, c, d, e, f, g, h, i, j)                                  cusparseZcsr2hyb((a), (b), (c), (d), (cuDoubleComplex *)(e), (f), (g), (h), (i), (j))
154:       #define cusparse_hyb2csr(a, b, c, d, e, f)                                              cusparseZhyb2csr((a), (b), (c), (cuDoubleComplex *)(d), (e), (f))
155:       #define cusparse_csr_spgemm(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) cusparseZcsrgemm(a, b, c, d, e, f, g, h, (cuDoubleComplex *)i, j, k, l, m, (cuDoubleComplex *)n, o, p, q, (cuDoubleComplex *)r, s, t)
156:       #define cusparse_csr_spgeam(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s) \
157:         cusparseZcsrgeam(a, b, c, (cuDoubleComplex *)d, e, f, (cuDoubleComplex *)g, h, i, (cuDoubleComplex *)j, k, l, (cuDoubleComplex *)m, n, o, p, (cuDoubleComplex *)q, r, s)
158:     #endif
159:   #else
160:     #if defined(PETSC_USE_REAL_SINGLE)
161:       #define cusparse_csr_spmv   cusparseScsrmv
162:       #define cusparse_csr_spmm   cusparseScsrmm
163:       #define cusparse_csr2csc    cusparseScsr2csc
164:       #define cusparse_hyb_spmv   cusparseShybmv
165:       #define cusparse_csr2hyb    cusparseScsr2hyb
166:       #define cusparse_hyb2csr    cusparseShyb2csr
167:       #define cusparse_csr_spgemm cusparseScsrgemm
168:       #define cusparse_csr_spgeam cusparseScsrgeam
169:     #elif defined(PETSC_USE_REAL_DOUBLE)
170:       #define cusparse_csr_spmv   cusparseDcsrmv
171:       #define cusparse_csr_spmm   cusparseDcsrmm
172:       #define cusparse_csr2csc    cusparseDcsr2csc
173:       #define cusparse_hyb_spmv   cusparseDhybmv
174:       #define cusparse_csr2hyb    cusparseDcsr2hyb
175:       #define cusparse_hyb2csr    cusparseDhyb2csr
176:       #define cusparse_csr_spgemm cusparseDcsrgemm
177:       #define cusparse_csr_spgeam cusparseDcsrgeam
178:     #endif
179:   #endif
180: #endif /* PETSC_PKG_CUDA_VERSION_GE(11, 0, 0) */

182: #define THRUSTINTARRAY32 thrust::device_vector<int>
183: #define THRUSTINTARRAY   thrust::device_vector<PetscInt>
184: #define THRUSTARRAY      thrust::device_vector<PetscScalar>

186: /* A CSR matrix structure */
187: struct CsrMatrix {
188:   PetscInt          num_rows;
189:   PetscInt          num_cols;
190:   PetscInt          num_entries;
191:   THRUSTINTARRAY32 *row_offsets;
192:   THRUSTINTARRAY32 *column_indices;
193:   THRUSTARRAY      *values;
194: };

196: /* This is struct holding the relevant data needed to a MatSolve */
197: struct Mat_SeqAIJCUSPARSETriFactorStruct {
198:   /* Data needed for triangular solve */
199:   cusparseMatDescr_t  descr;
200:   cusparseOperation_t solveOp;
201:   CsrMatrix          *csrMat;
202: #if PETSC_PKG_CUDA_VERSION_LT(11, 4, 0)
203:   csrsvInfo_t           solveInfo;
204:   cusparseSolvePolicy_t solvePolicy; /* whether level information is generated and used */
205: #endif
206:   int          solveBufferSize;
207:   void        *solveBuffer;
208:   size_t       csr2cscBufferSize; /* to transpose the triangular factor (only used for CUDA >= 11.0) */
209:   void        *csr2cscBuffer;
210:   PetscScalar *AA_h; /* managed host buffer for moving values to the GPU */
211: };

213: /* This is a larger struct holding all the triangular factors for a solve, transpose solve, and any indices used in a reordering */
214: struct Mat_SeqAIJCUSPARSETriFactors {
215: #if PETSC_PKG_CUDA_VERSION_LT(11, 4, 0)
216:   Mat_SeqAIJCUSPARSETriFactorStruct *loTriFactorPtr;          /* pointer for lower triangular (factored matrix) on GPU */
217:   Mat_SeqAIJCUSPARSETriFactorStruct *upTriFactorPtr;          /* pointer for upper triangular (factored matrix) on GPU */
218:   Mat_SeqAIJCUSPARSETriFactorStruct *loTriFactorPtrTranspose; /* pointer for lower triangular (factored matrix) on GPU for the transpose (useful for BiCG) */
219:   Mat_SeqAIJCUSPARSETriFactorStruct *upTriFactorPtrTranspose; /* pointer for upper triangular (factored matrix) on GPU for the transpose (useful for BiCG)*/
220: #endif

222:   THRUSTINTARRAY  *rpermIndices; /* indices used for any reordering */
223:   THRUSTINTARRAY  *cpermIndices; /* indices used for any reordering */
224:   THRUSTARRAY     *workVector;
225:   cusparseHandle_t handle; /* a handle to the cusparse library */
226:   PetscInt         nnz;    /* number of nonzeros ... need this for accurate logging between ICC and ILU */
227:   cudaDeviceProp   dev_prop;
228:   PetscBool        init_dev_prop;

230:   PetscBool factorizeOnDevice; /* Do factorization on device or not */
231: #if PETSC_PKG_CUDA_VERSION_GE(11, 4, 0)
232:   /* csrilu0/csric0 appeared in cusparse-8.0, but we use it along with cusparseSpSV,
233:      which first appeared in cusparse-11.5 with cuda-11.3.
234:   */
235:   PetscScalar *csrVal, *diag;             // the diagonal D in UtDU of Cholesky
236:   int         *csrRowPtr32, *csrColIdx32; // i,j of M. cusparseScsrilu02/ic02() etc require 32-bit indices

238:   PetscInt    *csrRowPtr, *csrColIdx; // i, j of M on device for CUDA APIs that support 64-bit indices
239:   PetscScalar *csrVal_h, *diag_h;     // Since LU is done on host, we prepare a factored matrix in regular csr format on host and then copy it to device
240:   PetscInt    *csrRowPtr_h;           // csrColIdx_h is temporary, so it is not here

242:   /* Mixed mat descriptor types? yes, different cusparse APIs use different types */
243:   cusparseMatDescr_t   matDescr_M;
244:   cusparseSpMatDescr_t spMatDescr_L, spMatDescr_U;
245:   cusparseSpSVDescr_t  spsvDescr_L, spsvDescr_Lt, spsvDescr_U, spsvDescr_Ut;

247:   cusparseDnVecDescr_t dnVecDescr_X, dnVecDescr_Y;
248:   PetscScalar         *X, *Y; /* data array of dnVec X and Y */

250:   /* Mixed size types? yes, CUDA-11.7.0 declared cusparseDcsrilu02_bufferSizeExt() that returns size_t but did not implement it! */
251:   int    factBufferSize_M; /* M ~= LU or LLt */
252:   size_t spsvBufferSize_L, spsvBufferSize_Lt, spsvBufferSize_U, spsvBufferSize_Ut;
253:   /* cusparse needs various buffers for factorization and solve of L, U, Lt, or Ut.
254:      So save memory, we share the factorization buffer with one of spsvBuffer_L/U.
255:   */
256:   void *factBuffer_M, *spsvBuffer_L, *spsvBuffer_U, *spsvBuffer_Lt, *spsvBuffer_Ut;

258:   csrilu02Info_t        ilu0Info_M;
259:   csric02Info_t         ic0Info_M;
260:   int                   structural_zero, numerical_zero;
261:   cusparseSolvePolicy_t policy_M;

263:   /* In MatSolveTranspose() for ILU0, we use the two flags to do on-demand solve */
264:   PetscBool createdTransposeSpSVDescr;    /* Have we created SpSV descriptors for Lt, Ut? */
265:   PetscBool updatedTransposeSpSVAnalysis; /* Have we updated SpSV analysis with the latest L, U values? */

267:   PetscLogDouble numericFactFlops; /* Estimated FLOPs in ILU0/ICC0 numeric factorization */
268: #endif
269: };

271: struct Mat_CusparseSpMV {
272:   PetscBool initialized;    /* Don't rely on spmvBuffer != NULL to test if the struct is initialized, */
273:   size_t    spmvBufferSize; /* since I'm not sure if smvBuffer can be NULL even after cusparseSpMV_bufferSize() */
274:   void     *spmvBuffer;
275: #if PETSC_PKG_CUDA_VERSION_GE(11, 0, 0)      /* these are present from CUDA 10.1, but PETSc code makes use of them from CUDA 11 on */
276:   cusparseDnVecDescr_t vecXDescr, vecYDescr; /* descriptor for the dense vectors in y=op(A)x */
277: #endif
278: };

280: /* This is struct holding the relevant data needed to a MatMult */
281: struct Mat_SeqAIJCUSPARSEMultStruct {
282:   void              *mat;          /* opaque pointer to a matrix. This could be either a cusparseHybMat_t or a CsrMatrix */
283:   cusparseMatDescr_t descr;        /* Data needed to describe the matrix for a multiply */
284:   THRUSTINTARRAY    *cprowIndices; /* compressed row indices used in the parallel SpMV */
285:   PetscScalar       *alpha_one;    /* pointer to a device "scalar" storing the alpha parameter in the SpMV */
286:   PetscScalar       *beta_zero;    /* pointer to a device "scalar" storing the beta parameter in the SpMV as zero*/
287:   PetscScalar       *beta_one;     /* pointer to a device "scalar" storing the beta parameter in the SpMV as one */
288: #if PETSC_PKG_CUDA_VERSION_GE(11, 0, 0)
289:   cusparseSpMatDescr_t matDescr;  /* descriptor for the matrix, used by SpMV and SpMM */
290:   Mat_CusparseSpMV     cuSpMV[3]; /* different Mat_CusparseSpMV structs for non-transpose, transpose, conj-transpose */
291:   Mat_SeqAIJCUSPARSEMultStruct() : matDescr(NULL)
292:   {
293:     for (int i = 0; i < 3; i++) cuSpMV[i].initialized = PETSC_FALSE;
294:   }
295: #endif
296: };

298: /* This is a larger struct holding all the matrices for a SpMV, and SpMV Transpose */
299: struct Mat_SeqAIJCUSPARSE {
300:   Mat_SeqAIJCUSPARSEMultStruct *mat;            /* pointer to the matrix on the GPU */
301:   Mat_SeqAIJCUSPARSEMultStruct *matTranspose;   /* pointer to the matrix on the GPU (for the transpose ... useful for BiCG) */
302:   THRUSTARRAY                  *workVector;     /* pointer to a workvector to which we can copy the relevant indices of a vector we want to multiply */
303:   THRUSTINTARRAY32             *rowoffsets_gpu; /* rowoffsets on GPU in non-compressed-row format. It is used to convert CSR to CSC */
304:   PetscInt                      nrows;          /* number of rows of the matrix seen by GPU */
305:   MatCUSPARSEStorageFormat      format;         /* the storage format for the matrix on the device */
306:   PetscBool                     use_cpu_solve;  /* Use AIJ_Seq (I)LU solve */
307:   cudaStream_t                  stream;         /* a stream for the parallel SpMV ... this is not owned and should not be deleted */
308:   cusparseHandle_t              handle;         /* a handle to the cusparse library ... this may not be owned (if we're working in parallel i.e. multiGPUs) */
309:   PetscObjectState              nonzerostate;   /* track nonzero state to possibly recreate the GPU matrix */
310: #if PETSC_PKG_CUDA_VERSION_GE(11, 0, 0)
311:   size_t               csr2cscBufferSize; /* stuff used to compute the matTranspose above */
312:   void                *csr2cscBuffer;     /* This is used as a C struct and is calloc'ed by PetscNew() */
313:   cusparseCsr2CscAlg_t csr2cscAlg;        /* algorithms can be selected from command line options */
314:   cusparseSpMVAlg_t    spmvAlg;
315:   cusparseSpMMAlg_t    spmmAlg;
316: #endif
317:   THRUSTINTARRAY *csr2csc_i;
318:   THRUSTINTARRAY *coords; /* permutation array used in MatSeqAIJCUSPARSEMergeMats */
319: };

321: typedef struct Mat_SeqAIJCUSPARSETriFactors *Mat_SeqAIJCUSPARSETriFactors_p;

323: PETSC_INTERN PetscErrorCode MatSeqAIJCUSPARSECopyToGPU(Mat);
324: PETSC_INTERN PetscErrorCode MatSeqAIJCUSPARSEMergeMats(Mat, Mat, MatReuse, Mat *);
325: PETSC_INTERN PetscErrorCode MatSeqAIJCUSPARSETriFactors_Reset(Mat_SeqAIJCUSPARSETriFactors_p *);

327: using VecSeq_CUDA = Petsc::vec::cupm::impl::VecSeq_CUPM<Petsc::device::cupm::DeviceType::CUDA>;

329: static inline bool isCudaMem(const void *data)
330: {
331:   using namespace Petsc::device::cupm;
332:   auto mtype = PETSC_MEMTYPE_HOST;

334:   PetscFunctionBegin;
335:   PetscCallAbort(PETSC_COMM_SELF, impl::Interface<DeviceType::CUDA>::PetscCUPMGetMemType(data, &mtype));
336:   PetscFunctionReturn(PetscMemTypeDevice(mtype));
337: }