Actual source code: mkl_cpardiso.c

  1: #include <petscsys.h>
  2: #include <../src/mat/impls/aij/mpi/mpiaij.h>
  3: #include <../src/mat/impls/sbaij/mpi/mpisbaij.h>

  5: #if defined(PETSC_HAVE_MKL_INTEL_ILP64)
  6:   #define MKL_ILP64
  7: #endif
  8: #include <mkl.h>
  9: #include <mkl_cluster_sparse_solver.h>

 11: /*
 12:  *  Possible mkl_cpardiso phases that controls the execution of the solver.
 13:  *  For more information check mkl_cpardiso manual.
 14:  */
 15: #define JOB_ANALYSIS                                                    11
 16: #define JOB_ANALYSIS_NUMERICAL_FACTORIZATION                            12
 17: #define JOB_ANALYSIS_NUMERICAL_FACTORIZATION_SOLVE_ITERATIVE_REFINEMENT 13
 18: #define JOB_NUMERICAL_FACTORIZATION                                     22
 19: #define JOB_NUMERICAL_FACTORIZATION_SOLVE_ITERATIVE_REFINEMENT          23
 20: #define JOB_SOLVE_ITERATIVE_REFINEMENT                                  33
 21: #define JOB_SOLVE_FORWARD_SUBSTITUTION                                  331
 22: #define JOB_SOLVE_DIAGONAL_SUBSTITUTION                                 332
 23: #define JOB_SOLVE_BACKWARD_SUBSTITUTION                                 333
 24: #define JOB_RELEASE_OF_LU_MEMORY                                        0
 25: #define JOB_RELEASE_OF_ALL_MEMORY                                       -1

 27: #define IPARM_SIZE 64
 28: #define INT_TYPE   MKL_INT

 30: static const char *Err_MSG_CPardiso(int errNo)
 31: {
 32:   switch (errNo) {
 33:   case -1:
 34:     return "input inconsistent";
 35:     break;
 36:   case -2:
 37:     return "not enough memory";
 38:     break;
 39:   case -3:
 40:     return "reordering problem";
 41:     break;
 42:   case -4:
 43:     return "zero pivot, numerical factorization or iterative refinement problem";
 44:     break;
 45:   case -5:
 46:     return "unclassified (internal) error";
 47:     break;
 48:   case -6:
 49:     return "preordering failed (matrix types 11, 13 only)";
 50:     break;
 51:   case -7:
 52:     return "diagonal matrix problem";
 53:     break;
 54:   case -8:
 55:     return "32-bit integer overflow problem";
 56:     break;
 57:   case -9:
 58:     return "not enough memory for OOC";
 59:     break;
 60:   case -10:
 61:     return "problems with opening OOC temporary files";
 62:     break;
 63:   case -11:
 64:     return "read/write problems with the OOC data file";
 65:     break;
 66:   default:
 67:     return "unknown error";
 68:   }
 69: }

 71: /*
 72:  *  Internal data structure.
 73:  *  For more information check mkl_cpardiso manual.
 74:  */

 76: typedef struct {
 77:   /* Configuration vector */
 78:   INT_TYPE iparm[IPARM_SIZE];

 80:   /*
 81:    * Internal mkl_cpardiso memory location.
 82:    * After the first call to mkl_cpardiso do not modify pt, as that could cause a serious memory leak.
 83:    */
 84:   void *pt[IPARM_SIZE];

 86:   MPI_Fint comm_mkl_cpardiso;

 88:   /* Basic mkl_cpardiso info*/
 89:   INT_TYPE phase, maxfct, mnum, mtype, n, nrhs, msglvl, err;

 91:   /* Matrix structure */
 92:   PetscScalar *a;

 94:   INT_TYPE *ia, *ja;

 96:   /* Number of non-zero elements */
 97:   INT_TYPE nz;

 99:   /* Row permutaton vector*/
100:   INT_TYPE *perm;

102:   /* Define is matrix preserve sparse structure. */
103:   MatStructure matstruc;

105:   PetscErrorCode (*ConvertToTriples)(Mat, MatReuse, PetscInt *, PetscInt **, PetscInt **, PetscScalar **);

107:   /* True if mkl_cpardiso function have been used. */
108:   PetscBool CleanUp;
109: } Mat_MKL_CPARDISO;

111: /*
112:  * Copy the elements of matrix A.
113:  * Input:
114:  *   - Mat A: MATSEQAIJ matrix
115:  *   - int shift: matrix index.
116:  *     - 0 for c representation
117:  *     - 1 for fortran representation
118:  *   - MatReuse reuse:
119:  *     - MAT_INITIAL_MATRIX: Create a new aij representation
120:  *     - MAT_REUSE_MATRIX: Reuse all aij representation and just change values
121:  * Output:
122:  *   - int *nnz: Number of nonzero-elements.
123:  *   - int **r pointer to i index
124:  *   - int **c pointer to j elements
125:  *   - MATRIXTYPE **v: Non-zero elements
126:  */
127: static PetscErrorCode MatCopy_seqaij_seqaij_MKL_CPARDISO(Mat A, MatReuse reuse, PetscInt *nnz, PetscInt **r, PetscInt **c, PetscScalar **v)
128: {
129:   Mat_SeqAIJ *aa = (Mat_SeqAIJ *)A->data;

131:   PetscFunctionBegin;
132:   *v = aa->a;
133:   if (reuse == MAT_INITIAL_MATRIX) {
134:     *r   = (INT_TYPE *)aa->i;
135:     *c   = (INT_TYPE *)aa->j;
136:     *nnz = aa->nz;
137:   }
138:   PetscFunctionReturn(PETSC_SUCCESS);
139: }

141: static PetscErrorCode MatConvertToTriples_mpiaij_mpiaij_MKL_CPARDISO(Mat A, MatReuse reuse, PetscInt *nnz, PetscInt **r, PetscInt **c, PetscScalar **v)
142: {
143:   const PetscInt    *ai, *aj, *bi, *bj, *garray, m = A->rmap->n, *ajj, *bjj;
144:   PetscInt           rstart, nz, i, j, countA, countB;
145:   PetscInt          *row, *col;
146:   const PetscScalar *av, *bv;
147:   PetscScalar       *val;
148:   Mat_MPIAIJ        *mat = (Mat_MPIAIJ *)A->data;
149:   Mat_SeqAIJ        *aa  = (Mat_SeqAIJ *)(mat->A)->data;
150:   Mat_SeqAIJ        *bb  = (Mat_SeqAIJ *)(mat->B)->data;
151:   PetscInt           colA_start, jB, jcol;

153:   PetscFunctionBegin;
154:   ai     = aa->i;
155:   aj     = aa->j;
156:   bi     = bb->i;
157:   bj     = bb->j;
158:   rstart = A->rmap->rstart;
159:   av     = aa->a;
160:   bv     = bb->a;

162:   garray = mat->garray;

164:   if (reuse == MAT_INITIAL_MATRIX) {
165:     nz   = aa->nz + bb->nz;
166:     *nnz = nz;
167:     PetscCall(PetscMalloc3(m + 1, &row, nz, &col, nz, &val));
168:     *r = row;
169:     *c = col;
170:     *v = val;
171:   } else {
172:     row = *r;
173:     col = *c;
174:     val = *v;
175:   }

177:   nz = 0;
178:   for (i = 0; i < m; i++) {
179:     row[i] = nz;
180:     countA = ai[i + 1] - ai[i];
181:     countB = bi[i + 1] - bi[i];
182:     ajj    = aj + ai[i]; /* ptr to the beginning of this row */
183:     bjj    = bj + bi[i];

185:     /* B part, smaller col index */
186:     colA_start = rstart + ajj[0]; /* the smallest global col index of A */
187:     jB         = 0;
188:     for (j = 0; j < countB; j++) {
189:       jcol = garray[bjj[j]];
190:       if (jcol > colA_start) break;
191:       col[nz]   = jcol;
192:       val[nz++] = *bv++;
193:     }
194:     jB = j;

196:     /* A part */
197:     for (j = 0; j < countA; j++) {
198:       col[nz]   = rstart + ajj[j];
199:       val[nz++] = *av++;
200:     }

202:     /* B part, larger col index */
203:     for (j = jB; j < countB; j++) {
204:       col[nz]   = garray[bjj[j]];
205:       val[nz++] = *bv++;
206:     }
207:   }
208:   row[m] = nz;

210:   PetscFunctionReturn(PETSC_SUCCESS);
211: }

213: static PetscErrorCode MatConvertToTriples_mpibaij_mpibaij_MKL_CPARDISO(Mat A, MatReuse reuse, PetscInt *nnz, PetscInt **r, PetscInt **c, PetscScalar **v)
214: {
215:   const PetscInt    *ai, *aj, *bi, *bj, *garray, bs = A->rmap->bs, bs2 = bs * bs, m = A->rmap->n / bs, *ajj, *bjj;
216:   PetscInt           rstart, nz, i, j, countA, countB;
217:   PetscInt          *row, *col;
218:   const PetscScalar *av, *bv;
219:   PetscScalar       *val;
220:   Mat_MPIBAIJ       *mat = (Mat_MPIBAIJ *)A->data;
221:   Mat_SeqBAIJ       *aa  = (Mat_SeqBAIJ *)(mat->A)->data;
222:   Mat_SeqBAIJ       *bb  = (Mat_SeqBAIJ *)(mat->B)->data;
223:   PetscInt           colA_start, jB, jcol;

225:   PetscFunctionBegin;
226:   ai     = aa->i;
227:   aj     = aa->j;
228:   bi     = bb->i;
229:   bj     = bb->j;
230:   rstart = A->rmap->rstart / bs;
231:   av     = aa->a;
232:   bv     = bb->a;

234:   garray = mat->garray;

236:   if (reuse == MAT_INITIAL_MATRIX) {
237:     nz   = aa->nz + bb->nz;
238:     *nnz = nz;
239:     PetscCall(PetscMalloc3(m + 1, &row, nz, &col, nz * bs2, &val));
240:     *r = row;
241:     *c = col;
242:     *v = val;
243:   } else {
244:     row = *r;
245:     col = *c;
246:     val = *v;
247:   }

249:   nz = 0;
250:   for (i = 0; i < m; i++) {
251:     row[i] = nz + 1;
252:     countA = ai[i + 1] - ai[i];
253:     countB = bi[i + 1] - bi[i];
254:     ajj    = aj + ai[i]; /* ptr to the beginning of this row */
255:     bjj    = bj + bi[i];

257:     /* B part, smaller col index */
258:     colA_start = rstart + (countA > 0 ? ajj[0] : 0); /* the smallest global col index of A */
259:     jB         = 0;
260:     for (j = 0; j < countB; j++) {
261:       jcol = garray[bjj[j]];
262:       if (jcol > colA_start) break;
263:       col[nz++] = jcol + 1;
264:     }
265:     jB = j;
266:     PetscCall(PetscArraycpy(val, bv, jB * bs2));
267:     val += jB * bs2;
268:     bv += jB * bs2;

270:     /* A part */
271:     for (j = 0; j < countA; j++) col[nz++] = rstart + ajj[j] + 1;
272:     PetscCall(PetscArraycpy(val, av, countA * bs2));
273:     val += countA * bs2;
274:     av += countA * bs2;

276:     /* B part, larger col index */
277:     for (j = jB; j < countB; j++) col[nz++] = garray[bjj[j]] + 1;
278:     PetscCall(PetscArraycpy(val, bv, (countB - jB) * bs2));
279:     val += (countB - jB) * bs2;
280:     bv += (countB - jB) * bs2;
281:   }
282:   row[m] = nz + 1;

284:   PetscFunctionReturn(PETSC_SUCCESS);
285: }

287: static PetscErrorCode MatConvertToTriples_mpisbaij_mpisbaij_MKL_CPARDISO(Mat A, MatReuse reuse, PetscInt *nnz, PetscInt **r, PetscInt **c, PetscScalar **v)
288: {
289:   const PetscInt    *ai, *aj, *bi, *bj, *garray, bs = A->rmap->bs, bs2 = bs * bs, m = A->rmap->n / bs, *ajj, *bjj;
290:   PetscInt           rstart, nz, i, j, countA, countB;
291:   PetscInt          *row, *col;
292:   const PetscScalar *av, *bv;
293:   PetscScalar       *val;
294:   Mat_MPISBAIJ      *mat = (Mat_MPISBAIJ *)A->data;
295:   Mat_SeqSBAIJ      *aa  = (Mat_SeqSBAIJ *)(mat->A)->data;
296:   Mat_SeqBAIJ       *bb  = (Mat_SeqBAIJ *)(mat->B)->data;

298:   PetscFunctionBegin;
299:   ai     = aa->i;
300:   aj     = aa->j;
301:   bi     = bb->i;
302:   bj     = bb->j;
303:   rstart = A->rmap->rstart / bs;
304:   av     = aa->a;
305:   bv     = bb->a;

307:   garray = mat->garray;

309:   if (reuse == MAT_INITIAL_MATRIX) {
310:     nz   = aa->nz + bb->nz;
311:     *nnz = nz;
312:     PetscCall(PetscMalloc3(m + 1, &row, nz, &col, nz * bs2, &val));
313:     *r = row;
314:     *c = col;
315:     *v = val;
316:   } else {
317:     row = *r;
318:     col = *c;
319:     val = *v;
320:   }

322:   nz = 0;
323:   for (i = 0; i < m; i++) {
324:     row[i] = nz + 1;
325:     countA = ai[i + 1] - ai[i];
326:     countB = bi[i + 1] - bi[i];
327:     ajj    = aj + ai[i]; /* ptr to the beginning of this row */
328:     bjj    = bj + bi[i];

330:     /* A part */
331:     for (j = 0; j < countA; j++) col[nz++] = rstart + ajj[j] + 1;
332:     PetscCall(PetscArraycpy(val, av, countA * bs2));
333:     val += countA * bs2;
334:     av += countA * bs2;

336:     /* B part, larger col index */
337:     for (j = 0; j < countB; j++) col[nz++] = garray[bjj[j]] + 1;
338:     PetscCall(PetscArraycpy(val, bv, countB * bs2));
339:     val += countB * bs2;
340:     bv += countB * bs2;
341:   }
342:   row[m] = nz + 1;

344:   PetscFunctionReturn(PETSC_SUCCESS);
345: }

347: /*
348:  * Free memory for Mat_MKL_CPARDISO structure and pointers to objects.
349:  */
350: static PetscErrorCode MatDestroy_MKL_CPARDISO(Mat A)
351: {
352:   Mat_MKL_CPARDISO *mat_mkl_cpardiso = (Mat_MKL_CPARDISO *)A->data;
353:   MPI_Comm          comm;

355:   PetscFunctionBegin;
356:   /* Terminate instance, deallocate memories */
357:   if (mat_mkl_cpardiso->CleanUp) {
358:     mat_mkl_cpardiso->phase = JOB_RELEASE_OF_ALL_MEMORY;

360:     cluster_sparse_solver(mat_mkl_cpardiso->pt, &mat_mkl_cpardiso->maxfct, &mat_mkl_cpardiso->mnum, &mat_mkl_cpardiso->mtype, &mat_mkl_cpardiso->phase, &mat_mkl_cpardiso->n, NULL, NULL, NULL, mat_mkl_cpardiso->perm, &mat_mkl_cpardiso->nrhs,
361:                           mat_mkl_cpardiso->iparm, &mat_mkl_cpardiso->msglvl, NULL, NULL, &mat_mkl_cpardiso->comm_mkl_cpardiso, (PetscInt *)&mat_mkl_cpardiso->err);
362:   }

364:   if (mat_mkl_cpardiso->ConvertToTriples != MatCopy_seqaij_seqaij_MKL_CPARDISO) PetscCall(PetscFree3(mat_mkl_cpardiso->ia, mat_mkl_cpardiso->ja, mat_mkl_cpardiso->a));
365:   comm = MPI_Comm_f2c(mat_mkl_cpardiso->comm_mkl_cpardiso);
366:   PetscCallMPI(MPI_Comm_free(&comm));
367:   PetscCall(PetscFree(A->data));

369:   /* clear composed functions */
370:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatFactorGetSolverType_C", NULL));
371:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatMkl_CPardisoSetCntl_C", NULL));
372:   PetscFunctionReturn(PETSC_SUCCESS);
373: }

375: /*
376:  * Computes Ax = b
377:  */
378: static PetscErrorCode MatSolve_MKL_CPARDISO(Mat A, Vec b, Vec x)
379: {
380:   Mat_MKL_CPARDISO  *mat_mkl_cpardiso = (Mat_MKL_CPARDISO *)(A)->data;
381:   PetscScalar       *xarray;
382:   const PetscScalar *barray;

384:   PetscFunctionBegin;
385:   mat_mkl_cpardiso->nrhs = 1;
386:   PetscCall(VecGetArray(x, &xarray));
387:   PetscCall(VecGetArrayRead(b, &barray));

389:   /* solve phase */
390:   mat_mkl_cpardiso->phase = JOB_SOLVE_ITERATIVE_REFINEMENT;
391:   cluster_sparse_solver(mat_mkl_cpardiso->pt, &mat_mkl_cpardiso->maxfct, &mat_mkl_cpardiso->mnum, &mat_mkl_cpardiso->mtype, &mat_mkl_cpardiso->phase, &mat_mkl_cpardiso->n, mat_mkl_cpardiso->a, mat_mkl_cpardiso->ia, mat_mkl_cpardiso->ja,
392:                         mat_mkl_cpardiso->perm, &mat_mkl_cpardiso->nrhs, mat_mkl_cpardiso->iparm, &mat_mkl_cpardiso->msglvl, (void *)barray, (void *)xarray, &mat_mkl_cpardiso->comm_mkl_cpardiso, (PetscInt *)&mat_mkl_cpardiso->err);

394:   PetscCheck(mat_mkl_cpardiso->err >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error reported by MKL Cluster PARDISO: err=%d, msg = \"%s\". Please check manual", mat_mkl_cpardiso->err, Err_MSG_CPardiso(mat_mkl_cpardiso->err));

396:   PetscCall(VecRestoreArray(x, &xarray));
397:   PetscCall(VecRestoreArrayRead(b, &barray));
398:   mat_mkl_cpardiso->CleanUp = PETSC_TRUE;
399:   PetscFunctionReturn(PETSC_SUCCESS);
400: }

402: static PetscErrorCode MatSolveTranspose_MKL_CPARDISO(Mat A, Vec b, Vec x)
403: {
404:   Mat_MKL_CPARDISO *mat_mkl_cpardiso = (Mat_MKL_CPARDISO *)A->data;

406:   PetscFunctionBegin;
407: #if defined(PETSC_USE_COMPLEX)
408:   mat_mkl_cpardiso->iparm[12 - 1] = 1;
409: #else
410:   mat_mkl_cpardiso->iparm[12 - 1] = 2;
411: #endif
412:   PetscCall(MatSolve_MKL_CPARDISO(A, b, x));
413:   mat_mkl_cpardiso->iparm[12 - 1] = 0;
414:   PetscFunctionReturn(PETSC_SUCCESS);
415: }

417: static PetscErrorCode MatMatSolve_MKL_CPARDISO(Mat A, Mat B, Mat X)
418: {
419:   Mat_MKL_CPARDISO  *mat_mkl_cpardiso = (Mat_MKL_CPARDISO *)(A)->data;
420:   PetscScalar       *xarray;
421:   const PetscScalar *barray;

423:   PetscFunctionBegin;
424:   PetscCall(MatGetSize(B, NULL, (PetscInt *)&mat_mkl_cpardiso->nrhs));

426:   if (mat_mkl_cpardiso->nrhs > 0) {
427:     PetscCall(MatDenseGetArrayRead(B, &barray));
428:     PetscCall(MatDenseGetArray(X, &xarray));

430:     PetscCheck(barray != xarray, PETSC_COMM_SELF, PETSC_ERR_SUP, "B and X cannot share the same memory location");

432:     /* solve phase */
433:     mat_mkl_cpardiso->phase = JOB_SOLVE_ITERATIVE_REFINEMENT;
434:     cluster_sparse_solver(mat_mkl_cpardiso->pt, &mat_mkl_cpardiso->maxfct, &mat_mkl_cpardiso->mnum, &mat_mkl_cpardiso->mtype, &mat_mkl_cpardiso->phase, &mat_mkl_cpardiso->n, mat_mkl_cpardiso->a, mat_mkl_cpardiso->ia, mat_mkl_cpardiso->ja,
435:                           mat_mkl_cpardiso->perm, &mat_mkl_cpardiso->nrhs, mat_mkl_cpardiso->iparm, &mat_mkl_cpardiso->msglvl, (void *)barray, (void *)xarray, &mat_mkl_cpardiso->comm_mkl_cpardiso, (PetscInt *)&mat_mkl_cpardiso->err);
436:     PetscCheck(mat_mkl_cpardiso->err >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error reported by MKL Cluster PARDISO: err=%d, msg = \"%s\". Please check manual", mat_mkl_cpardiso->err, Err_MSG_CPardiso(mat_mkl_cpardiso->err));
437:     PetscCall(MatDenseRestoreArrayRead(B, &barray));
438:     PetscCall(MatDenseRestoreArray(X, &xarray));
439:   }
440:   mat_mkl_cpardiso->CleanUp = PETSC_TRUE;
441:   PetscFunctionReturn(PETSC_SUCCESS);
442: }

444: /*
445:  * LU Decomposition
446:  */
447: static PetscErrorCode MatFactorNumeric_MKL_CPARDISO(Mat F, Mat A, const MatFactorInfo *info)
448: {
449:   Mat_MKL_CPARDISO *mat_mkl_cpardiso = (Mat_MKL_CPARDISO *)(F)->data;

451:   PetscFunctionBegin;
452:   mat_mkl_cpardiso->matstruc = SAME_NONZERO_PATTERN;
453:   PetscCall((*mat_mkl_cpardiso->ConvertToTriples)(A, MAT_REUSE_MATRIX, &mat_mkl_cpardiso->nz, &mat_mkl_cpardiso->ia, &mat_mkl_cpardiso->ja, &mat_mkl_cpardiso->a));

455:   mat_mkl_cpardiso->phase = JOB_NUMERICAL_FACTORIZATION;
456:   cluster_sparse_solver(mat_mkl_cpardiso->pt, &mat_mkl_cpardiso->maxfct, &mat_mkl_cpardiso->mnum, &mat_mkl_cpardiso->mtype, &mat_mkl_cpardiso->phase, &mat_mkl_cpardiso->n, mat_mkl_cpardiso->a, mat_mkl_cpardiso->ia, mat_mkl_cpardiso->ja,
457:                         mat_mkl_cpardiso->perm, &mat_mkl_cpardiso->nrhs, mat_mkl_cpardiso->iparm, &mat_mkl_cpardiso->msglvl, NULL, NULL, &mat_mkl_cpardiso->comm_mkl_cpardiso, &mat_mkl_cpardiso->err);
458:   PetscCheck(mat_mkl_cpardiso->err >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error reported by MKL Cluster PARDISO: err=%d, msg = \"%s\". Please check manual", mat_mkl_cpardiso->err, Err_MSG_CPardiso(mat_mkl_cpardiso->err));

460:   mat_mkl_cpardiso->matstruc = SAME_NONZERO_PATTERN;
461:   mat_mkl_cpardiso->CleanUp  = PETSC_TRUE;
462:   PetscFunctionReturn(PETSC_SUCCESS);
463: }

465: /* Sets mkl_cpardiso options from the options database */
466: static PetscErrorCode MatSetFromOptions_MKL_CPARDISO(Mat F, Mat A)
467: {
468:   Mat_MKL_CPARDISO *mat_mkl_cpardiso = (Mat_MKL_CPARDISO *)F->data;
469:   PetscInt          icntl, threads;
470:   PetscBool         flg;

472:   PetscFunctionBegin;
473:   PetscOptionsBegin(PetscObjectComm((PetscObject)F), ((PetscObject)F)->prefix, "MKL Cluster PARDISO Options", "Mat");
474:   PetscCall(PetscOptionsInt("-mat_mkl_cpardiso_65", "Suggested number of threads to use within MKL Cluster PARDISO", "None", threads, &threads, &flg));
475:   if (flg) mkl_set_num_threads((int)threads);

477:   PetscCall(PetscOptionsInt("-mat_mkl_cpardiso_66", "Maximum number of factors with identical sparsity structure that must be kept in memory at the same time", "None", mat_mkl_cpardiso->maxfct, &icntl, &flg));
478:   if (flg) mat_mkl_cpardiso->maxfct = icntl;

480:   PetscCall(PetscOptionsInt("-mat_mkl_cpardiso_67", "Indicates the actual matrix for the solution phase", "None", mat_mkl_cpardiso->mnum, &icntl, &flg));
481:   if (flg) mat_mkl_cpardiso->mnum = icntl;

483:   PetscCall(PetscOptionsInt("-mat_mkl_cpardiso_68", "Message level information", "None", mat_mkl_cpardiso->msglvl, &icntl, &flg));
484:   if (flg) mat_mkl_cpardiso->msglvl = icntl;

486:   PetscCall(PetscOptionsInt("-mat_mkl_cpardiso_69", "Defines the matrix type", "None", mat_mkl_cpardiso->mtype, &icntl, &flg));
487:   if (flg) mat_mkl_cpardiso->mtype = icntl;
488:   PetscCall(PetscOptionsInt("-mat_mkl_cpardiso_1", "Use default values", "None", mat_mkl_cpardiso->iparm[0], &icntl, &flg));

490:   if (flg && icntl != 0) {
491:     PetscCall(PetscOptionsInt("-mat_mkl_cpardiso_2", "Fill-in reducing ordering for the input matrix", "None", mat_mkl_cpardiso->iparm[1], &icntl, &flg));
492:     if (flg) mat_mkl_cpardiso->iparm[1] = icntl;

494:     PetscCall(PetscOptionsInt("-mat_mkl_cpardiso_4", "Preconditioned CGS/CG", "None", mat_mkl_cpardiso->iparm[3], &icntl, &flg));
495:     if (flg) mat_mkl_cpardiso->iparm[3] = icntl;

497:     PetscCall(PetscOptionsInt("-mat_mkl_cpardiso_5", "User permutation", "None", mat_mkl_cpardiso->iparm[4], &icntl, &flg));
498:     if (flg) mat_mkl_cpardiso->iparm[4] = icntl;

500:     PetscCall(PetscOptionsInt("-mat_mkl_cpardiso_6", "Write solution on x", "None", mat_mkl_cpardiso->iparm[5], &icntl, &flg));
501:     if (flg) mat_mkl_cpardiso->iparm[5] = icntl;

503:     PetscCall(PetscOptionsInt("-mat_mkl_cpardiso_8", "Iterative refinement step", "None", mat_mkl_cpardiso->iparm[7], &icntl, &flg));
504:     if (flg) mat_mkl_cpardiso->iparm[7] = icntl;

506:     PetscCall(PetscOptionsInt("-mat_mkl_cpardiso_10", "Pivoting perturbation", "None", mat_mkl_cpardiso->iparm[9], &icntl, &flg));
507:     if (flg) mat_mkl_cpardiso->iparm[9] = icntl;

509:     PetscCall(PetscOptionsInt("-mat_mkl_cpardiso_11", "Scaling vectors", "None", mat_mkl_cpardiso->iparm[10], &icntl, &flg));
510:     if (flg) mat_mkl_cpardiso->iparm[10] = icntl;

512:     PetscCall(PetscOptionsInt("-mat_mkl_cpardiso_12", "Solve with transposed or conjugate transposed matrix A", "None", mat_mkl_cpardiso->iparm[11], &icntl, &flg));
513:     if (flg) mat_mkl_cpardiso->iparm[11] = icntl;

515:     PetscCall(PetscOptionsInt("-mat_mkl_cpardiso_13", "Improved accuracy using (non-) symmetric weighted matching", "None", mat_mkl_cpardiso->iparm[12], &icntl, &flg));
516:     if (flg) mat_mkl_cpardiso->iparm[12] = icntl;

518:     PetscCall(PetscOptionsInt("-mat_mkl_cpardiso_18", "Numbers of non-zero elements", "None", mat_mkl_cpardiso->iparm[17], &icntl, &flg));
519:     if (flg) mat_mkl_cpardiso->iparm[17] = icntl;

521:     PetscCall(PetscOptionsInt("-mat_mkl_cpardiso_19", "Report number of floating point operations", "None", mat_mkl_cpardiso->iparm[18], &icntl, &flg));
522:     if (flg) mat_mkl_cpardiso->iparm[18] = icntl;

524:     PetscCall(PetscOptionsInt("-mat_mkl_cpardiso_21", "Pivoting for symmetric indefinite matrices", "None", mat_mkl_cpardiso->iparm[20], &icntl, &flg));
525:     if (flg) mat_mkl_cpardiso->iparm[20] = icntl;

527:     PetscCall(PetscOptionsInt("-mat_mkl_cpardiso_24", "Parallel factorization control", "None", mat_mkl_cpardiso->iparm[23], &icntl, &flg));
528:     if (flg) mat_mkl_cpardiso->iparm[23] = icntl;

530:     PetscCall(PetscOptionsInt("-mat_mkl_cpardiso_25", "Parallel forward/backward solve control", "None", mat_mkl_cpardiso->iparm[24], &icntl, &flg));
531:     if (flg) mat_mkl_cpardiso->iparm[24] = icntl;

533:     PetscCall(PetscOptionsInt("-mat_mkl_cpardiso_27", "Matrix checker", "None", mat_mkl_cpardiso->iparm[26], &icntl, &flg));
534:     if (flg) mat_mkl_cpardiso->iparm[26] = icntl;

536:     PetscCall(PetscOptionsInt("-mat_mkl_cpardiso_31", "Partial solve and computing selected components of the solution vectors", "None", mat_mkl_cpardiso->iparm[30], &icntl, &flg));
537:     if (flg) mat_mkl_cpardiso->iparm[30] = icntl;

539:     PetscCall(PetscOptionsInt("-mat_mkl_cpardiso_34", "Optimal number of threads for conditional numerical reproducibility (CNR) mode", "None", mat_mkl_cpardiso->iparm[33], &icntl, &flg));
540:     if (flg) mat_mkl_cpardiso->iparm[33] = icntl;

542:     PetscCall(PetscOptionsInt("-mat_mkl_cpardiso_60", "Intel MKL Cluster PARDISO mode", "None", mat_mkl_cpardiso->iparm[59], &icntl, &flg));
543:     if (flg) mat_mkl_cpardiso->iparm[59] = icntl;
544:   }

546:   PetscOptionsEnd();
547:   PetscFunctionReturn(PETSC_SUCCESS);
548: }

550: static PetscErrorCode PetscInitialize_MKL_CPARDISO(Mat A, Mat_MKL_CPARDISO *mat_mkl_cpardiso)
551: {
552:   PetscInt    bs;
553:   PetscBool   match;
554:   PetscMPIInt size;
555:   MPI_Comm    comm;

557:   PetscFunctionBegin;

559:   PetscCallMPI(MPI_Comm_dup(PetscObjectComm((PetscObject)A), &comm));
560:   PetscCallMPI(MPI_Comm_size(comm, &size));
561:   mat_mkl_cpardiso->comm_mkl_cpardiso = MPI_Comm_c2f(comm);

563:   mat_mkl_cpardiso->CleanUp = PETSC_FALSE;
564:   mat_mkl_cpardiso->maxfct  = 1;
565:   mat_mkl_cpardiso->mnum    = 1;
566:   mat_mkl_cpardiso->n       = A->rmap->N;
567:   if (mat_mkl_cpardiso->iparm[36]) mat_mkl_cpardiso->n /= mat_mkl_cpardiso->iparm[36];
568:   mat_mkl_cpardiso->msglvl = 0;
569:   mat_mkl_cpardiso->nrhs   = 1;
570:   mat_mkl_cpardiso->err    = 0;
571:   mat_mkl_cpardiso->phase  = -1;
572: #if defined(PETSC_USE_COMPLEX)
573:   mat_mkl_cpardiso->mtype = 13;
574: #else
575:   mat_mkl_cpardiso->mtype         = 11;
576: #endif

578: #if defined(PETSC_USE_REAL_SINGLE)
579:   mat_mkl_cpardiso->iparm[27] = 1;
580: #else
581:   mat_mkl_cpardiso->iparm[27]     = 0;
582: #endif

584:   mat_mkl_cpardiso->iparm[0]  = 1;  /* Solver default parameters overridden with provided by iparm */
585:   mat_mkl_cpardiso->iparm[1]  = 2;  /* Use METIS for fill-in reordering */
586:   mat_mkl_cpardiso->iparm[5]  = 0;  /* Write solution into x */
587:   mat_mkl_cpardiso->iparm[7]  = 2;  /* Max number of iterative refinement steps */
588:   mat_mkl_cpardiso->iparm[9]  = 13; /* Perturb the pivot elements with 1E-13 */
589:   mat_mkl_cpardiso->iparm[10] = 1;  /* Use nonsymmetric permutation and scaling MPS */
590:   mat_mkl_cpardiso->iparm[12] = 1;  /* Switch on Maximum Weighted Matching algorithm (default for non-symmetric) */
591:   mat_mkl_cpardiso->iparm[17] = -1; /* Output: Number of nonzeros in the factor LU */
592:   mat_mkl_cpardiso->iparm[18] = -1; /* Output: Mflops for LU factorization */
593:   mat_mkl_cpardiso->iparm[26] = 1;  /* Check input data for correctness */

595:   mat_mkl_cpardiso->iparm[39] = 0;
596:   if (size > 1) {
597:     mat_mkl_cpardiso->iparm[39] = 2;
598:     mat_mkl_cpardiso->iparm[40] = A->rmap->rstart;
599:     mat_mkl_cpardiso->iparm[41] = A->rmap->rend - 1;
600:   }
601:   PetscCall(PetscObjectTypeCompareAny((PetscObject)A, &match, MATMPIBAIJ, MATMPISBAIJ, ""));
602:   if (match) {
603:     PetscCall(MatGetBlockSize(A, &bs));
604:     mat_mkl_cpardiso->iparm[36] = bs;
605:     mat_mkl_cpardiso->iparm[40] /= bs;
606:     mat_mkl_cpardiso->iparm[41] /= bs;
607:     mat_mkl_cpardiso->iparm[40]++;
608:     mat_mkl_cpardiso->iparm[41]++;
609:     mat_mkl_cpardiso->iparm[34] = 0; /* Fortran style */
610:   } else {
611:     mat_mkl_cpardiso->iparm[34] = 1; /* C style */
612:   }

614:   mat_mkl_cpardiso->perm = 0;
615:   PetscFunctionReturn(PETSC_SUCCESS);
616: }

618: /*
619:  * Symbolic decomposition. Mkl_Pardiso analysis phase.
620:  */
621: static PetscErrorCode MatLUFactorSymbolic_AIJMKL_CPARDISO(Mat F, Mat A, IS r, IS c, const MatFactorInfo *info)
622: {
623:   Mat_MKL_CPARDISO *mat_mkl_cpardiso = (Mat_MKL_CPARDISO *)F->data;

625:   PetscFunctionBegin;
626:   mat_mkl_cpardiso->matstruc = DIFFERENT_NONZERO_PATTERN;

628:   /* Set MKL_CPARDISO options from the options database */
629:   PetscCall(MatSetFromOptions_MKL_CPARDISO(F, A));
630:   PetscCall((*mat_mkl_cpardiso->ConvertToTriples)(A, MAT_INITIAL_MATRIX, &mat_mkl_cpardiso->nz, &mat_mkl_cpardiso->ia, &mat_mkl_cpardiso->ja, &mat_mkl_cpardiso->a));

632:   mat_mkl_cpardiso->n = A->rmap->N;
633:   if (mat_mkl_cpardiso->iparm[36]) mat_mkl_cpardiso->n /= mat_mkl_cpardiso->iparm[36];

635:   /* analysis phase */
636:   mat_mkl_cpardiso->phase = JOB_ANALYSIS;

638:   cluster_sparse_solver(mat_mkl_cpardiso->pt, &mat_mkl_cpardiso->maxfct, &mat_mkl_cpardiso->mnum, &mat_mkl_cpardiso->mtype, &mat_mkl_cpardiso->phase, &mat_mkl_cpardiso->n, mat_mkl_cpardiso->a, mat_mkl_cpardiso->ia, mat_mkl_cpardiso->ja,
639:                         mat_mkl_cpardiso->perm, &mat_mkl_cpardiso->nrhs, mat_mkl_cpardiso->iparm, &mat_mkl_cpardiso->msglvl, NULL, NULL, &mat_mkl_cpardiso->comm_mkl_cpardiso, (PetscInt *)&mat_mkl_cpardiso->err);

641:   PetscCheck(mat_mkl_cpardiso->err >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error reported by MKL Cluster PARDISO: err=%d, msg = \"%s\".Check manual", mat_mkl_cpardiso->err, Err_MSG_CPardiso(mat_mkl_cpardiso->err));

643:   mat_mkl_cpardiso->CleanUp = PETSC_TRUE;
644:   F->ops->lufactornumeric   = MatFactorNumeric_MKL_CPARDISO;
645:   F->ops->solve             = MatSolve_MKL_CPARDISO;
646:   F->ops->solvetranspose    = MatSolveTranspose_MKL_CPARDISO;
647:   F->ops->matsolve          = MatMatSolve_MKL_CPARDISO;
648:   PetscFunctionReturn(PETSC_SUCCESS);
649: }

651: static PetscErrorCode MatCholeskyFactorSymbolic_AIJMKL_CPARDISO(Mat F, Mat A, IS perm, const MatFactorInfo *info)
652: {
653:   Mat_MKL_CPARDISO *mat_mkl_cpardiso = (Mat_MKL_CPARDISO *)F->data;

655:   PetscFunctionBegin;
656:   mat_mkl_cpardiso->matstruc = DIFFERENT_NONZERO_PATTERN;

658:   /* Set MKL_CPARDISO options from the options database */
659:   PetscCall(MatSetFromOptions_MKL_CPARDISO(F, A));
660:   PetscCall((*mat_mkl_cpardiso->ConvertToTriples)(A, MAT_INITIAL_MATRIX, &mat_mkl_cpardiso->nz, &mat_mkl_cpardiso->ia, &mat_mkl_cpardiso->ja, &mat_mkl_cpardiso->a));

662:   mat_mkl_cpardiso->n = A->rmap->N;
663:   if (mat_mkl_cpardiso->iparm[36]) mat_mkl_cpardiso->n /= mat_mkl_cpardiso->iparm[36];
664:   PetscCheck(!PetscDefined(USE_COMPLEX), PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "No support for PARDISO CHOLESKY with complex scalars! Use MAT_FACTOR_LU instead");
665:   if (A->spd == PETSC_BOOL3_TRUE) mat_mkl_cpardiso->mtype = 2;
666:   else mat_mkl_cpardiso->mtype = -2;

668:   /* analysis phase */
669:   mat_mkl_cpardiso->phase = JOB_ANALYSIS;

671:   cluster_sparse_solver(mat_mkl_cpardiso->pt, &mat_mkl_cpardiso->maxfct, &mat_mkl_cpardiso->mnum, &mat_mkl_cpardiso->mtype, &mat_mkl_cpardiso->phase, &mat_mkl_cpardiso->n, mat_mkl_cpardiso->a, mat_mkl_cpardiso->ia, mat_mkl_cpardiso->ja,
672:                         mat_mkl_cpardiso->perm, &mat_mkl_cpardiso->nrhs, mat_mkl_cpardiso->iparm, &mat_mkl_cpardiso->msglvl, NULL, NULL, &mat_mkl_cpardiso->comm_mkl_cpardiso, (PetscInt *)&mat_mkl_cpardiso->err);

674:   PetscCheck(mat_mkl_cpardiso->err >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error reported by MKL Cluster PARDISO: err=%d, msg = \"%s\".Check manual", mat_mkl_cpardiso->err, Err_MSG_CPardiso(mat_mkl_cpardiso->err));

676:   mat_mkl_cpardiso->CleanUp     = PETSC_TRUE;
677:   F->ops->choleskyfactornumeric = MatFactorNumeric_MKL_CPARDISO;
678:   F->ops->solve                 = MatSolve_MKL_CPARDISO;
679:   F->ops->solvetranspose        = MatSolveTranspose_MKL_CPARDISO;
680:   F->ops->matsolve              = MatMatSolve_MKL_CPARDISO;
681:   PetscFunctionReturn(PETSC_SUCCESS);
682: }

684: static PetscErrorCode MatView_MKL_CPARDISO(Mat A, PetscViewer viewer)
685: {
686:   PetscBool         iascii;
687:   PetscViewerFormat format;
688:   Mat_MKL_CPARDISO *mat_mkl_cpardiso = (Mat_MKL_CPARDISO *)A->data;
689:   PetscInt          i;

691:   PetscFunctionBegin;
692:   /* check if matrix is mkl_cpardiso type */
693:   if (A->ops->solve != MatSolve_MKL_CPARDISO) PetscFunctionReturn(PETSC_SUCCESS);

695:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
696:   if (iascii) {
697:     PetscCall(PetscViewerGetFormat(viewer, &format));
698:     if (format == PETSC_VIEWER_ASCII_INFO) {
699:       PetscCall(PetscViewerASCIIPrintf(viewer, "MKL Cluster PARDISO run parameters:\n"));
700:       PetscCall(PetscViewerASCIIPrintf(viewer, "MKL Cluster PARDISO phase:             %d \n", mat_mkl_cpardiso->phase));
701:       for (i = 1; i <= 64; i++) PetscCall(PetscViewerASCIIPrintf(viewer, "MKL Cluster PARDISO iparm[%d]:     %d \n", i, mat_mkl_cpardiso->iparm[i - 1]));
702:       PetscCall(PetscViewerASCIIPrintf(viewer, "MKL Cluster PARDISO maxfct:     %d \n", mat_mkl_cpardiso->maxfct));
703:       PetscCall(PetscViewerASCIIPrintf(viewer, "MKL Cluster PARDISO mnum:     %d \n", mat_mkl_cpardiso->mnum));
704:       PetscCall(PetscViewerASCIIPrintf(viewer, "MKL Cluster PARDISO mtype:     %d \n", mat_mkl_cpardiso->mtype));
705:       PetscCall(PetscViewerASCIIPrintf(viewer, "MKL Cluster PARDISO n:     %d \n", mat_mkl_cpardiso->n));
706:       PetscCall(PetscViewerASCIIPrintf(viewer, "MKL Cluster PARDISO nrhs:     %d \n", mat_mkl_cpardiso->nrhs));
707:       PetscCall(PetscViewerASCIIPrintf(viewer, "MKL Cluster PARDISO msglvl:     %d \n", mat_mkl_cpardiso->msglvl));
708:     }
709:   }
710:   PetscFunctionReturn(PETSC_SUCCESS);
711: }

713: static PetscErrorCode MatGetInfo_MKL_CPARDISO(Mat A, MatInfoType flag, MatInfo *info)
714: {
715:   Mat_MKL_CPARDISO *mat_mkl_cpardiso = (Mat_MKL_CPARDISO *)A->data;

717:   PetscFunctionBegin;
718:   info->block_size        = 1.0;
719:   info->nz_allocated      = mat_mkl_cpardiso->nz + 0.0;
720:   info->nz_unneeded       = 0.0;
721:   info->assemblies        = 0.0;
722:   info->mallocs           = 0.0;
723:   info->memory            = 0.0;
724:   info->fill_ratio_given  = 0;
725:   info->fill_ratio_needed = 0;
726:   info->factor_mallocs    = 0;
727:   PetscFunctionReturn(PETSC_SUCCESS);
728: }

730: static PetscErrorCode MatMkl_CPardisoSetCntl_MKL_CPARDISO(Mat F, PetscInt icntl, PetscInt ival)
731: {
732:   Mat_MKL_CPARDISO *mat_mkl_cpardiso = (Mat_MKL_CPARDISO *)F->data;

734:   PetscFunctionBegin;
735:   if (icntl <= 64) {
736:     mat_mkl_cpardiso->iparm[icntl - 1] = ival;
737:   } else {
738:     if (icntl == 65) mkl_set_num_threads((int)ival);
739:     else if (icntl == 66) mat_mkl_cpardiso->maxfct = ival;
740:     else if (icntl == 67) mat_mkl_cpardiso->mnum = ival;
741:     else if (icntl == 68) mat_mkl_cpardiso->msglvl = ival;
742:     else if (icntl == 69) mat_mkl_cpardiso->mtype = ival;
743:   }
744:   PetscFunctionReturn(PETSC_SUCCESS);
745: }

747: /*@
748:   MatMkl_CPardisoSetCntl - Set MKL Cluster PARDISO parameters
749:   <https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2023-2/onemkl-pardiso-parallel-direct-sparse-solver-iface.html>

751:   Logically Collective

753:   Input Parameters:
754: + F     - the factored matrix obtained by calling `MatGetFactor()`
755: . icntl - index of MKL Cluster PARDISO parameter
756: - ival  - value of MKL Cluster PARDISO parameter

758:   Options Database Key:
759: . -mat_mkl_cpardiso_<icntl> <ival> - set the option numbered icntl to ival

761:   Level: intermediate

763:   Note:
764:   This routine cannot be used if you are solving the linear system with `TS`, `SNES`, or `KSP`, only if you directly call `MatGetFactor()` so use the options
765:   database approach when working with `TS`, `SNES`, or `KSP`. See `MATSOLVERMKL_CPARDISO` for the options

767: .seealso: [](ch_matrices), `Mat`, `MatGetFactor()`, `MATMPIAIJ`, `MATSOLVERMKL_CPARDISO`
768: @*/
769: PetscErrorCode MatMkl_CPardisoSetCntl(Mat F, PetscInt icntl, PetscInt ival)
770: {
771:   PetscFunctionBegin;
772:   PetscTryMethod(F, "MatMkl_CPardisoSetCntl_C", (Mat, PetscInt, PetscInt), (F, icntl, ival));
773:   PetscFunctionReturn(PETSC_SUCCESS);
774: }

776: /*MC
777:   MATSOLVERMKL_CPARDISO -  A matrix type providing direct solvers (LU) for parallel matrices via the external package MKL Cluster PARDISO
778:   <https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2023-2/onemkl-pardiso-parallel-direct-sparse-solver-iface.html>

780:   Works with `MATMPIAIJ` matrices

782:   Use `-pc_type lu` `-pc_factor_mat_solver_type mkl_cpardiso` to use this direct solver

784:   Options Database Keys:
785: + -mat_mkl_cpardiso_65 - Suggested number of threads to use within MKL Cluster PARDISO
786: . -mat_mkl_cpardiso_66 - Maximum number of factors with identical sparsity structure that must be kept in memory at the same time
787: . -mat_mkl_cpardiso_67 - Indicates the actual matrix for the solution phase
788: . -mat_mkl_cpardiso_68 - Message level information, use 1 to get detailed information on the solver options
789: . -mat_mkl_cpardiso_69 - Defines the matrix type. IMPORTANT: When you set this flag, iparm parameters are going to be set to the default ones for the matrix type
790: . -mat_mkl_cpardiso_1  - Use default values
791: . -mat_mkl_cpardiso_2  - Fill-in reducing ordering for the input matrix
792: . -mat_mkl_cpardiso_4  - Preconditioned CGS/CG
793: . -mat_mkl_cpardiso_5  - User permutation
794: . -mat_mkl_cpardiso_6  - Write solution on x
795: . -mat_mkl_cpardiso_8  - Iterative refinement step
796: . -mat_mkl_cpardiso_10 - Pivoting perturbation
797: . -mat_mkl_cpardiso_11 - Scaling vectors
798: . -mat_mkl_cpardiso_12 - Solve with transposed or conjugate transposed matrix A
799: . -mat_mkl_cpardiso_13 - Improved accuracy using (non-) symmetric weighted matching
800: . -mat_mkl_cpardiso_18 - Numbers of non-zero elements
801: . -mat_mkl_cpardiso_19 - Report number of floating point operations
802: . -mat_mkl_cpardiso_21 - Pivoting for symmetric indefinite matrices
803: . -mat_mkl_cpardiso_24 - Parallel factorization control
804: . -mat_mkl_cpardiso_25 - Parallel forward/backward solve control
805: . -mat_mkl_cpardiso_27 - Matrix checker
806: . -mat_mkl_cpardiso_31 - Partial solve and computing selected components of the solution vectors
807: . -mat_mkl_cpardiso_34 - Optimal number of threads for conditional numerical reproducibility (CNR) mode
808: - -mat_mkl_cpardiso_60 - Intel MKL Cluster PARDISO mode

810:   Level: beginner

812:   Notes:
813:   Use `-mat_mkl_cpardiso_68 1` to display the number of threads the solver is using. MKL does not provide a way to directly access this
814:   information.

816:   For more information on the options check
817:   <https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2023-2/onemkl-pardiso-parallel-direct-sparse-solver-iface.html>

819: .seealso: [](ch_matrices), `Mat`, `PCFactorSetMatSolverType()`, `MatSolverType`, `MatMkl_CPardisoSetCntl()`, `MatGetFactor()`, `MATSOLVERMKL_PARDISO`
820: M*/

822: static PetscErrorCode MatFactorGetSolverType_mkl_cpardiso(Mat A, MatSolverType *type)
823: {
824:   PetscFunctionBegin;
825:   *type = MATSOLVERMKL_CPARDISO;
826:   PetscFunctionReturn(PETSC_SUCCESS);
827: }

829: /* MatGetFactor for MPI AIJ matrices */
830: static PetscErrorCode MatGetFactor_mpiaij_mkl_cpardiso(Mat A, MatFactorType ftype, Mat *F)
831: {
832:   Mat               B;
833:   Mat_MKL_CPARDISO *mat_mkl_cpardiso;
834:   PetscBool         isSeqAIJ, isMPIBAIJ, isMPISBAIJ;

836:   PetscFunctionBegin;
837:   /* Create the factorization matrix */

839:   PetscCall(PetscObjectTypeCompare((PetscObject)A, MATSEQAIJ, &isSeqAIJ));
840:   PetscCall(PetscObjectTypeCompare((PetscObject)A, MATMPIBAIJ, &isMPIBAIJ));
841:   PetscCall(PetscObjectTypeCompare((PetscObject)A, MATMPISBAIJ, &isMPISBAIJ));
842:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &B));
843:   PetscCall(MatSetSizes(B, A->rmap->n, A->cmap->n, A->rmap->N, A->cmap->N));
844:   PetscCall(PetscStrallocpy("mkl_cpardiso", &((PetscObject)B)->type_name));
845:   PetscCall(MatSetUp(B));

847:   PetscCall(PetscNew(&mat_mkl_cpardiso));

849:   if (isSeqAIJ) mat_mkl_cpardiso->ConvertToTriples = MatCopy_seqaij_seqaij_MKL_CPARDISO;
850:   else if (isMPIBAIJ) mat_mkl_cpardiso->ConvertToTriples = MatConvertToTriples_mpibaij_mpibaij_MKL_CPARDISO;
851:   else if (isMPISBAIJ) mat_mkl_cpardiso->ConvertToTriples = MatConvertToTriples_mpisbaij_mpisbaij_MKL_CPARDISO;
852:   else mat_mkl_cpardiso->ConvertToTriples = MatConvertToTriples_mpiaij_mpiaij_MKL_CPARDISO;

854:   if (ftype == MAT_FACTOR_LU) B->ops->lufactorsymbolic = MatLUFactorSymbolic_AIJMKL_CPARDISO;
855:   else B->ops->choleskyfactorsymbolic = MatCholeskyFactorSymbolic_AIJMKL_CPARDISO;
856:   B->ops->destroy = MatDestroy_MKL_CPARDISO;

858:   B->ops->view    = MatView_MKL_CPARDISO;
859:   B->ops->getinfo = MatGetInfo_MKL_CPARDISO;

861:   B->factortype = ftype;
862:   B->assembled  = PETSC_TRUE; /* required by -ksp_view */

864:   B->data = mat_mkl_cpardiso;

866:   /* set solvertype */
867:   PetscCall(PetscFree(B->solvertype));
868:   PetscCall(PetscStrallocpy(MATSOLVERMKL_CPARDISO, &B->solvertype));

870:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatFactorGetSolverType_C", MatFactorGetSolverType_mkl_cpardiso));
871:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatMkl_CPardisoSetCntl_C", MatMkl_CPardisoSetCntl_MKL_CPARDISO));
872:   PetscCall(PetscInitialize_MKL_CPARDISO(A, mat_mkl_cpardiso));

874:   *F = B;
875:   PetscFunctionReturn(PETSC_SUCCESS);
876: }

878: PETSC_EXTERN PetscErrorCode MatSolverTypeRegister_MKL_CPardiso(void)
879: {
880:   PetscFunctionBegin;
881:   PetscCall(MatSolverTypeRegister(MATSOLVERMKL_CPARDISO, MATMPIAIJ, MAT_FACTOR_LU, MatGetFactor_mpiaij_mkl_cpardiso));
882:   PetscCall(MatSolverTypeRegister(MATSOLVERMKL_CPARDISO, MATSEQAIJ, MAT_FACTOR_LU, MatGetFactor_mpiaij_mkl_cpardiso));
883:   PetscCall(MatSolverTypeRegister(MATSOLVERMKL_CPARDISO, MATMPIBAIJ, MAT_FACTOR_LU, MatGetFactor_mpiaij_mkl_cpardiso));
884:   PetscCall(MatSolverTypeRegister(MATSOLVERMKL_CPARDISO, MATMPISBAIJ, MAT_FACTOR_CHOLESKY, MatGetFactor_mpiaij_mkl_cpardiso));
885:   PetscFunctionReturn(PETSC_SUCCESS);
886: }