Actual source code: da.c

  1: #include <petsc/private/dmdaimpl.h>

  3: /*@
  4:   DMDASetSizes - Sets the number of grid points in the three dimensional directions

  6:   Logically Collective

  8:   Input Parameters:
  9: + da - the `DMDA`
 10: . M  - the global X size
 11: . N  - the global Y size
 12: - P  - the global Z size

 14:   Level: intermediate

 16:   Developer Note:
 17:   Since the dimension may not yet have been set the code cannot error check for non-positive Y and Z number of grid points

 19: .seealso: [](sec_struct), `DM`, `DMDA`, `PetscSplitOwnership()`
 20: @*/
 21: PetscErrorCode DMDASetSizes(DM da, PetscInt M, PetscInt N, PetscInt P)
 22: {
 23:   DM_DA *dd = (DM_DA *)da->data;

 25:   PetscFunctionBegin;
 30:   PetscCheck(!da->setupcalled, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_WRONGSTATE, "This function must be called before DMSetUp()");
 31:   PetscCheck(M >= 0, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_SIZ, "Number of grid points in X direction must be positive");
 32:   PetscCheck(N >= 0, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_SIZ, "Number of grid points in Y direction must be positive");
 33:   PetscCheck(P >= 0, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_SIZ, "Number of grid points in Z direction must be positive");

 35:   dd->M = M;
 36:   dd->N = N;
 37:   dd->P = P;
 38:   PetscFunctionReturn(PETSC_SUCCESS);
 39: }

 41: /*@
 42:   DMDASetNumProcs - Sets the number of processes in each dimension

 44:   Logically Collective

 46:   Input Parameters:
 47: + da - the `DMDA`
 48: . m  - the number of X processes (or `PETSC_DECIDE`)
 49: . n  - the number of Y processes (or `PETSC_DECIDE`)
 50: - p  - the number of Z processes (or `PETSC_DECIDE`)

 52:   Level: intermediate

 54: .seealso: [](sec_struct), `DM`, `DMDA`, `DMDASetSizes()`, `PetscSplitOwnership()`
 55: @*/
 56: PetscErrorCode DMDASetNumProcs(DM da, PetscInt m, PetscInt n, PetscInt p)
 57: {
 58:   DM_DA *dd = (DM_DA *)da->data;

 60:   PetscFunctionBegin;
 65:   PetscCheck(!da->setupcalled, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_WRONGSTATE, "This function must be called before DMSetUp()");
 66:   dd->m = m;
 67:   dd->n = n;
 68:   dd->p = p;
 69:   if (da->dim == 2) {
 70:     PetscMPIInt size;
 71:     PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)da), &size));
 72:     if ((dd->m > 0) && (dd->n < 0)) {
 73:       dd->n = size / dd->m;
 74:       PetscCheck(dd->n * dd->m == size, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_OUTOFRANGE, "%" PetscInt_FMT " processes in X direction not divisible into comm size %d", m, size);
 75:     }
 76:     if ((dd->n > 0) && (dd->m < 0)) {
 77:       dd->m = size / dd->n;
 78:       PetscCheck(dd->n * dd->m == size, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_OUTOFRANGE, "%" PetscInt_FMT " processes in Y direction not divisible into comm size %d", n, size);
 79:     }
 80:   }
 81:   PetscFunctionReturn(PETSC_SUCCESS);
 82: }

 84: /*@
 85:   DMDASetBoundaryType - Sets the type of ghost nodes on domain boundaries.

 87:   Not Collective

 89:   Input Parameters:
 90: + da - The `DMDA`
 91: . bx - x boundary type, one of `DM_BOUNDARY_NONE`, `DM_BOUNDARY_GHOSTED`, `DM_BOUNDARY_PERIODIC`
 92: . by - y boundary type, one of `DM_BOUNDARY_NONE`, `DM_BOUNDARY_GHOSTED`, `DM_BOUNDARY_PERIODIC`
 93: - bz - z boundary type, one of `DM_BOUNDARY_NONE`, `DM_BOUNDARY_GHOSTED`, `DM_BOUNDARY_PERIODIC`

 95:   Level: intermediate

 97: .seealso: [](sec_struct), `DM`, `DMDA`, `DMDACreate()`, `DMDestroy()`, `DMBoundaryType`, `DM_BOUNDARY_NONE`, `DM_BOUNDARY_GHOSTED`, `DM_BOUNDARY_PERIODIC`
 98: @*/
 99: PetscErrorCode DMDASetBoundaryType(DM da, DMBoundaryType bx, DMBoundaryType by, DMBoundaryType bz)
100: {
101:   DM_DA *dd = (DM_DA *)da->data;

103:   PetscFunctionBegin;
108:   PetscCheck(!da->setupcalled, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_WRONGSTATE, "This function must be called before DMSetUp()");
109:   dd->bx = bx;
110:   dd->by = by;
111:   dd->bz = bz;
112:   PetscFunctionReturn(PETSC_SUCCESS);
113: }

115: /*@
116:   DMDASetDof - Sets the number of degrees of freedom per vertex

118:   Not Collective

120:   Input Parameters:
121: + da  - The `DMDA`
122: - dof - Number of degrees of freedom per vertex

124:   Level: intermediate

126: .seealso: [](sec_struct), `DM`, `DMDA`, `DMDAGetDof()`, `DMDACreate()`, `DMDestroy()`
127: @*/
128: PetscErrorCode DMDASetDof(DM da, PetscInt dof)
129: {
130:   DM_DA *dd = (DM_DA *)da->data;

132:   PetscFunctionBegin;
135:   PetscCheck(!da->setupcalled, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_WRONGSTATE, "This function must be called before DMSetUp()");
136:   dd->w  = dof;
137:   da->bs = dof;
138:   PetscFunctionReturn(PETSC_SUCCESS);
139: }

141: /*@
142:   DMDAGetDof - Gets the number of degrees of freedom per vertex

144:   Not Collective

146:   Input Parameter:
147: . da - The `DMDA`

149:   Output Parameter:
150: . dof - Number of degrees of freedom per vertex

152:   Level: intermediate

154: .seealso: [](sec_struct), `DM`, `DMDA`, `DMDASetDof()`, `DMDACreate()`, `DMDestroy()`
155: @*/
156: PetscErrorCode DMDAGetDof(DM da, PetscInt *dof)
157: {
158:   DM_DA *dd = (DM_DA *)da->data;

160:   PetscFunctionBegin;
162:   PetscAssertPointer(dof, 2);
163:   *dof = dd->w;
164:   PetscFunctionReturn(PETSC_SUCCESS);
165: }

167: /*@
168:   DMDAGetOverlap - Gets the size of the per-processor overlap.

170:   Not Collective

172:   Input Parameter:
173: . da - The `DMDA`

175:   Output Parameters:
176: + x - Overlap in the x direction
177: . y - Overlap in the y direction
178: - z - Overlap in the z direction

180:   Level: intermediate

182: .seealso: [](sec_struct), `DM`, `DMDA`, `DMCreateDomainDecomposition()`, `DMDASetOverlap()`
183: @*/
184: PetscErrorCode DMDAGetOverlap(DM da, PetscInt *x, PetscInt *y, PetscInt *z)
185: {
186:   DM_DA *dd = (DM_DA *)da->data;

188:   PetscFunctionBegin;
190:   if (x) *x = dd->xol;
191:   if (y) *y = dd->yol;
192:   if (z) *z = dd->zol;
193:   PetscFunctionReturn(PETSC_SUCCESS);
194: }

196: /*@
197:   DMDASetOverlap - Sets the size of the per-processor overlap.

199:   Not Collective

201:   Input Parameters:
202: + da - The `DMDA`
203: . x  - Overlap in the x direction
204: . y  - Overlap in the y direction
205: - z  - Overlap in the z direction

207:   Level: intermediate

209: .seealso: [](sec_struct), `DM`, `DMDA`, `DMCreateDomainDecomposition()`, `DMDAGetOverlap()`
210: @*/
211: PetscErrorCode DMDASetOverlap(DM da, PetscInt x, PetscInt y, PetscInt z)
212: {
213:   DM_DA *dd = (DM_DA *)da->data;

215:   PetscFunctionBegin;
220:   dd->xol = x;
221:   dd->yol = y;
222:   dd->zol = z;
223:   PetscFunctionReturn(PETSC_SUCCESS);
224: }

226: /*@
227:   DMDAGetNumLocalSubDomains - Gets the number of local subdomains that would be created upon decomposition.

229:   Not Collective

231:   Input Parameter:
232: . da - The `DMDA`

234:   Output Parameter:
235: . Nsub - Number of local subdomains created upon decomposition

237:   Level: intermediate

239: .seealso: [](sec_struct), `DM`, `DMDA`, `DMCreateDomainDecomposition()`, `DMDASetNumLocalSubDomains()`
240: @*/
241: PetscErrorCode DMDAGetNumLocalSubDomains(DM da, PetscInt *Nsub)
242: {
243:   DM_DA *dd = (DM_DA *)da->data;

245:   PetscFunctionBegin;
247:   if (Nsub) *Nsub = dd->Nsub;
248:   PetscFunctionReturn(PETSC_SUCCESS);
249: }

251: /*@
252:   DMDASetNumLocalSubDomains - Sets the number of local subdomains to create when decomposing with `DMCreateDomainDecomposition()`

254:   Not Collective

256:   Input Parameters:
257: + da   - The `DMDA`
258: - Nsub - The number of local subdomains requested

260:   Level: intermediate

262: .seealso: [](sec_struct), `DM`, `DMDA`, `DMCreateDomainDecomposition()`, `DMDAGetNumLocalSubDomains()`
263: @*/
264: PetscErrorCode DMDASetNumLocalSubDomains(DM da, PetscInt Nsub)
265: {
266:   DM_DA *dd = (DM_DA *)da->data;

268:   PetscFunctionBegin;
271:   dd->Nsub = Nsub;
272:   PetscFunctionReturn(PETSC_SUCCESS);
273: }

275: /*@
276:   DMDASetOffset - Sets the index offset of the `DMDA`.

278:   Collective

280:   Input Parameters:
281: + da - The `DMDA`
282: . xo - The offset in the x direction
283: . yo - The offset in the y direction
284: . zo - The offset in the z direction
285: . Mo - The problem offset in the x direction
286: . No - The problem offset in the y direction
287: - Po - The problem offset in the z direction

289:   Level: developer

291:   Note:
292:   This is used primarily to overlap a computation on a local `DMDA` with that on a global `DMDA` without
293:   changing boundary conditions or subdomain features that depend upon the global offsets.

295: .seealso: [](sec_struct), `DM`, `DMDA`, `DMDAGetOffset()`, `DMDAVecGetArray()`
296: @*/
297: PetscErrorCode DMDASetOffset(DM da, PetscInt xo, PetscInt yo, PetscInt zo, PetscInt Mo, PetscInt No, PetscInt Po)
298: {
299:   DM_DA *dd = (DM_DA *)da->data;

301:   PetscFunctionBegin;
309:   dd->xo = xo;
310:   dd->yo = yo;
311:   dd->zo = zo;
312:   dd->Mo = Mo;
313:   dd->No = No;
314:   dd->Po = Po;

316:   if (da->coordinates[0].dm) PetscCall(DMDASetOffset(da->coordinates[0].dm, xo, yo, zo, Mo, No, Po));
317:   PetscFunctionReturn(PETSC_SUCCESS);
318: }

320: /*@
321:   DMDAGetOffset - Gets the index offset of the `DMDA`.

323:   Not Collective

325:   Input Parameter:
326: . da - The `DMDA`

328:   Output Parameters:
329: + xo - The offset in the x direction
330: . yo - The offset in the y direction
331: . zo - The offset in the z direction
332: . Mo - The global size in the x direction
333: . No - The global size in the y direction
334: - Po - The global size in the z direction

336:   Level: developer

338: .seealso: [](sec_struct), `DM`, `DMDA`, `DMDASetOffset()`, `DMDAVecGetArray()`
339: @*/
340: PetscErrorCode DMDAGetOffset(DM da, PetscInt *xo, PetscInt *yo, PetscInt *zo, PetscInt *Mo, PetscInt *No, PetscInt *Po)
341: {
342:   DM_DA *dd = (DM_DA *)da->data;

344:   PetscFunctionBegin;
346:   if (xo) *xo = dd->xo;
347:   if (yo) *yo = dd->yo;
348:   if (zo) *zo = dd->zo;
349:   if (Mo) *Mo = dd->Mo;
350:   if (No) *No = dd->No;
351:   if (Po) *Po = dd->Po;
352:   PetscFunctionReturn(PETSC_SUCCESS);
353: }

355: /*@
356:   DMDAGetNonOverlappingRegion - Gets the indices of the nonoverlapping region of a subdomain `DMDA`.

358:   Not Collective

360:   Input Parameter:
361: . da - The `DMDA`

363:   Output Parameters:
364: + xs - The start of the region in x
365: . ys - The start of the region in y
366: . zs - The start of the region in z
367: . xm - The size of the region in x
368: . ym - The size of the region in y
369: - zm - The size of the region in z

371:   Level: intermediate

373: .seealso: [](sec_struct), `DM`, `DMDA`, `DMDAGetOffset()`, `DMDAVecGetArray()`
374: @*/
375: PetscErrorCode DMDAGetNonOverlappingRegion(DM da, PetscInt *xs, PetscInt *ys, PetscInt *zs, PetscInt *xm, PetscInt *ym, PetscInt *zm)
376: {
377:   DM_DA *dd = (DM_DA *)da->data;

379:   PetscFunctionBegin;
381:   if (xs) *xs = dd->nonxs;
382:   if (ys) *ys = dd->nonys;
383:   if (zs) *zs = dd->nonzs;
384:   if (xm) *xm = dd->nonxm;
385:   if (ym) *ym = dd->nonym;
386:   if (zm) *zm = dd->nonzm;
387:   PetscFunctionReturn(PETSC_SUCCESS);
388: }

390: /*@
391:   DMDASetNonOverlappingRegion - Sets the indices of the nonoverlapping region of a subdomain `DMDA`.

393:   Collective

395:   Input Parameters:
396: + da - The `DMDA`
397: . xs - The start of the region in x
398: . ys - The start of the region in y
399: . zs - The start of the region in z
400: . xm - The size of the region in x
401: . ym - The size of the region in y
402: - zm - The size of the region in z

404:   Level: intermediate

406: .seealso: [](sec_struct), `DM`, `DMDA`, `DMDAGetOffset()`, `DMDAVecGetArray()`
407: @*/
408: PetscErrorCode DMDASetNonOverlappingRegion(DM da, PetscInt xs, PetscInt ys, PetscInt zs, PetscInt xm, PetscInt ym, PetscInt zm)
409: {
410:   DM_DA *dd = (DM_DA *)da->data;

412:   PetscFunctionBegin;
420:   dd->nonxs = xs;
421:   dd->nonys = ys;
422:   dd->nonzs = zs;
423:   dd->nonxm = xm;
424:   dd->nonym = ym;
425:   dd->nonzm = zm;

427:   PetscFunctionReturn(PETSC_SUCCESS);
428: }

430: /*@
431:   DMDASetStencilType - Sets the type of the communication stencil

433:   Logically Collective

435:   Input Parameters:
436: + da    - The `DMDA`
437: - stype - The stencil type, use either `DMDA_STENCIL_BOX` or `DMDA_STENCIL_STAR`.

439:   Level: intermediate

441: .seealso: [](sec_struct), `DM`, `DMDA`, `DMDACreate()`, `DMDestroy()`, `DMDAStencilType`, `DMDA_STENCIL_BOX`, `DMDA_STENCIL_STAR.`
442: @*/
443: PetscErrorCode DMDASetStencilType(DM da, DMDAStencilType stype)
444: {
445:   DM_DA *dd = (DM_DA *)da->data;

447:   PetscFunctionBegin;
450:   PetscCheck(!da->setupcalled, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_WRONGSTATE, "This function must be called before DMSetUp()");
451:   dd->stencil_type = stype;
452:   PetscFunctionReturn(PETSC_SUCCESS);
453: }

455: /*@
456:   DMDAGetStencilType - Gets the type of the communication stencil

458:   Not Collective

460:   Input Parameter:
461: . da - The `DMDA`

463:   Output Parameter:
464: . stype - The stencil type, use either `DMDA_STENCIL_BOX` or `DMDA_STENCIL_STAR`.

466:   Level: intermediate

468: .seealso: [](sec_struct), `DM`, `DMDA`, `DMDACreate()`, `DMDestroy()`, `DMDAStencilType`, `DMDA_STENCIL_BOX`, `DMDA_STENCIL_STAR.`
469: @*/
470: PetscErrorCode DMDAGetStencilType(DM da, DMDAStencilType *stype)
471: {
472:   DM_DA *dd = (DM_DA *)da->data;

474:   PetscFunctionBegin;
476:   PetscAssertPointer(stype, 2);
477:   *stype = dd->stencil_type;
478:   PetscFunctionReturn(PETSC_SUCCESS);
479: }

481: /*@
482:   DMDASetStencilWidth - Sets the width of the communication stencil

484:   Logically Collective

486:   Input Parameters:
487: + da    - The `DMDA`
488: - width - The stencil width

490:   Level: intermediate

492: .seealso: [](sec_struct), `DM`, `DMDA`, `DMDACreate()`, `DMDestroy()`, `DMDAStencilType`, `DMDA_STENCIL_BOX`, `DMDA_STENCIL_STAR.`
493: @*/
494: PetscErrorCode DMDASetStencilWidth(DM da, PetscInt width)
495: {
496:   DM_DA *dd = (DM_DA *)da->data;

498:   PetscFunctionBegin;
501:   PetscCheck(!da->setupcalled, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_WRONGSTATE, "This function must be called before DMSetUp()");
502:   dd->s = width;
503:   PetscFunctionReturn(PETSC_SUCCESS);
504: }

506: /*@
507:   DMDAGetStencilWidth - Gets the width of the communication stencil

509:   Not Collective

511:   Input Parameter:
512: . da - The `DMDA`

514:   Output Parameter:
515: . width - The stencil width

517:   Level: intermediate

519: .seealso: [](sec_struct), `DM`, `DMDA`, `DMDACreate()`, `DMDestroy()`, `DMDAStencilType`, `DMDA_STENCIL_BOX`, `DMDA_STENCIL_STAR.`
520: @*/
521: PetscErrorCode DMDAGetStencilWidth(DM da, PetscInt *width)
522: {
523:   DM_DA *dd = (DM_DA *)da->data;

525:   PetscFunctionBegin;
527:   PetscAssertPointer(width, 2);
528:   *width = dd->s;
529:   PetscFunctionReturn(PETSC_SUCCESS);
530: }

532: static PetscErrorCode DMDACheckOwnershipRanges_Private(DM da, PetscInt M, PetscInt m, const PetscInt lx[])
533: {
534:   PetscInt i, sum;

536:   PetscFunctionBegin;
537:   PetscCheck(M >= 0, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_WRONGSTATE, "Global dimension not set");
538:   for (i = sum = 0; i < m; i++) sum += lx[i];
539:   PetscCheck(sum == M, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_INCOMP, "Ownership ranges sum to %" PetscInt_FMT " but global dimension is %" PetscInt_FMT, sum, M);
540:   PetscFunctionReturn(PETSC_SUCCESS);
541: }

543: /*@
544:   DMDASetOwnershipRanges - Sets the number of nodes in each direction on each process

546:   Logically Collective

548:   Input Parameters:
549: + da - The `DMDA`
550: . lx - array containing number of nodes in the X direction on each process, or `NULL`. If non-null, must be of length da->m
551: . ly - array containing number of nodes in the Y direction on each process, or `NULL`. If non-null, must be of length da->n
552: - lz - array containing number of nodes in the Z direction on each process, or `NULL`. If non-null, must be of length da->p.

554:   Level: intermediate

556:   Note:
557:   These numbers are NOT multiplied by the number of dof per node.

559: .seealso: [](sec_struct), `DM`, `DMDA`, `DMDACreate()`, `DMDestroy()`
560: @*/
561: PetscErrorCode DMDASetOwnershipRanges(DM da, const PetscInt lx[], const PetscInt ly[], const PetscInt lz[])
562: {
563:   DM_DA *dd = (DM_DA *)da->data;

565:   PetscFunctionBegin;
567:   PetscCheck(!da->setupcalled, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_WRONGSTATE, "This function must be called before DMSetUp()");
568:   if (lx) {
569:     PetscCheck(dd->m >= 0, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_WRONGSTATE, "Cannot set ownership ranges before setting number of processes");
570:     PetscCall(DMDACheckOwnershipRanges_Private(da, dd->M, dd->m, lx));
571:     if (!dd->lx) PetscCall(PetscMalloc1(dd->m, &dd->lx));
572:     PetscCall(PetscArraycpy(dd->lx, lx, dd->m));
573:   }
574:   if (ly) {
575:     PetscCheck(dd->n >= 0, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_WRONGSTATE, "Cannot set ownership ranges before setting number of processes");
576:     PetscCall(DMDACheckOwnershipRanges_Private(da, dd->N, dd->n, ly));
577:     if (!dd->ly) PetscCall(PetscMalloc1(dd->n, &dd->ly));
578:     PetscCall(PetscArraycpy(dd->ly, ly, dd->n));
579:   }
580:   if (lz) {
581:     PetscCheck(dd->p >= 0, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_WRONGSTATE, "Cannot set ownership ranges before setting number of processes");
582:     PetscCall(DMDACheckOwnershipRanges_Private(da, dd->P, dd->p, lz));
583:     if (!dd->lz) PetscCall(PetscMalloc1(dd->p, &dd->lz));
584:     PetscCall(PetscArraycpy(dd->lz, lz, dd->p));
585:   }
586:   PetscFunctionReturn(PETSC_SUCCESS);
587: }

589: /*@
590:   DMDASetInterpolationType - Sets the type of interpolation that will be
591:   returned by `DMCreateInterpolation()`

593:   Logically Collective

595:   Input Parameters:
596: + da    - initial distributed array
597: - ctype - `DMDA_Q1` and `DMDA_Q0` are currently the only supported forms

599:   Level: intermediate

601:   Note:
602:   You should call this on the coarser of the two `DMDA` you pass to `DMCreateInterpolation()`

604: .seealso: [](sec_struct), `DM`, `DMDA`, `DMDACreate1d()`, `DMDACreate2d()`, `DMDACreate3d()`, `DMDestroy()`, `DMDAInterpolationType`,
605:           `DMDA_Q1`, `DMDA_Q0`
606: @*/
607: PetscErrorCode DMDASetInterpolationType(DM da, DMDAInterpolationType ctype)
608: {
609:   DM_DA *dd = (DM_DA *)da->data;

611:   PetscFunctionBegin;
614:   dd->interptype = ctype;
615:   PetscFunctionReturn(PETSC_SUCCESS);
616: }

618: /*@
619:   DMDAGetInterpolationType - Gets the type of interpolation that will be
620:   used by `DMCreateInterpolation()`

622:   Not Collective

624:   Input Parameter:
625: . da - distributed array

627:   Output Parameter:
628: . ctype - interpolation type (`DMDA_Q1` and `DMDA_Q0` are currently the only supported forms)

630:   Level: intermediate

632: .seealso: [](sec_struct), `DM`, `DMDA`, `DMDAInterpolationType`, `DMDASetInterpolationType()`, `DMCreateInterpolation()`,
633:           `DMDA_Q1`, `DMDA_Q0`
634: @*/
635: PetscErrorCode DMDAGetInterpolationType(DM da, DMDAInterpolationType *ctype)
636: {
637:   DM_DA *dd = (DM_DA *)da->data;

639:   PetscFunctionBegin;
641:   PetscAssertPointer(ctype, 2);
642:   *ctype = dd->interptype;
643:   PetscFunctionReturn(PETSC_SUCCESS);
644: }

646: /*@C
647:   DMDAGetNeighbors - Gets an array containing the MPI rank of all the current
648:   processes neighbors.

650:   Not Collective

652:   Input Parameter:
653: . da - the `DMDA` object

655:   Output Parameter:
656: . ranks - the neighbors ranks, stored with the x index increasing most rapidly. The process itself is in the list

658:   Level: intermediate

660:   Notes:
661:   In 2d the array is of length 9, in 3d of length 27

663:   Not supported in 1d

665:   Do not free the array, it is freed when the `DMDA` is destroyed.

667:   Fortran Note:
668:   Pass in an array of the appropriate length to contain the values

670: .seealso: [](sec_struct), `DMDA`, `DM`
671: @*/
672: PetscErrorCode DMDAGetNeighbors(DM da, const PetscMPIInt *ranks[])
673: {
674:   DM_DA *dd = (DM_DA *)da->data;

676:   PetscFunctionBegin;
678:   *ranks = dd->neighbors;
679:   PetscFunctionReturn(PETSC_SUCCESS);
680: }

682: /*@C
683:   DMDAGetOwnershipRanges - Gets the ranges of indices in the x, y and z direction that are owned by each process

685:   Not Collective

687:   Input Parameter:
688: . da - the `DMDA` object

690:   Output Parameters:
691: + lx - ownership along x direction (optional)
692: . ly - ownership along y direction (optional)
693: - lz - ownership along z direction (optional)

695:   Level: intermediate

697:   Note:
698:   These correspond to the optional final arguments passed to `DMDACreate()`, `DMDACreate2d()`, `DMDACreate3d()`

700:   In C you should not free these arrays, nor change the values in them. They will only have valid values while the
701:   `DMDA` they came from still exists (has not been destroyed).

703:   These numbers are NOT multiplied by the number of dof per node.

705:   Fortran Note:
706:   Pass in arrays `lx`, `ly`, and `lz` of the appropriate length to hold the values; the sixth, seventh and
707:   eighth arguments from `DMDAGetInfo()`

709: .seealso: [](sec_struct), `DM`, `DMDA`, `DMDAGetCorners()`, `DMDAGetGhostCorners()`, `DMDACreate()`, `DMDACreate1d()`, `DMDACreate2d()`, `DMDACreate3d()`, `VecGetOwnershipRanges()`
710: @*/
711: PetscErrorCode DMDAGetOwnershipRanges(DM da, const PetscInt *lx[], const PetscInt *ly[], const PetscInt *lz[])
712: {
713:   DM_DA *dd = (DM_DA *)da->data;

715:   PetscFunctionBegin;
717:   if (lx) *lx = dd->lx;
718:   if (ly) *ly = dd->ly;
719:   if (lz) *lz = dd->lz;
720:   PetscFunctionReturn(PETSC_SUCCESS);
721: }

723: /*@
724:   DMDASetRefinementFactor - Set the ratios that the `DMDA` grid is refined

726:   Logically Collective

728:   Input Parameters:
729: + da       - the `DMDA` object
730: . refine_x - ratio of fine grid to coarse in x direction (2 by default)
731: . refine_y - ratio of fine grid to coarse in y direction (2 by default)
732: - refine_z - ratio of fine grid to coarse in z direction (2 by default)

734:   Options Database Keys:
735: + -da_refine_x refine_x - refinement ratio in x direction
736: . -da_refine_y rafine_y - refinement ratio in y direction
737: . -da_refine_z refine_z - refinement ratio in z direction
738: - -da_refine <n>        - refine the `DMDA` object n times when it is created.

740:   Level: intermediate

742:   Note:
743:   Pass `PETSC_IGNORE` to leave a value unchanged

745: .seealso: [](sec_struct), `DM`, `DMDA`, `DMRefine()`, `DMDAGetRefinementFactor()`
746: @*/
747: PetscErrorCode DMDASetRefinementFactor(DM da, PetscInt refine_x, PetscInt refine_y, PetscInt refine_z)
748: {
749:   DM_DA *dd = (DM_DA *)da->data;

751:   PetscFunctionBegin;

757:   if (refine_x > 0) dd->refine_x = refine_x;
758:   if (refine_y > 0) dd->refine_y = refine_y;
759:   if (refine_z > 0) dd->refine_z = refine_z;
760:   PetscFunctionReturn(PETSC_SUCCESS);
761: }

763: /*@C
764:   DMDAGetRefinementFactor - Gets the ratios that the `DMDA` grid is refined

766:   Not Collective

768:   Input Parameter:
769: . da - the `DMDA` object

771:   Output Parameters:
772: + refine_x - ratio of fine grid to coarse in x direction (2 by default)
773: . refine_y - ratio of fine grid to coarse in y direction (2 by default)
774: - refine_z - ratio of fine grid to coarse in z direction (2 by default)

776:   Level: intermediate

778:   Note:
779:   Pass `NULL` for values you do not need

781: .seealso: [](sec_struct), `DM`, `DMDA`, `DMRefine()`, `DMDASetRefinementFactor()`
782: @*/
783: PetscErrorCode DMDAGetRefinementFactor(DM da, PetscInt *refine_x, PetscInt *refine_y, PetscInt *refine_z)
784: {
785:   DM_DA *dd = (DM_DA *)da->data;

787:   PetscFunctionBegin;
789:   if (refine_x) *refine_x = dd->refine_x;
790:   if (refine_y) *refine_y = dd->refine_y;
791:   if (refine_z) *refine_z = dd->refine_z;
792:   PetscFunctionReturn(PETSC_SUCCESS);
793: }

795: /*@C
796:   DMDASetGetMatrix - Sets the routine used by the `DMDA` to allocate a matrix.

798:   Logically Collective; No Fortran Support

800:   Input Parameters:
801: + da - the `DMDA` object
802: - f  - the function that allocates the matrix for that specific `DMDA`

804:   Calling sequence of `f`:
805: + da - the `DMDA` object
806: - A  - the created matrix

808:   Level: developer

810:   Notes:
811:   If the function is not provided a default function is used that uses the `DMDAStencilType`, `DMBoundaryType`, and value of `DMDASetStencilWidth()`
812:   to construct the matrix.

814:   See `DMDASetBlockFills()` that provides a simple way to provide the nonzero structure for
815:   the diagonal and off-diagonal blocks of the matrix without providing a custom function

817:   Developer Note:
818:   This should be called `DMDASetCreateMatrix()`

820: .seealso: [](sec_struct), `DM`, `DMDA`, `DMCreateMatrix()`, `DMDASetBlockFills()`
821: @*/
822: PetscErrorCode DMDASetGetMatrix(DM da, PetscErrorCode (*f)(DM da, Mat *A))
823: {
824:   PetscFunctionBegin;
826:   da->ops->creatematrix = f;
827:   PetscFunctionReturn(PETSC_SUCCESS);
828: }

830: /*@
831:   DMDAMapMatStencilToGlobal - Map a list of `MatStencil` on a grid to global indices.

833:   Not Collective

835:   Input Parameters:
836: + da   - the `DMDA` object
837: . m    - number of `MatStencil` to map
838: - idxm - grid points (and component number when dof > 1)

840:   Output Parameter:
841: . gidxm - global row indices

843:   Level: intermediate

845: .seealso: [](sec_struct), `DM`, `DMDA`, `MatStencil`
846: @*/
847: PetscErrorCode DMDAMapMatStencilToGlobal(DM da, PetscInt m, const MatStencil idxm[], PetscInt gidxm[])
848: {
849:   const DM_DA           *dd  = (const DM_DA *)da->data;
850:   const PetscInt        *dxm = (const PetscInt *)idxm;
851:   PetscInt               i, j, sdim, tmp, dim;
852:   PetscInt               dims[4], starts[4], dims2[3], starts2[3], dof = dd->w;
853:   ISLocalToGlobalMapping ltog;

855:   PetscFunctionBegin;
856:   if (m <= 0) PetscFunctionReturn(PETSC_SUCCESS);

858:   /* Code adapted from DMDAGetGhostCorners() */
859:   starts2[0] = dd->Xs / dof + dd->xo;
860:   starts2[1] = dd->Ys + dd->yo;
861:   starts2[2] = dd->Zs + dd->zo;
862:   dims2[0]   = (dd->Xe - dd->Xs) / dof;
863:   dims2[1]   = (dd->Ye - dd->Ys);
864:   dims2[2]   = (dd->Ze - dd->Zs);

866:   /* As if we do MatSetStencil() to get dims[]/starts[] of mat->stencil */
867:   dim  = da->dim;                   /* DA dim: 1 to 3 */
868:   sdim = dim + (dof > 1 ? 1 : 0);   /* Dimensions in MatStencil's (k,j,i,c) view */
869:   for (i = 0; i < dim; i++) {       /* Reverse the order and also skip the unused dimensions */
870:     dims[i]   = dims2[dim - i - 1]; /* ex. dims/starts[] are in order of {i} for 1D, {j,i} for 2D and {k,j,i} for 3D */
871:     starts[i] = starts2[dim - i - 1];
872:   }
873:   starts[dim] = 0; /* Append the extra dim for dof (won't be used below if dof=1) */
874:   dims[dim]   = dof;

876:   /* Map stencils to local indices (code adapted from MatSetValuesStencil()) */
877:   for (i = 0; i < m; i++) {
878:     dxm += 3 - dim; /* Input is {k,j,i,c}; move the pointer to the first used index, e.g., j in 2D */
879:     tmp = 0;
880:     for (j = 0; j < sdim; j++) {                                                      /* Iter over, ex. j,i or j,i,c in 2D */
881:       if (tmp < 0 || dxm[j] < starts[j] || dxm[j] >= (starts[j] + dims[j])) tmp = -1; /* Beyond the ghost region, therefore ignored with negative indices */
882:       else tmp = tmp * dims[j] + (dxm[j] - starts[j]);
883:     }
884:     gidxm[i] = tmp;
885:     /* Move to the next MatStencil point */
886:     if (dof > 1) dxm += sdim; /* c is already counted in sdim */
887:     else dxm += sdim + 1;     /* skip the unused c */
888:   }

890:   /* Map local indices to global indices */
891:   PetscCall(DMGetLocalToGlobalMapping(da, &ltog));
892:   PetscCall(ISLocalToGlobalMappingApply(ltog, m, gidxm, gidxm));
893:   PetscFunctionReturn(PETSC_SUCCESS);
894: }

896: /*
897:   Creates "balanced" ownership ranges after refinement, constrained by the need for the
898:   fine grid boundaries to fall within one stencil width of the coarse partition.

900:   Uses a greedy algorithm to handle non-ideal layouts, could probably do something better.
901: */
902: static PetscErrorCode DMDARefineOwnershipRanges(DM da, PetscBool periodic, PetscInt stencil_width, PetscInt ratio, PetscInt m, const PetscInt lc[], PetscInt lf[])
903: {
904:   PetscInt i, totalc = 0, remaining, startc = 0, startf = 0;

906:   PetscFunctionBegin;
907:   PetscCheck(ratio >= 1, PetscObjectComm((PetscObject)da), PETSC_ERR_USER, "Requested refinement ratio %" PetscInt_FMT " must be at least 1", ratio);
908:   if (ratio == 1) {
909:     PetscCall(PetscArraycpy(lf, lc, m));
910:     PetscFunctionReturn(PETSC_SUCCESS);
911:   }
912:   for (i = 0; i < m; i++) totalc += lc[i];
913:   remaining = (!periodic) + ratio * (totalc - (!periodic));
914:   for (i = 0; i < m; i++) {
915:     PetscInt want = remaining / (m - i) + !!(remaining % (m - i));
916:     if (i == m - 1) lf[i] = want;
917:     else {
918:       const PetscInt nextc = startc + lc[i];
919:       /* Move the first fine node of the next subdomain to the right until the coarse node on its left is within one
920:        * coarse stencil width of the first coarse node in the next subdomain. */
921:       while ((startf + want) / ratio < nextc - stencil_width) want++;
922:       /* Move the last fine node in the current subdomain to the left until the coarse node on its right is within one
923:        * coarse stencil width of the last coarse node in the current subdomain. */
924:       while ((startf + want - 1 + ratio - 1) / ratio > nextc - 1 + stencil_width) want--;
925:       /* Make sure all constraints are satisfied */
926:       if (want < 0 || want > remaining || ((startf + want) / ratio < nextc - stencil_width) || ((startf + want - 1 + ratio - 1) / ratio > nextc - 1 + stencil_width))
927:         SETERRQ(PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_SIZ, "Could not find a compatible refined ownership range");
928:     }
929:     lf[i] = want;
930:     startc += lc[i];
931:     startf += lf[i];
932:     remaining -= lf[i];
933:   }
934:   PetscFunctionReturn(PETSC_SUCCESS);
935: }

937: /*
938:   Creates "balanced" ownership ranges after coarsening, constrained by the need for the
939:   fine grid boundaries to fall within one stencil width of the coarse partition.

941:   Uses a greedy algorithm to handle non-ideal layouts, could probably do something better.
942: */
943: static PetscErrorCode DMDACoarsenOwnershipRanges(DM da, PetscBool periodic, PetscInt stencil_width, PetscInt ratio, PetscInt m, const PetscInt lf[], PetscInt lc[])
944: {
945:   PetscInt i, totalf, remaining, startc, startf;

947:   PetscFunctionBegin;
948:   PetscCheck(ratio >= 1, PetscObjectComm((PetscObject)da), PETSC_ERR_USER, "Requested refinement ratio %" PetscInt_FMT " must be at least 1", ratio);
949:   if (ratio == 1) {
950:     PetscCall(PetscArraycpy(lc, lf, m));
951:     PetscFunctionReturn(PETSC_SUCCESS);
952:   }
953:   for (i = 0, totalf = 0; i < m; i++) totalf += lf[i];
954:   remaining = (!periodic) + (totalf - (!periodic)) / ratio;
955:   for (i = 0, startc = 0, startf = 0; i < m; i++) {
956:     PetscInt want = remaining / (m - i) + !!(remaining % (m - i));
957:     if (i == m - 1) lc[i] = want;
958:     else {
959:       const PetscInt nextf = startf + lf[i];
960:       /* Slide first coarse node of next subdomain to the left until the coarse node to the left of the first fine
961:        * node is within one stencil width. */
962:       while (nextf / ratio < startc + want - stencil_width) want--;
963:       /* Slide the last coarse node of the current subdomain to the right until the coarse node to the right of the last
964:        * fine node is within one stencil width. */
965:       while ((nextf - 1 + ratio - 1) / ratio > startc + want - 1 + stencil_width) want++;
966:       if (want < 0 || want > remaining || (nextf / ratio < startc + want - stencil_width) || ((nextf - 1 + ratio - 1) / ratio > startc + want - 1 + stencil_width))
967:         SETERRQ(PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_SIZ, "Could not find a compatible coarsened ownership range");
968:     }
969:     lc[i] = want;
970:     startc += lc[i];
971:     startf += lf[i];
972:     remaining -= lc[i];
973:   }
974:   PetscFunctionReturn(PETSC_SUCCESS);
975: }

977: PetscErrorCode DMRefine_DA(DM da, MPI_Comm comm, DM *daref)
978: {
979:   PetscInt M, N, P, i, dim;
980:   Vec      coordsc, coordsf;
981:   DM       da2;
982:   DM_DA   *dd = (DM_DA *)da->data, *dd2;

984:   PetscFunctionBegin;
986:   PetscAssertPointer(daref, 3);

988:   PetscCall(DMGetDimension(da, &dim));
989:   if (dd->bx == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0) {
990:     M = dd->refine_x * dd->M;
991:   } else {
992:     M = 1 + dd->refine_x * (dd->M - 1);
993:   }
994:   if (dd->by == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0) {
995:     if (dim > 1) {
996:       N = dd->refine_y * dd->N;
997:     } else {
998:       N = 1;
999:     }
1000:   } else {
1001:     N = 1 + dd->refine_y * (dd->N - 1);
1002:   }
1003:   if (dd->bz == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0) {
1004:     if (dim > 2) {
1005:       P = dd->refine_z * dd->P;
1006:     } else {
1007:       P = 1;
1008:     }
1009:   } else {
1010:     P = 1 + dd->refine_z * (dd->P - 1);
1011:   }
1012:   PetscCall(DMDACreate(PetscObjectComm((PetscObject)da), &da2));
1013:   PetscCall(DMSetOptionsPrefix(da2, ((PetscObject)da)->prefix));
1014:   PetscCall(DMSetDimension(da2, dim));
1015:   PetscCall(DMDASetSizes(da2, M, N, P));
1016:   PetscCall(DMDASetNumProcs(da2, dd->m, dd->n, dd->p));
1017:   PetscCall(DMDASetBoundaryType(da2, dd->bx, dd->by, dd->bz));
1018:   PetscCall(DMDASetDof(da2, dd->w));
1019:   PetscCall(DMDASetStencilType(da2, dd->stencil_type));
1020:   PetscCall(DMDASetStencilWidth(da2, dd->s));
1021:   if (dim == 3) {
1022:     PetscInt *lx, *ly, *lz;
1023:     PetscCall(PetscMalloc3(dd->m, &lx, dd->n, &ly, dd->p, &lz));
1024:     PetscCall(DMDARefineOwnershipRanges(da, (PetscBool)(dd->bx == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0), dd->s, dd->refine_x, dd->m, dd->lx, lx));
1025:     PetscCall(DMDARefineOwnershipRanges(da, (PetscBool)(dd->by == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0), dd->s, dd->refine_y, dd->n, dd->ly, ly));
1026:     PetscCall(DMDARefineOwnershipRanges(da, (PetscBool)(dd->bz == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0), dd->s, dd->refine_z, dd->p, dd->lz, lz));
1027:     PetscCall(DMDASetOwnershipRanges(da2, lx, ly, lz));
1028:     PetscCall(PetscFree3(lx, ly, lz));
1029:   } else if (dim == 2) {
1030:     PetscInt *lx, *ly;
1031:     PetscCall(PetscMalloc2(dd->m, &lx, dd->n, &ly));
1032:     PetscCall(DMDARefineOwnershipRanges(da, (PetscBool)(dd->bx == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0), dd->s, dd->refine_x, dd->m, dd->lx, lx));
1033:     PetscCall(DMDARefineOwnershipRanges(da, (PetscBool)(dd->by == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0), dd->s, dd->refine_y, dd->n, dd->ly, ly));
1034:     PetscCall(DMDASetOwnershipRanges(da2, lx, ly, NULL));
1035:     PetscCall(PetscFree2(lx, ly));
1036:   } else if (dim == 1) {
1037:     PetscInt *lx;
1038:     PetscCall(PetscMalloc1(dd->m, &lx));
1039:     PetscCall(DMDARefineOwnershipRanges(da, (PetscBool)(dd->bx == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0), dd->s, dd->refine_x, dd->m, dd->lx, lx));
1040:     PetscCall(DMDASetOwnershipRanges(da2, lx, NULL, NULL));
1041:     PetscCall(PetscFree(lx));
1042:   }
1043:   dd2 = (DM_DA *)da2->data;

1045:   /* allow overloaded (user replaced) operations to be inherited by refinement clones */
1046:   da2->ops->creatematrix = da->ops->creatematrix;
1047:   /* da2->ops->createinterpolation = da->ops->createinterpolation; this causes problem with SNESVI */
1048:   da2->ops->getcoloring = da->ops->getcoloring;
1049:   dd2->interptype       = dd->interptype;

1051:   /* copy fill information if given */
1052:   if (dd->dfill) {
1053:     PetscCall(PetscMalloc1(dd->dfill[dd->w] + dd->w + 1, &dd2->dfill));
1054:     PetscCall(PetscArraycpy(dd2->dfill, dd->dfill, dd->dfill[dd->w] + dd->w + 1));
1055:   }
1056:   if (dd->ofill) {
1057:     PetscCall(PetscMalloc1(dd->ofill[dd->w] + dd->w + 1, &dd2->ofill));
1058:     PetscCall(PetscArraycpy(dd2->ofill, dd->ofill, dd->ofill[dd->w] + dd->w + 1));
1059:   }
1060:   /* copy the refine information */
1061:   dd2->coarsen_x = dd2->refine_x = dd->refine_x;
1062:   dd2->coarsen_y = dd2->refine_y = dd->refine_y;
1063:   dd2->coarsen_z = dd2->refine_z = dd->refine_z;

1065:   if (dd->refine_z_hier) {
1066:     if (da->levelup - da->leveldown + 1 > -1 && da->levelup - da->leveldown + 1 < dd->refine_z_hier_n) dd2->refine_z = dd->refine_z_hier[da->levelup - da->leveldown + 1];
1067:     if (da->levelup - da->leveldown > -1 && da->levelup - da->leveldown < dd->refine_z_hier_n) dd2->coarsen_z = dd->refine_z_hier[da->levelup - da->leveldown];
1068:     dd2->refine_z_hier_n = dd->refine_z_hier_n;
1069:     PetscCall(PetscMalloc1(dd2->refine_z_hier_n, &dd2->refine_z_hier));
1070:     PetscCall(PetscArraycpy(dd2->refine_z_hier, dd->refine_z_hier, dd2->refine_z_hier_n));
1071:   }
1072:   if (dd->refine_y_hier) {
1073:     if (da->levelup - da->leveldown + 1 > -1 && da->levelup - da->leveldown + 1 < dd->refine_y_hier_n) dd2->refine_y = dd->refine_y_hier[da->levelup - da->leveldown + 1];
1074:     if (da->levelup - da->leveldown > -1 && da->levelup - da->leveldown < dd->refine_y_hier_n) dd2->coarsen_y = dd->refine_y_hier[da->levelup - da->leveldown];
1075:     dd2->refine_y_hier_n = dd->refine_y_hier_n;
1076:     PetscCall(PetscMalloc1(dd2->refine_y_hier_n, &dd2->refine_y_hier));
1077:     PetscCall(PetscArraycpy(dd2->refine_y_hier, dd->refine_y_hier, dd2->refine_y_hier_n));
1078:   }
1079:   if (dd->refine_x_hier) {
1080:     if (da->levelup - da->leveldown + 1 > -1 && da->levelup - da->leveldown + 1 < dd->refine_x_hier_n) dd2->refine_x = dd->refine_x_hier[da->levelup - da->leveldown + 1];
1081:     if (da->levelup - da->leveldown > -1 && da->levelup - da->leveldown < dd->refine_x_hier_n) dd2->coarsen_x = dd->refine_x_hier[da->levelup - da->leveldown];
1082:     dd2->refine_x_hier_n = dd->refine_x_hier_n;
1083:     PetscCall(PetscMalloc1(dd2->refine_x_hier_n, &dd2->refine_x_hier));
1084:     PetscCall(PetscArraycpy(dd2->refine_x_hier, dd->refine_x_hier, dd2->refine_x_hier_n));
1085:   }

1087:   /* copy vector type information */
1088:   PetscCall(DMSetVecType(da2, da->vectype));

1090:   dd2->lf = dd->lf;
1091:   dd2->lj = dd->lj;

1093:   da2->leveldown = da->leveldown;
1094:   da2->levelup   = da->levelup + 1;

1096:   PetscCall(DMSetUp(da2));

1098:   /* interpolate coordinates if they are set on the coarse grid */
1099:   PetscCall(DMGetCoordinates(da, &coordsc));
1100:   if (coordsc) {
1101:     DM  cdaf, cdac;
1102:     Mat II;

1104:     PetscCall(DMGetCoordinateDM(da, &cdac));
1105:     PetscCall(DMGetCoordinateDM(da2, &cdaf));
1106:     /* force creation of the coordinate vector */
1107:     PetscCall(DMDASetUniformCoordinates(da2, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0));
1108:     PetscCall(DMGetCoordinates(da2, &coordsf));
1109:     PetscCall(DMCreateInterpolation(cdac, cdaf, &II, NULL));
1110:     PetscCall(MatInterpolate(II, coordsc, coordsf));
1111:     PetscCall(MatDestroy(&II));
1112:   }

1114:   for (i = 0; i < da->bs; i++) {
1115:     const char *fieldname;
1116:     PetscCall(DMDAGetFieldName(da, i, &fieldname));
1117:     PetscCall(DMDASetFieldName(da2, i, fieldname));
1118:   }

1120:   *daref = da2;
1121:   PetscFunctionReturn(PETSC_SUCCESS);
1122: }

1124: PetscErrorCode DMCoarsen_DA(DM dmf, MPI_Comm comm, DM *dmc)
1125: {
1126:   PetscInt M, N, P, i, dim;
1127:   Vec      coordsc, coordsf;
1128:   DM       dmc2;
1129:   DM_DA   *dd = (DM_DA *)dmf->data, *dd2;

1131:   PetscFunctionBegin;
1133:   PetscAssertPointer(dmc, 3);

1135:   PetscCall(DMGetDimension(dmf, &dim));
1136:   if (dd->bx == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0) {
1137:     M = dd->M / dd->coarsen_x;
1138:   } else {
1139:     M = 1 + (dd->M - 1) / dd->coarsen_x;
1140:   }
1141:   if (dd->by == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0) {
1142:     if (dim > 1) {
1143:       N = dd->N / dd->coarsen_y;
1144:     } else {
1145:       N = 1;
1146:     }
1147:   } else {
1148:     N = 1 + (dd->N - 1) / dd->coarsen_y;
1149:   }
1150:   if (dd->bz == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0) {
1151:     if (dim > 2) {
1152:       P = dd->P / dd->coarsen_z;
1153:     } else {
1154:       P = 1;
1155:     }
1156:   } else {
1157:     P = 1 + (dd->P - 1) / dd->coarsen_z;
1158:   }
1159:   PetscCall(DMDACreate(PetscObjectComm((PetscObject)dmf), &dmc2));
1160:   PetscCall(DMSetOptionsPrefix(dmc2, ((PetscObject)dmf)->prefix));
1161:   PetscCall(DMSetDimension(dmc2, dim));
1162:   PetscCall(DMDASetSizes(dmc2, M, N, P));
1163:   PetscCall(DMDASetNumProcs(dmc2, dd->m, dd->n, dd->p));
1164:   PetscCall(DMDASetBoundaryType(dmc2, dd->bx, dd->by, dd->bz));
1165:   PetscCall(DMDASetDof(dmc2, dd->w));
1166:   PetscCall(DMDASetStencilType(dmc2, dd->stencil_type));
1167:   PetscCall(DMDASetStencilWidth(dmc2, dd->s));
1168:   if (dim == 3) {
1169:     PetscInt *lx, *ly, *lz;
1170:     PetscCall(PetscMalloc3(dd->m, &lx, dd->n, &ly, dd->p, &lz));
1171:     PetscCall(DMDACoarsenOwnershipRanges(dmf, (PetscBool)(dd->bx == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0), dd->s, dd->coarsen_x, dd->m, dd->lx, lx));
1172:     PetscCall(DMDACoarsenOwnershipRanges(dmf, (PetscBool)(dd->by == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0), dd->s, dd->coarsen_y, dd->n, dd->ly, ly));
1173:     PetscCall(DMDACoarsenOwnershipRanges(dmf, (PetscBool)(dd->bz == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0), dd->s, dd->coarsen_z, dd->p, dd->lz, lz));
1174:     PetscCall(DMDASetOwnershipRanges(dmc2, lx, ly, lz));
1175:     PetscCall(PetscFree3(lx, ly, lz));
1176:   } else if (dim == 2) {
1177:     PetscInt *lx, *ly;
1178:     PetscCall(PetscMalloc2(dd->m, &lx, dd->n, &ly));
1179:     PetscCall(DMDACoarsenOwnershipRanges(dmf, (PetscBool)(dd->bx == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0), dd->s, dd->coarsen_x, dd->m, dd->lx, lx));
1180:     PetscCall(DMDACoarsenOwnershipRanges(dmf, (PetscBool)(dd->by == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0), dd->s, dd->coarsen_y, dd->n, dd->ly, ly));
1181:     PetscCall(DMDASetOwnershipRanges(dmc2, lx, ly, NULL));
1182:     PetscCall(PetscFree2(lx, ly));
1183:   } else if (dim == 1) {
1184:     PetscInt *lx;
1185:     PetscCall(PetscMalloc1(dd->m, &lx));
1186:     PetscCall(DMDACoarsenOwnershipRanges(dmf, (PetscBool)(dd->bx == DM_BOUNDARY_PERIODIC || dd->interptype == DMDA_Q0), dd->s, dd->coarsen_x, dd->m, dd->lx, lx));
1187:     PetscCall(DMDASetOwnershipRanges(dmc2, lx, NULL, NULL));
1188:     PetscCall(PetscFree(lx));
1189:   }
1190:   dd2 = (DM_DA *)dmc2->data;

1192:   /* allow overloaded (user replaced) operations to be inherited by refinement clones; why are only some inherited and not all? */
1193:   /* dmc2->ops->createinterpolation = dmf->ops->createinterpolation; copying this one causes trouble for DMSetVI */
1194:   dmc2->ops->creatematrix = dmf->ops->creatematrix;
1195:   dmc2->ops->getcoloring  = dmf->ops->getcoloring;
1196:   dd2->interptype         = dd->interptype;

1198:   /* copy fill information if given */
1199:   if (dd->dfill) {
1200:     PetscCall(PetscMalloc1(dd->dfill[dd->w] + dd->w + 1, &dd2->dfill));
1201:     PetscCall(PetscArraycpy(dd2->dfill, dd->dfill, dd->dfill[dd->w] + dd->w + 1));
1202:   }
1203:   if (dd->ofill) {
1204:     PetscCall(PetscMalloc1(dd->ofill[dd->w] + dd->w + 1, &dd2->ofill));
1205:     PetscCall(PetscArraycpy(dd2->ofill, dd->ofill, dd->ofill[dd->w] + dd->w + 1));
1206:   }
1207:   /* copy the refine information */
1208:   dd2->coarsen_x = dd2->refine_x = dd->coarsen_x;
1209:   dd2->coarsen_y = dd2->refine_y = dd->coarsen_y;
1210:   dd2->coarsen_z = dd2->refine_z = dd->coarsen_z;

1212:   if (dd->refine_z_hier) {
1213:     if (dmf->levelup - dmf->leveldown - 1 > -1 && dmf->levelup - dmf->leveldown - 1 < dd->refine_z_hier_n) dd2->refine_z = dd->refine_z_hier[dmf->levelup - dmf->leveldown - 1];
1214:     if (dmf->levelup - dmf->leveldown - 2 > -1 && dmf->levelup - dmf->leveldown - 2 < dd->refine_z_hier_n) dd2->coarsen_z = dd->refine_z_hier[dmf->levelup - dmf->leveldown - 2];
1215:     dd2->refine_z_hier_n = dd->refine_z_hier_n;
1216:     PetscCall(PetscMalloc1(dd2->refine_z_hier_n, &dd2->refine_z_hier));
1217:     PetscCall(PetscArraycpy(dd2->refine_z_hier, dd->refine_z_hier, dd2->refine_z_hier_n));
1218:   }
1219:   if (dd->refine_y_hier) {
1220:     if (dmf->levelup - dmf->leveldown - 1 > -1 && dmf->levelup - dmf->leveldown - 1 < dd->refine_y_hier_n) dd2->refine_y = dd->refine_y_hier[dmf->levelup - dmf->leveldown - 1];
1221:     if (dmf->levelup - dmf->leveldown - 2 > -1 && dmf->levelup - dmf->leveldown - 2 < dd->refine_y_hier_n) dd2->coarsen_y = dd->refine_y_hier[dmf->levelup - dmf->leveldown - 2];
1222:     dd2->refine_y_hier_n = dd->refine_y_hier_n;
1223:     PetscCall(PetscMalloc1(dd2->refine_y_hier_n, &dd2->refine_y_hier));
1224:     PetscCall(PetscArraycpy(dd2->refine_y_hier, dd->refine_y_hier, dd2->refine_y_hier_n));
1225:   }
1226:   if (dd->refine_x_hier) {
1227:     if (dmf->levelup - dmf->leveldown - 1 > -1 && dmf->levelup - dmf->leveldown - 1 < dd->refine_x_hier_n) dd2->refine_x = dd->refine_x_hier[dmf->levelup - dmf->leveldown - 1];
1228:     if (dmf->levelup - dmf->leveldown - 2 > -1 && dmf->levelup - dmf->leveldown - 2 < dd->refine_x_hier_n) dd2->coarsen_x = dd->refine_x_hier[dmf->levelup - dmf->leveldown - 2];
1229:     dd2->refine_x_hier_n = dd->refine_x_hier_n;
1230:     PetscCall(PetscMalloc1(dd2->refine_x_hier_n, &dd2->refine_x_hier));
1231:     PetscCall(PetscArraycpy(dd2->refine_x_hier, dd->refine_x_hier, dd2->refine_x_hier_n));
1232:   }

1234:   /* copy vector type information */
1235:   PetscCall(DMSetVecType(dmc2, dmf->vectype));

1237:   dd2->lf = dd->lf;
1238:   dd2->lj = dd->lj;

1240:   dmc2->leveldown = dmf->leveldown + 1;
1241:   dmc2->levelup   = dmf->levelup;

1243:   PetscCall(DMSetUp(dmc2));

1245:   /* inject coordinates if they are set on the fine grid */
1246:   PetscCall(DMGetCoordinates(dmf, &coordsf));
1247:   if (coordsf) {
1248:     DM         cdaf, cdac;
1249:     Mat        inject;
1250:     VecScatter vscat;

1252:     PetscCall(DMGetCoordinateDM(dmf, &cdaf));
1253:     PetscCall(DMGetCoordinateDM(dmc2, &cdac));
1254:     /* force creation of the coordinate vector */
1255:     PetscCall(DMDASetUniformCoordinates(dmc2, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0));
1256:     PetscCall(DMGetCoordinates(dmc2, &coordsc));

1258:     PetscCall(DMCreateInjection(cdac, cdaf, &inject));
1259:     PetscCall(MatScatterGetVecScatter(inject, &vscat));
1260:     PetscCall(VecScatterBegin(vscat, coordsf, coordsc, INSERT_VALUES, SCATTER_FORWARD));
1261:     PetscCall(VecScatterEnd(vscat, coordsf, coordsc, INSERT_VALUES, SCATTER_FORWARD));
1262:     PetscCall(MatDestroy(&inject));
1263:   }

1265:   for (i = 0; i < dmf->bs; i++) {
1266:     const char *fieldname;
1267:     PetscCall(DMDAGetFieldName(dmf, i, &fieldname));
1268:     PetscCall(DMDASetFieldName(dmc2, i, fieldname));
1269:   }

1271:   *dmc = dmc2;
1272:   PetscFunctionReturn(PETSC_SUCCESS);
1273: }

1275: PetscErrorCode DMRefineHierarchy_DA(DM da, PetscInt nlevels, DM daf[])
1276: {
1277:   PetscInt i, n, *refx, *refy, *refz;

1279:   PetscFunctionBegin;
1281:   PetscCheck(nlevels >= 0, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_OUTOFRANGE, "nlevels cannot be negative");
1282:   if (nlevels == 0) PetscFunctionReturn(PETSC_SUCCESS);
1283:   PetscAssertPointer(daf, 3);

1285:   /* Get refinement factors, defaults taken from the coarse DMDA */
1286:   PetscCall(PetscMalloc3(nlevels, &refx, nlevels, &refy, nlevels, &refz));
1287:   for (i = 0; i < nlevels; i++) PetscCall(DMDAGetRefinementFactor(da, &refx[i], &refy[i], &refz[i]));
1288:   n = nlevels;
1289:   PetscCall(PetscOptionsGetIntArray(((PetscObject)da)->options, ((PetscObject)da)->prefix, "-da_refine_hierarchy_x", refx, &n, NULL));
1290:   n = nlevels;
1291:   PetscCall(PetscOptionsGetIntArray(((PetscObject)da)->options, ((PetscObject)da)->prefix, "-da_refine_hierarchy_y", refy, &n, NULL));
1292:   n = nlevels;
1293:   PetscCall(PetscOptionsGetIntArray(((PetscObject)da)->options, ((PetscObject)da)->prefix, "-da_refine_hierarchy_z", refz, &n, NULL));

1295:   PetscCall(DMDASetRefinementFactor(da, refx[0], refy[0], refz[0]));
1296:   PetscCall(DMRefine(da, PetscObjectComm((PetscObject)da), &daf[0]));
1297:   for (i = 1; i < nlevels; i++) {
1298:     PetscCall(DMDASetRefinementFactor(daf[i - 1], refx[i], refy[i], refz[i]));
1299:     PetscCall(DMRefine(daf[i - 1], PetscObjectComm((PetscObject)da), &daf[i]));
1300:   }
1301:   PetscCall(PetscFree3(refx, refy, refz));
1302:   PetscFunctionReturn(PETSC_SUCCESS);
1303: }

1305: PetscErrorCode DMCoarsenHierarchy_DA(DM da, PetscInt nlevels, DM dac[])
1306: {
1307:   PetscInt i;

1309:   PetscFunctionBegin;
1311:   PetscCheck(nlevels >= 0, PetscObjectComm((PetscObject)da), PETSC_ERR_ARG_OUTOFRANGE, "nlevels cannot be negative");
1312:   if (nlevels == 0) PetscFunctionReturn(PETSC_SUCCESS);
1313:   PetscAssertPointer(dac, 3);
1314:   PetscCall(DMCoarsen(da, PetscObjectComm((PetscObject)da), &dac[0]));
1315:   for (i = 1; i < nlevels; i++) PetscCall(DMCoarsen(dac[i - 1], PetscObjectComm((PetscObject)da), &dac[i]));
1316:   PetscFunctionReturn(PETSC_SUCCESS);
1317: }

1319: static PetscErrorCode DMDASetGLLCoordinates_1d(DM dm, PetscInt n, PetscReal *nodes)
1320: {
1321:   PetscInt     i, j, xs, xn, q;
1322:   PetscScalar *xx;
1323:   PetscReal    h;
1324:   Vec          x;
1325:   DM_DA       *da = (DM_DA *)dm->data;

1327:   PetscFunctionBegin;
1328:   if (da->bx != DM_BOUNDARY_PERIODIC) {
1329:     PetscCall(DMDAGetInfo(dm, NULL, &q, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL));
1330:     q = (q - 1) / (n - 1); /* number of spectral elements */
1331:     h = 2.0 / q;
1332:     PetscCall(DMDAGetCorners(dm, &xs, NULL, NULL, &xn, NULL, NULL));
1333:     xs = xs / (n - 1);
1334:     xn = xn / (n - 1);
1335:     PetscCall(DMDASetUniformCoordinates(dm, -1., 1., 0., 0., 0., 0.));
1336:     PetscCall(DMGetCoordinates(dm, &x));
1337:     PetscCall(DMDAVecGetArray(dm, x, &xx));

1339:     /* loop over local spectral elements */
1340:     for (j = xs; j < xs + xn; j++) {
1341:       /*
1342:        Except for the first process, each process starts on the second GLL point of the first element on that process
1343:        */
1344:       for (i = (j == xs && xs > 0) ? 1 : 0; i < n; i++) xx[j * (n - 1) + i] = -1.0 + h * j + h * (nodes[i] + 1.0) / 2.;
1345:     }
1346:     PetscCall(DMDAVecRestoreArray(dm, x, &xx));
1347:   } else SETERRQ(PetscObjectComm((PetscObject)da), PETSC_ERR_SUP, "Not yet implemented for periodic");
1348:   PetscFunctionReturn(PETSC_SUCCESS);
1349: }

1351: /*@

1353:   DMDASetGLLCoordinates - Sets the global coordinates from -1 to 1 to the GLL points of as many GLL elements that fit the number of grid points

1355:   Collective

1357:   Input Parameters:
1358: + da    - the `DMDA` object
1359: . n     - the number of GLL nodes
1360: - nodes - the GLL nodes

1362:   Level: advanced

1364:   Note:
1365:   The parallel decomposition of grid points must correspond to the degree of the GLL. That is, the number of grid points
1366:   on each process much be divisible by the number of GLL elements needed per process. This depends on whether the `DMDA` is
1367:   periodic or not.

1369: .seealso: [](sec_struct), `DM`, `DMDA`, `DMDACreate()`, `PetscDTGaussLobattoLegendreQuadrature()`, `DMGetCoordinates()`
1370: @*/
1371: PetscErrorCode DMDASetGLLCoordinates(DM da, PetscInt n, PetscReal *nodes)
1372: {
1373:   PetscFunctionBegin;
1374:   if (da->dim == 1) {
1375:     PetscCall(DMDASetGLLCoordinates_1d(da, n, nodes));
1376:   } else SETERRQ(PetscObjectComm((PetscObject)da), PETSC_ERR_SUP, "Not yet implemented for 2 or 3d");
1377:   PetscFunctionReturn(PETSC_SUCCESS);
1378: }

1380: PetscErrorCode DMGetCompatibility_DA(DM da1, DM dm2, PetscBool *compatible, PetscBool *set)
1381: {
1382:   DM_DA    *dd1 = (DM_DA *)da1->data, *dd2;
1383:   DM        da2;
1384:   DMType    dmtype2;
1385:   PetscBool isda, compatibleLocal;
1386:   PetscInt  i;

1388:   PetscFunctionBegin;
1389:   PetscCheck(da1->setupcalled, PetscObjectComm((PetscObject)da1), PETSC_ERR_ARG_WRONGSTATE, "DMSetUp() must be called on first DM before DMGetCompatibility()");
1390:   PetscCall(DMGetType(dm2, &dmtype2));
1391:   PetscCall(PetscStrcmp(dmtype2, DMDA, &isda));
1392:   if (isda) {
1393:     da2 = dm2;
1394:     dd2 = (DM_DA *)da2->data;
1395:     PetscCheck(da2->setupcalled, PetscObjectComm((PetscObject)da2), PETSC_ERR_ARG_WRONGSTATE, "DMSetUp() must be called on second DM before DMGetCompatibility()");
1396:     compatibleLocal = (PetscBool)(da1->dim == da2->dim);
1397:     if (compatibleLocal) compatibleLocal = (PetscBool)(compatibleLocal && (dd1->s == dd2->s)); /* Stencil width */
1398:     /*                                                                           Global size              ranks               Boundary type */
1399:     if (compatibleLocal) compatibleLocal = (PetscBool)(compatibleLocal && (dd1->M == dd2->M) && (dd1->m == dd2->m) && (dd1->bx == dd2->bx));
1400:     if (compatibleLocal && da1->dim > 1) compatibleLocal = (PetscBool)(compatibleLocal && (dd1->N == dd2->N) && (dd1->n == dd2->n) && (dd1->by == dd2->by));
1401:     if (compatibleLocal && da1->dim > 2) compatibleLocal = (PetscBool)(compatibleLocal && (dd1->P == dd2->P) && (dd1->p == dd2->p) && (dd1->bz == dd2->bz));
1402:     if (compatibleLocal) {
1403:       for (i = 0; i < dd1->m; ++i) { compatibleLocal = (PetscBool)(compatibleLocal && (dd1->lx[i] == dd2->lx[i])); /* Local size     */ }
1404:     }
1405:     if (compatibleLocal && da1->dim > 1) {
1406:       for (i = 0; i < dd1->n; ++i) compatibleLocal = (PetscBool)(compatibleLocal && (dd1->ly[i] == dd2->ly[i]));
1407:     }
1408:     if (compatibleLocal && da1->dim > 2) {
1409:       for (i = 0; i < dd1->p; ++i) compatibleLocal = (PetscBool)(compatibleLocal && (dd1->lz[i] == dd2->lz[i]));
1410:     }
1411:     *compatible = compatibleLocal;
1412:     *set        = PETSC_TRUE;
1413:   } else {
1414:     /* Decline to determine compatibility with other DM types */
1415:     *set = PETSC_FALSE;
1416:   }
1417:   PetscFunctionReturn(PETSC_SUCCESS);
1418: }