Actual source code: ex5f90t.F90

  1: !
  2: !  Description: Solves a nonlinear system in parallel with SNES.
  3: !  We solve the  Bratu (SFI - solid fuel ignition) problem in a 2D rectangular
  4: !  domain, using distributed arrays (DMDAs) to partition the parallel grid.
  5: !  The command line options include:
  6: !    -par <parameter>, where <parameter> indicates the nonlinearity of the problem
  7: !       problem SFI:  <parameter> = Bratu parameter (0 <= par <= 6.81)
  8: !
  9: !
 10: !  --------------------------------------------------------------------------
 11: !
 12: !  Solid Fuel Ignition (SFI) problem.  This problem is modeled by
 13: !  the partial differential equation
 14: !
 15: !          -Laplacian u - lambda*exp(u) = 0,  0 < x,y < 1,
 16: !
 17: !  with boundary conditions
 18: !
 19: !           u = 0  for  x = 0, x = 1, y = 0, y = 1.
 20: !
 21: !  A finite difference approximation with the usual 5-point stencil
 22: !  is used to discretize the boundary value problem to obtain a nonlinear
 23: !  system of equations.
 24: !
 25: !  The uniprocessor version of this code is snes/tutorials/ex4f.F
 26: !
 27: !  --------------------------------------------------------------------------
 28: !  The following define must be used before including any PETSc include files
 29: !  into a module or interface. This is because they can't handle declarations
 30: !  in them
 31: !

 33:       module ex5f90tmodule
 34: #include <petsc/finclude/petscdm.h>
 35:       use petscdmdef
 36:       type userctx
 37:         type(tDM) da
 38:         PetscInt xs,xe,xm,gxs,gxe,gxm
 39:         PetscInt ys,ye,ym,gys,gye,gym
 40:         PetscInt mx,my
 41:         PetscMPIInt rank
 42:         PetscReal lambda
 43:       end type userctx

 45:       contains
 46: ! ---------------------------------------------------------------------
 47: !
 48: !  FormFunction - Evaluates nonlinear function, F(x).
 49: !
 50: !  Input Parameters:
 51: !  snes - the SNES context
 52: !  X - input vector
 53: !  dummy - optional user-defined context, as set by SNESSetFunction()
 54: !          (not used here)
 55: !
 56: !  Output Parameter:
 57: !  F - function vector
 58: !
 59: !  Notes:
 60: !  This routine serves as a wrapper for the lower-level routine
 61: !  "FormFunctionLocal", where the actual computations are
 62: !  done using the standard Fortran style of treating the local
 63: !  vector data as a multidimensional array over the local mesh.
 64: !  This routine merely handles ghost point scatters and accesses
 65: !  the local vector data via VecGetArrayF90() and VecRestoreArrayF90().
 66: !
 67:       subroutine FormFunction(snesIn,X,F,user,ierr)
 68: #include <petsc/finclude/petscsnes.h>
 69:       use petscsnes

 71: !  Input/output variables:
 72:       type(tSNES)     snesIn
 73:       type(tVec)      X,F
 74:       PetscErrorCode ierr
 75:       type (userctx) user

 77: !  Declarations for use with local arrays:
 78:       PetscScalar,pointer :: lx_v(:),lf_v(:)
 79:       type(tVec)              localX

 81: !  Scatter ghost points to local vector, using the 2-step process
 82: !     DMGlobalToLocalBegin(), DMGlobalToLocalEnd().
 83: !  By placing code between these two statements, computations can
 84: !  be done while messages are in transition.
 85:       PetscCall(DMGetLocalVector(user%da,localX,ierr))
 86:       PetscCall(DMGlobalToLocalBegin(user%da,X,INSERT_VALUES,localX,ierr))
 87:       PetscCall(DMGlobalToLocalEnd(user%da,X,INSERT_VALUES,localX,ierr))

 89: !  Get a pointer to vector data.
 90: !    - For default PETSc vectors, VecGetArray90() returns a pointer to
 91: !      the data array. Otherwise, the routine is implementation dependent.
 92: !    - You MUST call VecRestoreArrayF90() when you no longer need access to
 93: !      the array.
 94: !    - Note that the interface to VecGetArrayF90() differs from VecGetArray(),
 95: !      and is useable from Fortran-90 Only.

 97:       PetscCall(VecGetArrayF90(localX,lx_v,ierr))
 98:       PetscCall(VecGetArrayF90(F,lf_v,ierr))

100: !  Compute function over the locally owned part of the grid
101:       PetscCall(FormFunctionLocal(lx_v,lf_v,user,ierr))

103: !  Restore vectors
104:       PetscCall(VecRestoreArrayF90(localX,lx_v,ierr))
105:       PetscCall(VecRestoreArrayF90(F,lf_v,ierr))

107: !  Insert values into global vector

109:       PetscCall(DMRestoreLocalVector(user%da,localX,ierr))
110:       PetscCall(PetscLogFlops(11.0d0*user%ym*user%xm,ierr))

112: !      PetscCall(VecView(X,PETSC_VIEWER_STDOUT_WORLD,ierr))
113: !      PetscCall(VecView(F,PETSC_VIEWER_STDOUT_WORLD,ierr))
114:       return
115:       end subroutine formfunction
116:       end module ex5f90tmodule

118:       module f90moduleinterfacest
119:         use ex5f90tmodule

121:       Interface SNESSetApplicationContext
122:         Subroutine SNESSetApplicationContext(snesIn,ctx,ierr)
123: #include <petsc/finclude/petscsnes.h>
124:         use petscsnes
125:         use ex5f90tmodule
126:           type(tSNES)    snesIn
127:           type(userctx) ctx
128:           PetscErrorCode ierr
129:         End Subroutine
130:       End Interface SNESSetApplicationContext

132:       Interface SNESGetApplicationContext
133:         Subroutine SNESGetApplicationContext(snesIn,ctx,ierr)
134: #include <petsc/finclude/petscsnes.h>
135:         use petscsnes
136:         use ex5f90tmodule
137:           type(tSNES)     snesIn
138:           type(userctx), pointer :: ctx
139:           PetscErrorCode ierr
140:         End Subroutine
141:       End Interface SNESGetApplicationContext
142:       end module f90moduleinterfacest

144:       program main
145: #include <petsc/finclude/petscdm.h>
146: #include <petsc/finclude/petscsnes.h>
147:       use petscdmda
148:       use petscdm
149:       use petscsnes
150:       use ex5f90tmodule
151:       use f90moduleinterfacest
152:       implicit none
153: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
154: !                   Variable declarations
155: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
156: !
157: !  Variables:
158: !     mysnes      - nonlinear solver
159: !     x, r        - solution, residual vectors
160: !     J           - Jacobian matrix
161: !     its         - iterations for convergence
162: !     Nx, Ny      - number of preocessors in x- and y- directions
163: !     matrix_free - flag - 1 indicates matrix-free version
164: !
165:       type(tSNES)       mysnes
166:       type(tVec)        x,r
167:       type(tMat)        J
168:       PetscErrorCode   ierr
169:       PetscInt         its
170:       PetscBool        flg,matrix_free,set
171:       PetscInt         ione,nfour
172:       PetscReal lambda_max,lambda_min
173:       type(userctx)    user
174:       type(userctx), pointer:: puser
175:       type(tPetscOptions) :: options

177: !  Note: Any user-defined Fortran routines (such as FormJacobian)
178: !  MUST be declared as external.
179:       external FormInitialGuess,FormJacobian

181: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
182: !  Initialize program
183: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
184:       PetscCallA(PetscInitialize(ierr))
185:       PetscCallMPIA(MPI_Comm_rank(PETSC_COMM_WORLD,user%rank,ierr))

187: !  Initialize problem parameters
188:       options%v = 0
189:       lambda_max  = 6.81
190:       lambda_min  = 0.0
191:       user%lambda = 6.0
192:       ione = 1
193:       nfour = 4
194:       PetscCallA(PetscOptionsGetReal(options,PETSC_NULL_CHARACTER,'-par',user%lambda,flg,ierr))
195:       if (user%lambda .ge. lambda_max .or. user%lambda .le. lambda_min) then
196:          SETERRA(PETSC_COMM_SELF,PETSC_ERR_USER,'Lambda provided with -par is out of range ')
197:       endif

199: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
200: !  Create nonlinear solver context
201: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
202:       PetscCallA(SNESCreate(PETSC_COMM_WORLD,mysnes,ierr))

204: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
205: !  Create vector data structures; set function evaluation routine
206: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

208: !  Create distributed array (DMDA) to manage parallel grid and vectors

210: ! This really needs only the star-type stencil, but we use the box
211: ! stencil temporarily.
212:       PetscCallA(DMDACreate2d(PETSC_COMM_WORLD,DM_BOUNDARY_NONE, DM_BOUNDARY_NONE,DMDA_STENCIL_BOX,nfour,nfour,PETSC_DECIDE,PETSC_DECIDE,ione,ione,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,user%da,ierr))
213:       PetscCallA(DMSetFromOptions(user%da,ierr))
214:       PetscCallA(DMSetUp(user%da,ierr))
215:       PetscCallA(DMDAGetInfo(user%da,PETSC_NULL_INTEGER,user%mx,user%my,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,ierr))

217: !
218: !   Visualize the distribution of the array across the processors
219: !
220: !     PetscCallA(DMView(user%da,PETSC_VIEWER_DRAW_WORLD,ierr))

222: !  Extract global and local vectors from DMDA; then duplicate for remaining
223: !  vectors that are the same types
224:       PetscCallA(DMCreateGlobalVector(user%da,x,ierr))
225:       PetscCallA(VecDuplicate(x,r,ierr))

227: !  Get local grid boundaries (for 2-dimensional DMDA)
228:       PetscCallA(DMDAGetCorners(user%da,user%xs,user%ys,PETSC_NULL_INTEGER,user%xm,user%ym,PETSC_NULL_INTEGER,ierr))
229:       PetscCallA(DMDAGetGhostCorners(user%da,user%gxs,user%gys,PETSC_NULL_INTEGER,user%gxm,user%gym,PETSC_NULL_INTEGER,ierr))

231: !  Here we shift the starting indices up by one so that we can easily
232: !  use the Fortran convention of 1-based indices (rather 0-based indices).
233:       user%xs  = user%xs+1
234:       user%ys  = user%ys+1
235:       user%gxs = user%gxs+1
236:       user%gys = user%gys+1

238:       user%ye  = user%ys+user%ym-1
239:       user%xe  = user%xs+user%xm-1
240:       user%gye = user%gys+user%gym-1
241:       user%gxe = user%gxs+user%gxm-1

243:       PetscCallA(SNESSetApplicationContext(mysnes,user,ierr))

245: !  Set function evaluation routine and vector
246:       PetscCallA(SNESSetFunction(mysnes,r,FormFunction,user,ierr))

248: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
249: !  Create matrix data structure; set Jacobian evaluation routine
250: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

252: !  Set Jacobian matrix data structure and default Jacobian evaluation
253: !  routine. User can override with:
254: !     -snes_fd : default finite differencing approximation of Jacobian
255: !     -snes_mf : matrix-free Newton-Krylov method with no preconditioning
256: !                (unless user explicitly sets preconditioner)
257: !     -snes_mf_operator : form preconditioning matrix as set by the user,
258: !                         but use matrix-free approx for Jacobian-vector
259: !                         products within Newton-Krylov method
260: !
261: !  Note:  For the parallel case, vectors and matrices MUST be partitioned
262: !     accordingly.  When using distributed arrays (DMDAs) to create vectors,
263: !     the DMDAs determine the problem partitioning.  We must explicitly
264: !     specify the local matrix dimensions upon its creation for compatibility
265: !     with the vector distribution.  Thus, the generic MatCreate() routine
266: !     is NOT sufficient when working with distributed arrays.
267: !
268: !     Note: Here we only approximately preallocate storage space for the
269: !     Jacobian.  See the users manual for a discussion of better techniques
270: !     for preallocating matrix memory.

272:       PetscCallA(PetscOptionsHasName(options,PETSC_NULL_CHARACTER,'-snes_mf',matrix_free,ierr))
273:       if (.not. matrix_free) then
274:         PetscCallA(DMSetMatType(user%da,MATAIJ,ierr))
275:         PetscCallA(DMCreateMatrix(user%da,J,ierr))
276:         PetscCallA(SNESSetJacobian(mysnes,J,J,FormJacobian,user,ierr))
277:       endif

279: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
280: !  Customize nonlinear solver; set runtime options
281: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
282: !  Set runtime options (e.g., -snes_monitor -snes_rtol <rtol> -ksp_type <type>)
283:       PetscCallA(SNESSetFromOptions(mysnes,ierr))

285: !     Test Fortran90 wrapper for SNESSet/Get ApplicationContext()
286:       PetscCallA(PetscOptionsGetBool(options,PETSC_NULL_CHARACTER,'-test_appctx',flg,set,ierr))
287:       if (flg) then
288:         PetscCallA(SNESGetApplicationContext(mysnes,puser,ierr))
289:       endif

291: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
292: !  Evaluate initial guess; then solve nonlinear system.
293: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
294: !  Note: The user should initialize the vector, x, with the initial guess
295: !  for the nonlinear solver prior to calling SNESSolve().  In particular,
296: !  to employ an initial guess of zero, the user should explicitly set
297: !  this vector to zero by calling VecSet().

299:       PetscCallA(FormInitialGuess(mysnes,x,ierr))
300:       PetscCallA(SNESSolve(mysnes,PETSC_NULL_VEC,x,ierr))
301:       PetscCallA(SNESGetIterationNumber(mysnes,its,ierr))
302:       if (user%rank .eq. 0) then
303:          write(6,100) its
304:       endif
305:   100 format('Number of SNES iterations = ',i5)

307: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
308: !  Free work space.  All PETSc objects should be destroyed when they
309: !  are no longer needed.
310: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
311:       if (.not. matrix_free) PetscCallA(MatDestroy(J,ierr))
312:       PetscCallA(VecDestroy(x,ierr))
313:       PetscCallA(VecDestroy(r,ierr))
314:       PetscCallA(SNESDestroy(mysnes,ierr))
315:       PetscCallA(DMDestroy(user%da,ierr))

317:       PetscCallA(PetscFinalize(ierr))
318:       end

320: ! ---------------------------------------------------------------------
321: !
322: !  FormInitialGuess - Forms initial approximation.
323: !
324: !  Input Parameters:
325: !  X - vector
326: !
327: !  Output Parameter:
328: !  X - vector
329: !
330: !  Notes:
331: !  This routine serves as a wrapper for the lower-level routine
332: !  "InitialGuessLocal", where the actual computations are
333: !  done using the standard Fortran style of treating the local
334: !  vector data as a multidimensional array over the local mesh.
335: !  This routine merely handles ghost point scatters and accesses
336: !  the local vector data via VecGetArrayF90() and VecRestoreArrayF90().
337: !
338:       subroutine FormInitialGuess(mysnes,X,ierr)
339: #include <petsc/finclude/petscsnes.h>
340:       use petscsnes
341:       use ex5f90tmodule
342:       use f90moduleinterfacest
343: !  Input/output variables:
344:       type(tSNES)     mysnes
345:       type(userctx), pointer:: puser
346:       type(tVec)      X
347:       PetscErrorCode ierr

349: !  Declarations for use with local arrays:
350:       PetscScalar,pointer :: lx_v(:)

352:       0
353:       PetscCallA(SNESGetApplicationContext(mysnes,puser,ierr))
354: !  Get a pointer to vector data.
355: !    - For default PETSc vectors, VecGetArray90() returns a pointer to
356: !      the data array. Otherwise, the routine is implementation dependent.
357: !    - You MUST call VecRestoreArrayF90() when you no longer need access to
358: !      the array.
359: !    - Note that the interface to VecGetArrayF90() differs from VecGetArray(),
360: !      and is useable from Fortran-90 Only.

362:       PetscCallA(VecGetArrayF90(X,lx_v,ierr))

364: !  Compute initial guess over the locally owned part of the grid
365:       PetscCallA(InitialGuessLocal(puser,lx_v,ierr))

367: !  Restore vector
368:       PetscCallA(VecRestoreArrayF90(X,lx_v,ierr))

370: !  Insert values into global vector

372:       return
373:       end

375: ! ---------------------------------------------------------------------
376: !
377: !  InitialGuessLocal - Computes initial approximation, called by
378: !  the higher level routine FormInitialGuess().
379: !
380: !  Input Parameter:
381: !  x - local vector data
382: !
383: !  Output Parameters:
384: !  x - local vector data
385: !  ierr - error code
386: !
387: !  Notes:
388: !  This routine uses standard Fortran-style computations over a 2-dim array.
389: !
390:       subroutine InitialGuessLocal(user,x,ierr)
391: #include <petsc/finclude/petscsys.h>
392:       use petscsys
393:       use ex5f90tmodule
394: !  Input/output variables:
395:       type (userctx)         user
396:       PetscScalar  x(user%xs:user%xe,user%ys:user%ye)
397:       PetscErrorCode ierr

399: !  Local variables:
400:       PetscInt  i,j
401:       PetscScalar   temp1,temp,hx,hy
402:       PetscScalar   one

404: !  Set parameters

406:       0
407:       one    = 1.0
408:       hx     = one/(PetscIntToReal(user%mx-1))
409:       hy     = one/(PetscIntToReal(user%my-1))
410:       temp1  = user%lambda/(user%lambda + one)

412:       do 20 j=user%ys,user%ye
413:          temp = PetscIntToReal(min(j-1,user%my-j))*hy
414:          do 10 i=user%xs,user%xe
415:             if (i .eq. 1 .or. j .eq. 1 .or. i .eq. user%mx .or. j .eq. user%my) then
416:               x(i,j) = 0.0
417:             else
418:               x(i,j) = temp1 * sqrt(min(PetscIntToReal(min(i-1,user%mx-i)*hx),PetscIntToReal(temp)))
419:             endif
420:  10      continue
421:  20   continue

423:       return
424:       end

426: ! ---------------------------------------------------------------------
427: !
428: !  FormFunctionLocal - Computes nonlinear function, called by
429: !  the higher level routine FormFunction().
430: !
431: !  Input Parameter:
432: !  x - local vector data
433: !
434: !  Output Parameters:
435: !  f - local vector data, f(x)
436: !  ierr - error code
437: !
438: !  Notes:
439: !  This routine uses standard Fortran-style computations over a 2-dim array.
440: !
441:       subroutine FormFunctionLocal(x,f,user,ierr)
442: #include <petsc/finclude/petscsys.h>
443:       use petscsys
444:       use ex5f90tmodule
445: !  Input/output variables:
446:       type (userctx) user
447:       PetscScalar  x(user%gxs:user%gxe,user%gys:user%gye)
448:       PetscScalar  f(user%xs:user%xe,user%ys:user%ye)
449:       PetscErrorCode ierr

451: !  Local variables:
452:       PetscScalar two,one,hx,hy,hxdhy,hydhx,sc
453:       PetscScalar u,uxx,uyy
454:       PetscInt  i,j

456:       one    = 1.0
457:       two    = 2.0
458:       hx     = one/PetscIntToReal(user%mx-1)
459:       hy     = one/PetscIntToReal(user%my-1)
460:       sc     = hx*hy*user%lambda
461:       hxdhy  = hx/hy
462:       hydhx  = hy/hx

464: !  Compute function over the locally owned part of the grid

466:       do 20 j=user%ys,user%ye
467:          do 10 i=user%xs,user%xe
468:             if (i .eq. 1 .or. j .eq. 1 .or. i .eq. user%mx .or. j .eq. user%my) then
469:                f(i,j) = x(i,j)
470:             else
471:                u = x(i,j)
472:                uxx = hydhx * (two*u - x(i-1,j) - x(i+1,j))
473:                uyy = hxdhy * (two*u - x(i,j-1) - x(i,j+1))
474:                f(i,j) = uxx + uyy - sc*exp(u)
475:             endif
476:  10      continue
477:  20   continue
478:       0
479:       return
480:       end

482: ! ---------------------------------------------------------------------
483: !
484: !  FormJacobian - Evaluates Jacobian matrix.
485: !
486: !  Input Parameters:
487: !  snes     - the SNES context
488: !  x        - input vector
489: !  dummy    - optional user-defined context, as set by SNESSetJacobian()
490: !             (not used here)
491: !
492: !  Output Parameters:
493: !  jac      - Jacobian matrix
494: !  jac_prec - optionally different preconditioning matrix (not used here)
495: !  flag     - flag indicating matrix structure
496: !
497: !  Notes:
498: !  This routine serves as a wrapper for the lower-level routine
499: !  "FormJacobianLocal", where the actual computations are
500: !  done using the standard Fortran style of treating the local
501: !  vector data as a multidimensional array over the local mesh.
502: !  This routine merely accesses the local vector data via
503: !  VecGetArrayF90() and VecRestoreArrayF90().
504: !
505: !  Notes:
506: !  Due to grid point reordering with DMDAs, we must always work
507: !  with the local grid points, and then transform them to the new
508: !  global numbering with the "ltog" mapping
509: !  We cannot work directly with the global numbers for the original
510: !  uniprocessor grid!
511: !
512: !  Two methods are available for imposing this transformation
513: !  when setting matrix entries:
514: !    (A) MatSetValuesLocal(), using the local ordering (including
515: !        ghost points!)
516: !        - Set matrix entries using the local ordering
517: !          by calling MatSetValuesLocal()
518: !    (B) MatSetValues(), using the global ordering
519: !        - Use DMGetLocalToGlobalMapping() then
520: !          ISLocalToGlobalMappingGetIndicesF90() to extract the local-to-global map
521: !        - Then apply this map explicitly yourself
522: !        - Set matrix entries using the global ordering by calling
523: !          MatSetValues()
524: !  Option (A) seems cleaner/easier in many cases, and is the procedure
525: !  used in this example.
526: !
527:       subroutine FormJacobian(mysnes,X,jac,jac_prec,user,ierr)
528: #include <petsc/finclude/petscsnes.h>
529:       use petscsnes
530:       use ex5f90tmodule
531: !  Input/output variables:
532:       type(tSNES)     mysnes
533:       type(tVec)      X
534:       type(tMat)      jac,jac_prec
535:       type(userctx)  user
536:       PetscErrorCode ierr

538: !  Declarations for use with local arrays:
539:       PetscScalar,pointer :: lx_v(:)
540:       type(tVec)      localX

542: !  Scatter ghost points to local vector, using the 2-step process
543: !     DMGlobalToLocalBegin(), DMGlobalToLocalEnd()
544: !  Computations can be done while messages are in transition,
545: !  by placing code between these two statements.

547:       PetscCallA(DMGetLocalVector(user%da,localX,ierr))
548:       PetscCallA(DMGlobalToLocalBegin(user%da,X,INSERT_VALUES,localX,ierr))
549:       PetscCallA(DMGlobalToLocalEnd(user%da,X,INSERT_VALUES,localX,ierr))

551: !  Get a pointer to vector data
552:       PetscCallA(VecGetArrayF90(localX,lx_v,ierr))

554: !  Compute entries for the locally owned part of the Jacobian preconditioner.
555:       PetscCallA(FormJacobianLocal(lx_v,jac_prec,user,ierr))

557: !  Assemble matrix, using the 2-step process:
558: !     MatAssemblyBegin(), MatAssemblyEnd()
559: !  Computations can be done while messages are in transition,
560: !  by placing code between these two statements.

562:       PetscCallA(MatAssemblyBegin(jac,MAT_FINAL_ASSEMBLY,ierr))
563: !      if (jac .ne. jac_prec) then
564:          PetscCallA(MatAssemblyBegin(jac_prec,MAT_FINAL_ASSEMBLY,ierr))
565: !      endif
566:       PetscCallA(VecRestoreArrayF90(localX,lx_v,ierr))
567:       PetscCallA(DMRestoreLocalVector(user%da,localX,ierr))
568:       PetscCallA(MatAssemblyEnd(jac,MAT_FINAL_ASSEMBLY,ierr))
569: !      if (jac .ne. jac_prec) then
570:         PetscCallA(MatAssemblyEnd(jac_prec,MAT_FINAL_ASSEMBLY,ierr))
571: !      endif

573: !  Tell the matrix we will never add a new nonzero location to the
574: !  matrix. If we do it will generate an error.

576:       PetscCallA(MatSetOption(jac,MAT_NEW_NONZERO_LOCATION_ERR,PETSC_TRUE,ierr))

578:       return
579:       end

581: ! ---------------------------------------------------------------------
582: !
583: !  FormJacobianLocal - Computes Jacobian preconditioner matrix,
584: !  called by the higher level routine FormJacobian().
585: !
586: !  Input Parameters:
587: !  x        - local vector data
588: !
589: !  Output Parameters:
590: !  jac_prec - Jacobian preconditioner matrix
591: !  ierr     - error code
592: !
593: !  Notes:
594: !  This routine uses standard Fortran-style computations over a 2-dim array.
595: !
596: !  Notes:
597: !  Due to grid point reordering with DMDAs, we must always work
598: !  with the local grid points, and then transform them to the new
599: !  global numbering with the "ltog" mapping
600: !  We cannot work directly with the global numbers for the original
601: !  uniprocessor grid!
602: !
603: !  Two methods are available for imposing this transformation
604: !  when setting matrix entries:
605: !    (A) MatSetValuesLocal(), using the local ordering (including
606: !        ghost points!)
607: !        - Set matrix entries using the local ordering
608: !          by calling MatSetValuesLocal()
609: !    (B) MatSetValues(), using the global ordering
610: !        - Set matrix entries using the global ordering by calling
611: !          MatSetValues()
612: !  Option (A) seems cleaner/easier in many cases, and is the procedure
613: !  used in this example.
614: !
615:       subroutine FormJacobianLocal(x,jac_prec,user,ierr)
616: #include <petsc/finclude/petscmat.h>
617:       use petscmat
618:       use ex5f90tmodule
619: !  Input/output variables:
620:       type (userctx) user
621:       PetscScalar    x(user%gxs:user%gxe,user%gys:user%gye)
622:       type(tMat)      jac_prec
623:       PetscErrorCode ierr

625: !  Local variables:
626:       PetscInt    row,col(5),i,j
627:       PetscInt    ione,ifive
628:       PetscScalar two,one,hx,hy,hxdhy
629:       PetscScalar hydhx,sc,v(5)

631: !  Set parameters
632:       ione   = 1
633:       ifive  = 5
634:       one    = 1.0
635:       two    = 2.0
636:       hx     = one/PetscIntToReal(user%mx-1)
637:       hy     = one/PetscIntToReal(user%my-1)
638:       sc     = hx*hy
639:       hxdhy  = hx/hy
640:       hydhx  = hy/hx

642: !  Compute entries for the locally owned part of the Jacobian.
643: !   - Currently, all PETSc parallel matrix formats are partitioned by
644: !     contiguous chunks of rows across the processors.
645: !   - Each processor needs to insert only elements that it owns
646: !     locally (but any non-local elements will be sent to the
647: !     appropriate processor during matrix assembly).
648: !   - Here, we set all entries for a particular row at once.
649: !   - We can set matrix entries either using either
650: !     MatSetValuesLocal() or MatSetValues(), as discussed above.
651: !   - Note that MatSetValues() uses 0-based row and column numbers
652: !     in Fortran as well as in C.

654:       do 20 j=user%ys,user%ye
655:          row = (j - user%gys)*user%gxm + user%xs - user%gxs - 1
656:          do 10 i=user%xs,user%xe
657:             row = row + 1
658: !           boundary points
659:             if (i .eq. 1 .or. j .eq. 1 .or. i .eq. user%mx .or. j .eq. user%my) then
660:                col(1) = row
661:                v(1)   = one
662:                PetscCallA(MatSetValuesLocal(jac_prec,ione,row,ione,col,v,INSERT_VALUES,ierr))
663: !           interior grid points
664:             else
665:                v(1) = -hxdhy
666:                v(2) = -hydhx
667:                v(3) = two*(hydhx + hxdhy) - sc*user%lambda*exp(x(i,j))
668:                v(4) = -hydhx
669:                v(5) = -hxdhy
670:                col(1) = row - user%gxm
671:                col(2) = row - 1
672:                col(3) = row
673:                col(4) = row + 1
674:                col(5) = row + user%gxm
675:                PetscCallA(MatSetValuesLocal(jac_prec,ione,row,ifive,col,v,INSERT_VALUES,ierr))
676:             endif
677:  10      continue
678:  20   continue
679:       return
680:       end

682: !/*TEST
683: !
684: !   test:
685: !      nsize: 4
686: !      args: -snes_mf -pc_type none -da_processors_x 4 -da_processors_y 1 -snes_monitor_short -ksp_gmres_cgs_refinement_type refine_always
687: !
688: !TEST*/