Actual source code: ex5f90.F90

  1: !
  2: !  Description: Solves a nonlinear system in parallel with SNES.
  3: !  We solve the  Bratu (SFI - solid fuel ignition) problem in a 2D rectangular
  4: !  domain, using distributed arrays (DMDAs) to partition the parallel grid.
  5: !  The command line options include:
  6: !    -par <parameter>, where <parameter> indicates the nonlinearity of the problem
  7: !       problem SFI:  <parameter> = Bratu parameter (0 <= par <= 6.81)
  8: !

 10: !
 11: !  --------------------------------------------------------------------------
 12: !
 13: !  Solid Fuel Ignition (SFI) problem.  This problem is modeled by
 14: !  the partial differential equation
 15: !
 16: !          -Laplacian u - lambda*exp(u) = 0,  0 < x,y < 1,
 17: !
 18: !  with boundary conditions
 19: !
 20: !           u = 0  for  x = 0, x = 1, y = 0, y = 1.
 21: !
 22: !  A finite difference approximation with the usual 5-point stencil
 23: !  is used to discretize the boundary value problem to obtain a nonlinear
 24: !  system of equations.
 25: !
 26: !  The uniprocessor version of this code is snes/tutorials/ex4f.F
 27: !
 28: !  --------------------------------------------------------------------------
 29: !  The following define must be used before including any PETSc include files
 30: !  into a module or interface. This is because they can't handle declarations
 31: !  in them
 32: !

 34:       module ex5f90module
 35:       use petscsnes
 36:       use petscdmda
 37: #include <petsc/finclude/petscsnes.h>
 38:       type userctx
 39:         PetscInt xs,xe,xm,gxs,gxe,gxm
 40:         PetscInt ys,ye,ym,gys,gye,gym
 41:         PetscInt mx,my
 42:         PetscMPIInt rank
 43:         PetscReal lambda
 44:       end type userctx

 46:       contains
 47: ! ---------------------------------------------------------------------
 48: !
 49: !  FormFunction - Evaluates nonlinear function, F(x).
 50: !
 51: !  Input Parameters:
 52: !  snes - the SNES context
 53: !  X - input vector
 54: !  dummy - optional user-defined context, as set by SNESSetFunction()
 55: !          (not used here)
 56: !
 57: !  Output Parameter:
 58: !  F - function vector
 59: !
 60: !  Notes:
 61: !  This routine serves as a wrapper for the lower-level routine
 62: !  "FormFunctionLocal", where the actual computations are
 63: !  done using the standard Fortran style of treating the local
 64: !  vector data as a multidimensional array over the local mesh.
 65: !  This routine merely handles ghost point scatters and accesses
 66: !  the local vector data via VecGetArrayF90() and VecRestoreArrayF90().
 67: !
 68:       subroutine FormFunction(snes,X,F,user,ierr)
 69:       implicit none

 71: !  Input/output variables:
 72:       SNES           snes
 73:       Vec            X,F
 74:       PetscErrorCode ierr
 75:       type (userctx) user
 76:       DM             da

 78: !  Declarations for use with local arrays:
 79:       PetscScalar,pointer :: lx_v(:),lf_v(:)
 80:       Vec            localX

 82: !  Scatter ghost points to local vector, using the 2-step process
 83: !     DMGlobalToLocalBegin(), DMGlobalToLocalEnd().
 84: !  By placing code between these two statements, computations can
 85: !  be done while messages are in transition.
 86:       PetscCall(SNESGetDM(snes,da,ierr))
 87:       PetscCall(DMGetLocalVector(da,localX,ierr))
 88:       PetscCall(DMGlobalToLocalBegin(da,X,INSERT_VALUES,localX,ierr))
 89:       PetscCall(DMGlobalToLocalEnd(da,X,INSERT_VALUES,localX,ierr))

 91: !  Get a pointer to vector data.
 92: !    - For default PETSc vectors, VecGetArrayF90() returns a pointer to
 93: !      the data array. Otherwise, the routine is implementation dependent.
 94: !    - You MUST call VecRestoreArrayF90() when you no longer need access to
 95: !      the array.
 96: !    - Note that the interface to VecGetArrayF90() differs from VecGetArray().

 98:       PetscCall(VecGetArrayF90(localX,lx_v,ierr))
 99:       PetscCall(VecGetArrayF90(F,lf_v,ierr))

101: !  Compute function over the locally owned part of the grid
102:       PetscCall(FormFunctionLocal(lx_v,lf_v,user,ierr))

104: !  Restore vectors
105:       PetscCall(VecRestoreArrayF90(localX,lx_v,ierr))
106:       PetscCall(VecRestoreArrayF90(F,lf_v,ierr))

108: !  Insert values into global vector

110:       PetscCall(DMRestoreLocalVector(da,localX,ierr))
111:       PetscCall(PetscLogFlops(11.0d0*user%ym*user%xm,ierr))

113: !      PetscCallA(VecView(X,PETSC_VIEWER_STDOUT_WORLD,ierr))
114: !      PetscCallA(VecView(F,PETSC_VIEWER_STDOUT_WORLD,ierr))
115:       return
116:       end subroutine formfunction
117:       end module ex5f90module

119:       module ex5f90moduleinterfaces
120:         use ex5f90module

122:       Interface SNESSetApplicationContext
123:         Subroutine SNESSetApplicationContext(snes,ctx,ierr)
124:         use ex5f90module
125:           SNES snes
126:           type(userctx) ctx
127:           PetscErrorCode ierr
128:         End Subroutine
129:       End Interface SNESSetApplicationContext

131:       Interface SNESGetApplicationContext
132:         Subroutine SNESGetApplicationContext(snes,ctx,ierr)
133:         use ex5f90module
134:           SNES snes
135:           type(userctx), pointer :: ctx
136:           PetscErrorCode ierr
137:         End Subroutine
138:       End Interface SNESGetApplicationContext
139:       end module ex5f90moduleinterfaces

141:       program main
142:       use ex5f90module
143:       use ex5f90moduleinterfaces
144:       implicit none
145: !

147: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
148: !                   Variable declarations
149: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
150: !
151: !  Variables:
152: !     snes        - nonlinear solver
153: !     x, r        - solution, residual vectors
154: !     J           - Jacobian matrix
155: !     its         - iterations for convergence
156: !     Nx, Ny      - number of preocessors in x- and y- directions
157: !     matrix_free - flag - 1 indicates matrix-free version
158: !
159:       SNES             snes
160:       Vec              x,r
161:       Mat              J
162:       PetscErrorCode   ierr
163:       PetscInt         its
164:       PetscBool        flg,matrix_free
165:       PetscInt         ione,nfour
166:       PetscReal lambda_max,lambda_min
167:       type (userctx)   user
168:       DM               da

170: !  Note: Any user-defined Fortran routines (such as FormJacobian)
171: !  MUST be declared as external.
172:       external FormInitialGuess,FormJacobian

174: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
175: !  Initialize program
176: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
177:       PetscCallA(PetscInitialize(ierr))
178:       PetscCallMPIA(MPI_Comm_rank(PETSC_COMM_WORLD,user%rank,ierr))

180: !  Initialize problem parameters
181:       lambda_max  = 6.81
182:       lambda_min  = 0.0
183:       user%lambda = 6.0
184:       ione = 1
185:       nfour = 4
186:       PetscCallA(PetscOptionsGetReal(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-par',user%lambda,flg,ierr))
187:       if (user%lambda .ge. lambda_max .or. user%lambda .le. lambda_min) then
188:          SETERRA(PETSC_COMM_SELF,PETSC_ERR_USER,'Lambda provided with -par is out of range ')
189:       endif

191: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
192: !  Create nonlinear solver context
193: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
194:       PetscCallA(SNESCreate(PETSC_COMM_WORLD,snes,ierr))

196: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
197: !  Create vector data structures; set function evaluation routine
198: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

200: !  Create distributed array (DMDA) to manage parallel grid and vectors

202: ! This really needs only the star-type stencil, but we use the box
203: ! stencil temporarily.
204:       PetscCallA(DMDACreate2d(PETSC_COMM_WORLD,DM_BOUNDARY_NONE,DM_BOUNDARY_NONE,DMDA_STENCIL_BOX,nfour,nfour,PETSC_DECIDE,PETSC_DECIDE,ione,ione,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,da,ierr))
205:       PetscCallA(DMSetFromOptions(da,ierr))
206:       PetscCallA(DMSetUp(da,ierr))

208:       PetscCallA(DMDAGetInfo(da,PETSC_NULL_INTEGER,user%mx,user%my,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,ierr))

210: !
211: !   Visualize the distribution of the array across the processors
212: !
213: !     PetscCallA(DMView(da,PETSC_VIEWER_DRAW_WORLD,ierr))

215: !  Extract global and local vectors from DMDA; then duplicate for remaining
216: !  vectors that are the same types
217:       PetscCallA(DMCreateGlobalVector(da,x,ierr))
218:       PetscCallA(VecDuplicate(x,r,ierr))

220: !  Get local grid boundaries (for 2-dimensional DMDA)
221:       PetscCallA(DMDAGetCorners(da,user%xs,user%ys,PETSC_NULL_INTEGER,user%xm,user%ym,PETSC_NULL_INTEGER,ierr))
222:       PetscCallA(DMDAGetGhostCorners(da,user%gxs,user%gys,PETSC_NULL_INTEGER,user%gxm,user%gym,PETSC_NULL_INTEGER,ierr))

224: !  Here we shift the starting indices up by one so that we can easily
225: !  use the Fortran convention of 1-based indices (rather 0-based indices).
226:       user%xs  = user%xs+1
227:       user%ys  = user%ys+1
228:       user%gxs = user%gxs+1
229:       user%gys = user%gys+1

231:       user%ye  = user%ys+user%ym-1
232:       user%xe  = user%xs+user%xm-1
233:       user%gye = user%gys+user%gym-1
234:       user%gxe = user%gxs+user%gxm-1

236:       PetscCallA(SNESSetApplicationContext(snes,user,ierr))

238: !  Set function evaluation routine and vector
239:       PetscCallA(SNESSetFunction(snes,r,FormFunction,user,ierr))

241: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
242: !  Create matrix data structure; set Jacobian evaluation routine
243: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

245: !  Set Jacobian matrix data structure and default Jacobian evaluation
246: !  routine. User can override with:
247: !     -snes_fd : default finite differencing approximation of Jacobian
248: !     -snes_mf : matrix-free Newton-Krylov method with no preconditioning
249: !                (unless user explicitly sets preconditioner)
250: !     -snes_mf_operator : form preconditioning matrix as set by the user,
251: !                         but use matrix-free approx for Jacobian-vector
252: !                         products within Newton-Krylov method
253: !
254: !  Note:  For the parallel case, vectors and matrices MUST be partitioned
255: !     accordingly.  When using distributed arrays (DMDAs) to create vectors,
256: !     the DMDAs determine the problem partitioning.  We must explicitly
257: !     specify the local matrix dimensions upon its creation for compatibility
258: !     with the vector distribution.  Thus, the generic MatCreate() routine
259: !     is NOT sufficient when working with distributed arrays.
260: !
261: !     Note: Here we only approximately preallocate storage space for the
262: !     Jacobian.  See the users manual for a discussion of better techniques
263: !     for preallocating matrix memory.

265:       PetscCallA(PetscOptionsHasName(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-snes_mf',matrix_free,ierr))
266:       if (.not. matrix_free) then
267:         PetscCallA(DMSetMatType(da,MATAIJ,ierr))
268:         PetscCallA(DMCreateMatrix(da,J,ierr))
269:         PetscCallA(SNESSetJacobian(snes,J,J,FormJacobian,user,ierr))
270:       endif

272: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
273: !  Customize nonlinear solver; set runtime options
274: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
275: !  Set runtime options (e.g., -snes_monitor -snes_rtol <rtol> -ksp_type <type>)
276:       PetscCallA(SNESSetDM(snes,da,ierr))
277:       PetscCallA(SNESSetFromOptions(snes,ierr))

279: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
280: !  Evaluate initial guess; then solve nonlinear system.
281: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
282: !  Note: The user should initialize the vector, x, with the initial guess
283: !  for the nonlinear solver prior to calling SNESSolve().  In particular,
284: !  to employ an initial guess of zero, the user should explicitly set
285: !  this vector to zero by calling VecSet().

287:       PetscCallA(FormInitialGuess(snes,x,ierr))
288:       PetscCallA(SNESSolve(snes,PETSC_NULL_VEC,x,ierr))
289:       PetscCallA(SNESGetIterationNumber(snes,its,ierr))
290:       if (user%rank .eq. 0) then
291:          write(6,100) its
292:       endif
293:   100 format('Number of SNES iterations = ',i5)

295: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
296: !  Free work space.  All PETSc objects should be destroyed when they
297: !  are no longer needed.
298: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
299:       if (.not. matrix_free) PetscCallA(MatDestroy(J,ierr))
300:       PetscCallA(VecDestroy(x,ierr))
301:       PetscCallA(VecDestroy(r,ierr))
302:       PetscCallA(SNESDestroy(snes,ierr))
303:       PetscCallA(DMDestroy(da,ierr))

305:       PetscCallA(PetscFinalize(ierr))
306:       end

308: ! ---------------------------------------------------------------------
309: !
310: !  FormInitialGuess - Forms initial approximation.
311: !
312: !  Input Parameters:
313: !  X - vector
314: !
315: !  Output Parameter:
316: !  X - vector
317: !
318: !  Notes:
319: !  This routine serves as a wrapper for the lower-level routine
320: !  "InitialGuessLocal", where the actual computations are
321: !  done using the standard Fortran style of treating the local
322: !  vector data as a multidimensional array over the local mesh.
323: !  This routine merely handles ghost point scatters and accesses
324: !  the local vector data via VecGetArrayF90() and VecRestoreArrayF90().
325: !
326:       subroutine FormInitialGuess(snes,X,ierr)
327:       use ex5f90module
328:       use ex5f90moduleinterfaces
329:       implicit none

331: !  Input/output variables:
332:       SNES           snes
333:       type(userctx), pointer:: puser
334:       Vec            X
335:       PetscErrorCode ierr
336:       DM             da

338: !  Declarations for use with local arrays:
339:       PetscScalar,pointer :: lx_v(:)

341:       0
342:       PetscCallA(SNESGetDM(snes,da,ierr))
343:       PetscCallA(SNESGetApplicationContext(snes,puser,ierr))
344: !  Get a pointer to vector data.
345: !    - For default PETSc vectors, VecGetArrayF90() returns a pointer to
346: !      the data array. Otherwise, the routine is implementation dependent.
347: !    - You MUST call VecRestoreArrayF90() when you no longer need access to
348: !      the array.
349: !    - Note that the interface to VecGetArrayF90() differs from VecGetArray().

351:       PetscCallA(VecGetArrayF90(X,lx_v,ierr))

353: !  Compute initial guess over the locally owned part of the grid
354:       PetscCallA(InitialGuessLocal(puser,lx_v,ierr))

356: !  Restore vector
357:       PetscCallA(VecRestoreArrayF90(X,lx_v,ierr))

359: !  Insert values into global vector

361:       return
362:       end

364: ! ---------------------------------------------------------------------
365: !
366: !  InitialGuessLocal - Computes initial approximation, called by
367: !  the higher level routine FormInitialGuess().
368: !
369: !  Input Parameter:
370: !  x - local vector data
371: !
372: !  Output Parameters:
373: !  x - local vector data
374: !  ierr - error code
375: !
376: !  Notes:
377: !  This routine uses standard Fortran-style computations over a 2-dim array.
378: !
379:       subroutine InitialGuessLocal(user,x,ierr)
380:       use ex5f90module
381:       implicit none

383: !  Input/output variables:
384:       type (userctx)         user
385:       PetscScalar  x(user%xs:user%xe,user%ys:user%ye)
386:       PetscErrorCode ierr

388: !  Local variables:
389:       PetscInt  i,j
390:       PetscReal   temp1,temp,hx,hy
391:       PetscReal   one

393: !  Set parameters

395:       0
396:       one    = 1.0
397:       hx     = one/(user%mx-1)
398:       hy     = one/(user%my-1)
399:       temp1  = user%lambda/(user%lambda + one)

401:       do 20 j=user%ys,user%ye
402:          temp = min(j-1,user%my-j)*hy
403:          do 10 i=user%xs,user%xe
404:             if (i .eq. 1 .or. j .eq. 1 .or. i .eq. user%mx .or. j .eq. user%my) then
405:               x(i,j) = 0.0
406:             else
407:               x(i,j) = temp1 * sqrt(min(hx*min(i-1,user%mx-i),temp))
408:             endif
409:  10      continue
410:  20   continue

412:       return
413:       end

415: ! ---------------------------------------------------------------------
416: !
417: !  FormFunctionLocal - Computes nonlinear function, called by
418: !  the higher level routine FormFunction().
419: !
420: !  Input Parameter:
421: !  x - local vector data
422: !
423: !  Output Parameters:
424: !  f - local vector data, f(x)
425: !  ierr - error code
426: !
427: !  Notes:
428: !  This routine uses standard Fortran-style computations over a 2-dim array.
429: !
430:       subroutine FormFunctionLocal(x,f,user,ierr)
431:       use ex5f90module

433:       implicit none

435: !  Input/output variables:
436:       type (userctx) user
437:       PetscScalar  x(user%gxs:user%gxe,user%gys:user%gye)
438:       PetscScalar  f(user%xs:user%xe,user%ys:user%ye)
439:       PetscErrorCode ierr

441: !  Local variables:
442:       PetscScalar two,one,hx,hy,hxdhy,hydhx,sc
443:       PetscScalar u,uxx,uyy
444:       PetscInt  i,j

446:       one    = 1.0
447:       two    = 2.0
448:       hx     = one/(user%mx-1)
449:       hy     = one/(user%my-1)
450:       sc     = hx*hy*user%lambda
451:       hxdhy  = hx/hy
452:       hydhx  = hy/hx

454: !  Compute function over the locally owned part of the grid

456:       do 20 j=user%ys,user%ye
457:          do 10 i=user%xs,user%xe
458:             if (i .eq. 1 .or. j .eq. 1 .or. i .eq. user%mx .or. j .eq. user%my) then
459:                f(i,j) = x(i,j)
460:             else
461:                u = x(i,j)
462:                uxx = hydhx * (two*u - x(i-1,j) - x(i+1,j))
463:                uyy = hxdhy * (two*u - x(i,j-1) - x(i,j+1))
464:                f(i,j) = uxx + uyy - sc*exp(u)
465:             endif
466:  10      continue
467:  20   continue

469:       return
470:       end

472: ! ---------------------------------------------------------------------
473: !
474: !  FormJacobian - Evaluates Jacobian matrix.
475: !
476: !  Input Parameters:
477: !  snes     - the SNES context
478: !  x        - input vector
479: !  dummy    - optional user-defined context, as set by SNESSetJacobian()
480: !             (not used here)
481: !
482: !  Output Parameters:
483: !  jac      - Jacobian matrix
484: !  jac_prec - optionally different preconditioning matrix (not used here)
485: !  flag     - flag indicating matrix structure
486: !
487: !  Notes:
488: !  This routine serves as a wrapper for the lower-level routine
489: !  "FormJacobianLocal", where the actual computations are
490: !  done using the standard Fortran style of treating the local
491: !  vector data as a multidimensional array over the local mesh.
492: !  This routine merely accesses the local vector data via
493: !  VecGetArrayF90() and VecRestoreArrayF90().
494: !
495: !  Notes:
496: !  Due to grid point reordering with DMDAs, we must always work
497: !  with the local grid points, and then transform them to the new
498: !  global numbering with the "ltog" mapping
499: !  We cannot work directly with the global numbers for the original
500: !  uniprocessor grid!
501: !
502: !  Two methods are available for imposing this transformation
503: !  when setting matrix entries:
504: !    (A) MatSetValuesLocal(), using the local ordering (including
505: !        ghost points!)
506: !        - Set matrix entries using the local ordering
507: !          by calling MatSetValuesLocal()
508: !    (B) MatSetValues(), using the global ordering

510: !        - Set matrix entries using the global ordering by calling
511: !          MatSetValues()
512: !  Option (A) seems cleaner/easier in many cases, and is the procedure
513: !  used in this example.
514: !
515:       subroutine FormJacobian(snes,X,jac,jac_prec,user,ierr)
516:       use ex5f90module
517:       implicit none

519: !  Input/output variables:
520:       SNES         snes
521:       Vec          X
522:       Mat          jac,jac_prec
523:       type(userctx)  user
524:       PetscErrorCode ierr
525:       DM             da

527: !  Declarations for use with local arrays:
528:       PetscScalar,pointer :: lx_v(:)
529:       Vec            localX

531: !  Scatter ghost points to local vector, using the 2-step process
532: !     DMGlobalToLocalBegin(), DMGlobalToLocalEnd()
533: !  Computations can be done while messages are in transition,
534: !  by placing code between these two statements.

536:       PetscCallA(SNESGetDM(snes,da,ierr))
537:       PetscCallA(DMGetLocalVector(da,localX,ierr))
538:       PetscCallA(DMGlobalToLocalBegin(da,X,INSERT_VALUES,localX,ierr))
539:       PetscCallA(DMGlobalToLocalEnd(da,X,INSERT_VALUES,localX,ierr))

541: !  Get a pointer to vector data
542:       PetscCallA(VecGetArrayF90(localX,lx_v,ierr))

544: !  Compute entries for the locally owned part of the Jacobian preconditioner.
545:       PetscCallA(FormJacobianLocal(lx_v,jac_prec,user,ierr))

547: !  Assemble matrix, using the 2-step process:
548: !     MatAssemblyBegin(), MatAssemblyEnd()
549: !  Computations can be done while messages are in transition,
550: !  by placing code between these two statements.

552:       PetscCallA(MatAssemblyBegin(jac,MAT_FINAL_ASSEMBLY,ierr))
553:       if (jac .ne. jac_prec) then
554:          PetscCallA(MatAssemblyBegin(jac_prec,MAT_FINAL_ASSEMBLY,ierr))
555:       endif
556:       PetscCallA(VecRestoreArrayF90(localX,lx_v,ierr))
557:       PetscCallA(DMRestoreLocalVector(da,localX,ierr))
558:       PetscCallA(MatAssemblyEnd(jac,MAT_FINAL_ASSEMBLY,ierr))
559:       if (jac .ne. jac_prec) then
560:         PetscCallA(MatAssemblyEnd(jac_prec,MAT_FINAL_ASSEMBLY,ierr))
561:       endif

563: !  Tell the matrix we will never add a new nonzero location to the
564: !  matrix. If we do it will generate an error.

566:       PetscCallA(MatSetOption(jac,MAT_NEW_NONZERO_LOCATION_ERR,PETSC_TRUE,ierr))

568:       return
569:       end

571: ! ---------------------------------------------------------------------
572: !
573: !  FormJacobianLocal - Computes Jacobian preconditioner matrix,
574: !  called by the higher level routine FormJacobian().
575: !
576: !  Input Parameters:
577: !  x        - local vector data
578: !
579: !  Output Parameters:
580: !  jac_prec - Jacobian preconditioner matrix
581: !  ierr     - error code
582: !
583: !  Notes:
584: !  This routine uses standard Fortran-style computations over a 2-dim array.
585: !
586: !  Notes:
587: !  Due to grid point reordering with DMDAs, we must always work
588: !  with the local grid points, and then transform them to the new
589: !  global numbering with the "ltog" mapping
590: !  We cannot work directly with the global numbers for the original
591: !  uniprocessor grid!
592: !
593: !  Two methods are available for imposing this transformation
594: !  when setting matrix entries:
595: !    (A) MatSetValuesLocal(), using the local ordering (including
596: !        ghost points!)
597: !        - Set matrix entries using the local ordering
598: !          by calling MatSetValuesLocal()
599: !    (B) MatSetValues(), using the global ordering
600: !        - Then apply this map explicitly yourself
601: !        - Set matrix entries using the global ordering by calling
602: !          MatSetValues()
603: !  Option (A) seems cleaner/easier in many cases, and is the procedure
604: !  used in this example.
605: !
606:       subroutine FormJacobianLocal(x,jac_prec,user,ierr)
607:       use ex5f90module
608:       implicit none

610: !  Input/output variables:
611:       type (userctx) user
612:       PetscScalar    x(user%gxs:user%gxe,user%gys:user%gye)
613:       Mat            jac_prec
614:       PetscErrorCode ierr

616: !  Local variables:
617:       PetscInt    row,col(5),i,j
618:       PetscInt    ione,ifive
619:       PetscScalar two,one,hx,hy,hxdhy
620:       PetscScalar hydhx,sc,v(5)

622: !  Set parameters
623:       ione   = 1
624:       ifive  = 5
625:       one    = 1.0
626:       two    = 2.0
627:       hx     = one/(user%mx-1)
628:       hy     = one/(user%my-1)
629:       sc     = hx*hy
630:       hxdhy  = hx/hy
631:       hydhx  = hy/hx

633: !  Compute entries for the locally owned part of the Jacobian.
634: !   - Currently, all PETSc parallel matrix formats are partitioned by
635: !     contiguous chunks of rows across the processors.
636: !   - Each processor needs to insert only elements that it owns
637: !     locally (but any non-local elements will be sent to the
638: !     appropriate processor during matrix assembly).
639: !   - Here, we set all entries for a particular row at once.
640: !   - We can set matrix entries either using either
641: !     MatSetValuesLocal() or MatSetValues(), as discussed above.
642: !   - Note that MatSetValues() uses 0-based row and column numbers
643: !     in Fortran as well as in C.

645:       do 20 j=user%ys,user%ye
646:          row = (j - user%gys)*user%gxm + user%xs - user%gxs - 1
647:          do 10 i=user%xs,user%xe
648:             row = row + 1
649: !           boundary points
650:             if (i .eq. 1 .or. j .eq. 1 .or. i .eq. user%mx .or. j .eq. user%my) then
651:                col(1) = row
652:                v(1)   = one
653:                PetscCallA(MatSetValuesLocal(jac_prec,ione,row,ione,col,v,INSERT_VALUES,ierr))
654: !           interior grid points
655:             else
656:                v(1) = -hxdhy
657:                v(2) = -hydhx
658:                v(3) = two*(hydhx + hxdhy) - sc*user%lambda*exp(x(i,j))
659:                v(4) = -hydhx
660:                v(5) = -hxdhy
661:                col(1) = row - user%gxm
662:                col(2) = row - 1
663:                col(3) = row
664:                col(4) = row + 1
665:                col(5) = row + user%gxm
666:                PetscCallA(MatSetValuesLocal(jac_prec,ione,row,ifive,col,v,INSERT_VALUES,ierr))
667:             endif
668:  10      continue
669:  20   continue

671:       return
672:       end

674: !
675: !/*TEST
676: !
677: !   test:
678: !      nsize: 4
679: !      args: -snes_mf -pc_type none -da_processors_x 4 -da_processors_y 1 -snes_monitor_short -ksp_gmres_cgs_refinement_type refine_always
680: !      requires: !single
681: !
682: !   test:
683: !      suffix: 2
684: !      nsize: 4
685: !      args: -da_processors_x 2 -da_processors_y 2 -snes_monitor_short -ksp_gmres_cgs_refinement_type refine_always
686: !      requires: !single
687: !
688: !   test:
689: !      suffix: 3
690: !      nsize: 3
691: !      args: -snes_fd -snes_monitor_short -ksp_gmres_cgs_refinement_type refine_always
692: !      requires: !single
693: !
694: !   test:
695: !      suffix: 4
696: !      nsize: 3
697: !      args: -snes_mf_operator -snes_monitor_short -ksp_gmres_cgs_refinement_type refine_always
698: !      requires: !single
699: !
700: !   test:
701: !      suffix: 5
702: !      requires: !single
703: !
704: !TEST*/