Actual source code: ex35.cxx

  1: static const char help[] = "Time-dependent Brusselator reaction-diffusion PDE in 1d. Demonstrates IMEX methods and uses MOAB.\n";
  2: /*
  3:    u_t - alpha u_xx = A + u^2 v - (B+1) u
  4:    v_t - alpha v_xx = B u - u^2 v
  5:    0 < x < 1;
  6:    A = 1, B = 3, alpha = 1/50

  8:    Initial conditions:
  9:    u(x,0) = 1 + sin(2 pi x)
 10:    v(x,0) = 3

 12:    Boundary conditions:
 13:    u(0,t) = u(1,t) = 1
 14:    v(0,t) = v(1,t) = 3
 15: */

 17: // PETSc includes:
 18: #include <petscts.h>
 19: #include <petscdmmoab.h>

 21: typedef struct {
 22:   PetscScalar u,v;
 23: } Field;

 25: struct pUserCtx {
 26:   PetscReal A,B;        /* Reaction coefficients */
 27:   PetscReal alpha;      /* Diffusion coefficient */
 28:   Field leftbc;         /* Dirichlet boundary conditions at left boundary */
 29:   Field rightbc;        /* Dirichlet boundary conditions at right boundary */
 30:   PetscInt  n,npts;       /* Number of mesh points */
 31:   PetscInt  ntsteps;    /* Number of time steps */
 32:   PetscInt nvars;       /* Number of variables in the equation system */
 33:   PetscBool io;
 34: };
 35: typedef pUserCtx* UserCtx;

 37: PetscErrorCode Initialize_AppContext(UserCtx *puser)
 38: {
 39:   UserCtx           user;
 40:   PetscErrorCode    ierr;

 42:   PetscNew(&user);

 44:   PetscOptionsBegin(PETSC_COMM_WORLD,NULL,"Advection-reaction options","ex35.cxx");
 45:   {
 46:     user->nvars  = 2;
 47:     user->A      = 1;
 48:     user->B      = 3;
 49:     user->alpha  = 0.02;
 50:     user->leftbc.u  = 1;
 51:     user->rightbc.u = 1;
 52:     user->leftbc.v  = 3;
 53:     user->rightbc.v = 3;
 54:     user->n      = 10;
 55:     user->ntsteps = 10000;
 56:     user->io = PETSC_FALSE;
 57:     PetscOptionsReal("-A","Reaction rate","ex35.cxx",user->A,&user->A,NULL);
 58:     PetscOptionsReal("-B","Reaction rate","ex35.cxx",user->B,&user->B,NULL);
 59:     PetscOptionsReal("-alpha","Diffusion coefficient","ex35.cxx",user->alpha,&user->alpha,NULL);
 60:     PetscOptionsScalar("-uleft","Dirichlet boundary condition","ex35.cxx",user->leftbc.u,&user->leftbc.u,NULL);
 61:     PetscOptionsScalar("-uright","Dirichlet boundary condition","ex35.cxx",user->rightbc.u,&user->rightbc.u,NULL);
 62:     PetscOptionsScalar("-vleft","Dirichlet boundary condition","ex35.cxx",user->leftbc.v,&user->leftbc.v,NULL);
 63:     PetscOptionsScalar("-vright","Dirichlet boundary condition","ex35.cxx",user->rightbc.v,&user->rightbc.v,NULL);
 64:     PetscOptionsInt("-n","Number of 1-D elements","ex35.cxx",user->n,&user->n,NULL);
 65:     PetscOptionsInt("-ndt","Number of time steps","ex35.cxx",user->ntsteps,&user->ntsteps,NULL);
 66:     PetscOptionsBool("-io","Write the mesh and solution output to a file.","ex35.cxx",user->io,&user->io,NULL);
 67:     user->npts   = user->n+1;
 68:   }
 69:   PetscOptionsEnd();

 71:   *puser = user;
 72:   return 0;
 73: }

 75: PetscErrorCode Destroy_AppContext(UserCtx *user)
 76: {
 77:   PetscFree(*user);
 78:   return 0;
 79: }

 81: static PetscErrorCode FormInitialSolution(TS,Vec,void*);
 82: static PetscErrorCode FormRHSFunction(TS,PetscReal,Vec,Vec,void*);
 83: static PetscErrorCode FormIFunction(TS,PetscReal,Vec,Vec,Vec,void*);
 84: static PetscErrorCode FormIJacobian(TS,PetscReal,Vec,Vec,PetscReal,Mat,Mat,void*);

 86: /****************
 87:  *              *
 88:  *     MAIN     *
 89:  *              *
 90:  ****************/
 91: int main(int argc,char **argv)
 92: {
 93:   TS                ts;         /* nonlinear solver */
 94:   Vec               X;          /* solution, residual vectors */
 95:   Mat               J;          /* Jacobian matrix */
 96:   PetscInt          steps,mx;
 97:   PetscReal         hx,dt,ftime;
 98:   UserCtx           user;       /* user-defined work context */
 99:   TSConvergedReason reason;
100:   DM                dm;
101:   const char        *fields[2] = {"U","V"};

103:   PetscInitialize(&argc,&argv,(char *)0,help);

105:   /* Initialize the user context struct */
106:   Initialize_AppContext(&user);

108:   /* Fill in the user defined work context: */
109:   DMMoabCreateBoxMesh(PETSC_COMM_WORLD, 1, PETSC_FALSE, NULL, user->n, 1, &dm);
110:   DMMoabSetFieldNames(dm, user->nvars, fields);
111:   DMMoabSetBlockSize(dm, user->nvars);
112:   DMSetFromOptions(dm);

114:   /* SetUp the data structures for DMMOAB */
115:   DMSetUp(dm);

117:   /*  Create timestepping solver context */
118:   TSCreate(PETSC_COMM_WORLD,&ts);
119:   TSSetDM(ts, dm);
120:   TSSetType(ts,TSARKIMEX);
121:   TSSetEquationType(ts,TS_EQ_DAE_IMPLICIT_INDEX1);
122:   DMSetMatType(dm,MATBAIJ);
123:   DMCreateMatrix(dm,&J);

125:   TSSetRHSFunction(ts,NULL,FormRHSFunction,user);
126:   TSSetIFunction(ts,NULL,FormIFunction,user);
127:   TSSetIJacobian(ts,J,J,FormIJacobian,user);

129:   ftime = 10.0;
130:   TSSetMaxSteps(ts,user->ntsteps);
131:   TSSetMaxTime(ts,ftime);
132:   TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);

134:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
135:      Create the solution vector and set the initial conditions
136:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
137:   DMCreateGlobalVector(dm, &X);

139:   FormInitialSolution(ts,X,user);
140:   TSSetSolution(ts,X);
141:   VecGetSize(X,&mx);
142:   hx = 1.0/(PetscReal)(mx/2-1);
143:   dt = 0.4 * PetscSqr(hx) / user->alpha; /* Diffusive stability limit */
144:   TSSetTimeStep(ts,dt);

146:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
147:      Set runtime options
148:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
149:   TSSetFromOptions(ts);

151:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
152:      Solve nonlinear system
153:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
154:   TSSolve(ts,X);
155:   TSGetSolveTime(ts,&ftime);
156:   TSGetStepNumber(ts,&steps);
157:   TSGetConvergedReason(ts,&reason);
158:   PetscPrintf(PETSC_COMM_WORLD,"%s at time %g after %D steps\n",TSConvergedReasons[reason],ftime,steps);

160:   if (user->io) {
161:     /* Print the numerical solution to screen and then dump to file */
162:     VecView(X,PETSC_VIEWER_STDOUT_WORLD);

164:     /* Write out the solution along with the mesh */
165:     DMMoabSetGlobalFieldVector(dm, X);
166: #ifdef MOAB_HAVE_HDF5
167:     DMMoabOutput(dm, "ex35.h5m", "");
168: #else
169:     /* MOAB does not support true parallel writers that aren't HDF5 based
170:        And so if you are using VTK as the output format in parallel,
171:        the data could be jumbled due to the order in which the processors
172:        write out their parts of the mesh and solution tags
173:     */
174:     DMMoabOutput(dm, "ex35.vtk", "");
175: #endif
176:   }

178:   /* Free work space.
179:      Free all PETSc related resources: */
180:   MatDestroy(&J);
181:   VecDestroy(&X);
182:   TSDestroy(&ts);
183:   DMDestroy(&dm);

185:   /* Free all MOAB related resources: */
186:   Destroy_AppContext(&user);
187:   PetscFinalize();
188:   return 0;
189: }

191: /*
192:   IJacobian - Compute IJacobian = dF/dU + a dF/dUdot
193: */
194: PetscErrorCode FormIJacobian(TS ts,PetscReal t,Vec X,Vec Xdot,PetscReal a,Mat J,Mat Jpre,void *ptr)
195: {
196:   UserCtx             user = (UserCtx)ptr;
197:   PetscInt            dof;
198:   PetscReal           hx;
199:   DM                  dm;
200:   const moab::Range   *vlocal;
201:   PetscBool           vonboundary;

203:   TSGetDM(ts, &dm);

205:   /* get the essential MOAB mesh related quantities needed for FEM assembly */
206:   DMMoabGetLocalVertices(dm, &vlocal, NULL);

208:   /* compute local element sizes - structured grid */
209:   hx = 1.0/user->n;

211:   /* Compute function over the locally owned part of the grid
212:      Assemble the operator by looping over edges and computing
213:      contribution for each vertex dof                         */
214:   for (moab::Range::iterator iter = vlocal->begin(); iter != vlocal->end(); iter++) {
215:     const moab::EntityHandle vhandle = *iter;

217:     DMMoabGetDofsBlocked(dm, 1, &vhandle, &dof);

219:     /* check if vertex is on the boundary */
220:     DMMoabIsEntityOnBoundary(dm,vhandle,&vonboundary);

222:     if (vonboundary) {
223:       const PetscScalar bcvals[2][2] = {{hx,0},{0,hx}};
224:       MatSetValuesBlocked(Jpre,1,&dof,1,&dof,&bcvals[0][0],INSERT_VALUES);
225:     }
226:     else {
227:       const PetscInt    row           = dof,col[] = {dof-1,dof,dof+1};
228:       const PetscScalar dxxL          = -user->alpha/hx,dxx0 = 2.*user->alpha/hx,dxxR = -user->alpha/hx;
229:       const PetscScalar vals[2][3][2] = {{{dxxL,0},{a *hx+dxx0,0},{dxxR,0}},
230:                                          {{0,dxxL},{0,a*hx+dxx0},{0,dxxR}}};
231:       MatSetValuesBlocked(Jpre,1,&row,3,col,&vals[0][0][0],INSERT_VALUES);
232:     }
233:   }

235:   MatAssemblyBegin(Jpre,MAT_FINAL_ASSEMBLY);
236:   MatAssemblyEnd(Jpre,MAT_FINAL_ASSEMBLY);
237:   if (J != Jpre) {
238:     MatAssemblyBegin(J,MAT_FINAL_ASSEMBLY);
239:     MatAssemblyEnd(J,MAT_FINAL_ASSEMBLY);
240:   }
241:   return 0;
242: }

244: static PetscErrorCode FormRHSFunction(TS ts,PetscReal t,Vec X,Vec F,void *ptr)
245: {
246:   UserCtx           user = (UserCtx)ptr;
247:   DM                dm;
248:   PetscReal         hx;
249:   const Field       *x;
250:   Field             *f;
251:   PetscInt          dof;
252:   const moab::Range *ownedvtx;

254:   hx = 1.0/user->n;
255:   TSGetDM(ts,&dm);

257:   /* Get pointers to vector data */
258:   VecSet(F,0.0);

260:   DMMoabVecGetArrayRead(dm, X, &x);
261:   DMMoabVecGetArray(dm, F, &f);

263:   DMMoabGetLocalVertices(dm, &ownedvtx, NULL);

265:   /* Compute function over the locally owned part of the grid */
266:   for (moab::Range::iterator iter = ownedvtx->begin(); iter != ownedvtx->end(); iter++) {
267:     const moab::EntityHandle vhandle = *iter;
268:     DMMoabGetDofsBlockedLocal(dm, 1, &vhandle, &dof);

270:     PetscScalar u = x[dof].u,v = x[dof].v;
271:     f[dof].u = hx*(user->A + u*u*v - (user->B+1)*u);
272:     f[dof].v = hx*(user->B*u - u*u*v);
273:   }

275:   /* Restore vectors */
276:   DMMoabVecRestoreArrayRead(dm, X, &x);
277:   DMMoabVecRestoreArray(dm, F, &f);
278:   return 0;
279: }

281: static PetscErrorCode FormIFunction(TS ts,PetscReal t,Vec X,Vec Xdot,Vec F,void *ctx)
282: {
283:   UserCtx         user = (UserCtx)ctx;
284:   DM              dm;
285:   Field           *x,*xdot,*f;
286:   PetscReal       hx;
287:   Vec             Xloc;
288:   PetscInt        i,bcindx;
289:   PetscBool       elem_on_boundary;
290:   const moab::Range   *vlocal;

292:   hx = 1.0/user->n;
293:   TSGetDM(ts, &dm);

295:   /* get the essential MOAB mesh related quantities needed for FEM assembly */
296:   DMMoabGetLocalVertices(dm, &vlocal, NULL);

298:   /* reset the residual vector */
299:   VecSet(F,0.0);

301:   DMGetLocalVector(dm,&Xloc);
302:   DMGlobalToLocalBegin(dm,X,INSERT_VALUES,Xloc);
303:   DMGlobalToLocalEnd(dm,X,INSERT_VALUES,Xloc);

305:   /* get the local representation of the arrays from Vectors */
306:   DMMoabVecGetArrayRead(dm, Xloc, &x);
307:   DMMoabVecGetArrayRead(dm, Xdot, &xdot);
308:   DMMoabVecGetArray(dm, F, &f);

310:   /* loop over local elements */
311:   for (moab::Range::iterator iter = vlocal->begin(); iter != vlocal->end(); iter++) {
312:     const moab::EntityHandle vhandle = *iter;

314:     DMMoabGetDofsBlockedLocal(dm,1,&vhandle,&i);

316:     /* check if vertex is on the boundary */
317:     DMMoabIsEntityOnBoundary(dm,vhandle,&elem_on_boundary);

319:     if (elem_on_boundary) {
320:       DMMoabGetDofsBlocked(dm, 1, &vhandle, &bcindx);
321:       if (bcindx == 0) {  /* Apply left BC */
322:         f[i].u = hx * (x[i].u - user->leftbc.u);
323:         f[i].v = hx * (x[i].v - user->leftbc.v);
324:       } else {       /* Apply right BC */
325:         f[i].u = hx * (x[i].u - user->rightbc.u);
326:         f[i].v = hx * (x[i].v - user->rightbc.v);
327:       }
328:     }
329:     else {
330:       f[i].u = hx * xdot[i].u - user->alpha * (x[i-1].u - 2.*x[i].u + x[i+1].u) / hx;
331:       f[i].v = hx * xdot[i].v - user->alpha * (x[i-1].v - 2.*x[i].v + x[i+1].v) / hx;
332:     }
333:   }

335:   /* Restore data */
336:   DMMoabVecRestoreArrayRead(dm, Xloc, &x);
337:   DMMoabVecRestoreArrayRead(dm, Xdot, &xdot);
338:   DMMoabVecRestoreArray(dm, F, &f);
339:   DMRestoreLocalVector(dm, &Xloc);
340:   return 0;
341: }

343: PetscErrorCode FormInitialSolution(TS ts,Vec X,void *ctx)
344: {
345:   UserCtx           user = (UserCtx)ctx;
346:   PetscReal         vpos[3];
347:   DM                dm;
348:   Field             *x;
349:   const moab::Range *vowned;
350:   PetscInt          dof;
351:   moab::Range::iterator iter;

353:   TSGetDM(ts, &dm);

355:   /* get the essential MOAB mesh related quantities needed for FEM assembly */
356:   DMMoabGetLocalVertices(dm, &vowned, NULL);

358:   VecSet(X, 0.0);

360:   /* Get pointers to vector data */
361:   DMMoabVecGetArray(dm, X, &x);

363:   /* Compute function over the locally owned part of the grid */
364:   for (moab::Range::iterator iter = vowned->begin(); iter != vowned->end(); iter++) {
365:     const moab::EntityHandle vhandle = *iter;
366:     DMMoabGetDofsBlockedLocal(dm, 1, &vhandle, &dof);

368:     /* compute the mid-point of the element and use a 1-point lumped quadrature */
369:     DMMoabGetVertexCoordinates(dm,1,&vhandle,vpos);

371:     PetscReal xi = vpos[0];
372:     x[dof].u = user->leftbc.u*(1.-xi) + user->rightbc.u*xi + PetscSinReal(2.*PETSC_PI*xi);
373:     x[dof].v = user->leftbc.v*(1.-xi) + user->rightbc.v*xi;
374:   }

376:   /* Restore vectors */
377:   DMMoabVecRestoreArray(dm, X, &x);
378:   return 0;
379: }

381: /*TEST

383:     build:
384:       requires: moab

386:     test:
387:       args: -n 20 -ts_type rosw -ts_rosw_type 2p -ts_dt 5e-2 -ts_adapt_type none

389:     test:
390:       suffix: 2
391:       nsize: 2
392:       args: -n 50 -ts_type glee -ts_adapt_type none -ts_dt 0.1 -io
393:       TODO:

395: TEST*/