Actual source code: ex11.c
1: static char help[] = "Second Order TVD Finite Volume Example.\n";
We use a second order TVD finite volume method to evolve a system of PDEs. Our simple upwinded residual evaluation loops
over all mesh faces and uses a Riemann solver to produce the flux given the face geometry and cell values,
\begin{equation}
f_i = \mathrm{riemann}(\mathrm{phys}, p_\mathrm{centroid}, \hat n, x^L, x^R)
\end{equation}
and then update the cell values given the cell volume.
\begin{eqnarray}
f^L_i &-=& \frac{f_i}{vol^L} \\
f^R_i &+=& \frac{f_i}{vol^R}
\end{eqnarray}
As an example, we can consider the shallow water wave equation,
\begin{eqnarray}
h_t + \nabla\cdot \left( uh \right) &=& 0 \\
(uh)_t + \nabla\cdot \left( u\otimes uh + \frac{g h^2}{2} I \right) &=& 0
\end{eqnarray}
where $h$ is wave height, $u$ is wave velocity, and $g$ is the acceleration due to gravity.
A representative Riemann solver for the shallow water equations is given in the PhysicsRiemann_SW() function,
\begin{eqnarray}
f^{L,R}_h &=& uh^{L,R} \cdot \hat n \\
f^{L,R}_{uh} &=& \frac{f^{L,R}_h}{h^{L,R}} uh^{L,R} + g (h^{L,R})^2 \hat n \\
c^{L,R} &=& \sqrt{g h^{L,R}} \\
s &=& \max\left( \left|\frac{uh^L \cdot \hat n}{h^L}\right| + c^L, \left|\frac{uh^R \cdot \hat n}{h^R}\right| + c^R \right) \\
f_i &=& \frac{A_\mathrm{face}}{2} \left( f^L_i + f^R_i + s \left( x^L_i - x^R_i \right) \right)
\end{eqnarray}
where $c$ is the local gravity wave speed and $f_i$ is a Rusanov flux.
The more sophisticated residual evaluation in RHSFunctionLocal_LS() uses a least-squares fit to a quadratic polynomial
over a neighborhood of the given element.
The mesh is read in from an ExodusII file, usually generated by Cubit.
37: #include <petscdmplex.h>
38: #include <petscdmforest.h>
39: #include <petscds.h>
40: #include <petscts.h>
42: #define DIM 2 /* Geometric dimension */
43: #define ALEN(a) (sizeof(a)/sizeof((a)[0]))
45: static PetscFunctionList PhysicsList, PhysicsRiemannList_SW;
47: /* Represents continuum physical equations. */
48: typedef struct _n_Physics *Physics;
50: /* Physical model includes boundary conditions, initial conditions, and functionals of interest. It is
51: * discretization-independent, but its members depend on the scenario being solved. */
52: typedef struct _n_Model *Model;
54: /* 'User' implements a discretization of a continuous model. */
55: typedef struct _n_User *User;
56: typedef PetscErrorCode (*SolutionFunction)(Model,PetscReal,const PetscReal*,PetscScalar*,void*);
57: typedef PetscErrorCode (*SetUpBCFunction)(DM,PetscDS,Physics);
58: typedef PetscErrorCode (*FunctionalFunction)(Model,PetscReal,const PetscReal*,const PetscScalar*,PetscReal*,void*);
59: typedef PetscErrorCode (*SetupFields)(Physics,PetscSection);
60: static PetscErrorCode ModelSolutionSetDefault(Model,SolutionFunction,void*);
61: static PetscErrorCode ModelFunctionalRegister(Model,const char*,PetscInt*,FunctionalFunction,void*);
62: static PetscErrorCode OutputVTK(DM,const char*,PetscViewer*);
64: struct FieldDescription {
65: const char *name;
66: PetscInt dof;
67: };
69: typedef struct _n_FunctionalLink *FunctionalLink;
70: struct _n_FunctionalLink {
71: char *name;
72: FunctionalFunction func;
73: void *ctx;
74: PetscInt offset;
75: FunctionalLink next;
76: };
78: struct _n_Physics {
79: PetscRiemannFunc riemann;
80: PetscInt dof; /* number of degrees of freedom per cell */
81: PetscReal maxspeed; /* kludge to pick initial time step, need to add monitoring and step control */
82: void *data;
83: PetscInt nfields;
84: const struct FieldDescription *field_desc;
85: };
87: struct _n_Model {
88: MPI_Comm comm; /* Does not do collective communicaton, but some error conditions can be collective */
89: Physics physics;
90: FunctionalLink functionalRegistry;
91: PetscInt maxComputed;
92: PetscInt numMonitored;
93: FunctionalLink *functionalMonitored;
94: PetscInt numCall;
95: FunctionalLink *functionalCall;
96: SolutionFunction solution;
97: SetUpBCFunction setupbc;
98: void *solutionctx;
99: PetscReal maxspeed; /* estimate of global maximum speed (for CFL calculation) */
100: PetscReal bounds[2*DIM];
101: PetscErrorCode (*errorIndicator)(PetscInt, PetscReal, PetscInt, const PetscScalar[], const PetscScalar[], PetscReal *, void *);
102: void *errorCtx;
103: };
105: struct _n_User {
106: PetscInt vtkInterval; /* For monitor */
107: char outputBasename[PETSC_MAX_PATH_LEN]; /* Basename for output files */
108: PetscInt monitorStepOffset;
109: Model model;
110: PetscBool vtkmon;
111: };
113: static inline PetscReal DotDIMReal(const PetscReal *x,const PetscReal *y)
114: {
115: PetscInt i;
116: PetscReal prod=0.0;
118: for (i=0; i<DIM; i++) prod += x[i]*y[i];
119: return prod;
120: }
121: static inline PetscReal NormDIM(const PetscReal *x) { return PetscSqrtReal(PetscAbsReal(DotDIMReal(x,x))); }
123: static inline PetscReal Dot2Real(const PetscReal *x,const PetscReal *y) { return x[0]*y[0] + x[1]*y[1];}
124: static inline PetscReal Norm2Real(const PetscReal *x) { return PetscSqrtReal(PetscAbsReal(Dot2Real(x,x)));}
125: static inline void Normalize2Real(PetscReal *x) { PetscReal a = 1./Norm2Real(x); x[0] *= a; x[1] *= a; }
126: static inline void Waxpy2Real(PetscReal a,const PetscReal *x,const PetscReal *y,PetscReal *w) { w[0] = a*x[0] + y[0]; w[1] = a*x[1] + y[1]; }
127: static inline void Scale2Real(PetscReal a,const PetscReal *x,PetscReal *y) { y[0] = a*x[0]; y[1] = a*x[1]; }
129: /******************* Advect ********************/
130: typedef enum {ADVECT_SOL_TILTED,ADVECT_SOL_BUMP,ADVECT_SOL_BUMP_CAVITY} AdvectSolType;
131: static const char *const AdvectSolTypes[] = {"TILTED","BUMP","BUMP_CAVITY","AdvectSolType","ADVECT_SOL_",0};
132: typedef enum {ADVECT_SOL_BUMP_CONE,ADVECT_SOL_BUMP_COS} AdvectSolBumpType;
133: static const char *const AdvectSolBumpTypes[] = {"CONE","COS","AdvectSolBumpType","ADVECT_SOL_BUMP_",0};
135: typedef struct {
136: PetscReal wind[DIM];
137: } Physics_Advect_Tilted;
138: typedef struct {
139: PetscReal center[DIM];
140: PetscReal radius;
141: AdvectSolBumpType type;
142: } Physics_Advect_Bump;
144: typedef struct {
145: PetscReal inflowState;
146: AdvectSolType soltype;
147: union {
148: Physics_Advect_Tilted tilted;
149: Physics_Advect_Bump bump;
150: } sol;
151: struct {
152: PetscInt Solution;
153: PetscInt Error;
154: } functional;
155: } Physics_Advect;
157: static const struct FieldDescription PhysicsFields_Advect[] = {{"U",1},{NULL,0}};
159: static PetscErrorCode PhysicsBoundary_Advect_Inflow(PetscReal time, const PetscReal *c, const PetscReal *n, const PetscScalar *xI, PetscScalar *xG, void *ctx)
160: {
161: Physics phys = (Physics)ctx;
162: Physics_Advect *advect = (Physics_Advect*)phys->data;
165: xG[0] = advect->inflowState;
166: return 0;
167: }
169: static PetscErrorCode PhysicsBoundary_Advect_Outflow(PetscReal time, const PetscReal *c, const PetscReal *n, const PetscScalar *xI, PetscScalar *xG, void *ctx)
170: {
172: xG[0] = xI[0];
173: return 0;
174: }
176: static void PhysicsRiemann_Advect(PetscInt dim, PetscInt Nf, const PetscReal *qp, const PetscReal *n, const PetscScalar *xL, const PetscScalar *xR, PetscInt numConstants, const PetscScalar constants[], PetscScalar *flux, Physics phys)
177: {
178: Physics_Advect *advect = (Physics_Advect*)phys->data;
179: PetscReal wind[DIM],wn;
181: switch (advect->soltype) {
182: case ADVECT_SOL_TILTED: {
183: Physics_Advect_Tilted *tilted = &advect->sol.tilted;
184: wind[0] = tilted->wind[0];
185: wind[1] = tilted->wind[1];
186: } break;
187: case ADVECT_SOL_BUMP:
188: wind[0] = -qp[1];
189: wind[1] = qp[0];
190: break;
191: case ADVECT_SOL_BUMP_CAVITY:
192: {
193: PetscInt i;
194: PetscReal comp2[3] = {0.,0.,0.}, rad2;
196: rad2 = 0.;
197: for (i = 0; i < dim; i++) {
198: comp2[i] = qp[i] * qp[i];
199: rad2 += comp2[i];
200: }
202: wind[0] = -qp[1];
203: wind[1] = qp[0];
204: if (rad2 > 1.) {
205: PetscInt maxI = 0;
206: PetscReal maxComp2 = comp2[0];
208: for (i = 1; i < dim; i++) {
209: if (comp2[i] > maxComp2) {
210: maxI = i;
211: maxComp2 = comp2[i];
212: }
213: }
214: wind[maxI] = 0.;
215: }
216: }
217: break;
218: default:
219: {
220: PetscInt i;
221: for (i = 0; i < DIM; ++i) wind[i] = 0.0;
222: }
223: /* default: SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for solution type %s",AdvectSolBumpTypes[advect->soltype]); */
224: }
225: wn = Dot2Real(wind, n);
226: flux[0] = (wn > 0 ? xL[0] : xR[0]) * wn;
227: }
229: static PetscErrorCode PhysicsSolution_Advect(Model mod,PetscReal time,const PetscReal *x,PetscScalar *u,void *ctx)
230: {
231: Physics phys = (Physics)ctx;
232: Physics_Advect *advect = (Physics_Advect*)phys->data;
235: switch (advect->soltype) {
236: case ADVECT_SOL_TILTED: {
237: PetscReal x0[DIM];
238: Physics_Advect_Tilted *tilted = &advect->sol.tilted;
239: Waxpy2Real(-time,tilted->wind,x,x0);
240: if (x0[1] > 0) u[0] = 1.*x[0] + 3.*x[1];
241: else u[0] = advect->inflowState;
242: } break;
243: case ADVECT_SOL_BUMP_CAVITY:
244: case ADVECT_SOL_BUMP: {
245: Physics_Advect_Bump *bump = &advect->sol.bump;
246: PetscReal x0[DIM],v[DIM],r,cost,sint;
247: cost = PetscCosReal(time);
248: sint = PetscSinReal(time);
249: x0[0] = cost*x[0] + sint*x[1];
250: x0[1] = -sint*x[0] + cost*x[1];
251: Waxpy2Real(-1,bump->center,x0,v);
252: r = Norm2Real(v);
253: switch (bump->type) {
254: case ADVECT_SOL_BUMP_CONE:
255: u[0] = PetscMax(1 - r/bump->radius,0);
256: break;
257: case ADVECT_SOL_BUMP_COS:
258: u[0] = 0.5 + 0.5*PetscCosReal(PetscMin(r/bump->radius,1)*PETSC_PI);
259: break;
260: }
261: } break;
262: default: SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Unknown solution type");
263: }
264: return 0;
265: }
267: static PetscErrorCode PhysicsFunctional_Advect(Model mod,PetscReal time,const PetscReal *x,const PetscScalar *y,PetscReal *f,void *ctx)
268: {
269: Physics phys = (Physics)ctx;
270: Physics_Advect *advect = (Physics_Advect*)phys->data;
271: PetscScalar yexact[1] = {0.0};
274: PhysicsSolution_Advect(mod,time,x,yexact,phys);
275: f[advect->functional.Solution] = PetscRealPart(y[0]);
276: f[advect->functional.Error] = PetscAbsScalar(y[0]-yexact[0]);
277: return 0;
278: }
280: static PetscErrorCode SetUpBC_Advect(DM dm, PetscDS prob, Physics phys)
281: {
282: const PetscInt inflowids[] = {100,200,300},outflowids[] = {101};
283: DMLabel label;
286: /* Register "canned" boundary conditions and defaults for where to apply. */
287: DMGetLabel(dm, "Face Sets", &label);
288: PetscDSAddBoundary(prob, DM_BC_NATURAL_RIEMANN, "inflow", label, ALEN(inflowids), inflowids, 0, 0, NULL, (void (*)(void)) PhysicsBoundary_Advect_Inflow, NULL, phys, NULL);
289: PetscDSAddBoundary(prob, DM_BC_NATURAL_RIEMANN, "outflow", label, ALEN(outflowids), outflowids, 0, 0, NULL, (void (*)(void)) PhysicsBoundary_Advect_Outflow, NULL, phys, NULL);
290: return 0;
291: }
293: static PetscErrorCode PhysicsCreate_Advect(Model mod,Physics phys,PetscOptionItems *PetscOptionsObject)
294: {
295: Physics_Advect *advect;
298: phys->field_desc = PhysicsFields_Advect;
299: phys->riemann = (PetscRiemannFunc)PhysicsRiemann_Advect;
300: PetscNew(&advect);
301: phys->data = advect;
302: mod->setupbc = SetUpBC_Advect;
304: PetscOptionsHead(PetscOptionsObject,"Advect options");
305: {
306: PetscInt two = 2,dof = 1;
307: advect->soltype = ADVECT_SOL_TILTED;
308: PetscOptionsEnum("-advect_sol_type","solution type","",AdvectSolTypes,(PetscEnum)advect->soltype,(PetscEnum*)&advect->soltype,NULL);
309: switch (advect->soltype) {
310: case ADVECT_SOL_TILTED: {
311: Physics_Advect_Tilted *tilted = &advect->sol.tilted;
312: two = 2;
313: tilted->wind[0] = 0.0;
314: tilted->wind[1] = 1.0;
315: PetscOptionsRealArray("-advect_tilted_wind","background wind vx,vy","",tilted->wind,&two,NULL);
316: advect->inflowState = -2.0;
317: PetscOptionsRealArray("-advect_tilted_inflow","Inflow state","",&advect->inflowState,&dof,NULL);
318: phys->maxspeed = Norm2Real(tilted->wind);
319: } break;
320: case ADVECT_SOL_BUMP_CAVITY:
321: case ADVECT_SOL_BUMP: {
322: Physics_Advect_Bump *bump = &advect->sol.bump;
323: two = 2;
324: bump->center[0] = 2.;
325: bump->center[1] = 0.;
326: PetscOptionsRealArray("-advect_bump_center","location of center of bump x,y","",bump->center,&two,NULL);
327: bump->radius = 0.9;
328: PetscOptionsReal("-advect_bump_radius","radius of bump","",bump->radius,&bump->radius,NULL);
329: bump->type = ADVECT_SOL_BUMP_CONE;
330: PetscOptionsEnum("-advect_bump_type","type of bump","",AdvectSolBumpTypes,(PetscEnum)bump->type,(PetscEnum*)&bump->type,NULL);
331: phys->maxspeed = 3.; /* radius of mesh, kludge */
332: } break;
333: }
334: }
335: PetscOptionsTail();
336: /* Initial/transient solution with default boundary conditions */
337: ModelSolutionSetDefault(mod,PhysicsSolution_Advect,phys);
338: /* Register "canned" functionals */
339: ModelFunctionalRegister(mod,"Solution",&advect->functional.Solution,PhysicsFunctional_Advect,phys);
340: ModelFunctionalRegister(mod,"Error",&advect->functional.Error,PhysicsFunctional_Advect,phys);
341: return 0;
342: }
344: /******************* Shallow Water ********************/
345: typedef struct {
346: PetscReal gravity;
347: PetscReal boundaryHeight;
348: struct {
349: PetscInt Height;
350: PetscInt Speed;
351: PetscInt Energy;
352: } functional;
353: } Physics_SW;
354: typedef struct {
355: PetscReal h;
356: PetscReal uh[DIM];
357: } SWNode;
358: typedef union {
359: SWNode swnode;
360: PetscReal vals[DIM+1];
361: } SWNodeUnion;
363: static const struct FieldDescription PhysicsFields_SW[] = {{"Height",1},{"Momentum",DIM},{NULL,0}};
365: /*
366: * h_t + div(uh) = 0
367: * (uh)_t + div (u\otimes uh + g h^2 / 2 I) = 0
368: *
369: * */
370: static PetscErrorCode SWFlux(Physics phys,const PetscReal *n,const SWNode *x,SWNode *f)
371: {
372: Physics_SW *sw = (Physics_SW*)phys->data;
373: PetscReal uhn,u[DIM];
374: PetscInt i;
377: Scale2Real(1./x->h,x->uh,u);
378: uhn = x->uh[0] * n[0] + x->uh[1] * n[1];
379: f->h = uhn;
380: for (i=0; i<DIM; i++) f->uh[i] = u[i] * uhn + sw->gravity * PetscSqr(x->h) * n[i];
381: return 0;
382: }
384: static PetscErrorCode PhysicsBoundary_SW_Wall(PetscReal time, const PetscReal *c, const PetscReal *n, const PetscScalar *xI, PetscScalar *xG, void *ctx)
385: {
387: xG[0] = xI[0];
388: xG[1] = -xI[1];
389: xG[2] = -xI[2];
390: return 0;
391: }
393: static void PhysicsRiemann_SW_HLL(PetscInt dim, PetscInt Nf, const PetscReal *qp, const PetscReal *n, const PetscScalar *xL, const PetscScalar *xR, PetscInt numConstants, const PetscScalar constants[], PetscScalar *flux, Physics phys)
394: {
395: Physics_SW *sw = (Physics_SW *) phys->data;
396: PetscReal aL, aR;
397: PetscReal nn[DIM];
398: #if !defined(PETSC_USE_COMPLEX)
399: const SWNode *uL = (const SWNode *) xL, *uR = (const SWNode *) xR;
400: #else
401: SWNodeUnion uLreal, uRreal;
402: const SWNode *uL = &uLreal.swnode;
403: const SWNode *uR = &uRreal.swnode;
404: #endif
405: SWNodeUnion fL, fR;
406: PetscInt i;
407: PetscReal zero = 0.;
409: #if defined(PETSC_USE_COMPLEX)
410: uLreal.swnode.h = 0; uRreal.swnode.h = 0;
411: for (i = 0; i < 1+dim; i++) uLreal.vals[i] = PetscRealPart(xL[i]);
412: for (i = 0; i < 1+dim; i++) uRreal.vals[i] = PetscRealPart(xR[i]);
413: #endif
414: if (uL->h <= 0 || uR->h <= 0) {
415: for (i = 0; i < 1 + dim; i++) flux[i] = zero;
416: return;
417: } /* SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Reconstructed thickness is negative"); */
418: nn[0] = n[0];
419: nn[1] = n[1];
420: Normalize2Real(nn);
421: SWFlux(phys, nn, uL, &(fL.swnode));
422: SWFlux(phys, nn, uR, &(fR.swnode));
423: /* gravity wave speed */
424: aL = PetscSqrtReal(sw->gravity * uL->h);
425: aR = PetscSqrtReal(sw->gravity * uR->h);
426: // Defining u_tilda and v_tilda as u and v
427: PetscReal u_L, u_R;
428: u_L = Dot2Real(uL->uh,nn)/uL->h;
429: u_R = Dot2Real(uR->uh,nn)/uR->h;
430: PetscReal sL, sR;
431: sL = PetscMin(u_L - aL, u_R - aR);
432: sR = PetscMax(u_L + aL, u_R + aR);
433: if (sL > zero) {
434: for (i = 0; i < dim + 1; i++) {
435: flux[i] = fL.vals[i] * Norm2Real(n);
436: }
437: } else if (sR < zero) {
438: for (i = 0; i < dim + 1; i++) {
439: flux[i] = fR.vals[i] * Norm2Real(n);
440: }
441: } else {
442: for (i = 0; i < dim + 1; i++) {
443: flux[i] = ((sR * fL.vals[i] - sL * fR.vals[i] + sR * sL * (xR[i] - xL[i])) / (sR - sL)) * Norm2Real(n);
444: }
445: }
446: }
448: static void PhysicsRiemann_SW_Rusanov(PetscInt dim, PetscInt Nf, const PetscReal *qp, const PetscReal *n, const PetscScalar *xL, const PetscScalar *xR, PetscInt numConstants, const PetscScalar constants[], PetscScalar *flux, Physics phys)
449: {
450: Physics_SW *sw = (Physics_SW*)phys->data;
451: PetscReal cL,cR,speed;
452: PetscReal nn[DIM];
453: #if !defined(PETSC_USE_COMPLEX)
454: const SWNode *uL = (const SWNode*)xL,*uR = (const SWNode*)xR;
455: #else
456: SWNodeUnion uLreal, uRreal;
457: const SWNode *uL = &uLreal.swnode;
458: const SWNode *uR = &uRreal.swnode;
459: #endif
460: SWNodeUnion fL,fR;
461: PetscInt i;
462: PetscReal zero=0.;
464: #if defined(PETSC_USE_COMPLEX)
465: uLreal.swnode.h = 0; uRreal.swnode.h = 0;
466: for (i = 0; i < 1+dim; i++) uLreal.vals[i] = PetscRealPart(xL[i]);
467: for (i = 0; i < 1+dim; i++) uRreal.vals[i] = PetscRealPart(xR[i]);
468: #endif
469: if (uL->h < 0 || uR->h < 0) {for (i=0; i<1+dim; i++) flux[i] = zero/zero; return;} /* reconstructed thickness is negative */
470: nn[0] = n[0];
471: nn[1] = n[1];
472: Normalize2Real(nn);
473: SWFlux(phys,nn,uL,&(fL.swnode));
474: SWFlux(phys,nn,uR,&(fR.swnode));
475: cL = PetscSqrtReal(sw->gravity*uL->h);
476: cR = PetscSqrtReal(sw->gravity*uR->h); /* gravity wave speed */
477: speed = PetscMax(PetscAbsReal(Dot2Real(uL->uh,nn)/uL->h) + cL,PetscAbsReal(Dot2Real(uR->uh,nn)/uR->h) + cR);
478: for (i=0; i<1+dim; i++) flux[i] = (0.5*(fL.vals[i] + fR.vals[i]) + 0.5*speed*(xL[i] - xR[i])) * Norm2Real(n);
479: }
481: static PetscErrorCode PhysicsSolution_SW(Model mod,PetscReal time,const PetscReal *x,PetscScalar *u,void *ctx)
482: {
483: PetscReal dx[2],r,sigma;
487: dx[0] = x[0] - 1.5;
488: dx[1] = x[1] - 1.0;
489: r = Norm2Real(dx);
490: sigma = 0.5;
491: u[0] = 1 + 2*PetscExpReal(-PetscSqr(r)/(2*PetscSqr(sigma)));
492: u[1] = 0.0;
493: u[2] = 0.0;
494: return 0;
495: }
497: static PetscErrorCode PhysicsFunctional_SW(Model mod,PetscReal time,const PetscReal *coord,const PetscScalar *xx,PetscReal *f,void *ctx)
498: {
499: Physics phys = (Physics)ctx;
500: Physics_SW *sw = (Physics_SW*)phys->data;
501: const SWNode *x = (const SWNode*)xx;
502: PetscReal u[2];
503: PetscReal h;
506: h = x->h;
507: Scale2Real(1./x->h,x->uh,u);
508: f[sw->functional.Height] = h;
509: f[sw->functional.Speed] = Norm2Real(u) + PetscSqrtReal(sw->gravity*h);
510: f[sw->functional.Energy] = 0.5*(Dot2Real(x->uh,u) + sw->gravity*PetscSqr(h));
511: return 0;
512: }
514: static PetscErrorCode SetUpBC_SW(DM dm, PetscDS prob,Physics phys)
515: {
516: const PetscInt wallids[] = {100,101,200,300};
517: DMLabel label;
520: DMGetLabel(dm, "Face Sets", &label);
521: PetscDSAddBoundary(prob, DM_BC_NATURAL_RIEMANN, "wall", label, ALEN(wallids), wallids, 0, 0, NULL, (void (*)(void)) PhysicsBoundary_SW_Wall, NULL, phys, NULL);
522: return 0;
523: }
525: static PetscErrorCode PhysicsCreate_SW(Model mod,Physics phys,PetscOptionItems *PetscOptionsObject)
526: {
527: Physics_SW *sw;
528: char sw_riemann[64] = "rusanov";
531: phys->field_desc = PhysicsFields_SW;
532: PetscNew(&sw);
533: phys->data = sw;
534: mod->setupbc = SetUpBC_SW;
536: PetscFunctionListAdd(&PhysicsRiemannList_SW, "rusanov", PhysicsRiemann_SW_Rusanov);
537: PetscFunctionListAdd(&PhysicsRiemannList_SW, "hll", PhysicsRiemann_SW_HLL);
539: PetscOptionsHead(PetscOptionsObject,"SW options");
540: {
541: void (*PhysicsRiemann_SW)(PetscInt, PetscInt, const PetscReal *, const PetscReal *, const PetscScalar *, const PetscScalar *, PetscInt, const PetscScalar, PetscScalar *, Physics);
542: sw->gravity = 1.0;
543: PetscOptionsReal("-sw_gravity","Gravitational constant","",sw->gravity,&sw->gravity,NULL);
544: PetscOptionsFList("-sw_riemann","Riemann solver","",PhysicsRiemannList_SW,sw_riemann,sw_riemann,sizeof sw_riemann,NULL);
545: PetscFunctionListFind(PhysicsRiemannList_SW,sw_riemann,&PhysicsRiemann_SW);
546: phys->riemann = (PetscRiemannFunc) PhysicsRiemann_SW;
547: }
548: PetscOptionsTail();
549: phys->maxspeed = PetscSqrtReal(2.0*sw->gravity); /* Mach 1 for depth of 2 */
551: ModelSolutionSetDefault(mod,PhysicsSolution_SW,phys);
552: ModelFunctionalRegister(mod,"Height",&sw->functional.Height,PhysicsFunctional_SW,phys);
553: ModelFunctionalRegister(mod,"Speed",&sw->functional.Speed,PhysicsFunctional_SW,phys);
554: ModelFunctionalRegister(mod,"Energy",&sw->functional.Energy,PhysicsFunctional_SW,phys);
556: return 0;
557: }
559: /******************* Euler Density Shock (EULER_IV_SHOCK,EULER_SS_SHOCK) ********************/
560: /* An initial-value and self-similar solutions of the compressible Euler equations */
561: /* Ravi Samtaney and D. I. Pullin */
562: /* Phys. Fluids 8, 2650 (1996); http://dx.doi.org/10.1063/1.869050 */
563: typedef enum {EULER_PAR_GAMMA,EULER_PAR_RHOR,EULER_PAR_AMACH,EULER_PAR_ITANA,EULER_PAR_SIZE} EulerParamIdx;
564: typedef enum {EULER_IV_SHOCK,EULER_SS_SHOCK,EULER_SHOCK_TUBE,EULER_LINEAR_WAVE} EulerType;
565: typedef struct {
566: PetscReal r;
567: PetscReal ru[DIM];
568: PetscReal E;
569: } EulerNode;
570: typedef union {
571: EulerNode eulernode;
572: PetscReal vals[DIM+2];
573: } EulerNodeUnion;
574: typedef PetscErrorCode (*EquationOfState)(const PetscReal*, const EulerNode*, PetscReal*);
575: typedef struct {
576: EulerType type;
577: PetscReal pars[EULER_PAR_SIZE];
578: EquationOfState sound;
579: struct {
580: PetscInt Density;
581: PetscInt Momentum;
582: PetscInt Energy;
583: PetscInt Pressure;
584: PetscInt Speed;
585: } monitor;
586: } Physics_Euler;
588: static const struct FieldDescription PhysicsFields_Euler[] = {{"Density",1},{"Momentum",DIM},{"Energy",1},{NULL,0}};
590: /* initial condition */
591: int initLinearWave(EulerNode *ux, const PetscReal gamma, const PetscReal coord[], const PetscReal Lx);
592: static PetscErrorCode PhysicsSolution_Euler(Model mod, PetscReal time, const PetscReal *x, PetscScalar *u, void *ctx)
593: {
594: PetscInt i;
595: Physics phys = (Physics)ctx;
596: Physics_Euler *eu = (Physics_Euler*)phys->data;
597: EulerNode *uu = (EulerNode*)u;
598: PetscReal p0,gamma,c;
602: for (i=0; i<DIM; i++) uu->ru[i] = 0.0; /* zero out initial velocity */
603: /* set E and rho */
604: gamma = eu->pars[EULER_PAR_GAMMA];
606: if (eu->type==EULER_IV_SHOCK || eu->type==EULER_SS_SHOCK) {
607: /******************* Euler Density Shock ********************/
608: /* On initial-value and self-similar solutions of the compressible Euler equations */
609: /* Ravi Samtaney and D. I. Pullin */
610: /* Phys. Fluids 8, 2650 (1996); http://dx.doi.org/10.1063/1.869050 */
611: /* initial conditions 1: left of shock, 0: left of discontinuity 2: right of discontinuity, */
612: p0 = 1.;
613: if (x[0] < 0.0 + x[1]*eu->pars[EULER_PAR_ITANA]) {
614: if (x[0] < mod->bounds[0]*0.5) { /* left of shock (1) */
615: PetscReal amach,rho,press,gas1,p1;
616: amach = eu->pars[EULER_PAR_AMACH];
617: rho = 1.;
618: press = p0;
619: p1 = press*(1.0+2.0*gamma/(gamma+1.0)*(amach*amach-1.0));
620: gas1 = (gamma-1.0)/(gamma+1.0);
621: uu->r = rho*(p1/press+gas1)/(gas1*p1/press+1.0);
622: uu->ru[0] = ((uu->r - rho)*PetscSqrtReal(gamma*press/rho)*amach);
623: uu->E = p1/(gamma-1.0) + .5/uu->r*uu->ru[0]*uu->ru[0];
624: }
625: else { /* left of discontinuity (0) */
626: uu->r = 1.; /* rho = 1 */
627: uu->E = p0/(gamma-1.0);
628: }
629: }
630: else { /* right of discontinuity (2) */
631: uu->r = eu->pars[EULER_PAR_RHOR];
632: uu->E = p0/(gamma-1.0);
633: }
634: }
635: else if (eu->type==EULER_SHOCK_TUBE) {
636: /* For (x<x0) set (rho,u,p)=(8,0,10) and for (x>x0) set (rho,u,p)=(1,0,1). Choose x0 to the midpoint of the domain in the x-direction. */
637: if (x[0] < 0.0) {
638: uu->r = 8.;
639: uu->E = 10./(gamma-1.);
640: }
641: else {
642: uu->r = 1.;
643: uu->E = 1./(gamma-1.);
644: }
645: }
646: else if (eu->type==EULER_LINEAR_WAVE) {
647: initLinearWave( uu, gamma, x, mod->bounds[1] - mod->bounds[0]);
648: }
649: else SETERRQ(mod->comm,PETSC_ERR_SUP,"Unknown type %d",eu->type);
651: /* set phys->maxspeed: (mod->maxspeed = phys->maxspeed) in main; */
652: eu->sound(&gamma,uu,&c);
653: c = (uu->ru[0]/uu->r) + c;
654: if (c > phys->maxspeed) phys->maxspeed = c;
656: return 0;
657: }
659: static PetscErrorCode Pressure_PG(const PetscReal gamma,const EulerNode *x,PetscReal *p)
660: {
661: PetscReal ru2;
664: ru2 = DotDIMReal(x->ru,x->ru);
665: (*p)=(x->E - 0.5*ru2/x->r)*(gamma - 1.0); /* (E - rho V^2/2)(gamma-1) = e rho (gamma-1) */
666: return 0;
667: }
669: static PetscErrorCode SpeedOfSound_PG(const PetscReal *gamma, const EulerNode *x, PetscReal *c)
670: {
671: PetscReal p;
674: Pressure_PG(*gamma,x,&p);
676: /* pars[EULER_PAR_GAMMA] = heat capacity ratio */
677: (*c)=PetscSqrtReal(*gamma * p / x->r);
678: return 0;
679: }
681: /*
682: * x = (rho,rho*(u_1),...,rho*e)^T
683: * x_t+div(f_1(x))+...+div(f_DIM(x)) = 0
684: *
685: * f_i(x) = u_i*x+(0,0,...,p,...,p*u_i)^T
686: *
687: */
688: static PetscErrorCode EulerFlux(Physics phys,const PetscReal *n,const EulerNode *x,EulerNode *f)
689: {
690: Physics_Euler *eu = (Physics_Euler*)phys->data;
691: PetscReal nu,p;
692: PetscInt i;
695: Pressure_PG(eu->pars[EULER_PAR_GAMMA],x,&p);
696: nu = DotDIMReal(x->ru,n);
697: f->r = nu; /* A rho u */
698: nu /= x->r; /* A u */
699: for (i=0; i<DIM; i++) f->ru[i] = nu * x->ru[i] + n[i]*p; /* r u^2 + p */
700: f->E = nu * (x->E + p); /* u(e+p) */
701: return 0;
702: }
704: /* PetscReal* => EulerNode* conversion */
705: static PetscErrorCode PhysicsBoundary_Euler_Wall(PetscReal time, const PetscReal *c, const PetscReal *n, const PetscScalar *a_xI, PetscScalar *a_xG, void *ctx)
706: {
707: PetscInt i;
708: const EulerNode *xI = (const EulerNode*)a_xI;
709: EulerNode *xG = (EulerNode*)a_xG;
710: Physics phys = (Physics)ctx;
711: Physics_Euler *eu = (Physics_Euler*)phys->data;
713: xG->r = xI->r; /* ghost cell density - same */
714: xG->E = xI->E; /* ghost cell energy - same */
715: if (n[1] != 0.) { /* top and bottom */
716: xG->ru[0] = xI->ru[0]; /* copy tang to wall */
717: xG->ru[1] = -xI->ru[1]; /* reflect perp to t/b wall */
718: }
719: else { /* sides */
720: for (i=0; i<DIM; i++) xG->ru[i] = xI->ru[i]; /* copy */
721: }
722: if (eu->type == EULER_LINEAR_WAVE) { /* debug */
723: #if 0
724: PetscPrintf(PETSC_COMM_WORLD,"%s coord=%g,%g\n",PETSC_FUNCTION_NAME,c[0],c[1]);
725: #endif
726: }
727: return 0;
728: }
729: int godunovflux( const PetscScalar *ul, const PetscScalar *ur, PetscScalar *flux, const PetscReal *nn, const int *ndim, const PetscReal *gamma);
730: /* PetscReal* => EulerNode* conversion */
731: static void PhysicsRiemann_Euler_Godunov( PetscInt dim, PetscInt Nf, const PetscReal *qp, const PetscReal *n,
732: const PetscScalar *xL, const PetscScalar *xR, PetscInt numConstants, const PetscScalar constants[], PetscScalar *flux, Physics phys)
733: {
734: Physics_Euler *eu = (Physics_Euler*)phys->data;
735: PetscReal cL,cR,speed,velL,velR,nn[DIM],s2;
736: PetscInt i;
737: PetscErrorCode ierr;
740: for (i=0,s2=0.; i<DIM; i++) {
741: nn[i] = n[i];
742: s2 += nn[i]*nn[i];
743: }
744: s2 = PetscSqrtReal(s2); /* |n|_2 = sum(n^2)^1/2 */
745: for (i=0.; i<DIM; i++) nn[i] /= s2;
746: if (0) { /* Rusanov */
747: const EulerNode *uL = (const EulerNode*)xL,*uR = (const EulerNode*)xR;
748: EulerNodeUnion fL,fR;
749: EulerFlux(phys,nn,uL,&(fL.eulernode));
750: EulerFlux(phys,nn,uR,&(fR.eulernode));
751: eu->sound(&eu->pars[EULER_PAR_GAMMA],uL,&cL);if (ierr) exit(13);
752: eu->sound(&eu->pars[EULER_PAR_GAMMA],uR,&cR);if (ierr) exit(14);
753: velL = DotDIMReal(uL->ru,nn)/uL->r;
754: velR = DotDIMReal(uR->ru,nn)/uR->r;
755: speed = PetscMax(velR + cR, velL + cL);
756: for (i=0; i<2+dim; i++) flux[i] = 0.5*((fL.vals[i]+fR.vals[i]) + speed*(xL[i] - xR[i]))*s2;
757: }
758: else {
759: int dim = DIM;
760: /* int iwave = */
761: godunovflux(xL, xR, flux, nn, &dim, &eu->pars[EULER_PAR_GAMMA]);
762: for (i=0; i<2+dim; i++) flux[i] *= s2;
763: }
764: return;
765: }
767: static PetscErrorCode PhysicsFunctional_Euler(Model mod,PetscReal time,const PetscReal *coord,const PetscScalar *xx,PetscReal *f,void *ctx)
768: {
769: Physics phys = (Physics)ctx;
770: Physics_Euler *eu = (Physics_Euler*)phys->data;
771: const EulerNode *x = (const EulerNode*)xx;
772: PetscReal p;
775: f[eu->monitor.Density] = x->r;
776: f[eu->monitor.Momentum] = NormDIM(x->ru);
777: f[eu->monitor.Energy] = x->E;
778: f[eu->monitor.Speed] = NormDIM(x->ru)/x->r;
779: Pressure_PG(eu->pars[EULER_PAR_GAMMA], x, &p);
780: f[eu->monitor.Pressure] = p;
781: return 0;
782: }
784: static PetscErrorCode SetUpBC_Euler(DM dm, PetscDS prob,Physics phys)
785: {
786: Physics_Euler *eu = (Physics_Euler *) phys->data;
787: DMLabel label;
790: DMGetLabel(dm, "Face Sets", &label);
791: if (eu->type == EULER_LINEAR_WAVE) {
792: const PetscInt wallids[] = {100,101};
793: PetscDSAddBoundary(prob, DM_BC_NATURAL_RIEMANN, "wall", label, ALEN(wallids), wallids, 0, 0, NULL, (void (*)(void)) PhysicsBoundary_Euler_Wall, NULL, phys, NULL);
794: }
795: else {
796: const PetscInt wallids[] = {100,101,200,300};
797: PetscDSAddBoundary(prob, DM_BC_NATURAL_RIEMANN, "wall", label, ALEN(wallids), wallids, 0, 0, NULL, (void (*)(void)) PhysicsBoundary_Euler_Wall, NULL, phys, NULL);
798: }
799: return 0;
800: }
802: static PetscErrorCode PhysicsCreate_Euler(Model mod,Physics phys,PetscOptionItems *PetscOptionsObject)
803: {
804: Physics_Euler *eu;
807: phys->field_desc = PhysicsFields_Euler;
808: phys->riemann = (PetscRiemannFunc) PhysicsRiemann_Euler_Godunov;
809: PetscNew(&eu);
810: phys->data = eu;
811: mod->setupbc = SetUpBC_Euler;
812: PetscOptionsHead(PetscOptionsObject,"Euler options");
813: {
814: PetscReal alpha;
815: char type[64] = "linear_wave";
816: PetscBool is;
817: eu->pars[EULER_PAR_GAMMA] = 1.4;
818: eu->pars[EULER_PAR_AMACH] = 2.02;
819: eu->pars[EULER_PAR_RHOR] = 3.0;
820: eu->pars[EULER_PAR_ITANA] = 0.57735026918963; /* angle of Euler self similar (SS) shock */
821: PetscOptionsReal("-eu_gamma","Heat capacity ratio","",eu->pars[EULER_PAR_GAMMA],&eu->pars[EULER_PAR_GAMMA],NULL);
822: PetscOptionsReal("-eu_amach","Shock speed (Mach)","",eu->pars[EULER_PAR_AMACH],&eu->pars[EULER_PAR_AMACH],NULL);
823: PetscOptionsReal("-eu_rho2","Density right of discontinuity","",eu->pars[EULER_PAR_RHOR],&eu->pars[EULER_PAR_RHOR],NULL);
824: alpha = 60.;
825: PetscOptionsReal("-eu_alpha","Angle of discontinuity","",alpha,&alpha,NULL);
827: eu->pars[EULER_PAR_ITANA] = 1./PetscTanReal( alpha * PETSC_PI / 180.0);
828: PetscOptionsString("-eu_type","Type of Euler test","",type,type,sizeof(type),NULL);
829: PetscStrcmp(type,"linear_wave", &is);
830: if (is) {
831: /* Remember this should be periodic */
832: eu->type = EULER_LINEAR_WAVE;
833: PetscPrintf(PETSC_COMM_WORLD,"%s set Euler type: %s\n",PETSC_FUNCTION_NAME,"linear_wave");
834: }
835: else {
837: PetscStrcmp(type,"iv_shock", &is);
838: if (is) {
839: eu->type = EULER_IV_SHOCK;
840: PetscPrintf(PETSC_COMM_WORLD,"%s set Euler type: %s\n",PETSC_FUNCTION_NAME,"iv_shock");
841: }
842: else {
843: PetscStrcmp(type,"ss_shock", &is);
844: if (is) {
845: eu->type = EULER_SS_SHOCK;
846: PetscPrintf(PETSC_COMM_WORLD,"%s set Euler type: %s\n",PETSC_FUNCTION_NAME,"ss_shock");
847: }
848: else {
849: PetscStrcmp(type,"shock_tube", &is);
850: if (is) eu->type = EULER_SHOCK_TUBE;
851: else SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"Unknown Euler type %s",type);
852: PetscPrintf(PETSC_COMM_WORLD,"%s set Euler type: %s\n",PETSC_FUNCTION_NAME,"shock_tube");
853: }
854: }
855: }
856: }
857: PetscOptionsTail();
858: eu->sound = SpeedOfSound_PG;
859: phys->maxspeed = 0.; /* will get set in solution */
860: ModelSolutionSetDefault(mod,PhysicsSolution_Euler,phys);
861: ModelFunctionalRegister(mod,"Speed",&eu->monitor.Speed,PhysicsFunctional_Euler,phys);
862: ModelFunctionalRegister(mod,"Energy",&eu->monitor.Energy,PhysicsFunctional_Euler,phys);
863: ModelFunctionalRegister(mod,"Density",&eu->monitor.Density,PhysicsFunctional_Euler,phys);
864: ModelFunctionalRegister(mod,"Momentum",&eu->monitor.Momentum,PhysicsFunctional_Euler,phys);
865: ModelFunctionalRegister(mod,"Pressure",&eu->monitor.Pressure,PhysicsFunctional_Euler,phys);
867: return 0;
868: }
870: static PetscErrorCode ErrorIndicator_Simple(PetscInt dim, PetscReal volume, PetscInt numComps, const PetscScalar u[], const PetscScalar grad[], PetscReal *error, void *ctx)
871: {
872: PetscReal err = 0.;
873: PetscInt i, j;
876: for (i = 0; i < numComps; i++) {
877: for (j = 0; j < dim; j++) {
878: err += PetscSqr(PetscRealPart(grad[i * dim + j]));
879: }
880: }
881: *error = volume * err;
882: return 0;
883: }
885: PetscErrorCode CreatePartitionVec(DM dm, DM *dmCell, Vec *partition)
886: {
887: PetscSF sfPoint;
888: PetscSection coordSection;
889: Vec coordinates;
890: PetscSection sectionCell;
891: PetscScalar *part;
892: PetscInt cStart, cEnd, c;
893: PetscMPIInt rank;
896: DMGetCoordinateSection(dm, &coordSection);
897: DMGetCoordinatesLocal(dm, &coordinates);
898: DMClone(dm, dmCell);
899: DMGetPointSF(dm, &sfPoint);
900: DMSetPointSF(*dmCell, sfPoint);
901: DMSetCoordinateSection(*dmCell, PETSC_DETERMINE, coordSection);
902: DMSetCoordinatesLocal(*dmCell, coordinates);
903: MPI_Comm_rank(PetscObjectComm((PetscObject)dm), &rank);
904: PetscSectionCreate(PetscObjectComm((PetscObject)dm), §ionCell);
905: DMPlexGetHeightStratum(*dmCell, 0, &cStart, &cEnd);
906: PetscSectionSetChart(sectionCell, cStart, cEnd);
907: for (c = cStart; c < cEnd; ++c) {
908: PetscSectionSetDof(sectionCell, c, 1);
909: }
910: PetscSectionSetUp(sectionCell);
911: DMSetLocalSection(*dmCell, sectionCell);
912: PetscSectionDestroy(§ionCell);
913: DMCreateLocalVector(*dmCell, partition);
914: PetscObjectSetName((PetscObject)*partition, "partition");
915: VecGetArray(*partition, &part);
916: for (c = cStart; c < cEnd; ++c) {
917: PetscScalar *p;
919: DMPlexPointLocalRef(*dmCell, c, part, &p);
920: p[0] = rank;
921: }
922: VecRestoreArray(*partition, &part);
923: return 0;
924: }
926: PetscErrorCode CreateMassMatrix(DM dm, Vec *massMatrix, User user)
927: {
928: DM plex, dmMass, dmFace, dmCell, dmCoord;
929: PetscSection coordSection;
930: Vec coordinates, facegeom, cellgeom;
931: PetscSection sectionMass;
932: PetscScalar *m;
933: const PetscScalar *fgeom, *cgeom, *coords;
934: PetscInt vStart, vEnd, v;
937: DMConvert(dm, DMPLEX, &plex);
938: DMGetCoordinateSection(dm, &coordSection);
939: DMGetCoordinatesLocal(dm, &coordinates);
940: DMClone(dm, &dmMass);
941: DMSetCoordinateSection(dmMass, PETSC_DETERMINE, coordSection);
942: DMSetCoordinatesLocal(dmMass, coordinates);
943: PetscSectionCreate(PetscObjectComm((PetscObject)dm), §ionMass);
944: DMPlexGetDepthStratum(dm, 0, &vStart, &vEnd);
945: PetscSectionSetChart(sectionMass, vStart, vEnd);
946: for (v = vStart; v < vEnd; ++v) {
947: PetscInt numFaces;
949: DMPlexGetSupportSize(dmMass, v, &numFaces);
950: PetscSectionSetDof(sectionMass, v, numFaces*numFaces);
951: }
952: PetscSectionSetUp(sectionMass);
953: DMSetLocalSection(dmMass, sectionMass);
954: PetscSectionDestroy(§ionMass);
955: DMGetLocalVector(dmMass, massMatrix);
956: VecGetArray(*massMatrix, &m);
957: DMPlexGetGeometryFVM(plex, &facegeom, &cellgeom, NULL);
958: VecGetDM(facegeom, &dmFace);
959: VecGetArrayRead(facegeom, &fgeom);
960: VecGetDM(cellgeom, &dmCell);
961: VecGetArrayRead(cellgeom, &cgeom);
962: DMGetCoordinateDM(dm, &dmCoord);
963: VecGetArrayRead(coordinates, &coords);
964: for (v = vStart; v < vEnd; ++v) {
965: const PetscInt *faces;
966: PetscFVFaceGeom *fgA, *fgB, *cg;
967: PetscScalar *vertex;
968: PetscInt numFaces, sides[2], f, g;
970: DMPlexPointLocalRead(dmCoord, v, coords, &vertex);
971: DMPlexGetSupportSize(dmMass, v, &numFaces);
972: DMPlexGetSupport(dmMass, v, &faces);
973: for (f = 0; f < numFaces; ++f) {
974: sides[0] = faces[f];
975: DMPlexPointLocalRead(dmFace, faces[f], fgeom, &fgA);
976: for (g = 0; g < numFaces; ++g) {
977: const PetscInt *cells = NULL;
978: PetscReal area = 0.0;
979: PetscInt numCells;
981: sides[1] = faces[g];
982: DMPlexPointLocalRead(dmFace, faces[g], fgeom, &fgB);
983: DMPlexGetJoin(dmMass, 2, sides, &numCells, &cells);
985: DMPlexPointLocalRead(dmCell, cells[0], cgeom, &cg);
986: area += PetscAbsScalar((vertex[0] - cg->centroid[0])*(fgA->centroid[1] - cg->centroid[1]) - (vertex[1] - cg->centroid[1])*(fgA->centroid[0] - cg->centroid[0]));
987: area += PetscAbsScalar((vertex[0] - cg->centroid[0])*(fgB->centroid[1] - cg->centroid[1]) - (vertex[1] - cg->centroid[1])*(fgB->centroid[0] - cg->centroid[0]));
988: m[f*numFaces+g] = Dot2Real(fgA->normal, fgB->normal)*area*0.5;
989: DMPlexRestoreJoin(dmMass, 2, sides, &numCells, &cells);
990: }
991: }
992: }
993: VecRestoreArrayRead(facegeom, &fgeom);
994: VecRestoreArrayRead(cellgeom, &cgeom);
995: VecRestoreArrayRead(coordinates, &coords);
996: VecRestoreArray(*massMatrix, &m);
997: DMDestroy(&dmMass);
998: DMDestroy(&plex);
999: return 0;
1000: }
1002: /* Behavior will be different for multi-physics or when using non-default boundary conditions */
1003: static PetscErrorCode ModelSolutionSetDefault(Model mod,SolutionFunction func,void *ctx)
1004: {
1006: mod->solution = func;
1007: mod->solutionctx = ctx;
1008: return 0;
1009: }
1011: static PetscErrorCode ModelFunctionalRegister(Model mod,const char *name,PetscInt *offset,FunctionalFunction func,void *ctx)
1012: {
1013: FunctionalLink link,*ptr;
1014: PetscInt lastoffset = -1;
1017: for (ptr=&mod->functionalRegistry; *ptr; ptr = &(*ptr)->next) lastoffset = (*ptr)->offset;
1018: PetscNew(&link);
1019: PetscStrallocpy(name,&link->name);
1020: link->offset = lastoffset + 1;
1021: link->func = func;
1022: link->ctx = ctx;
1023: link->next = NULL;
1024: *ptr = link;
1025: *offset = link->offset;
1026: return 0;
1027: }
1029: static PetscErrorCode ModelFunctionalSetFromOptions(Model mod,PetscOptionItems *PetscOptionsObject)
1030: {
1031: PetscInt i,j;
1032: FunctionalLink link;
1033: char *names[256];
1036: mod->numMonitored = ALEN(names);
1037: PetscOptionsStringArray("-monitor","list of functionals to monitor","",names,&mod->numMonitored,NULL);
1038: /* Create list of functionals that will be computed somehow */
1039: PetscMalloc1(mod->numMonitored,&mod->functionalMonitored);
1040: /* Create index of calls that we will have to make to compute these functionals (over-allocation in general). */
1041: PetscMalloc1(mod->numMonitored,&mod->functionalCall);
1042: mod->numCall = 0;
1043: for (i=0; i<mod->numMonitored; i++) {
1044: for (link=mod->functionalRegistry; link; link=link->next) {
1045: PetscBool match;
1046: PetscStrcasecmp(names[i],link->name,&match);
1047: if (match) break;
1048: }
1050: mod->functionalMonitored[i] = link;
1051: for (j=0; j<i; j++) {
1052: if (mod->functionalCall[j]->func == link->func && mod->functionalCall[j]->ctx == link->ctx) goto next_name;
1053: }
1054: mod->functionalCall[mod->numCall++] = link; /* Just points to the first link using the result. There may be more results. */
1055: next_name:
1056: PetscFree(names[i]);
1057: }
1059: /* Find out the maximum index of any functional computed by a function we will be calling (even if we are not using it) */
1060: mod->maxComputed = -1;
1061: for (link=mod->functionalRegistry; link; link=link->next) {
1062: for (i=0; i<mod->numCall; i++) {
1063: FunctionalLink call = mod->functionalCall[i];
1064: if (link->func == call->func && link->ctx == call->ctx) {
1065: mod->maxComputed = PetscMax(mod->maxComputed,link->offset);
1066: }
1067: }
1068: }
1069: return 0;
1070: }
1072: static PetscErrorCode FunctionalLinkDestroy(FunctionalLink *link)
1073: {
1074: FunctionalLink l,next;
1077: if (!link) return 0;
1078: l = *link;
1079: *link = NULL;
1080: for (; l; l=next) {
1081: next = l->next;
1082: PetscFree(l->name);
1083: PetscFree(l);
1084: }
1085: return 0;
1086: }
1088: /* put the solution callback into a functional callback */
1089: static PetscErrorCode SolutionFunctional(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *u, void *modctx)
1090: {
1091: Model mod;
1092: mod = (Model) modctx;
1093: (*mod->solution)(mod, time, x, u, mod->solutionctx);
1094: return 0;
1095: }
1097: PetscErrorCode SetInitialCondition(DM dm, Vec X, User user)
1098: {
1099: PetscErrorCode (*func[1]) (PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *u, void *ctx);
1100: void *ctx[1];
1101: Model mod = user->model;
1104: func[0] = SolutionFunctional;
1105: ctx[0] = (void *) mod;
1106: DMProjectFunction(dm,0.0,func,ctx,INSERT_ALL_VALUES,X);
1107: return 0;
1108: }
1110: static PetscErrorCode OutputVTK(DM dm, const char *filename, PetscViewer *viewer)
1111: {
1113: PetscViewerCreate(PetscObjectComm((PetscObject)dm), viewer);
1114: PetscViewerSetType(*viewer, PETSCVIEWERVTK);
1115: PetscViewerFileSetName(*viewer, filename);
1116: return 0;
1117: }
1119: static PetscErrorCode MonitorVTK(TS ts,PetscInt stepnum,PetscReal time,Vec X,void *ctx)
1120: {
1121: User user = (User)ctx;
1122: DM dm, plex;
1123: PetscViewer viewer;
1124: char filename[PETSC_MAX_PATH_LEN],*ftable = NULL;
1125: PetscReal xnorm;
1128: PetscObjectSetName((PetscObject) X, "u");
1129: VecGetDM(X,&dm);
1130: VecNorm(X,NORM_INFINITY,&xnorm);
1132: if (stepnum >= 0) {
1133: stepnum += user->monitorStepOffset;
1134: }
1135: if (stepnum >= 0) { /* No summary for final time */
1136: Model mod = user->model;
1137: Vec cellgeom;
1138: PetscInt c,cStart,cEnd,fcount,i;
1139: size_t ftableused,ftablealloc;
1140: const PetscScalar *cgeom,*x;
1141: DM dmCell;
1142: DMLabel vtkLabel;
1143: PetscReal *fmin,*fmax,*fintegral,*ftmp;
1145: DMConvert(dm, DMPLEX, &plex);
1146: DMPlexGetGeometryFVM(plex, NULL, &cellgeom, NULL);
1147: fcount = mod->maxComputed+1;
1148: PetscMalloc4(fcount,&fmin,fcount,&fmax,fcount,&fintegral,fcount,&ftmp);
1149: for (i=0; i<fcount; i++) {
1150: fmin[i] = PETSC_MAX_REAL;
1151: fmax[i] = PETSC_MIN_REAL;
1152: fintegral[i] = 0;
1153: }
1154: VecGetDM(cellgeom,&dmCell);
1155: DMPlexGetSimplexOrBoxCells(dmCell,0,&cStart,&cEnd);
1156: VecGetArrayRead(cellgeom,&cgeom);
1157: VecGetArrayRead(X,&x);
1158: DMGetLabel(dm,"vtk",&vtkLabel);
1159: for (c = cStart; c < cEnd; ++c) {
1160: PetscFVCellGeom *cg;
1161: const PetscScalar *cx = NULL;
1162: PetscInt vtkVal = 0;
1164: /* not that these two routines as currently implemented work for any dm with a
1165: * localSection/globalSection */
1166: DMPlexPointLocalRead(dmCell,c,cgeom,&cg);
1167: DMPlexPointGlobalRead(dm,c,x,&cx);
1168: if (vtkLabel) DMLabelGetValue(vtkLabel,c,&vtkVal);
1169: if (!vtkVal || !cx) continue; /* ghost, or not a global cell */
1170: for (i=0; i<mod->numCall; i++) {
1171: FunctionalLink flink = mod->functionalCall[i];
1172: (*flink->func)(mod,time,cg->centroid,cx,ftmp,flink->ctx);
1173: }
1174: for (i=0; i<fcount; i++) {
1175: fmin[i] = PetscMin(fmin[i],ftmp[i]);
1176: fmax[i] = PetscMax(fmax[i],ftmp[i]);
1177: fintegral[i] += cg->volume * ftmp[i];
1178: }
1179: }
1180: VecRestoreArrayRead(cellgeom,&cgeom);
1181: VecRestoreArrayRead(X,&x);
1182: DMDestroy(&plex);
1183: MPI_Allreduce(MPI_IN_PLACE,fmin,fcount,MPIU_REAL,MPIU_MIN,PetscObjectComm((PetscObject)ts));
1184: MPI_Allreduce(MPI_IN_PLACE,fmax,fcount,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
1185: MPI_Allreduce(MPI_IN_PLACE,fintegral,fcount,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));
1187: ftablealloc = fcount * 100;
1188: ftableused = 0;
1189: PetscMalloc1(ftablealloc,&ftable);
1190: for (i=0; i<mod->numMonitored; i++) {
1191: size_t countused;
1192: char buffer[256],*p;
1193: FunctionalLink flink = mod->functionalMonitored[i];
1194: PetscInt id = flink->offset;
1195: if (i % 3) {
1196: PetscArraycpy(buffer," ",2);
1197: p = buffer + 2;
1198: } else if (i) {
1199: char newline[] = "\n";
1200: PetscMemcpy(buffer,newline,sizeof(newline)-1);
1201: p = buffer + sizeof(newline) - 1;
1202: } else {
1203: p = buffer;
1204: }
1205: PetscSNPrintfCount(p,sizeof buffer-(p-buffer),"%12s [%10.7g,%10.7g] int %10.7g",&countused,flink->name,(double)fmin[id],(double)fmax[id],(double)fintegral[id]);
1206: countused--;
1207: countused += p - buffer;
1208: if (countused > ftablealloc-ftableused-1) { /* reallocate */
1209: char *ftablenew;
1210: ftablealloc = 2*ftablealloc + countused;
1211: PetscMalloc(ftablealloc,&ftablenew);
1212: PetscArraycpy(ftablenew,ftable,ftableused);
1213: PetscFree(ftable);
1214: ftable = ftablenew;
1215: }
1216: PetscArraycpy(ftable+ftableused,buffer,countused);
1217: ftableused += countused;
1218: ftable[ftableused] = 0;
1219: }
1220: PetscFree4(fmin,fmax,fintegral,ftmp);
1222: PetscPrintf(PetscObjectComm((PetscObject)ts),"% 3D time %8.4g |x| %8.4g %s\n",stepnum,(double)time,(double)xnorm,ftable ? ftable : "");
1223: PetscFree(ftable);
1224: }
1225: if (user->vtkInterval < 1) return 0;
1226: if ((stepnum == -1) ^ (stepnum % user->vtkInterval == 0)) {
1227: if (stepnum == -1) { /* Final time is not multiple of normal time interval, write it anyway */
1228: TSGetStepNumber(ts,&stepnum);
1229: }
1230: PetscSNPrintf(filename,sizeof filename,"%s-%03D.vtu",user->outputBasename,stepnum);
1231: OutputVTK(dm,filename,&viewer);
1232: VecView(X,viewer);
1233: PetscViewerDestroy(&viewer);
1234: }
1235: return 0;
1236: }
1238: static PetscErrorCode initializeTS(DM dm, User user, TS *ts)
1239: {
1240: TSCreate(PetscObjectComm((PetscObject)dm), ts);
1241: TSSetType(*ts, TSSSP);
1242: TSSetDM(*ts, dm);
1243: if (user->vtkmon) {
1244: TSMonitorSet(*ts,MonitorVTK,user,NULL);
1245: }
1246: DMTSSetBoundaryLocal(dm, DMPlexTSComputeBoundary, user);
1247: DMTSSetRHSFunctionLocal(dm, DMPlexTSComputeRHSFunctionFVM, user);
1248: TSSetMaxTime(*ts,2.0);
1249: TSSetExactFinalTime(*ts,TS_EXACTFINALTIME_STEPOVER);
1250: return 0;
1251: }
1253: static PetscErrorCode adaptToleranceFVM(PetscFV fvm, TS ts, Vec sol, VecTagger refineTag, VecTagger coarsenTag, User user, TS *tsNew, Vec *solNew)
1254: {
1255: DM dm, gradDM, plex, cellDM, adaptedDM = NULL;
1256: Vec cellGeom, faceGeom;
1257: PetscBool isForest, computeGradient;
1258: Vec grad, locGrad, locX, errVec;
1259: PetscInt cStart, cEnd, c, dim, nRefine, nCoarsen;
1260: PetscReal minMaxInd[2] = {PETSC_MAX_REAL, PETSC_MIN_REAL}, minMaxIndGlobal[2], minInd, maxInd, time;
1261: PetscScalar *errArray;
1262: const PetscScalar *pointVals;
1263: const PetscScalar *pointGrads;
1264: const PetscScalar *pointGeom;
1265: DMLabel adaptLabel = NULL;
1266: IS refineIS, coarsenIS;
1268: TSGetTime(ts,&time);
1269: VecGetDM(sol, &dm);
1270: DMGetDimension(dm,&dim);
1271: PetscFVGetComputeGradients(fvm,&computeGradient);
1272: PetscFVSetComputeGradients(fvm,PETSC_TRUE);
1273: DMIsForest(dm, &isForest);
1274: DMConvert(dm, DMPLEX, &plex);
1275: DMPlexGetDataFVM(plex, fvm, &cellGeom, &faceGeom, &gradDM);
1276: DMCreateLocalVector(plex,&locX);
1277: DMPlexInsertBoundaryValues(plex, PETSC_TRUE, locX, 0.0, faceGeom, cellGeom, NULL);
1278: DMGlobalToLocalBegin(plex, sol, INSERT_VALUES, locX);
1279: DMGlobalToLocalEnd (plex, sol, INSERT_VALUES, locX);
1280: DMCreateGlobalVector(gradDM, &grad);
1281: DMPlexReconstructGradientsFVM(plex, locX, grad);
1282: DMCreateLocalVector(gradDM, &locGrad);
1283: DMGlobalToLocalBegin(gradDM, grad, INSERT_VALUES, locGrad);
1284: DMGlobalToLocalEnd(gradDM, grad, INSERT_VALUES, locGrad);
1285: VecDestroy(&grad);
1286: DMPlexGetSimplexOrBoxCells(plex,0,&cStart,&cEnd);
1287: VecGetArrayRead(locGrad,&pointGrads);
1288: VecGetArrayRead(cellGeom,&pointGeom);
1289: VecGetArrayRead(locX,&pointVals);
1290: VecGetDM(cellGeom,&cellDM);
1291: DMLabelCreate(PETSC_COMM_SELF,"adapt",&adaptLabel);
1292: VecCreateMPI(PetscObjectComm((PetscObject)plex),cEnd-cStart,PETSC_DETERMINE,&errVec);
1293: VecSetUp(errVec);
1294: VecGetArray(errVec,&errArray);
1295: for (c = cStart; c < cEnd; c++) {
1296: PetscReal errInd = 0.;
1297: PetscScalar *pointGrad;
1298: PetscScalar *pointVal;
1299: PetscFVCellGeom *cg;
1301: DMPlexPointLocalRead(gradDM,c,pointGrads,&pointGrad);
1302: DMPlexPointLocalRead(cellDM,c,pointGeom,&cg);
1303: DMPlexPointLocalRead(plex,c,pointVals,&pointVal);
1305: (user->model->errorIndicator)(dim,cg->volume,user->model->physics->dof,pointVal,pointGrad,&errInd,user->model->errorCtx);
1306: errArray[c-cStart] = errInd;
1307: minMaxInd[0] = PetscMin(minMaxInd[0],errInd);
1308: minMaxInd[1] = PetscMax(minMaxInd[1],errInd);
1309: }
1310: VecRestoreArray(errVec,&errArray);
1311: VecRestoreArrayRead(locX,&pointVals);
1312: VecRestoreArrayRead(cellGeom,&pointGeom);
1313: VecRestoreArrayRead(locGrad,&pointGrads);
1314: VecDestroy(&locGrad);
1315: VecDestroy(&locX);
1316: DMDestroy(&plex);
1318: VecTaggerComputeIS(refineTag,errVec,&refineIS,NULL);
1319: VecTaggerComputeIS(coarsenTag,errVec,&coarsenIS,NULL);
1320: ISGetSize(refineIS,&nRefine);
1321: ISGetSize(coarsenIS,&nCoarsen);
1322: if (nRefine) DMLabelSetStratumIS(adaptLabel,DM_ADAPT_REFINE,refineIS);
1323: if (nCoarsen) DMLabelSetStratumIS(adaptLabel,DM_ADAPT_COARSEN,coarsenIS);
1324: ISDestroy(&coarsenIS);
1325: ISDestroy(&refineIS);
1326: VecDestroy(&errVec);
1328: PetscFVSetComputeGradients(fvm,computeGradient);
1329: minMaxInd[1] = -minMaxInd[1];
1330: MPI_Allreduce(minMaxInd,minMaxIndGlobal,2,MPIU_REAL,MPI_MIN,PetscObjectComm((PetscObject)dm));
1331: minInd = minMaxIndGlobal[0];
1332: maxInd = -minMaxIndGlobal[1];
1333: PetscInfo(ts, "error indicator range (%E, %E)\n", minInd, maxInd);
1334: if (nRefine || nCoarsen) { /* at least one cell is over the refinement threshold */
1335: DMAdaptLabel(dm,adaptLabel,&adaptedDM);
1336: }
1337: DMLabelDestroy(&adaptLabel);
1338: if (adaptedDM) {
1339: PetscInfo(ts, "Adapted mesh, marking %D cells for refinement, and %D cells for coarsening\n", nRefine, nCoarsen);
1340: if (tsNew) initializeTS(adaptedDM, user, tsNew);
1341: if (solNew) {
1342: DMCreateGlobalVector(adaptedDM, solNew);
1343: PetscObjectSetName((PetscObject) *solNew, "solution");
1344: DMForestTransferVec(dm, sol, adaptedDM, *solNew, PETSC_TRUE, time);
1345: }
1346: if (isForest) DMForestSetAdaptivityForest(adaptedDM,NULL); /* clear internal references to the previous dm */
1347: DMDestroy(&adaptedDM);
1348: } else {
1349: if (tsNew) *tsNew = NULL;
1350: if (solNew) *solNew = NULL;
1351: }
1352: return 0;
1353: }
1355: int main(int argc, char **argv)
1356: {
1357: MPI_Comm comm;
1358: PetscDS prob;
1359: PetscFV fvm;
1360: PetscLimiter limiter = NULL, noneLimiter = NULL;
1361: User user;
1362: Model mod;
1363: Physics phys;
1364: DM dm, plex;
1365: PetscReal ftime, cfl, dt, minRadius;
1366: PetscInt dim, nsteps;
1367: TS ts;
1368: TSConvergedReason reason;
1369: Vec X;
1370: PetscViewer viewer;
1371: PetscBool vtkCellGeom, useAMR;
1372: PetscInt adaptInterval;
1373: char physname[256] = "advect";
1374: VecTagger refineTag = NULL, coarsenTag = NULL;
1375: PetscErrorCode ierr;
1377: PetscInitialize(&argc, &argv, (char*) 0, help);
1378: comm = PETSC_COMM_WORLD;
1380: PetscNew(&user);
1381: PetscNew(&user->model);
1382: PetscNew(&user->model->physics);
1383: mod = user->model;
1384: phys = mod->physics;
1385: mod->comm = comm;
1386: useAMR = PETSC_FALSE;
1387: adaptInterval = 1;
1389: /* Register physical models to be available on the command line */
1390: PetscFunctionListAdd(&PhysicsList,"advect" ,PhysicsCreate_Advect);
1391: PetscFunctionListAdd(&PhysicsList,"sw" ,PhysicsCreate_SW);
1392: PetscFunctionListAdd(&PhysicsList,"euler" ,PhysicsCreate_Euler);
1394: PetscOptionsBegin(comm,NULL,"Unstructured Finite Volume Mesh Options","");
1395: {
1396: cfl = 0.9 * 4; /* default SSPRKS2 with s=5 stages is stable for CFL number s-1 */
1397: PetscOptionsReal("-ufv_cfl","CFL number per step","",cfl,&cfl,NULL);
1398: user->vtkInterval = 1;
1399: PetscOptionsInt("-ufv_vtk_interval","VTK output interval (0 to disable)","",user->vtkInterval,&user->vtkInterval,NULL);
1400: user->vtkmon = PETSC_TRUE;
1401: PetscOptionsBool("-ufv_vtk_monitor","Use VTKMonitor routine","",user->vtkmon,&user->vtkmon,NULL);
1402: vtkCellGeom = PETSC_FALSE;
1403: PetscStrcpy(user->outputBasename, "ex11");
1404: PetscOptionsString("-ufv_vtk_basename","VTK output basename","",user->outputBasename,user->outputBasename,sizeof(user->outputBasename),NULL);
1405: PetscOptionsBool("-ufv_vtk_cellgeom","Write cell geometry (for debugging)","",vtkCellGeom,&vtkCellGeom,NULL);
1406: PetscOptionsBool("-ufv_use_amr","use local adaptive mesh refinement","",useAMR,&useAMR,NULL);
1407: PetscOptionsInt("-ufv_adapt_interval","time steps between AMR","",adaptInterval,&adaptInterval,NULL);
1408: }
1409: PetscOptionsEnd();
1411: if (useAMR) {
1412: VecTaggerBox refineBox, coarsenBox;
1414: refineBox.min = refineBox.max = PETSC_MAX_REAL;
1415: coarsenBox.min = coarsenBox.max = PETSC_MIN_REAL;
1417: VecTaggerCreate(comm,&refineTag);
1418: PetscObjectSetOptionsPrefix((PetscObject)refineTag,"refine_");
1419: VecTaggerSetType(refineTag,VECTAGGERABSOLUTE);
1420: VecTaggerAbsoluteSetBox(refineTag,&refineBox);
1421: VecTaggerSetFromOptions(refineTag);
1422: VecTaggerSetUp(refineTag);
1423: PetscObjectViewFromOptions((PetscObject)refineTag,NULL,"-tag_view");
1425: VecTaggerCreate(comm,&coarsenTag);
1426: PetscObjectSetOptionsPrefix((PetscObject)coarsenTag,"coarsen_");
1427: VecTaggerSetType(coarsenTag,VECTAGGERABSOLUTE);
1428: VecTaggerAbsoluteSetBox(coarsenTag,&coarsenBox);
1429: VecTaggerSetFromOptions(coarsenTag);
1430: VecTaggerSetUp(coarsenTag);
1431: PetscObjectViewFromOptions((PetscObject)coarsenTag,NULL,"-tag_view");
1432: }
1434: PetscOptionsBegin(comm,NULL,"Unstructured Finite Volume Physics Options","");
1435: {
1436: PetscErrorCode (*physcreate)(Model,Physics,PetscOptionItems*);
1437: PetscOptionsFList("-physics","Physics module to solve","",PhysicsList,physname,physname,sizeof physname,NULL);
1438: PetscFunctionListFind(PhysicsList,physname,&physcreate);
1439: PetscMemzero(phys,sizeof(struct _n_Physics));
1440: (*physcreate)(mod,phys,PetscOptionsObject);
1441: /* Count number of fields and dofs */
1442: for (phys->nfields=0,phys->dof=0; phys->field_desc[phys->nfields].name; phys->nfields++) phys->dof += phys->field_desc[phys->nfields].dof;
1444: ModelFunctionalSetFromOptions(mod,PetscOptionsObject);
1445: }
1446: PetscOptionsEnd();
1448: /* Create mesh */
1449: {
1450: PetscInt i;
1452: DMCreate(comm, &dm);
1453: DMSetType(dm, DMPLEX);
1454: DMSetFromOptions(dm);
1455: for (i = 0; i < DIM; i++) { mod->bounds[2*i] = 0.; mod->bounds[2*i+1] = 1.;};
1456: dim = DIM;
1457: { /* a null name means just do a hex box */
1458: PetscInt cells[3] = {1, 1, 1}, n = 3;
1459: PetscBool flg2, skew = PETSC_FALSE;
1460: PetscInt nret2 = 2*DIM;
1461: PetscOptionsBegin(comm,NULL,"Rectangular mesh options","");
1462: PetscOptionsRealArray("-grid_bounds","bounds of the mesh in each direction (i.e., x_min,x_max,y_min,y_max","",mod->bounds,&nret2,&flg2);
1463: PetscOptionsBool("-grid_skew_60","Skew grid for 60 degree shock mesh","",skew,&skew,NULL);
1464: PetscOptionsIntArray("-dm_plex_box_faces", "Number of faces along each dimension", "", cells, &n, NULL);
1465: PetscOptionsEnd();
1466: /* TODO Rewrite this with Mark, and remove grid_bounds at that time */
1467: if (flg2) {
1468: PetscInt dimEmbed, i;
1469: PetscInt nCoords;
1470: PetscScalar *coords;
1471: Vec coordinates;
1473: DMGetCoordinatesLocal(dm,&coordinates);
1474: DMGetCoordinateDim(dm,&dimEmbed);
1475: VecGetLocalSize(coordinates,&nCoords);
1477: VecGetArray(coordinates,&coords);
1478: for (i = 0; i < nCoords; i += dimEmbed) {
1479: PetscInt j;
1481: PetscScalar *coord = &coords[i];
1482: for (j = 0; j < dimEmbed; j++) {
1483: coord[j] = mod->bounds[2 * j] + coord[j] * (mod->bounds[2 * j + 1] - mod->bounds[2 * j]);
1484: if (dim==2 && cells[1]==1 && j==0 && skew) {
1485: if (cells[0] == 2 && i == 8) {
1486: coord[j] = .57735026918963; /* hack to get 60 deg skewed mesh */
1487: } else if (cells[0] == 3) {
1488: if (i==2 || i==10) coord[j] = mod->bounds[1]/4.;
1489: else if (i==4) coord[j] = mod->bounds[1]/2.;
1490: else if (i==12) coord[j] = 1.57735026918963*mod->bounds[1]/2.;
1491: }
1492: }
1493: }
1494: }
1495: VecRestoreArray(coordinates,&coords);
1496: DMSetCoordinatesLocal(dm,coordinates);
1497: }
1498: }
1499: }
1500: DMViewFromOptions(dm, NULL, "-orig_dm_view");
1501: DMGetDimension(dm, &dim);
1503: /* set up BCs, functions, tags */
1504: DMCreateLabel(dm, "Face Sets");
1505: mod->errorIndicator = ErrorIndicator_Simple;
1507: {
1508: DM gdm;
1510: DMPlexConstructGhostCells(dm, NULL, NULL, &gdm);
1511: DMDestroy(&dm);
1512: dm = gdm;
1513: DMViewFromOptions(dm, NULL, "-dm_view");
1514: }
1516: PetscFVCreate(comm, &fvm);
1517: PetscFVSetFromOptions(fvm);
1518: PetscFVSetNumComponents(fvm, phys->dof);
1519: PetscFVSetSpatialDimension(fvm, dim);
1520: PetscObjectSetName((PetscObject) fvm,"");
1521: {
1522: PetscInt f, dof;
1523: for (f=0,dof=0; f < phys->nfields; f++) {
1524: PetscInt newDof = phys->field_desc[f].dof;
1526: if (newDof == 1) {
1527: PetscFVSetComponentName(fvm,dof,phys->field_desc[f].name);
1528: }
1529: else {
1530: PetscInt j;
1532: for (j = 0; j < newDof; j++) {
1533: char compName[256] = "Unknown";
1535: PetscSNPrintf(compName,sizeof(compName),"%s_%d",phys->field_desc[f].name,j);
1536: PetscFVSetComponentName(fvm,dof+j,compName);
1537: }
1538: }
1539: dof += newDof;
1540: }
1541: }
1542: /* FV is now structured with one field having all physics as components */
1543: DMAddField(dm, NULL, (PetscObject) fvm);
1544: DMCreateDS(dm);
1545: DMGetDS(dm, &prob);
1546: PetscDSSetRiemannSolver(prob, 0, user->model->physics->riemann);
1547: PetscDSSetContext(prob, 0, user->model->physics);
1548: (*mod->setupbc)(dm, prob,phys);
1549: PetscDSSetFromOptions(prob);
1550: {
1551: char convType[256];
1552: PetscBool flg;
1554: PetscOptionsBegin(comm, "", "Mesh conversion options", "DMPLEX");
1555: PetscOptionsFList("-dm_type","Convert DMPlex to another format","ex12",DMList,DMPLEX,convType,256,&flg);
1556: PetscOptionsEnd();
1557: if (flg) {
1558: DM dmConv;
1560: DMConvert(dm,convType,&dmConv);
1561: if (dmConv) {
1562: DMViewFromOptions(dmConv, NULL, "-dm_conv_view");
1563: DMDestroy(&dm);
1564: dm = dmConv;
1565: DMSetFromOptions(dm);
1566: }
1567: }
1568: }
1570: initializeTS(dm, user, &ts);
1572: DMCreateGlobalVector(dm, &X);
1573: PetscObjectSetName((PetscObject) X, "solution");
1574: SetInitialCondition(dm, X, user);
1575: if (useAMR) {
1576: PetscInt adaptIter;
1578: /* use no limiting when reconstructing gradients for adaptivity */
1579: PetscFVGetLimiter(fvm, &limiter);
1580: PetscObjectReference((PetscObject) limiter);
1581: PetscLimiterCreate(PetscObjectComm((PetscObject) fvm), &noneLimiter);
1582: PetscLimiterSetType(noneLimiter, PETSCLIMITERNONE);
1584: PetscFVSetLimiter(fvm, noneLimiter);
1585: for (adaptIter = 0; ; ++adaptIter) {
1586: PetscLogDouble bytes;
1587: TS tsNew = NULL;
1589: PetscMemoryGetCurrentUsage(&bytes);
1590: PetscInfo(ts, "refinement loop %D: memory used %g\n", adaptIter, bytes);
1591: DMViewFromOptions(dm, NULL, "-initial_dm_view");
1592: VecViewFromOptions(X, NULL, "-initial_vec_view");
1593: #if 0
1594: if (viewInitial) {
1595: PetscViewer viewer;
1596: char buf[256];
1597: PetscBool isHDF5, isVTK;
1599: PetscViewerCreate(comm,&viewer);
1600: PetscViewerSetType(viewer,PETSCVIEWERVTK);
1601: PetscViewerSetOptionsPrefix(viewer,"initial_");
1602: PetscViewerSetFromOptions(viewer);
1603: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERHDF5,&isHDF5);
1604: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERVTK,&isVTK);
1605: if (isHDF5) {
1606: PetscSNPrintf(buf, 256, "ex11-initial-%d.h5", adaptIter);
1607: } else if (isVTK) {
1608: PetscSNPrintf(buf, 256, "ex11-initial-%d.vtu", adaptIter);
1609: PetscViewerPushFormat(viewer,PETSC_VIEWER_VTK_VTU);
1610: }
1611: PetscViewerFileSetMode(viewer,FILE_MODE_WRITE);
1612: PetscViewerFileSetName(viewer,buf);
1613: if (isHDF5) {
1614: DMView(dm,viewer);
1615: PetscViewerFileSetMode(viewer,FILE_MODE_UPDATE);
1616: }
1617: VecView(X,viewer);
1618: PetscViewerDestroy(&viewer);
1619: }
1620: #endif
1622: adaptToleranceFVM(fvm, ts, X, refineTag, coarsenTag, user, &tsNew, NULL);
1623: if (!tsNew) {
1624: break;
1625: } else {
1626: DMDestroy(&dm);
1627: VecDestroy(&X);
1628: TSDestroy(&ts);
1629: ts = tsNew;
1630: TSGetDM(ts,&dm);
1631: PetscObjectReference((PetscObject)dm);
1632: DMCreateGlobalVector(dm,&X);
1633: PetscObjectSetName((PetscObject) X, "solution");
1634: SetInitialCondition(dm, X, user);
1635: }
1636: }
1637: /* restore original limiter */
1638: PetscFVSetLimiter(fvm, limiter);
1639: }
1641: DMConvert(dm, DMPLEX, &plex);
1642: if (vtkCellGeom) {
1643: DM dmCell;
1644: Vec cellgeom, partition;
1646: DMPlexGetGeometryFVM(plex, NULL, &cellgeom, NULL);
1647: OutputVTK(dm, "ex11-cellgeom.vtk", &viewer);
1648: VecView(cellgeom, viewer);
1649: PetscViewerDestroy(&viewer);
1650: CreatePartitionVec(dm, &dmCell, &partition);
1651: OutputVTK(dmCell, "ex11-partition.vtk", &viewer);
1652: VecView(partition, viewer);
1653: PetscViewerDestroy(&viewer);
1654: VecDestroy(&partition);
1655: DMDestroy(&dmCell);
1656: }
1657: /* collect max maxspeed from all processes -- todo */
1658: DMPlexGetGeometryFVM(plex, NULL, NULL, &minRadius);
1659: DMDestroy(&plex);
1660: MPI_Allreduce(&phys->maxspeed,&mod->maxspeed,1,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
1662: dt = cfl * minRadius / mod->maxspeed;
1663: TSSetTimeStep(ts,dt);
1664: TSSetFromOptions(ts);
1665: if (!useAMR) {
1666: TSSolve(ts,X);
1667: TSGetSolveTime(ts,&ftime);
1668: TSGetStepNumber(ts,&nsteps);
1669: } else {
1670: PetscReal finalTime;
1671: PetscInt adaptIter;
1672: TS tsNew = NULL;
1673: Vec solNew = NULL;
1675: TSGetMaxTime(ts,&finalTime);
1676: TSSetMaxSteps(ts,adaptInterval);
1677: TSSolve(ts,X);
1678: TSGetSolveTime(ts,&ftime);
1679: TSGetStepNumber(ts,&nsteps);
1680: for (adaptIter = 0;ftime < finalTime;adaptIter++) {
1681: PetscLogDouble bytes;
1683: PetscMemoryGetCurrentUsage(&bytes);
1684: PetscInfo(ts, "AMR time step loop %D: memory used %g\n", adaptIter, bytes);
1685: PetscFVSetLimiter(fvm,noneLimiter);
1686: adaptToleranceFVM(fvm,ts,X,refineTag,coarsenTag,user,&tsNew,&solNew);
1687: PetscFVSetLimiter(fvm,limiter);
1688: if (tsNew) {
1689: PetscInfo(ts, "AMR used\n");
1690: DMDestroy(&dm);
1691: VecDestroy(&X);
1692: TSDestroy(&ts);
1693: ts = tsNew;
1694: X = solNew;
1695: TSSetFromOptions(ts);
1696: VecGetDM(X,&dm);
1697: PetscObjectReference((PetscObject)dm);
1698: DMConvert(dm, DMPLEX, &plex);
1699: DMPlexGetGeometryFVM(dm, NULL, NULL, &minRadius);
1700: DMDestroy(&plex);
1701: MPI_Allreduce(&phys->maxspeed,&mod->maxspeed,1,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
1703: dt = cfl * minRadius / mod->maxspeed;
1704: TSSetStepNumber(ts,nsteps);
1705: TSSetTime(ts,ftime);
1706: TSSetTimeStep(ts,dt);
1707: } else {
1708: PetscInfo(ts, "AMR not used\n");
1709: }
1710: user->monitorStepOffset = nsteps;
1711: TSSetMaxSteps(ts,nsteps+adaptInterval);
1712: TSSolve(ts,X);
1713: TSGetSolveTime(ts,&ftime);
1714: TSGetStepNumber(ts,&nsteps);
1715: }
1716: }
1717: TSGetConvergedReason(ts,&reason);
1718: PetscPrintf(PETSC_COMM_WORLD,"%s at time %g after %D steps\n",TSConvergedReasons[reason],(double)ftime,nsteps);
1719: TSDestroy(&ts);
1721: VecTaggerDestroy(&refineTag);
1722: VecTaggerDestroy(&coarsenTag);
1723: PetscFunctionListDestroy(&PhysicsList);
1724: PetscFunctionListDestroy(&PhysicsRiemannList_SW);
1725: FunctionalLinkDestroy(&user->model->functionalRegistry);
1726: PetscFree(user->model->functionalMonitored);
1727: PetscFree(user->model->functionalCall);
1728: PetscFree(user->model->physics->data);
1729: PetscFree(user->model->physics);
1730: PetscFree(user->model);
1731: PetscFree(user);
1732: VecDestroy(&X);
1733: PetscLimiterDestroy(&limiter);
1734: PetscLimiterDestroy(&noneLimiter);
1735: PetscFVDestroy(&fvm);
1736: DMDestroy(&dm);
1737: PetscFinalize();
1738: return 0;
1739: }
1741: /* Godunov fluxs */
1742: PetscScalar cvmgp_(PetscScalar *a, PetscScalar *b, PetscScalar *test)
1743: {
1744: /* System generated locals */
1745: PetscScalar ret_val;
1747: if (PetscRealPart(*test) > 0.) {
1748: goto L10;
1749: }
1750: ret_val = *b;
1751: return ret_val;
1752: L10:
1753: ret_val = *a;
1754: return ret_val;
1755: } /* cvmgp_ */
1757: PetscScalar cvmgm_(PetscScalar *a, PetscScalar *b, PetscScalar *test)
1758: {
1759: /* System generated locals */
1760: PetscScalar ret_val;
1762: if (PetscRealPart(*test) < 0.) {
1763: goto L10;
1764: }
1765: ret_val = *b;
1766: return ret_val;
1767: L10:
1768: ret_val = *a;
1769: return ret_val;
1770: } /* cvmgm_ */
1772: int riem1mdt( PetscScalar *gaml, PetscScalar *gamr, PetscScalar *rl, PetscScalar *pl,
1773: PetscScalar *uxl, PetscScalar *rr, PetscScalar *pr,
1774: PetscScalar *uxr, PetscScalar *rstarl, PetscScalar *rstarr, PetscScalar *
1775: pstar, PetscScalar *ustar)
1776: {
1777: /* Initialized data */
1779: static PetscScalar smallp = 1e-8;
1781: /* System generated locals */
1782: int i__1;
1783: PetscScalar d__1, d__2;
1785: /* Local variables */
1786: static int i0;
1787: static PetscScalar cl, cr, wl, zl, wr, zr, pst, durl, skpr1, skpr2;
1788: static int iwave;
1789: static PetscScalar gascl4, gascr4, cstarl, dpstar, cstarr;
1790: /* static PetscScalar csqrl, csqrr, gascl1, gascl2, gascl3, gascr1, gascr2, gascr3; */
1791: static int iterno;
1792: static PetscScalar ustarl, ustarr, rarepr1, rarepr2;
1794: /* gascl1 = *gaml - 1.; */
1795: /* gascl2 = (*gaml + 1.) * .5; */
1796: /* gascl3 = gascl2 / *gaml; */
1797: gascl4 = 1. / (*gaml - 1.);
1799: /* gascr1 = *gamr - 1.; */
1800: /* gascr2 = (*gamr + 1.) * .5; */
1801: /* gascr3 = gascr2 / *gamr; */
1802: gascr4 = 1. / (*gamr - 1.);
1803: iterno = 10;
1804: /* find pstar: */
1805: cl = PetscSqrtScalar(*gaml * *pl / *rl);
1806: cr = PetscSqrtScalar(*gamr * *pr / *rr);
1807: wl = *rl * cl;
1808: wr = *rr * cr;
1809: /* csqrl = wl * wl; */
1810: /* csqrr = wr * wr; */
1811: *pstar = (wl * *pr + wr * *pl) / (wl + wr);
1812: *pstar = PetscMax(PetscRealPart(*pstar),PetscRealPart(smallp));
1813: pst = *pl / *pr;
1814: skpr1 = cr * (pst - 1.) * PetscSqrtScalar(2. / (*gamr * (*gamr - 1. + (*gamr + 1.) * pst)));
1815: d__1 = (*gamr - 1.) / (*gamr * 2.);
1816: rarepr2 = gascr4 * 2. * cr * (1. - PetscPowScalar(pst, d__1));
1817: pst = *pr / *pl;
1818: skpr2 = cl * (pst - 1.) * PetscSqrtScalar(2. / (*gaml * (*gaml - 1. + (*gaml + 1.) * pst)));
1819: d__1 = (*gaml - 1.) / (*gaml * 2.);
1820: rarepr1 = gascl4 * 2. * cl * (1. - PetscPowScalar(pst, d__1));
1821: durl = *uxr - *uxl;
1822: if (PetscRealPart(*pr) < PetscRealPart(*pl)) {
1823: if (PetscRealPart(durl) >= PetscRealPart(rarepr1)) {
1824: iwave = 100;
1825: } else if (PetscRealPart(durl) <= PetscRealPart(-skpr1)) {
1826: iwave = 300;
1827: } else {
1828: iwave = 400;
1829: }
1830: } else {
1831: if (PetscRealPart(durl) >= PetscRealPart(rarepr2)) {
1832: iwave = 100;
1833: } else if (PetscRealPart(durl) <= PetscRealPart(-skpr2)) {
1834: iwave = 300;
1835: } else {
1836: iwave = 200;
1837: }
1838: }
1839: if (iwave == 100) {
1840: /* 1-wave: rarefaction wave, 3-wave: rarefaction wave */
1841: /* case (100) */
1842: i__1 = iterno;
1843: for (i0 = 1; i0 <= i__1; ++i0) {
1844: d__1 = *pstar / *pl;
1845: d__2 = 1. / *gaml;
1846: *rstarl = *rl * PetscPowScalar(d__1, d__2);
1847: cstarl = PetscSqrtScalar(*gaml * *pstar / *rstarl);
1848: ustarl = *uxl - gascl4 * 2. * (cstarl - cl);
1849: zl = *rstarl * cstarl;
1850: d__1 = *pstar / *pr;
1851: d__2 = 1. / *gamr;
1852: *rstarr = *rr * PetscPowScalar(d__1, d__2);
1853: cstarr = PetscSqrtScalar(*gamr * *pstar / *rstarr);
1854: ustarr = *uxr + gascr4 * 2. * (cstarr - cr);
1855: zr = *rstarr * cstarr;
1856: dpstar = zl * zr * (ustarr - ustarl) / (zl + zr);
1857: *pstar -= dpstar;
1858: *pstar = PetscMax(PetscRealPart(*pstar),PetscRealPart(smallp));
1859: if (PetscAbsScalar(dpstar) / PetscRealPart(*pstar) <= 1e-8) {
1860: #if 0
1861: break;
1862: #endif
1863: }
1864: }
1865: /* 1-wave: shock wave, 3-wave: rarefaction wave */
1866: } else if (iwave == 200) {
1867: /* case (200) */
1868: i__1 = iterno;
1869: for (i0 = 1; i0 <= i__1; ++i0) {
1870: pst = *pstar / *pl;
1871: ustarl = *uxl - (pst - 1.) * cl * PetscSqrtScalar(2. / (*gaml * (*gaml - 1. + (*gaml + 1.) * pst)));
1872: zl = *pl / cl * PetscSqrtScalar(*gaml * 2. * (*gaml - 1. + (*gaml + 1.) * pst)) * (*gaml - 1. + (*gaml + 1.) * pst) / (*gaml * 3. - 1. + (*gaml + 1.) * pst);
1873: d__1 = *pstar / *pr;
1874: d__2 = 1. / *gamr;
1875: *rstarr = *rr * PetscPowScalar(d__1, d__2);
1876: cstarr = PetscSqrtScalar(*gamr * *pstar / *rstarr);
1877: zr = *rstarr * cstarr;
1878: ustarr = *uxr + gascr4 * 2. * (cstarr - cr);
1879: dpstar = zl * zr * (ustarr - ustarl) / (zl + zr);
1880: *pstar -= dpstar;
1881: *pstar = PetscMax(PetscRealPart(*pstar),PetscRealPart(smallp));
1882: if (PetscAbsScalar(dpstar) / PetscRealPart(*pstar) <= 1e-8) {
1883: #if 0
1884: break;
1885: #endif
1886: }
1887: }
1888: /* 1-wave: shock wave, 3-wave: shock */
1889: } else if (iwave == 300) {
1890: /* case (300) */
1891: i__1 = iterno;
1892: for (i0 = 1; i0 <= i__1; ++i0) {
1893: pst = *pstar / *pl;
1894: ustarl = *uxl - (pst - 1.) * cl * PetscSqrtScalar(2. / (*gaml * (*gaml - 1. + (*gaml + 1.) * pst)));
1895: zl = *pl / cl * PetscSqrtScalar(*gaml * 2. * (*gaml - 1. + (*gaml + 1.) * pst)) * (*gaml - 1. + (*gaml + 1.) * pst) / (*gaml * 3. - 1. + (*gaml + 1.) * pst);
1896: pst = *pstar / *pr;
1897: ustarr = *uxr + (pst - 1.) * cr * PetscSqrtScalar(2. / (*gamr * (*gamr - 1. + (*gamr + 1.) * pst)));
1898: zr = *pr / cr * PetscSqrtScalar(*gamr * 2. * (*gamr - 1. + (*gamr + 1.) * pst)) * (*gamr - 1. + (*gamr + 1.) * pst) / (*gamr * 3. - 1. + (*gamr + 1.) * pst);
1899: dpstar = zl * zr * (ustarr - ustarl) / (zl + zr);
1900: *pstar -= dpstar;
1901: *pstar = PetscMax(PetscRealPart(*pstar),PetscRealPart(smallp));
1902: if (PetscAbsScalar(dpstar) / PetscRealPart(*pstar) <= 1e-8) {
1903: #if 0
1904: break;
1905: #endif
1906: }
1907: }
1908: /* 1-wave: rarefaction wave, 3-wave: shock */
1909: } else if (iwave == 400) {
1910: /* case (400) */
1911: i__1 = iterno;
1912: for (i0 = 1; i0 <= i__1; ++i0) {
1913: d__1 = *pstar / *pl;
1914: d__2 = 1. / *gaml;
1915: *rstarl = *rl * PetscPowScalar(d__1, d__2);
1916: cstarl = PetscSqrtScalar(*gaml * *pstar / *rstarl);
1917: ustarl = *uxl - gascl4 * 2. * (cstarl - cl);
1918: zl = *rstarl * cstarl;
1919: pst = *pstar / *pr;
1920: ustarr = *uxr + (pst - 1.) * cr * PetscSqrtScalar(2. / (*gamr * (*gamr - 1. + (*gamr + 1.) * pst)));
1921: zr = *pr / cr * PetscSqrtScalar(*gamr * 2. * (*gamr - 1. + (*gamr + 1.) * pst)) * (*gamr - 1. + (*gamr + 1.) * pst) / (*gamr * 3. - 1. + (*gamr + 1.) * pst);
1922: dpstar = zl * zr * (ustarr - ustarl) / (zl + zr);
1923: *pstar -= dpstar;
1924: *pstar = PetscMax(PetscRealPart(*pstar),PetscRealPart(smallp));
1925: if (PetscAbsScalar(dpstar) / PetscRealPart(*pstar) <= 1e-8) {
1926: #if 0
1927: break;
1928: #endif
1929: }
1930: }
1931: }
1933: *ustar = (zl * ustarr + zr * ustarl) / (zl + zr);
1934: if (PetscRealPart(*pstar) > PetscRealPart(*pl)) {
1935: pst = *pstar / *pl;
1936: *rstarl = ((*gaml + 1.) * pst + *gaml - 1.) / ((*gaml - 1.) * pst + *
1937: gaml + 1.) * *rl;
1938: }
1939: if (PetscRealPart(*pstar) > PetscRealPart(*pr)) {
1940: pst = *pstar / *pr;
1941: *rstarr = ((*gamr + 1.) * pst + *gamr - 1.) / ((*gamr - 1.) * pst + *
1942: gamr + 1.) * *rr;
1943: }
1944: return iwave;
1945: }
1947: PetscScalar sign(PetscScalar x)
1948: {
1949: if (PetscRealPart(x) > 0) return 1.0;
1950: if (PetscRealPart(x) < 0) return -1.0;
1951: return 0.0;
1952: }
1953: /* Riemann Solver */
1954: /* -------------------------------------------------------------------- */
1955: int riemannsolver(PetscScalar *xcen, PetscScalar *xp,
1956: PetscScalar *dtt, PetscScalar *rl, PetscScalar *uxl, PetscScalar *pl,
1957: PetscScalar *utl, PetscScalar *ubl, PetscScalar *gaml, PetscScalar *rho1l,
1958: PetscScalar *rr, PetscScalar *uxr, PetscScalar *pr, PetscScalar *utr,
1959: PetscScalar *ubr, PetscScalar *gamr, PetscScalar *rho1r, PetscScalar *rx,
1960: PetscScalar *uxm, PetscScalar *px, PetscScalar *utx, PetscScalar *ubx,
1961: PetscScalar *gam, PetscScalar *rho1)
1962: {
1963: /* System generated locals */
1964: PetscScalar d__1, d__2;
1966: /* Local variables */
1967: static PetscScalar s, c0, p0, r0, u0, w0, x0, x2, ri, cx, sgn0, wsp0, gasc1, gasc2, gasc3, gasc4;
1968: static PetscScalar cstar, pstar, rstar, ustar, xstar, wspst, ushock, streng, rstarl, rstarr, rstars;
1969: int iwave;
1971: if (*rl == *rr && *pr == *pl && *uxl == *uxr && *gaml == *gamr) {
1972: *rx = *rl;
1973: *px = *pl;
1974: *uxm = *uxl;
1975: *gam = *gaml;
1976: x2 = *xcen + *uxm * *dtt;
1978: if (PetscRealPart(*xp) >= PetscRealPart(x2)) {
1979: *utx = *utr;
1980: *ubx = *ubr;
1981: *rho1 = *rho1r;
1982: } else {
1983: *utx = *utl;
1984: *ubx = *ubl;
1985: *rho1 = *rho1l;
1986: }
1987: return 0;
1988: }
1989: iwave = riem1mdt(gaml, gamr, rl, pl, uxl, rr, pr, uxr, &rstarl, &rstarr, &pstar, &ustar);
1991: x2 = *xcen + ustar * *dtt;
1992: d__1 = *xp - x2;
1993: sgn0 = sign(d__1);
1994: /* x is in 3-wave if sgn0 = 1 */
1995: /* x is in 1-wave if sgn0 = -1 */
1996: r0 = cvmgm_(rl, rr, &sgn0);
1997: p0 = cvmgm_(pl, pr, &sgn0);
1998: u0 = cvmgm_(uxl, uxr, &sgn0);
1999: *gam = cvmgm_(gaml, gamr, &sgn0);
2000: gasc1 = *gam - 1.;
2001: gasc2 = (*gam + 1.) * .5;
2002: gasc3 = gasc2 / *gam;
2003: gasc4 = 1. / (*gam - 1.);
2004: c0 = PetscSqrtScalar(*gam * p0 / r0);
2005: streng = pstar - p0;
2006: w0 = *gam * r0 * p0 * (gasc3 * streng / p0 + 1.);
2007: rstars = r0 / (1. - r0 * streng / w0);
2008: d__1 = p0 / pstar;
2009: d__2 = -1. / *gam;
2010: rstarr = r0 * PetscPowScalar(d__1, d__2);
2011: rstar = cvmgm_(&rstarr, &rstars, &streng);
2012: w0 = PetscSqrtScalar(w0);
2013: cstar = PetscSqrtScalar(*gam * pstar / rstar);
2014: wsp0 = u0 + sgn0 * c0;
2015: wspst = ustar + sgn0 * cstar;
2016: ushock = ustar + sgn0 * w0 / rstar;
2017: wspst = cvmgp_(&ushock, &wspst, &streng);
2018: wsp0 = cvmgp_(&ushock, &wsp0, &streng);
2019: x0 = *xcen + wsp0 * *dtt;
2020: xstar = *xcen + wspst * *dtt;
2021: /* using gas formula to evaluate rarefaction wave */
2022: /* ri : reiman invariant */
2023: ri = u0 - sgn0 * 2. * gasc4 * c0;
2024: cx = sgn0 * .5 * gasc1 / gasc2 * ((*xp - *xcen) / *dtt - ri);
2025: *uxm = ri + sgn0 * 2. * gasc4 * cx;
2026: s = p0 / PetscPowScalar(r0, *gam);
2027: d__1 = cx * cx / (*gam * s);
2028: *rx = PetscPowScalar(d__1, gasc4);
2029: *px = cx * cx * *rx / *gam;
2030: d__1 = sgn0 * (x0 - *xp);
2031: *rx = cvmgp_(rx, &r0, &d__1);
2032: d__1 = sgn0 * (x0 - *xp);
2033: *px = cvmgp_(px, &p0, &d__1);
2034: d__1 = sgn0 * (x0 - *xp);
2035: *uxm = cvmgp_(uxm, &u0, &d__1);
2036: d__1 = sgn0 * (xstar - *xp);
2037: *rx = cvmgm_(rx, &rstar, &d__1);
2038: d__1 = sgn0 * (xstar - *xp);
2039: *px = cvmgm_(px, &pstar, &d__1);
2040: d__1 = sgn0 * (xstar - *xp);
2041: *uxm = cvmgm_(uxm, &ustar, &d__1);
2042: if (PetscRealPart(*xp) >= PetscRealPart(x2)) {
2043: *utx = *utr;
2044: *ubx = *ubr;
2045: *rho1 = *rho1r;
2046: } else {
2047: *utx = *utl;
2048: *ubx = *ubl;
2049: *rho1 = *rho1l;
2050: }
2051: return iwave;
2052: }
2053: int godunovflux( const PetscScalar *ul, const PetscScalar *ur,
2054: PetscScalar *flux, const PetscReal *nn, const int *ndim,
2055: const PetscReal *gamma)
2056: {
2057: /* System generated locals */
2058: int i__1,iwave;
2059: PetscScalar d__1, d__2, d__3;
2061: /* Local variables */
2062: static int k;
2063: static PetscScalar bn[3], fn, ft, tg[3], pl, rl, pm, pr, rr, xp, ubl, ubm,
2064: ubr, dtt, unm, tmp, utl, utm, uxl, utr, uxr, gaml, gamm, gamr,
2065: xcen, rhom, rho1l, rho1m, rho1r;
2067: /* Function Body */
2068: xcen = 0.;
2069: xp = 0.;
2070: i__1 = *ndim;
2071: for (k = 1; k <= i__1; ++k) {
2072: tg[k - 1] = 0.;
2073: bn[k - 1] = 0.;
2074: }
2075: dtt = 1.;
2076: if (*ndim == 3) {
2077: if (nn[0] == 0. && nn[1] == 0.) {
2078: tg[0] = 1.;
2079: } else {
2080: tg[0] = -nn[1];
2081: tg[1] = nn[0];
2082: }
2083: /* tmp=dsqrt(tg(1)**2+tg(2)**2) */
2084: /* tg=tg/tmp */
2085: bn[0] = -nn[2] * tg[1];
2086: bn[1] = nn[2] * tg[0];
2087: bn[2] = nn[0] * tg[1] - nn[1] * tg[0];
2088: /* Computing 2nd power */
2089: d__1 = bn[0];
2090: /* Computing 2nd power */
2091: d__2 = bn[1];
2092: /* Computing 2nd power */
2093: d__3 = bn[2];
2094: tmp = PetscSqrtScalar(d__1 * d__1 + d__2 * d__2 + d__3 * d__3);
2095: i__1 = *ndim;
2096: for (k = 1; k <= i__1; ++k) {
2097: bn[k - 1] /= tmp;
2098: }
2099: } else if (*ndim == 2) {
2100: tg[0] = -nn[1];
2101: tg[1] = nn[0];
2102: /* tmp=dsqrt(tg(1)**2+tg(2)**2) */
2103: /* tg=tg/tmp */
2104: bn[0] = 0.;
2105: bn[1] = 0.;
2106: bn[2] = 1.;
2107: }
2108: rl = ul[0];
2109: rr = ur[0];
2110: uxl = 0.;
2111: uxr = 0.;
2112: utl = 0.;
2113: utr = 0.;
2114: ubl = 0.;
2115: ubr = 0.;
2116: i__1 = *ndim;
2117: for (k = 1; k <= i__1; ++k) {
2118: uxl += ul[k] * nn[k-1];
2119: uxr += ur[k] * nn[k-1];
2120: utl += ul[k] * tg[k - 1];
2121: utr += ur[k] * tg[k - 1];
2122: ubl += ul[k] * bn[k - 1];
2123: ubr += ur[k] * bn[k - 1];
2124: }
2125: uxl /= rl;
2126: uxr /= rr;
2127: utl /= rl;
2128: utr /= rr;
2129: ubl /= rl;
2130: ubr /= rr;
2132: gaml = *gamma;
2133: gamr = *gamma;
2134: /* Computing 2nd power */
2135: d__1 = uxl;
2136: /* Computing 2nd power */
2137: d__2 = utl;
2138: /* Computing 2nd power */
2139: d__3 = ubl;
2140: pl = (*gamma - 1.) * (ul[*ndim + 1] - rl * .5 * (d__1 * d__1 + d__2 * d__2 + d__3 * d__3));
2141: /* Computing 2nd power */
2142: d__1 = uxr;
2143: /* Computing 2nd power */
2144: d__2 = utr;
2145: /* Computing 2nd power */
2146: d__3 = ubr;
2147: pr = (*gamma - 1.) * (ur[*ndim + 1] - rr * .5 * (d__1 * d__1 + d__2 * d__2 + d__3 * d__3));
2148: rho1l = rl;
2149: rho1r = rr;
2151: iwave = riemannsolver(&xcen, &xp, &dtt, &rl, &uxl, &pl, &utl, &ubl, &gaml, &
2152: rho1l, &rr, &uxr, &pr, &utr, &ubr, &gamr, &rho1r, &rhom, &unm, &
2153: pm, &utm, &ubm, &gamm, &rho1m);
2155: flux[0] = rhom * unm;
2156: fn = rhom * unm * unm + pm;
2157: ft = rhom * unm * utm;
2158: /* flux(2)=fn*nn(1)+ft*nn(2) */
2159: /* flux(3)=fn*tg(1)+ft*tg(2) */
2160: flux[1] = fn * nn[0] + ft * tg[0];
2161: flux[2] = fn * nn[1] + ft * tg[1];
2162: /* flux(2)=rhom*unm*(unm)+pm */
2163: /* flux(3)=rhom*(unm)*utm */
2164: if (*ndim == 3) {
2165: flux[3] = rhom * unm * ubm;
2166: }
2167: flux[*ndim + 1] = (rhom * .5 * (unm * unm + utm * utm + ubm * ubm) + gamm / (gamm - 1.) * pm) * unm;
2168: return iwave;
2169: } /* godunovflux_ */
2171: /* Subroutine to set up the initial conditions for the */
2172: /* Shock Interface interaction or linear wave (Ravi Samtaney,Mark Adams). */
2173: /* ----------------------------------------------------------------------- */
2174: int projecteqstate(PetscReal wc[], const PetscReal ueq[], PetscReal lv[][3])
2175: {
2176: int j,k;
2177: /* Wc=matmul(lv,Ueq) 3 vars */
2178: for (k = 0; k < 3; ++k) {
2179: wc[k] = 0.;
2180: for (j = 0; j < 3; ++j) {
2181: wc[k] += lv[k][j]*ueq[j];
2182: }
2183: }
2184: return 0;
2185: }
2186: /* ----------------------------------------------------------------------- */
2187: int projecttoprim(PetscReal v[], const PetscReal wc[], PetscReal rv[][3])
2188: {
2189: int k,j;
2190: /* V=matmul(rv,WC) 3 vars */
2191: for (k = 0; k < 3; ++k) {
2192: v[k] = 0.;
2193: for (j = 0; j < 3; ++j) {
2194: v[k] += rv[k][j]*wc[j];
2195: }
2196: }
2197: return 0;
2198: }
2199: /* ---------------------------------------------------------------------- */
2200: int eigenvectors(PetscReal rv[][3], PetscReal lv[][3], const PetscReal ueq[], PetscReal gamma)
2201: {
2202: int j,k;
2203: PetscReal rho,csnd,p0;
2204: /* PetscScalar u; */
2206: for (k = 0; k < 3; ++k) for (j = 0; j < 3; ++j) { lv[k][j] = 0.; rv[k][j] = 0.; }
2207: rho = ueq[0];
2208: /* u = ueq[1]; */
2209: p0 = ueq[2];
2210: csnd = PetscSqrtReal(gamma * p0 / rho);
2211: lv[0][1] = rho * .5;
2212: lv[0][2] = -.5 / csnd;
2213: lv[1][0] = csnd;
2214: lv[1][2] = -1. / csnd;
2215: lv[2][1] = rho * .5;
2216: lv[2][2] = .5 / csnd;
2217: rv[0][0] = -1. / csnd;
2218: rv[1][0] = 1. / rho;
2219: rv[2][0] = -csnd;
2220: rv[0][1] = 1. / csnd;
2221: rv[0][2] = 1. / csnd;
2222: rv[1][2] = 1. / rho;
2223: rv[2][2] = csnd;
2224: return 0;
2225: }
2227: int initLinearWave(EulerNode *ux, const PetscReal gamma, const PetscReal coord[], const PetscReal Lx)
2228: {
2229: PetscReal p0,u0,wcp[3],wc[3];
2230: PetscReal lv[3][3];
2231: PetscReal vp[3];
2232: PetscReal rv[3][3];
2233: PetscReal eps, ueq[3], rho0, twopi;
2235: /* Function Body */
2236: twopi = 2.*PETSC_PI;
2237: eps = 1e-4; /* perturbation */
2238: rho0 = 1e3; /* density of water */
2239: p0 = 101325.; /* init pressure of 1 atm (?) */
2240: u0 = 0.;
2241: ueq[0] = rho0;
2242: ueq[1] = u0;
2243: ueq[2] = p0;
2244: /* Project initial state to characteristic variables */
2245: eigenvectors(rv, lv, ueq, gamma);
2246: projecteqstate(wc, ueq, lv);
2247: wcp[0] = wc[0];
2248: wcp[1] = wc[1];
2249: wcp[2] = wc[2] + eps * PetscCosReal(coord[0] * 2. * twopi / Lx);
2250: projecttoprim(vp, wcp, rv);
2251: ux->r = vp[0]; /* density */
2252: ux->ru[0] = vp[0] * vp[1]; /* x momentum */
2253: ux->ru[1] = 0.;
2254: #if defined DIM > 2
2255: if (dim>2) ux->ru[2] = 0.;
2256: #endif
2257: /* E = rho * e + rho * v^2/2 = p/(gam-1) + rho*v^2/2 */
2258: ux->E = vp[2]/(gamma - 1.) + 0.5*vp[0]*vp[1]*vp[1];
2259: return 0;
2260: }
2262: /*TEST
2264: testset:
2265: args: -dm_plex_adj_cone -dm_plex_adj_closure 0
2267: test:
2268: suffix: adv_2d_tri_0
2269: requires: triangle
2270: TODO: how did this ever get in main when there is no support for this
2271: args: -ufv_vtk_interval 0 -simplex -dm_refine 3 -dm_plex_faces 1,1 -dm_plex_separate_marker -bc_inflow 1,2,4 -bc_outflow 3
2273: test:
2274: suffix: adv_2d_tri_1
2275: requires: triangle
2276: TODO: how did this ever get in main when there is no support for this
2277: args: -ufv_vtk_interval 0 -simplex -dm_refine 5 -dm_plex_faces 1,1 -dm_plex_separate_marker -grid_bounds -0.5,0.5,-0.5,0.5 -bc_inflow 1,2,4 -bc_outflow 3 -advect_sol_type bump -advect_bump_center 0.25,0 -advect_bump_radius 0.1
2279: test:
2280: suffix: tut_1
2281: requires: exodusii
2282: nsize: 1
2283: args: -dm_plex_filename ${wPETSC_DIR}/share/petsc/datafiles/meshes/sevenside.exo
2285: test:
2286: suffix: tut_2
2287: requires: exodusii
2288: nsize: 1
2289: args: -dm_plex_filename ${wPETSC_DIR}/share/petsc/datafiles/meshes/sevenside.exo -ts_type rosw
2291: test:
2292: suffix: tut_3
2293: requires: exodusii
2294: nsize: 4
2295: args: -dm_distribute_overlap 1 -dm_plex_filename ${wPETSC_DIR}/share/petsc/datafiles/meshes/annulus-20.exo -monitor Error -advect_sol_type bump -petscfv_type leastsquares -petsclimiter_type sin
2297: test:
2298: suffix: tut_4
2299: requires: exodusii
2300: nsize: 4
2301: args: -dm_distribute_overlap 1 -dm_plex_filename ${wPETSC_DIR}/share/petsc/datafiles/meshes/annulus-20.exo -physics sw -monitor Height,Energy -petscfv_type leastsquares -petsclimiter_type minmod
2303: testset:
2304: args: -dm_plex_adj_cone -dm_plex_adj_closure 0 -dm_plex_simplex 0 -dm_plex_box_faces 1,1,1
2306: # 2D Advection 0-10
2307: test:
2308: suffix: 0
2309: requires: exodusii
2310: args: -ufv_vtk_interval 0 -dm_plex_filename ${wPETSC_DIR}/share/petsc/datafiles/meshes/sevenside.exo
2312: test:
2313: suffix: 1
2314: requires: exodusii
2315: args: -ufv_vtk_interval 0 -dm_plex_filename ${wPETSC_DIR}/share/petsc/datafiles/meshes/sevenside-quad-15.exo
2317: test:
2318: suffix: 2
2319: requires: exodusii
2320: nsize: 2
2321: args: -dm_distribute_overlap 1 -ufv_vtk_interval 0 -dm_plex_filename ${wPETSC_DIR}/share/petsc/datafiles/meshes/sevenside.exo
2323: test:
2324: suffix: 3
2325: requires: exodusii
2326: nsize: 2
2327: args: -dm_distribute_overlap 1 -ufv_vtk_interval 0 -dm_plex_filename ${wPETSC_DIR}/share/petsc/datafiles/meshes/sevenside-quad-15.exo
2329: test:
2330: suffix: 4
2331: requires: exodusii
2332: nsize: 8
2333: args: -dm_distribute_overlap 1 -ufv_vtk_interval 0 -dm_plex_filename ${wPETSC_DIR}/share/petsc/datafiles/meshes/sevenside-quad.exo
2335: test:
2336: suffix: 5
2337: requires: exodusii
2338: args: -ufv_vtk_interval 0 -dm_plex_filename ${wPETSC_DIR}/share/petsc/datafiles/meshes/sevenside.exo -ts_type rosw -ts_adapt_reject_safety 1
2340: test:
2341: suffix: 7
2342: requires: exodusii
2343: args: -ufv_vtk_interval 0 -dm_plex_filename ${wPETSC_DIR}/share/petsc/datafiles/meshes/sevenside-quad-15.exo -dm_refine 1
2345: test:
2346: suffix: 8
2347: requires: exodusii
2348: nsize: 2
2349: args: -dm_distribute_overlap 1 -ufv_vtk_interval 0 -dm_plex_filename ${wPETSC_DIR}/share/petsc/datafiles/meshes/sevenside-quad-15.exo -dm_refine 1
2351: test:
2352: suffix: 9
2353: requires: exodusii
2354: nsize: 8
2355: args: -dm_distribute_overlap 1 -ufv_vtk_interval 0 -dm_plex_filename ${wPETSC_DIR}/share/petsc/datafiles/meshes/sevenside-quad-15.exo -dm_refine 1
2357: test:
2358: suffix: 10
2359: requires: exodusii
2360: args: -ufv_vtk_interval 0 -dm_plex_filename ${wPETSC_DIR}/share/petsc/datafiles/meshes/sevenside-quad.exo
2362: # 2D Shallow water
2363: test:
2364: suffix: sw_0
2365: requires: exodusii
2366: args: -ufv_vtk_interval 0 -dm_plex_filename ${wPETSC_DIR}/share/petsc/datafiles/meshes/annulus-20.exo -bc_wall 100,101 -physics sw -ufv_cfl 5 -petscfv_type leastsquares -petsclimiter_type sin -ts_max_time 1 -ts_ssp_type rks2 -ts_ssp_nstages 10 -monitor height,energy
2368: test:
2369: suffix: sw_hll
2370: args: -ufv_vtk_interval 0 -bc_wall 1,2,3,4 -physics sw -ufv_cfl 3 -petscfv_type leastsquares -petsclimiter_type sin -ts_max_steps 5 -ts_ssp_type rks2 -ts_ssp_nstages 10 -monitor height,energy -grid_bounds 0,5,0,5 -dm_plex_box_faces 25,25 -sw_riemann hll
2372: # 2D Advection: p4est
2373: test:
2374: suffix: p4est_advec_2d
2375: requires: p4est
2376: args: -ufv_vtk_interval 0 -dm_type p4est -dm_forest_minimum_refinement 1 -dm_forest_initial_refinement 2 -dm_p4est_refine_pattern hash -dm_forest_maximum_refinement 5
2378: # Advection in a box
2379: test:
2380: suffix: adv_2d_quad_0
2381: args: -ufv_vtk_interval 0 -dm_refine 3 -dm_plex_separate_marker -bc_inflow 1,2,4 -bc_outflow 3
2383: test:
2384: suffix: adv_2d_quad_1
2385: args: -ufv_vtk_interval 0 -dm_refine 3 -dm_plex_separate_marker -grid_bounds -0.5,0.5,-0.5,0.5 -bc_inflow 1,2,4 -bc_outflow 3 -advect_sol_type bump -advect_bump_center 0.25,0 -advect_bump_radius 0.1
2386: timeoutfactor: 3
2388: test:
2389: suffix: adv_2d_quad_p4est_0
2390: requires: p4est
2391: args: -ufv_vtk_interval 0 -dm_refine 5 -dm_type p4est -dm_plex_separate_marker -bc_inflow 1,2,4 -bc_outflow 3
2393: test:
2394: suffix: adv_2d_quad_p4est_1
2395: requires: p4est
2396: args: -ufv_vtk_interval 0 -dm_refine 5 -dm_type p4est -dm_plex_separate_marker -grid_bounds -0.5,0.5,-0.5,0.5 -bc_inflow 1,2,4 -bc_outflow 3 -advect_sol_type bump -advect_bump_center 0.25,0 -advect_bump_radius 0.1
2397: timeoutfactor: 3
2399: test:
2400: suffix: adv_2d_quad_p4est_adapt_0
2401: requires: p4est !__float128 #broken for quad precision
2402: args: -ufv_vtk_interval 0 -dm_refine 3 -dm_type p4est -dm_plex_separate_marker -grid_bounds -0.5,0.5,-0.5,0.5 -bc_inflow 1,2,4 -bc_outflow 3 -advect_sol_type bump -advect_bump_center 0.25,0 -advect_bump_radius 0.1 -ufv_use_amr -refine_vec_tagger_box 0.005,inf -coarsen_vec_tagger_box 0,1.e-5 -petscfv_type leastsquares -ts_max_time 0.01
2403: timeoutfactor: 3
2405: test:
2406: suffix: adv_0
2407: requires: exodusii
2408: args: -ufv_vtk_interval 0 -dm_plex_filename ${wPETSC_DIR}/share/petsc/datafiles/meshes/blockcylinder-50.exo -bc_inflow 100,101,200 -bc_outflow 201
2410: test:
2411: suffix: shock_0
2412: requires: p4est !single !complex
2413: args: -dm_plex_box_faces 2,1 -grid_bounds -1,1.,0.,1 -grid_skew_60 \
2414: -dm_type p4est -dm_forest_partition_overlap 1 -dm_forest_maximum_refinement 6 -dm_forest_minimum_refinement 2 -dm_forest_initial_refinement 2 \
2415: -ufv_use_amr -refine_vec_tagger_box 0.5,inf -coarsen_vec_tagger_box 0,1.e-2 -refine_tag_view -coarsen_tag_view \
2416: -bc_wall 1,2,3,4 -physics euler -eu_type iv_shock -ufv_cfl 10 -eu_alpha 60. -eu_gamma 1.4 -eu_amach 2.02 -eu_rho2 3. \
2417: -petscfv_type leastsquares -petsclimiter_type minmod -petscfv_compute_gradients 0 \
2418: -ts_max_time 0.5 -ts_ssp_type rks2 -ts_ssp_nstages 10 \
2419: -ufv_vtk_basename ${wPETSC_DIR}/ex11 -ufv_vtk_interval 0 -monitor density,energy
2420: timeoutfactor: 3
2422: # Test GLVis visualization of PetscFV fields
2423: test:
2424: suffix: glvis_adv_2d_tet
2425: args: -ufv_vtk_interval 0 -ufv_vtk_monitor 0 \
2426: -dm_plex_filename ${wPETSC_DIR}/share/petsc/datafiles/meshes/square_periodic.msh -dm_plex_gmsh_periodic 0 \
2427: -ts_monitor_solution glvis: -ts_max_steps 0
2429: test:
2430: suffix: glvis_adv_2d_quad
2431: args: -ufv_vtk_interval 0 -ufv_vtk_monitor 0 -bc_inflow 1,2,4 -bc_outflow 3 \
2432: -dm_refine 5 -dm_plex_separate_marker \
2433: -ts_monitor_solution glvis: -ts_max_steps 0
2435: TEST*/