Actual source code: rosenbrock3.c

  1: /* Program usage: mpiexec -n 1 rosenbrock2 [-help] [all TAO options] */

  3: /*  Include "petsctao.h" so we can use TAO solvers.  */
  4: #include <petsctao.h>

  6: static  char help[] = "This example demonstrates use of the TAO package to \n\
  7: solve an unconstrained minimization problem on a single processor.  We \n\
  8: minimize the extended Rosenbrock function: \n\
  9:    sum_{i=0}^{n/2-1} (alpha*(x_{2i+1}-x_{2i}^2)^2 + (1-x_{2i})^2) \n\
 10: or the chained Rosenbrock function:\n\
 11:    sum_{i=0}^{n-1} alpha*(x_{i+1} - x_i^2)^2 + (1 - x_i)^2\n";

 13: /*
 14:    User-defined application context - contains data needed by the
 15:    application-provided call-back routines that evaluate the function,
 16:    gradient, and hessian.
 17: */
 18: typedef struct {
 19:   PetscInt  n;          /* dimension */
 20:   PetscReal alpha;   /* condition parameter */
 21:   PetscBool chained;
 22: } AppCtx;

 24: /* -------------- User-defined routines ---------- */
 25: PetscErrorCode FormFunctionGradient(Tao,Vec,PetscReal*,Vec,void*);
 26: PetscErrorCode FormHessian(Tao,Vec,Mat,Mat,void*);

 28: int main(int argc,char **argv)
 29: {
 30:   PetscReal          zero=0.0;
 31:   Vec                x;                     /* solution vector */
 32:   Mat                H;
 33:   Tao                tao;                   /* Tao solver context */
 34:   PetscBool          flg, test_lmvm = PETSC_FALSE;
 35:   PetscMPIInt        size;                  /* number of processes running */
 36:   AppCtx             user;                  /* user-defined application context */
 37:   TaoConvergedReason reason;
 38:   PetscInt           its, recycled_its=0, oneshot_its=0;

 40:   /* Initialize TAO and PETSc */
 41:   PetscInitialize(&argc,&argv,(char*)0,help);
 42:   MPI_Comm_size(PETSC_COMM_WORLD,&size);

 45:   /* Initialize problem parameters */
 46:   user.n = 2; user.alpha = 99.0; user.chained = PETSC_FALSE;
 47:   /* Check for command line arguments to override defaults */
 48:   PetscOptionsGetInt(NULL,NULL,"-n",&user.n,&flg);
 49:   PetscOptionsGetReal(NULL,NULL,"-alpha",&user.alpha,&flg);
 50:   PetscOptionsGetBool(NULL,NULL,"-chained",&user.chained,&flg);
 51:   PetscOptionsGetBool(NULL,NULL,"-test_lmvm",&test_lmvm,&flg);

 53:   /* Allocate vectors for the solution and gradient */
 54:   VecCreateSeq(PETSC_COMM_SELF,user.n,&x);
 55:   MatCreateSeqBAIJ(PETSC_COMM_SELF,2,user.n,user.n,1,NULL,&H);

 57:   /* The TAO code begins here */

 59:   /* Create TAO solver with desired solution method */
 60:   TaoCreate(PETSC_COMM_SELF,&tao);
 61:   TaoSetType(tao,TAOBQNLS);

 63:   /* Set solution vec and an initial guess */
 64:   VecSet(x, zero);
 65:   TaoSetSolution(tao,x);

 67:   /* Set routines for function, gradient, hessian evaluation */
 68:   TaoSetObjectiveAndGradient(tao,NULL,FormFunctionGradient,&user);
 69:   TaoSetHessian(tao,H,H,FormHessian,&user);

 71:   /* Check for TAO command line options */
 72:   TaoSetFromOptions(tao);

 74:   /* Solve the problem */
 75:   TaoSetTolerances(tao, 1.e-5, 0.0, 0.0);
 76:   TaoSetMaximumIterations(tao, 5);
 77:   TaoSetRecycleHistory(tao, PETSC_TRUE);
 78:   reason = TAO_CONTINUE_ITERATING;
 79:   flg = PETSC_FALSE;
 80:   TaoGetRecycleHistory(tao, &flg);
 81:   if (flg) PetscPrintf(PETSC_COMM_SELF, "Recycle: enabled\n");
 82:   while (reason != TAO_CONVERGED_GATOL) {
 83:     TaoSolve(tao);
 84:     TaoGetConvergedReason(tao, &reason);
 85:     TaoGetIterationNumber(tao, &its);
 86:     recycled_its += its;
 87:     PetscPrintf(PETSC_COMM_SELF, "-----------------------\n");
 88:   }

 90:   /* Disable recycling and solve again! */
 91:   TaoSetMaximumIterations(tao, 100);
 92:   TaoSetRecycleHistory(tao, PETSC_FALSE);
 93:   VecSet(x, zero);
 94:   TaoGetRecycleHistory(tao, &flg);
 95:   if (!flg) PetscPrintf(PETSC_COMM_SELF, "Recycle: disabled\n");
 96:   TaoSolve(tao);
 97:   TaoGetConvergedReason(tao, &reason);
 99:   TaoGetIterationNumber(tao, &oneshot_its);
100:   PetscPrintf(PETSC_COMM_SELF, "-----------------------\n");
101:   PetscPrintf(PETSC_COMM_SELF, "recycled its: %D | oneshot its: %D\n", recycled_its, oneshot_its);

104:   TaoDestroy(&tao);
105:   VecDestroy(&x);
106:   MatDestroy(&H);

108:   PetscFinalize();
109:   return 0;
110: }

112: /* -------------------------------------------------------------------- */
113: /*
114:     FormFunctionGradient - Evaluates the function, f(X), and gradient, G(X).

116:     Input Parameters:
117: .   tao  - the Tao context
118: .   X    - input vector
119: .   ptr  - optional user-defined context, as set by TaoSetFunctionGradient()

121:     Output Parameters:
122: .   G - vector containing the newly evaluated gradient
123: .   f - function value

125:     Note:
126:     Some optimization methods ask for the function and the gradient evaluation
127:     at the same time.  Evaluating both at once may be more efficient than
128:     evaluating each separately.
129: */
130: PetscErrorCode FormFunctionGradient(Tao tao,Vec X,PetscReal *f, Vec G,void *ptr)
131: {
132:   AppCtx            *user = (AppCtx *) ptr;
133:   PetscInt          i,nn=user->n/2;
134:   PetscReal         ff=0,t1,t2,alpha=user->alpha;
135:   PetscScalar       *g;
136:   const PetscScalar *x;

139:   /* Get pointers to vector data */
140:   VecGetArrayRead(X,&x);
141:   VecGetArrayWrite(G,&g);

143:   /* Compute G(X) */
144:   if (user->chained) {
145:     g[0] = 0;
146:     for (i=0; i<user->n-1; i++) {
147:       t1 = x[i+1] - x[i]*x[i];
148:       ff += PetscSqr(1 - x[i]) + alpha*t1*t1;
149:       g[i] += -2*(1 - x[i]) + 2*alpha*t1*(-2*x[i]);
150:       g[i+1] = 2*alpha*t1;
151:     }
152:   } else {
153:     for (i=0; i<nn; i++) {
154:       t1 = x[2*i+1]-x[2*i]*x[2*i]; t2= 1-x[2*i];
155:       ff += alpha*t1*t1 + t2*t2;
156:       g[2*i] = -4*alpha*t1*x[2*i]-2.0*t2;
157:       g[2*i+1] = 2*alpha*t1;
158:     }
159:   }

161:   /* Restore vectors */
162:   VecRestoreArrayRead(X,&x);
163:   VecRestoreArrayWrite(G,&g);
164:   *f   = ff;

166:   PetscLogFlops(15.0*nn);
167:   return 0;
168: }

170: /* ------------------------------------------------------------------- */
171: /*
172:    FormHessian - Evaluates Hessian matrix.

174:    Input Parameters:
175: .  tao   - the Tao context
176: .  x     - input vector
177: .  ptr   - optional user-defined context, as set by TaoSetHessian()

179:    Output Parameters:
180: .  H     - Hessian matrix

182:    Note:  Providing the Hessian may not be necessary.  Only some solvers
183:    require this matrix.
184: */
185: PetscErrorCode FormHessian(Tao tao,Vec X,Mat H, Mat Hpre, void *ptr)
186: {
187:   AppCtx            *user = (AppCtx*)ptr;
188:   PetscInt          i, ind[2];
189:   PetscReal         alpha=user->alpha;
190:   PetscReal         v[2][2];
191:   const PetscScalar *x;
192:   PetscBool         assembled;

195:   /* Zero existing matrix entries */
196:   MatAssembled(H,&assembled);
197:   if (assembled || user->chained) MatZeroEntries(H);

199:   /* Get a pointer to vector data */
200:   VecGetArrayRead(X,&x);

202:   /* Compute H(X) entries */
203:   if (user->chained) {
204:     for (i=0; i<user->n-1; i++) {
205:       PetscScalar t1 = x[i+1] - x[i]*x[i];
206:       v[0][0] = 2 + 2*alpha*(t1*(-2) - 2*x[i]);
207:       v[0][1] = 2*alpha*(-2*x[i]);
208:       v[1][0] = 2*alpha*(-2*x[i]);
209:       v[1][1] = 2*alpha*t1;
210:       ind[0] = i; ind[1] = i+1;
211:       MatSetValues(H,2,ind,2,ind,v[0],ADD_VALUES);
212:     }
213:   } else {
214:     for (i=0; i<user->n/2; i++) {
215:       v[1][1] = 2*alpha;
216:       v[0][0] = -4*alpha*(x[2*i+1]-3*x[2*i]*x[2*i]) + 2;
217:       v[1][0] = v[0][1] = -4.0*alpha*x[2*i];
218:       ind[0]=2*i; ind[1]=2*i+1;
219:       MatSetValues(H,2,ind,2,ind,v[0],INSERT_VALUES);
220:     }
221:   }
222:   VecRestoreArrayRead(X,&x);

224:   /* Assemble matrix */
225:   MatAssemblyBegin(H,MAT_FINAL_ASSEMBLY);
226:   MatAssemblyEnd(H,MAT_FINAL_ASSEMBLY);
227:   PetscLogFlops(9.0*user->n/2.0);
228:   return 0;
229: }

231: /*TEST

233:    build:
234:       requires: !complex

236:    test:
237:       args: -tao_type bqnls -tao_monitor
238:       requires: !single

240: TEST*/