Actual source code: rosenbrock1.c

  1: /* Program usage: mpiexec -n 1 rosenbrock1 [-help] [all TAO options] */

  3: /*  Include "petsctao.h" so we can use TAO solvers.  */
  4: #include <petsctao.h>

  6: static  char help[] = "This example demonstrates use of the TAO package to \n\
  7: solve an unconstrained minimization problem on a single processor.  We \n\
  8: minimize the extended Rosenbrock function: \n\
  9:    sum_{i=0}^{n/2-1} (alpha*(x_{2i+1}-x_{2i}^2)^2 + (1-x_{2i})^2) \n\
 10: or the chained Rosenbrock function:\n\
 11:    sum_{i=0}^{n-1} alpha*(x_{i+1} - x_i^2)^2 + (1 - x_i)^2\n";

 13: /*
 14:    User-defined application context - contains data needed by the
 15:    application-provided call-back routines that evaluate the function,
 16:    gradient, and hessian.
 17: */
 18: typedef struct {
 19:   PetscInt  n;          /* dimension */
 20:   PetscReal alpha;   /* condition parameter */
 21:   PetscBool chained;
 22: } AppCtx;

 24: /* -------------- User-defined routines ---------- */
 25: PetscErrorCode FormFunctionGradient(Tao,Vec,PetscReal*,Vec,void*);
 26: PetscErrorCode FormHessian(Tao,Vec,Mat,Mat,void*);

 28: int main(int argc,char **argv)
 29: {
 30:   PetscReal          zero=0.0;
 31:   Vec                x;                     /* solution vector */
 32:   Mat                H;
 33:   Tao                tao;                   /* Tao solver context */
 34:   PetscBool          flg, test_lmvm = PETSC_FALSE;
 35:   PetscMPIInt        size;                  /* number of processes running */
 36:   AppCtx             user;                  /* user-defined application context */
 37:   KSP                ksp;
 38:   PC                 pc;
 39:   Mat                M;
 40:   Vec                in, out, out2;
 41:   PetscReal          mult_solve_dist;

 43:   /* Initialize TAO and PETSc */
 44:   PetscInitialize(&argc,&argv,(char*)0,help);
 45:   MPI_Comm_size(PETSC_COMM_WORLD,&size);

 48:   /* Initialize problem parameters */
 49:   user.n = 2; user.alpha = 99.0; user.chained = PETSC_FALSE;
 50:   /* Check for command line arguments to override defaults */
 51:   PetscOptionsGetInt(NULL,NULL,"-n",&user.n,&flg);
 52:   PetscOptionsGetReal(NULL,NULL,"-alpha",&user.alpha,&flg);
 53:   PetscOptionsGetBool(NULL,NULL,"-chained",&user.chained,&flg);
 54:   PetscOptionsGetBool(NULL,NULL,"-test_lmvm",&test_lmvm,&flg);

 56:   /* Allocate vectors for the solution and gradient */
 57:   VecCreateSeq(PETSC_COMM_SELF,user.n,&x);
 58:   MatCreateSeqBAIJ(PETSC_COMM_SELF,2,user.n,user.n,1,NULL,&H);

 60:   /* The TAO code begins here */

 62:   /* Create TAO solver with desired solution method */
 63:   TaoCreate(PETSC_COMM_SELF,&tao);
 64:   TaoSetType(tao,TAOLMVM);

 66:   /* Set solution vec and an initial guess */
 67:   VecSet(x, zero);
 68:   TaoSetSolution(tao,x);

 70:   /* Set routines for function, gradient, hessian evaluation */
 71:   TaoSetObjectiveAndGradient(tao,NULL,FormFunctionGradient,&user);
 72:   TaoSetHessian(tao,H,H,FormHessian,&user);

 74:   /* Test the LMVM matrix */
 75:   if (test_lmvm) {
 76:     PetscOptionsSetValue(NULL, "-tao_type", "bqnktr");
 77:   }

 79:   /* Check for TAO command line options */
 80:   TaoSetFromOptions(tao);

 82:   /* SOLVE THE APPLICATION */
 83:   TaoSolve(tao);

 85:   /* Test the LMVM matrix */
 86:   if (test_lmvm) {
 87:     TaoGetKSP(tao, &ksp);
 88:     KSPGetPC(ksp, &pc);
 89:     PCLMVMGetMatLMVM(pc, &M);
 90:     VecDuplicate(x, &in);
 91:     VecDuplicate(x, &out);
 92:     VecDuplicate(x, &out2);
 93:     VecSet(in, 1.0);
 94:     MatMult(M, in, out);
 95:     MatSolve(M, out, out2);
 96:     VecAXPY(out2, -1.0, in);
 97:     VecNorm(out2, NORM_2, &mult_solve_dist);
 98:     if (mult_solve_dist < 1.e-11) {
 99:       PetscPrintf(PetscObjectComm((PetscObject)tao), "error between LMVM MatMult and MatSolve: < 1.e-11\n");
100:     } else if (mult_solve_dist < 1.e-6) {
101:       PetscPrintf(PetscObjectComm((PetscObject)tao), "error between LMVM MatMult and MatSolve: < 1.e-6\n");
102:     } else {
103:       PetscPrintf(PetscObjectComm((PetscObject)tao), "error between LMVM MatMult and MatSolve: %e\n", (double)mult_solve_dist);
104:     }
105:     VecDestroy(&in);
106:     VecDestroy(&out);
107:     VecDestroy(&out2);
108:   }

110:   TaoDestroy(&tao);
111:   VecDestroy(&x);
112:   MatDestroy(&H);

114:   PetscFinalize();
115:   return 0;
116: }

118: /* -------------------------------------------------------------------- */
119: /*
120:     FormFunctionGradient - Evaluates the function, f(X), and gradient, G(X).

122:     Input Parameters:
123: .   tao  - the Tao context
124: .   X    - input vector
125: .   ptr  - optional user-defined context, as set by TaoSetFunctionGradient()

127:     Output Parameters:
128: .   G - vector containing the newly evaluated gradient
129: .   f - function value

131:     Note:
132:     Some optimization methods ask for the function and the gradient evaluation
133:     at the same time.  Evaluating both at once may be more efficient that
134:     evaluating each separately.
135: */
136: PetscErrorCode FormFunctionGradient(Tao tao,Vec X,PetscReal *f, Vec G,void *ptr)
137: {
138:   AppCtx            *user = (AppCtx *) ptr;
139:   PetscInt          i,nn=user->n/2;
140:   PetscReal         ff=0,t1,t2,alpha=user->alpha;
141:   PetscScalar       *g;
142:   const PetscScalar *x;

145:   /* Get pointers to vector data */
146:   VecGetArrayRead(X,&x);
147:   VecGetArray(G,&g);

149:   /* Compute G(X) */
150:   if (user->chained) {
151:     g[0] = 0;
152:     for (i=0; i<user->n-1; i++) {
153:       t1 = x[i+1] - x[i]*x[i];
154:       ff += PetscSqr(1 - x[i]) + alpha*t1*t1;
155:       g[i] += -2*(1 - x[i]) + 2*alpha*t1*(-2*x[i]);
156:       g[i+1] = 2*alpha*t1;
157:     }
158:   } else {
159:     for (i=0; i<nn; i++) {
160:       t1 = x[2*i+1]-x[2*i]*x[2*i]; t2= 1-x[2*i];
161:       ff += alpha*t1*t1 + t2*t2;
162:       g[2*i] = -4*alpha*t1*x[2*i]-2.0*t2;
163:       g[2*i+1] = 2*alpha*t1;
164:     }
165:   }

167:   /* Restore vectors */
168:   VecRestoreArrayRead(X,&x);
169:   VecRestoreArray(G,&g);
170:   *f   = ff;

172:   PetscLogFlops(15.0*nn);
173:   return 0;
174: }

176: /* ------------------------------------------------------------------- */
177: /*
178:    FormHessian - Evaluates Hessian matrix.

180:    Input Parameters:
181: .  tao   - the Tao context
182: .  x     - input vector
183: .  ptr   - optional user-defined context, as set by TaoSetHessian()

185:    Output Parameters:
186: .  H     - Hessian matrix

188:    Note:  Providing the Hessian may not be necessary.  Only some solvers
189:    require this matrix.
190: */
191: PetscErrorCode FormHessian(Tao tao,Vec X,Mat H, Mat Hpre, void *ptr)
192: {
193:   AppCtx            *user = (AppCtx*)ptr;
194:   PetscInt          i, ind[2];
195:   PetscReal         alpha=user->alpha;
196:   PetscReal         v[2][2];
197:   const PetscScalar *x;
198:   PetscBool         assembled;

201:   /* Zero existing matrix entries */
202:   MatAssembled(H,&assembled);
203:   if (assembled) MatZeroEntries(H);

205:   /* Get a pointer to vector data */
206:   VecGetArrayRead(X,&x);

208:   /* Compute H(X) entries */
209:   if (user->chained) {
210:     MatZeroEntries(H);
211:     for (i=0; i<user->n-1; i++) {
212:       PetscScalar t1 = x[i+1] - x[i]*x[i];
213:       v[0][0] = 2 + 2*alpha*(t1*(-2) - 2*x[i]);
214:       v[0][1] = 2*alpha*(-2*x[i]);
215:       v[1][0] = 2*alpha*(-2*x[i]);
216:       v[1][1] = 2*alpha*t1;
217:       ind[0] = i; ind[1] = i+1;
218:       MatSetValues(H,2,ind,2,ind,v[0],ADD_VALUES);
219:     }
220:   } else {
221:     for (i=0; i<user->n/2; i++) {
222:       v[1][1] = 2*alpha;
223:       v[0][0] = -4*alpha*(x[2*i+1]-3*x[2*i]*x[2*i]) + 2;
224:       v[1][0] = v[0][1] = -4.0*alpha*x[2*i];
225:       ind[0]=2*i; ind[1]=2*i+1;
226:       MatSetValues(H,2,ind,2,ind,v[0],INSERT_VALUES);
227:     }
228:   }
229:   VecRestoreArrayRead(X,&x);

231:   /* Assemble matrix */
232:   MatAssemblyBegin(H,MAT_FINAL_ASSEMBLY);
233:   MatAssemblyEnd(H,MAT_FINAL_ASSEMBLY);
234:   PetscLogFlops(9.0*user->n/2.0);
235:   return 0;
236: }

238: /*TEST

240:    build:
241:       requires: !complex

243:    test:
244:       args: -tao_smonitor -tao_type nls -tao_gatol 1.e-4
245:       requires: !single

247:    test:
248:       suffix: 2
249:       args: -tao_smonitor -tao_type lmvm -tao_gatol 1.e-3

251:    test:
252:       suffix: 3
253:       args: -tao_smonitor -tao_type ntr -tao_gatol 1.e-4
254:       requires: !single

256:    test:
257:       suffix: 4
258:       args: -tao_smonitor -tao_type ntr -tao_mf_hessian -tao_ntr_pc_type none -tao_gatol 1.e-4

260:    test:
261:       suffix: 5
262:       args: -tao_smonitor -tao_type bntr -tao_gatol 1.e-4

264:    test:
265:       suffix: 6
266:       args: -tao_smonitor -tao_type bntl -tao_gatol 1.e-4

268:    test:
269:       suffix: 7
270:       args: -tao_smonitor -tao_type bnls -tao_gatol 1.e-4

272:    test:
273:       suffix: 8
274:       args: -tao_smonitor -tao_type bntr -tao_bnk_max_cg_its 3 -tao_gatol 1.e-4

276:    test:
277:       suffix: 9
278:       args: -tao_smonitor -tao_type bntl -tao_bnk_max_cg_its 3 -tao_gatol 1.e-4

280:    test:
281:       suffix: 10
282:       args: -tao_smonitor -tao_type bnls -tao_bnk_max_cg_its 3 -tao_gatol 1.e-4

284:    test:
285:       suffix: 11
286:       args: -test_lmvm -tao_max_it 10 -tao_bqnk_mat_type lmvmbroyden

288:    test:
289:       suffix: 12
290:       args: -test_lmvm -tao_max_it 10 -tao_bqnk_mat_type lmvmbadbroyden

292:    test:
293:      suffix: 13
294:      args: -test_lmvm -tao_max_it 10 -tao_bqnk_mat_type lmvmsymbroyden

296:    test:
297:      suffix: 14
298:      args: -test_lmvm -tao_max_it 10 -tao_bqnk_mat_type lmvmbfgs

300:    test:
301:      suffix: 15
302:      args: -test_lmvm -tao_max_it 10 -tao_bqnk_mat_type lmvmdfp

304:    test:
305:      suffix: 16
306:      args: -test_lmvm -tao_max_it 10 -tao_bqnk_mat_type lmvmsr1

308:    test:
309:      suffix: 17
310:      args: -tao_smonitor -tao_gatol 1e-4 -tao_type bqnls

312:    test:
313:      suffix: 18
314:      args: -tao_smonitor -tao_gatol 1e-4 -tao_type blmvm

316:    test:
317:      suffix: 19
318:      args: -tao_smonitor -tao_gatol 1e-4 -tao_type bqnktr -tao_bqnk_mat_type lmvmsr1

320:    test:
321:      suffix: 20
322:      args: -tao_monitor -tao_gatol 1e-4 -tao_type blmvm -tao_ls_monitor

324:    test:
325:      suffix: 21
326:      args: -test_lmvm -tao_max_it 10 -tao_bqnk_mat_type lmvmsymbadbroyden

328:    test:
329:      suffix: 22
330:      args: -tao_max_it 1 -tao_converged_reason

332:    test:
333:      suffix: 23
334:      args: -tao_max_funcs 0 -tao_converged_reason

336:    test:
337:      suffix: 24
338:      args: -tao_gatol 10 -tao_converged_reason

340:    test:
341:      suffix: 25
342:      args: -tao_grtol 10 -tao_converged_reason

344:    test:
345:      suffix: 26
346:      args: -tao_gttol 10 -tao_converged_reason

348:    test:
349:      suffix: 27
350:      args: -tao_steptol 10 -tao_converged_reason

352:    test:
353:      suffix: 28
354:      args: -tao_fmin 10 -tao_converged_reason

356: TEST*/