Actual source code: ex4.c

  1: static char help[] = "Simple example to test separable objective optimizers.\n";

  3: #include <petsc.h>
  4: #include <petsctao.h>
  5: #include <petscvec.h>
  6: #include <petscmath.h>

  8: #define NWORKLEFT 4
  9: #define NWORKRIGHT 12

 11: typedef struct _UserCtx
 12: {
 13:   PetscInt    m;                     /* The row dimension of F */
 14:   PetscInt    n;                     /* The column dimension of F */
 15:   PetscInt    matops;                /* Matrix format. 0 for stencil, 1 for random */
 16:   PetscInt    iter;                  /* Numer of iterations for ADMM */
 17:   PetscReal   hStart;                /* Starting point for Taylor test */
 18:   PetscReal   hFactor;               /* Taylor test step factor */
 19:   PetscReal   hMin;                  /* Taylor test end goal */
 20:   PetscReal   alpha;                 /* regularization constant applied to || x ||_p */
 21:   PetscReal   eps;                   /* small constant for approximating gradient of || x ||_1 */
 22:   PetscReal   mu;                    /* the augmented Lagrangian term in ADMM */
 23:   PetscReal   abstol;
 24:   PetscReal   reltol;
 25:   Mat         F;                     /* matrix in least squares component $(1/2) * || F x - d ||_2^2$ */
 26:   Mat         W;                     /* Workspace matrix. ATA */
 27:   Mat         Hm;                    /* Hessian Misfit*/
 28:   Mat         Hr;                    /* Hessian Reg*/
 29:   Vec         d;                     /* RHS in least squares component $(1/2) * || F x - d ||_2^2$ */
 30:   Vec         workLeft[NWORKLEFT];   /* Workspace for temporary vec */
 31:   Vec         workRight[NWORKRIGHT]; /* Workspace for temporary vec */
 32:   NormType    p;
 33:   PetscRandom rctx;
 34:   PetscBool   taylor;                /* Flag to determine whether to run Taylor test or not */
 35:   PetscBool   use_admm;              /* Flag to determine whether to run Taylor test or not */
 36: }* UserCtx;

 38: static PetscErrorCode CreateRHS(UserCtx ctx)
 39: {
 40:   /* build the rhs d in ctx */
 41:   VecCreate(PETSC_COMM_WORLD,&(ctx->d));
 42:   VecSetSizes(ctx->d,PETSC_DECIDE,ctx->m);
 43:   VecSetFromOptions(ctx->d);
 44:   VecSetRandom(ctx->d,ctx->rctx);
 45:   return 0;
 46: }

 48: static PetscErrorCode CreateMatrix(UserCtx ctx)
 49: {
 50:   PetscInt       Istart,Iend,i,j,Ii,gridN,I_n, I_s, I_e, I_w;
 51: #if defined(PETSC_USE_LOG)
 52:   PetscLogStage  stage;
 53: #endif

 55:   /* build the matrix F in ctx */
 56:   MatCreate(PETSC_COMM_WORLD, &(ctx->F));
 57:   MatSetSizes(ctx->F,PETSC_DECIDE, PETSC_DECIDE, ctx->m, ctx->n);
 58:   MatSetType(ctx->F,MATAIJ); /* TODO: Decide specific SetType other than dummy*/
 59:   MatMPIAIJSetPreallocation(ctx->F, 5, NULL, 5, NULL); /*TODO: some number other than 5?*/
 60:   MatSeqAIJSetPreallocation(ctx->F, 5, NULL);
 61:   MatSetUp(ctx->F);
 62:   MatGetOwnershipRange(ctx->F,&Istart,&Iend);
 63:   PetscLogStageRegister("Assembly", &stage);
 64:   PetscLogStagePush(stage);

 66:   /* Set matrix elements in  2-D five point stencil format. */
 67:   if (!(ctx->matops)) {
 69:     gridN = (PetscInt) PetscSqrtReal((PetscReal) ctx->m);
 71:     for (Ii=Istart; Ii<Iend; Ii++) {
 72:       i   = Ii / gridN; j = Ii % gridN;
 73:       I_n = i * gridN + j + 1;
 74:       if (j + 1 >= gridN) I_n = -1;
 75:       I_s = i * gridN + j - 1;
 76:       if (j - 1 < 0) I_s = -1;
 77:       I_e = (i + 1) * gridN + j;
 78:       if (i + 1 >= gridN) I_e = -1;
 79:       I_w = (i - 1) * gridN + j;
 80:       if (i - 1 < 0) I_w = -1;
 81:       MatSetValue(ctx->F, Ii, Ii, 4., INSERT_VALUES);
 82:       MatSetValue(ctx->F, Ii, I_n, -1., INSERT_VALUES);
 83:       MatSetValue(ctx->F, Ii, I_s, -1., INSERT_VALUES);
 84:       MatSetValue(ctx->F, Ii, I_e, -1., INSERT_VALUES);
 85:       MatSetValue(ctx->F, Ii, I_w, -1., INSERT_VALUES);
 86:     }
 87:   } else MatSetRandom(ctx->F, ctx->rctx);
 88:   MatAssemblyBegin(ctx->F, MAT_FINAL_ASSEMBLY);
 89:   MatAssemblyEnd(ctx->F, MAT_FINAL_ASSEMBLY);
 90:   PetscLogStagePop();
 91:   /* Stencil matrix is symmetric. Setting symmetric flag for ICC/Cholesky preconditioner */
 92:   if (!(ctx->matops)) {
 93:     MatSetOption(ctx->F,MAT_SYMMETRIC,PETSC_TRUE);
 94:   }
 95:   MatTransposeMatMult(ctx->F,ctx->F, MAT_INITIAL_MATRIX, PETSC_DEFAULT, &(ctx->W));
 96:   /* Setup Hessian Workspace in same shape as W */
 97:   MatDuplicate(ctx->W,MAT_DO_NOT_COPY_VALUES,&(ctx->Hm));
 98:   MatDuplicate(ctx->W,MAT_DO_NOT_COPY_VALUES,&(ctx->Hr));
 99:   return 0;
100: }

102: static PetscErrorCode SetupWorkspace(UserCtx ctx)
103: {
104:   PetscInt       i;

106:   MatCreateVecs(ctx->F, &ctx->workLeft[0], &ctx->workRight[0]);
107:   for (i=1; i<NWORKLEFT; i++) {
108:     VecDuplicate(ctx->workLeft[0], &(ctx->workLeft[i]));
109:   }
110:   for (i=1; i<NWORKRIGHT; i++) {
111:     VecDuplicate(ctx->workRight[0], &(ctx->workRight[i]));
112:   }
113:   return 0;
114: }

116: static PetscErrorCode ConfigureContext(UserCtx ctx)
117: {

120:   ctx->m        = 16;
121:   ctx->n        = 16;
122:   ctx->eps      = 1.e-3;
123:   ctx->abstol   = 1.e-4;
124:   ctx->reltol   = 1.e-2;
125:   ctx->hStart   = 1.;
126:   ctx->hMin     = 1.e-3;
127:   ctx->hFactor  = 0.5;
128:   ctx->alpha    = 1.;
129:   ctx->mu       = 1.0;
130:   ctx->matops   = 0;
131:   ctx->iter     = 10;
132:   ctx->p        = NORM_2;
133:   ctx->taylor   = PETSC_TRUE;
134:   ctx->use_admm = PETSC_FALSE;
135:   PetscOptionsBegin(PETSC_COMM_WORLD, NULL, "Configure separable objection example", "ex4.c");
136:   PetscOptionsInt("-m", "The row dimension of matrix F", "ex4.c", ctx->m, &(ctx->m), NULL);
137:   PetscOptionsInt("-n", "The column dimension of matrix F", "ex4.c", ctx->n, &(ctx->n), NULL);
138:   PetscOptionsInt("-matrix_format","Decide format of F matrix. 0 for stencil, 1 for random", "ex4.c", ctx->matops, &(ctx->matops), NULL);
139:   PetscOptionsInt("-iter","Iteration number ADMM", "ex4.c", ctx->iter, &(ctx->iter), NULL);
140:   PetscOptionsReal("-alpha", "The regularization multiplier. 1 default", "ex4.c", ctx->alpha, &(ctx->alpha), NULL);
141:   PetscOptionsReal("-epsilon", "The small constant added to |x_i| in the denominator to approximate the gradient of ||x||_1", "ex4.c", ctx->eps, &(ctx->eps), NULL);
142:   PetscOptionsReal("-mu", "The augmented lagrangian multiplier in ADMM", "ex4.c", ctx->mu, &(ctx->mu), NULL);
143:   PetscOptionsReal("-hStart", "Taylor test starting point. 1 default.", "ex4.c", ctx->hStart, &(ctx->hStart), NULL);
144:   PetscOptionsReal("-hFactor", "Taylor test multiplier factor. 0.5 default", "ex4.c", ctx->hFactor, &(ctx->hFactor), NULL);
145:   PetscOptionsReal("-hMin", "Taylor test ending condition. 1.e-3 default", "ex4.c", ctx->hMin, &(ctx->hMin), NULL);
146:   PetscOptionsReal("-abstol", "Absolute stopping criterion for ADMM", "ex4.c", ctx->abstol, &(ctx->abstol), NULL);
147:   PetscOptionsReal("-reltol", "Relative stopping criterion for ADMM", "ex4.c", ctx->reltol, &(ctx->reltol), NULL);
148:   PetscOptionsBool("-taylor","Flag for Taylor test. Default is true.", "ex4.c", ctx->taylor, &(ctx->taylor), NULL);
149:   PetscOptionsBool("-use_admm","Use the ADMM solver in this example.", "ex4.c", ctx->use_admm, &(ctx->use_admm), NULL);
150:   PetscOptionsEnum("-p","Norm type.", "ex4.c", NormTypes, (PetscEnum)ctx->p, (PetscEnum *) &(ctx->p), NULL);
151:   PetscOptionsEnd();
152:   /* Creating random ctx */
153:   PetscRandomCreate(PETSC_COMM_WORLD,&(ctx->rctx));
154:   PetscRandomSetFromOptions(ctx->rctx);
155:   CreateMatrix(ctx);
156:   CreateRHS(ctx);
157:   SetupWorkspace(ctx);
158:   return 0;
159: }

161: static PetscErrorCode DestroyContext(UserCtx *ctx)
162: {
163:   PetscInt       i;

165:   MatDestroy(&((*ctx)->F));
166:   MatDestroy(&((*ctx)->W));
167:   MatDestroy(&((*ctx)->Hm));
168:   MatDestroy(&((*ctx)->Hr));
169:   VecDestroy(&((*ctx)->d));
170:   for (i=0; i<NWORKLEFT; i++) {
171:     VecDestroy(&((*ctx)->workLeft[i]));
172:   }
173:   for (i=0; i<NWORKRIGHT; i++) {
174:     VecDestroy(&((*ctx)->workRight[i]));
175:   }
176:   PetscRandomDestroy(&((*ctx)->rctx));
177:   PetscFree(*ctx);
178:   return 0;
179: }

181: /* compute (1/2) * ||F x - d||^2 */
182: static PetscErrorCode ObjectiveMisfit(Tao tao, Vec x, PetscReal *J, void *_ctx)
183: {
184:   UserCtx        ctx = (UserCtx) _ctx;
185:   Vec            y;

187:   y    = ctx->workLeft[0];
188:   MatMult(ctx->F, x, y);
189:   VecAXPY(y, -1., ctx->d);
190:   VecDot(y, y, J);
191:   *J  *= 0.5;
192:   return 0;
193: }

195: /* compute V = FTFx - FTd */
196: static PetscErrorCode GradientMisfit(Tao tao, Vec x, Vec V, void *_ctx)
197: {
198:   UserCtx        ctx = (UserCtx) _ctx;
199:   Vec            FTFx, FTd;

201:   /* work1 is A^T Ax, work2 is Ab, W is A^T A*/
202:   FTFx = ctx->workRight[0];
203:   FTd  = ctx->workRight[1];
204:   MatMult(ctx->W,x,FTFx);
205:   MatMultTranspose(ctx->F, ctx->d, FTd);
206:   VecWAXPY(V, -1., FTd, FTFx);
207:   return 0;
208: }

210: /* returns FTF */
211: static PetscErrorCode HessianMisfit(Tao tao, Vec x, Mat H, Mat Hpre, void *_ctx)
212: {
213:   UserCtx        ctx = (UserCtx) _ctx;

215:   if (H != ctx->W) MatCopy(ctx->W, H, DIFFERENT_NONZERO_PATTERN);
216:   if (Hpre != ctx->W) MatCopy(ctx->W, Hpre, DIFFERENT_NONZERO_PATTERN);
217:   return 0;
218: }

220: /* computes augment Lagrangian objective (with scaled dual):
221:  * 0.5 * ||F x - d||^2  + 0.5 * mu ||x - z + u||^2 */
222: static PetscErrorCode ObjectiveMisfitADMM(Tao tao, Vec x, PetscReal *J, void *_ctx)
223: {
224:   UserCtx        ctx = (UserCtx) _ctx;
225:   PetscReal      mu, workNorm, misfit;
226:   Vec            z, u, temp;

228:   mu   = ctx->mu;
229:   z    = ctx->workRight[5];
230:   u    = ctx->workRight[6];
231:   temp = ctx->workRight[10];
232:   /* misfit = f(x) */
233:   ObjectiveMisfit(tao, x, &misfit, _ctx);
234:   VecCopy(x,temp);
235:   /* temp = x - z + u */
236:   VecAXPBYPCZ(temp,-1.,1.,1.,z,u);
237:   /* workNorm = ||x - z + u||^2 */
238:   VecDot(temp, temp, &workNorm);
239:   /* augment Lagrangian objective (with scaled dual): f(x) + 0.5 * mu ||x -z + u||^2 */
240:   *J = misfit + 0.5 * mu * workNorm;
241:   return 0;
242: }

244: /* computes FTFx - FTd  mu*(x - z + u) */
245: static PetscErrorCode GradientMisfitADMM(Tao tao, Vec x, Vec V, void *_ctx)
246: {
247:   UserCtx        ctx = (UserCtx) _ctx;
248:   PetscReal      mu;
249:   Vec            z, u, temp;

251:   mu   = ctx->mu;
252:   z    = ctx->workRight[5];
253:   u    = ctx->workRight[6];
254:   temp = ctx->workRight[10];
255:   GradientMisfit(tao, x, V, _ctx);
256:   VecCopy(x, temp);
257:   /* temp = x - z + u */
258:   VecAXPBYPCZ(temp,-1.,1.,1.,z,u);
259:   /* V =  FTFx - FTd  mu*(x - z + u) */
260:   VecAXPY(V, mu, temp);
261:   return 0;
262: }

264: /* returns FTF + diag(mu) */
265: static PetscErrorCode HessianMisfitADMM(Tao tao, Vec x, Mat H, Mat Hpre, void *_ctx)
266: {
267:   UserCtx        ctx = (UserCtx) _ctx;

269:   MatCopy(ctx->W, H, DIFFERENT_NONZERO_PATTERN);
270:   MatShift(H, ctx->mu);
271:   if (Hpre != H) {
272:     MatCopy(H, Hpre, DIFFERENT_NONZERO_PATTERN);
273:   }
274:   return 0;
275: }

277: /* computes || x ||_p (mult by 0.5 in case of NORM_2) */
278: static PetscErrorCode ObjectiveRegularization(Tao tao, Vec x, PetscReal *J, void *_ctx)
279: {
280:   UserCtx        ctx = (UserCtx) _ctx;
281:   PetscReal      norm;

283:   *J = 0;
284:   VecNorm (x, ctx->p, &norm);
285:   if (ctx->p == NORM_2) norm = 0.5 * norm * norm;
286:   *J = ctx->alpha * norm;
287:   return 0;
288: }

290: /* NORM_2 Case: return x
291:  * NORM_1 Case: x/(|x| + eps)
292:  * Else: TODO */
293: static PetscErrorCode GradientRegularization(Tao tao, Vec x, Vec V, void *_ctx)
294: {
295:   UserCtx        ctx = (UserCtx) _ctx;
296:   PetscReal      eps = ctx->eps;

298:   if (ctx->p == NORM_2) {
299:     VecCopy(x, V);
300:   } else if (ctx->p == NORM_1) {
301:     VecCopy(x, ctx->workRight[1]);
302:     VecAbs(ctx->workRight[1]);
303:     VecShift(ctx->workRight[1], eps);
304:     VecPointwiseDivide(V, x, ctx->workRight[1]);
305:   } else SETERRQ(PetscObjectComm((PetscObject)tao), PETSC_ERR_ARG_OUTOFRANGE, "Example only works for NORM_1 and NORM_2");
306:   return 0;
307: }

309: /* NORM_2 Case: returns diag(mu)
310:  * NORM_1 Case: diag(mu* 1/sqrt(x_i^2 + eps) * (1 - x_i^2/ABS(x_i^2+eps)))  */
311: static PetscErrorCode HessianRegularization(Tao tao, Vec x, Mat H, Mat Hpre, void *_ctx)
312: {
313:   UserCtx        ctx = (UserCtx) _ctx;
314:   PetscReal      eps = ctx->eps;
315:   Vec            copy1,copy2,copy3;

317:   if (ctx->p == NORM_2) {
318:     /* Identity matrix scaled by mu */
319:     MatZeroEntries(H);
320:     MatShift(H,ctx->mu);
321:     if (Hpre != H) {
322:       MatZeroEntries(Hpre);
323:       MatShift(Hpre,ctx->mu);
324:     }
325:   } else if (ctx->p == NORM_1) {
326:     /* 1/sqrt(x_i^2 + eps) * (1 - x_i^2/ABS(x_i^2+eps)) */
327:     copy1 = ctx->workRight[1];
328:     copy2 = ctx->workRight[2];
329:     copy3 = ctx->workRight[3];
330:     /* copy1 : 1/sqrt(x_i^2 + eps) */
331:     VecCopy(x, copy1);
332:     VecPow(copy1,2);
333:     VecShift(copy1, eps);
334:     VecSqrtAbs(copy1);
335:     VecReciprocal(copy1);
336:     /* copy2:  x_i^2.*/
337:     VecCopy(x,copy2);
338:     VecPow(copy2,2);
339:     /* copy3: abs(x_i^2 + eps) */
340:     VecCopy(x,copy3);
341:     VecPow(copy3,2);
342:     VecShift(copy3, eps);
343:     VecAbs(copy3);
344:     /* copy2: 1 - x_i^2/abs(x_i^2 + eps) */
345:     VecPointwiseDivide(copy2, copy2,copy3);
346:     VecScale(copy2, -1.);
347:     VecShift(copy2, 1.);
348:     VecAXPY(copy1,1.,copy2);
349:     VecScale(copy1, ctx->mu);
350:     MatZeroEntries(H);
351:     MatDiagonalSet(H, copy1,INSERT_VALUES);
352:     if (Hpre != H) {
353:       MatZeroEntries(Hpre);
354:       MatDiagonalSet(Hpre, copy1,INSERT_VALUES);
355:     }
356:   } else SETERRQ(PetscObjectComm((PetscObject)tao), PETSC_ERR_ARG_OUTOFRANGE, "Example only works for NORM_1 and NORM_2");
357:   return 0;
358: }

360: /* NORM_2 Case: 0.5 || x ||_2 + 0.5 * mu * ||x + u - z||^2
361:  * Else : || x ||_2 + 0.5 * mu * ||x + u - z||^2 */
362: static PetscErrorCode ObjectiveRegularizationADMM(Tao tao, Vec z, PetscReal *J, void *_ctx)
363: {
364:   UserCtx        ctx = (UserCtx) _ctx;
365:   PetscReal      mu, workNorm, reg;
366:   Vec            x, u, temp;

368:   mu   = ctx->mu;
369:   x    = ctx->workRight[4];
370:   u    = ctx->workRight[6];
371:   temp = ctx->workRight[10];
372:   ObjectiveRegularization(tao, z, &reg, _ctx);
373:   VecCopy(z,temp);
374:   /* temp = x + u -z */
375:   VecAXPBYPCZ(temp,1.,1.,-1.,x,u);
376:   /* workNorm = ||x + u - z ||^2 */
377:   VecDot(temp, temp, &workNorm);
378:   *J   = reg + 0.5 * mu * workNorm;
379:   return 0;
380: }

382: /* NORM_2 Case: x - mu*(x + u - z)
383:  * NORM_1 Case: x/(|x| + eps) - mu*(x + u - z)
384:  * Else: TODO */
385: static PetscErrorCode GradientRegularizationADMM(Tao tao, Vec z, Vec V, void *_ctx)
386: {
387:   UserCtx        ctx = (UserCtx) _ctx;
388:   PetscReal      mu;
389:   Vec            x, u, temp;

391:   mu   = ctx->mu;
392:   x    = ctx->workRight[4];
393:   u    = ctx->workRight[6];
394:   temp = ctx->workRight[10];
395:   GradientRegularization(tao, z, V, _ctx);
396:   VecCopy(z, temp);
397:   /* temp = x + u -z */
398:   VecAXPBYPCZ(temp,1.,1.,-1.,x,u);
399:   VecAXPY(V, -mu, temp);
400:   return 0;
401: }

403: /* NORM_2 Case: returns diag(mu)
404:  * NORM_1 Case: FTF + diag(mu) */
405: static PetscErrorCode HessianRegularizationADMM(Tao tao, Vec x, Mat H, Mat Hpre, void *_ctx)
406: {
407:   UserCtx        ctx = (UserCtx) _ctx;

409:   if (ctx->p == NORM_2) {
410:     /* Identity matrix scaled by mu */
411:     MatZeroEntries(H);
412:     MatShift(H,ctx->mu);
413:     if (Hpre != H) {
414:       MatZeroEntries(Hpre);
415:       MatShift(Hpre,ctx->mu);
416:     }
417:   } else if (ctx->p == NORM_1) {
418:     HessianMisfit(tao, x, H, Hpre, (void*) ctx);
419:     MatShift(H, ctx->mu);
420:     if (Hpre != H) MatShift(Hpre, ctx->mu);
421:   } else SETERRQ(PetscObjectComm((PetscObject)tao), PETSC_ERR_ARG_OUTOFRANGE, "Example only works for NORM_1 and NORM_2");
422:   return 0;
423: }

425: /* NORM_2 Case : (1/2) * ||F x - d||^2 + 0.5 * || x ||_p
426: *  NORM_1 Case : (1/2) * ||F x - d||^2 + || x ||_p */
427: static PetscErrorCode ObjectiveComplete(Tao tao, Vec x, PetscReal *J, void *ctx)
428: {
429:   PetscReal      Jm, Jr;

431:   ObjectiveMisfit(tao, x, &Jm, ctx);
432:   ObjectiveRegularization(tao, x, &Jr, ctx);
433:   *J   = Jm + Jr;
434:   return 0;
435: }

437: /* NORM_2 Case: FTFx - FTd + x
438:  * NORM_1 Case: FTFx - FTd + x/(|x| + eps) */
439: static PetscErrorCode GradientComplete(Tao tao, Vec x, Vec V, void *ctx)
440: {
441:   UserCtx        cntx = (UserCtx) ctx;

443:   GradientMisfit(tao, x, cntx->workRight[2], ctx);
444:   GradientRegularization(tao, x, cntx->workRight[3], ctx);
445:   VecWAXPY(V,1,cntx->workRight[2],cntx->workRight[3]);
446:   return 0;
447: }

449: /* NORM_2 Case: diag(mu) + FTF
450:  * NORM_1 Case: diag(mu* 1/sqrt(x_i^2 + eps) * (1 - x_i^2/ABS(x_i^2+eps))) + FTF  */
451: static PetscErrorCode HessianComplete(Tao tao, Vec x, Mat H, Mat Hpre, void *ctx)
452: {
453:   Mat            tempH;

455:   MatDuplicate(H, MAT_SHARE_NONZERO_PATTERN, &tempH);
456:   HessianMisfit(tao, x, H, H, ctx);
457:   HessianRegularization(tao, x, tempH, tempH, ctx);
458:   MatAXPY(H, 1., tempH, DIFFERENT_NONZERO_PATTERN);
459:   if (Hpre != H) {
460:     MatCopy(H, Hpre, DIFFERENT_NONZERO_PATTERN);
461:   }
462:   MatDestroy(&tempH);
463:   return 0;
464: }

466: static PetscErrorCode TaoSolveADMM(UserCtx ctx,  Vec x)
467: {
468:   PetscInt       i;
469:   PetscReal      u_norm, r_norm, s_norm, primal, dual, x_norm, z_norm;
470:   Tao            tao1,tao2;
471:   Vec            xk,z,u,diff,zold,zdiff,temp;
472:   PetscReal      mu;

474:   xk    = ctx->workRight[4];
475:   z     = ctx->workRight[5];
476:   u     = ctx->workRight[6];
477:   diff  = ctx->workRight[7];
478:   zold  = ctx->workRight[8];
479:   zdiff = ctx->workRight[9];
480:   temp  = ctx->workRight[11];
481:   mu    = ctx->mu;
482:   VecSet(u, 0.);
483:   TaoCreate(PETSC_COMM_WORLD, &tao1);
484:   TaoSetType(tao1,TAONLS);
485:   TaoSetObjective(tao1, ObjectiveMisfitADMM, (void*) ctx);
486:   TaoSetGradient(tao1, NULL, GradientMisfitADMM, (void*) ctx);
487:   TaoSetHessian(tao1, ctx->Hm, ctx->Hm, HessianMisfitADMM, (void*) ctx);
488:   VecSet(xk, 0.);
489:   TaoSetSolution(tao1, xk);
490:   TaoSetOptionsPrefix(tao1, "misfit_");
491:   TaoSetFromOptions(tao1);
492:   TaoCreate(PETSC_COMM_WORLD, &tao2);
493:   if (ctx->p == NORM_2) {
494:     TaoSetType(tao2,TAONLS);
495:     TaoSetObjective(tao2, ObjectiveRegularizationADMM, (void*) ctx);
496:     TaoSetGradient(tao2, NULL, GradientRegularizationADMM, (void*) ctx);
497:     TaoSetHessian(tao2, ctx->Hr, ctx->Hr, HessianRegularizationADMM, (void*) ctx);
498:   }
499:   VecSet(z, 0.);
500:   TaoSetSolution(tao2, z);
501:   TaoSetOptionsPrefix(tao2, "reg_");
502:   TaoSetFromOptions(tao2);

504:   for (i=0; i<ctx->iter; i++) {
505:     VecCopy(z,zold);
506:     TaoSolve(tao1); /* Updates xk */
507:     if (ctx->p == NORM_1) {
508:       VecWAXPY(temp,1.,xk,u);
509:       TaoSoftThreshold(temp,-ctx->alpha/mu,ctx->alpha/mu,z);
510:     } else {
511:       TaoSolve(tao2); /* Update zk */
512:     }
513:     /* u = u + xk -z */
514:     VecAXPBYPCZ(u,1.,-1.,1.,xk,z);
515:     /* r_norm : norm(x-z) */
516:     VecWAXPY(diff,-1.,z,xk);
517:     VecNorm(diff,NORM_2,&r_norm);
518:     /* s_norm : norm(-mu(z-zold)) */
519:     VecWAXPY(zdiff, -1.,zold,z);
520:     VecNorm(zdiff,NORM_2,&s_norm);
521:     s_norm = s_norm * mu;
522:     /* primal : sqrt(n)*ABSTOL + RELTOL*max(norm(x), norm(-z))*/
523:     VecNorm(xk,NORM_2,&x_norm);
524:     VecNorm(z,NORM_2,&z_norm);
525:     primal = PetscSqrtReal(ctx->n)*ctx->abstol + ctx->reltol*PetscMax(x_norm,z_norm);
526:     /* Duality : sqrt(n)*ABSTOL + RELTOL*norm(mu*u)*/
527:     VecNorm(u,NORM_2,&u_norm);
528:     dual = PetscSqrtReal(ctx->n)*ctx->abstol + ctx->reltol*u_norm*mu;
529:     PetscPrintf(PetscObjectComm((PetscObject)tao1),"Iter %D : ||x-z||: %g, mu*||z-zold||: %g\n", i, (double) r_norm, (double) s_norm);
530:     if (r_norm < primal && s_norm < dual) break;
531:   }
532:   VecCopy(xk, x);
533:   TaoDestroy(&tao1);
534:   TaoDestroy(&tao2);
535:   return 0;
536: }

538: /* Second order Taylor remainder convergence test */
539: static PetscErrorCode TaylorTest(UserCtx ctx, Tao tao, Vec x, PetscReal *C)
540: {
541:   PetscReal      h,J,temp;
542:   PetscInt       i,j;
543:   PetscInt       numValues;
544:   PetscReal      Jx,Jxhat_comp,Jxhat_pred;
545:   PetscReal      *Js, *hs;
546:   PetscReal      gdotdx;
547:   PetscReal      minrate = PETSC_MAX_REAL;
548:   MPI_Comm       comm = PetscObjectComm((PetscObject)x);
549:   Vec            g, dx, xhat;

551:   VecDuplicate(x, &g);
552:   VecDuplicate(x, &xhat);
553:   /* choose a perturbation direction */
554:   VecDuplicate(x, &dx);
555:   VecSetRandom(dx,ctx->rctx);
556:   /* evaluate objective at x: J(x) */
557:   TaoComputeObjective(tao, x, &Jx);
558:   /* evaluate gradient at x, save in vector g */
559:   TaoComputeGradient(tao, x, g);
560:   VecDot(g, dx, &gdotdx);

562:   for (numValues=0, h=ctx->hStart; h>=ctx->hMin; h*=ctx->hFactor) numValues++;
563:   PetscCalloc2(numValues, &Js, numValues, &hs);
564:   for (i=0, h=ctx->hStart; h>=ctx->hMin; h*=ctx->hFactor, i++) {
565:     VecWAXPY(xhat, h, dx, x);
566:     TaoComputeObjective(tao, xhat, &Jxhat_comp);
567:     /* J(\hat(x)) \approx J(x) + g^T (xhat - x) = J(x) + h * g^T dx */
568:     Jxhat_pred = Jx + h * gdotdx;
569:     /* Vector to dJdm scalar? Dot?*/
570:     J     = PetscAbsReal(Jxhat_comp - Jxhat_pred);
571:     PetscPrintf (comm, "J(xhat): %g, predicted: %g, diff %g\n", (double) Jxhat_comp,(double) Jxhat_pred, (double) J);
572:     Js[i] = J;
573:     hs[i] = h;
574:   }
575:   for (j=1; j<numValues; j++) {
576:     temp    = PetscLogReal(Js[j]/Js[j-1]) / PetscLogReal (hs[j]/hs[j-1]);
577:     PetscPrintf (comm, "Convergence rate step %D: %g\n", j-1, (double) temp);
578:     minrate = PetscMin(minrate, temp);
579:   }
580:   /* If O is not ~2, then the test is wrong */
581:   PetscFree2(Js, hs);
582:   *C   = minrate;
583:   VecDestroy(&dx);
584:   VecDestroy(&xhat);
585:   VecDestroy(&g);
586:   return 0;
587: }

589: int main(int argc, char ** argv)
590: {
591:   UserCtx ctx;
592:   Tao     tao;
593:   Vec     x;
594:   Mat     H;

596:   PetscInitialize(&argc, &argv, NULL,help);
597:   PetscNew(&ctx);
598:   ConfigureContext(ctx);
599:   /* Define two functions that could pass as objectives to TaoSetObjective(): one
600:    * for the misfit component, and one for the regularization component */
601:   /* ObjectiveMisfit() and ObjectiveRegularization() */

603:   /* Define a single function that calls both components adds them together: the complete objective,
604:    * in the absence of a Tao implementation that handles separability */
605:   /* ObjectiveComplete() */
606:   TaoCreate(PETSC_COMM_WORLD, &tao);
607:   TaoSetType(tao,TAONM);
608:   TaoSetObjective(tao, ObjectiveComplete, (void*) ctx);
609:   TaoSetGradient(tao, NULL, GradientComplete, (void*) ctx);
610:   MatDuplicate(ctx->W, MAT_SHARE_NONZERO_PATTERN, &H);
611:   TaoSetHessian(tao, H, H, HessianComplete, (void*) ctx);
612:   MatCreateVecs(ctx->F, NULL, &x);
613:   VecSet(x, 0.);
614:   TaoSetSolution(tao, x);
615:   TaoSetFromOptions(tao);
616:   if (ctx->use_admm) {
617:     TaoSolveADMM(ctx,x);
618:   } else TaoSolve(tao);
619:   /* examine solution */
620:   VecViewFromOptions(x, NULL, "-view_sol");
621:   if (ctx->taylor) {
622:     PetscReal rate;
623:     TaylorTest(ctx, tao, x, &rate);
624:   }
625:   MatDestroy(&H);
626:   TaoDestroy(&tao);
627:   VecDestroy(&x);
628:   DestroyContext(&ctx);
629:   PetscFinalize();
630:   return 0;
631: }

633: /*TEST

635:   build:
636:     requires: !complex

638:   test:
639:     suffix: 0
640:     args:

642:   test:
643:     suffix: l1_1
644:     args: -p 1 -tao_type lmvm -alpha 1. -epsilon 1.e-7 -m 64 -n 64 -view_sol -matrix_format 1

646:   test:
647:     suffix: hessian_1
648:     args: -matrix_format 1 -m 100 -n 100 -tao_monitor -p 1 -tao_type nls

650:   test:
651:     suffix: hessian_2
652:     args: -matrix_format 1 -m 100 -n 100 -tao_monitor -p 2 -tao_type nls

654:   test:
655:     suffix: nm_1
656:     args: -matrix_format 1 -m 100 -n 100 -tao_monitor -p 1 -tao_type nm -tao_max_it 50

658:   test:
659:     suffix: nm_2
660:     args: -matrix_format 1 -m 100 -n 100 -tao_monitor -p 2 -tao_type nm -tao_max_it 50

662:   test:
663:     suffix: lmvm_1
664:     args: -matrix_format 1 -m 100 -n 100 -tao_monitor -p 1 -tao_type lmvm -tao_max_it 40

666:   test:
667:     suffix: lmvm_2
668:     args: -matrix_format 1 -m 100 -n 100 -tao_monitor -p 2 -tao_type lmvm -tao_max_it 15

670:   test:
671:     suffix: soft_threshold_admm_1
672:     args: -matrix_format 1 -m 100 -n 100 -tao_monitor -p 1 -use_admm

674:   test:
675:     suffix: hessian_admm_1
676:     args: -matrix_format 1 -m 100 -n 100 -tao_monitor -p 1 -use_admm -reg_tao_type nls -misfit_tao_type nls

678:   test:
679:     suffix: hessian_admm_2
680:     args: -matrix_format 1 -m 100 -n 100 -tao_monitor -p 2 -use_admm -reg_tao_type nls -misfit_tao_type nls

682:   test:
683:     suffix: nm_admm_1
684:     args: -matrix_format 1 -m 100 -n 100 -tao_monitor -p 1 -use_admm -reg_tao_type nm -misfit_tao_type nm

686:   test:
687:     suffix: nm_admm_2
688:     args: -matrix_format 1 -m 100 -n 100 -tao_monitor -p 2 -use_admm -reg_tao_type nm -misfit_tao_type nm -iter 7

690:   test:
691:     suffix: lmvm_admm_1
692:     args: -matrix_format 1 -m 100 -n 100 -tao_monitor -p 1 -use_admm -reg_tao_type lmvm -misfit_tao_type lmvm

694:   test:
695:     suffix: lmvm_admm_2
696:     args: -matrix_format 1 -m 100 -n 100 -tao_monitor -p 2 -use_admm -reg_tao_type lmvm -misfit_tao_type lmvm

698: TEST*/