Actual source code: umfpack.c
2: /*
3: Provides an interface to the UMFPACK sparse solver available through SuiteSparse version 4.2.1
5: When build with PETSC_USE_64BIT_INDICES this will use Suitesparse_long as the
6: integer type in UMFPACK, otherwise it will use int. This means
7: all integers in this file as simply declared as PetscInt. Also it means
8: that one cannot use 64BIT_INDICES on 32bit machines [as Suitesparse_long is 32bit only]
10: */
11: #include <../src/mat/impls/aij/seq/aij.h>
13: #if defined(PETSC_USE_64BIT_INDICES)
14: #if defined(PETSC_USE_COMPLEX)
15: #define umfpack_UMF_free_symbolic umfpack_zl_free_symbolic
16: #define umfpack_UMF_free_numeric umfpack_zl_free_numeric
17: /* the type casts are needed because PetscInt is long long while SuiteSparse_long is long and compilers warn even when they are identical */
18: #define umfpack_UMF_wsolve(a,b,c,d,e,f,g,h,i,j,k,l,m,n) umfpack_zl_wsolve(a,(SuiteSparse_long*)b,(SuiteSparse_long*)c,d,e,f,g,h,i,(SuiteSparse_long*)j,k,l,(SuiteSparse_long*)m,n)
19: #define umfpack_UMF_numeric(a,b,c,d,e,f,g,h) umfpack_zl_numeric((SuiteSparse_long*)a,(SuiteSparse_long*)b,c,d,e,f,g,h)
20: #define umfpack_UMF_report_numeric umfpack_zl_report_numeric
21: #define umfpack_UMF_report_control umfpack_zl_report_control
22: #define umfpack_UMF_report_status umfpack_zl_report_status
23: #define umfpack_UMF_report_info umfpack_zl_report_info
24: #define umfpack_UMF_report_symbolic umfpack_zl_report_symbolic
25: #define umfpack_UMF_qsymbolic(a,b,c,d,e,f,g,h,i,j) umfpack_zl_qsymbolic(a,b,(SuiteSparse_long*)c,(SuiteSparse_long*)d,e,f,(SuiteSparse_long*)g,h,i,j)
26: #define umfpack_UMF_symbolic(a,b,c,d,e,f,g,h,i) umfpack_zl_symbolic(a,b,(SuiteSparse_long*)c,(SuiteSparse_long*)d,e,f,g,h,i)
27: #define umfpack_UMF_defaults umfpack_zl_defaults
29: #else
30: #define umfpack_UMF_free_symbolic umfpack_dl_free_symbolic
31: #define umfpack_UMF_free_numeric umfpack_dl_free_numeric
32: #define umfpack_UMF_wsolve(a,b,c,d,e,f,g,h,i,j,k) umfpack_dl_wsolve(a,(SuiteSparse_long*)b,(SuiteSparse_long*)c,d,e,f,g,h,i,(SuiteSparse_long*)j,k)
33: #define umfpack_UMF_numeric(a,b,c,d,e,f,g) umfpack_dl_numeric((SuiteSparse_long*)a,(SuiteSparse_long*)b,c,d,e,f,g)
34: #define umfpack_UMF_report_numeric umfpack_dl_report_numeric
35: #define umfpack_UMF_report_control umfpack_dl_report_control
36: #define umfpack_UMF_report_status umfpack_dl_report_status
37: #define umfpack_UMF_report_info umfpack_dl_report_info
38: #define umfpack_UMF_report_symbolic umfpack_dl_report_symbolic
39: #define umfpack_UMF_qsymbolic(a,b,c,d,e,f,g,h,i) umfpack_dl_qsymbolic(a,b,(SuiteSparse_long*)c,(SuiteSparse_long*)d,e,(SuiteSparse_long*)f,g,h,i)
40: #define umfpack_UMF_symbolic(a,b,c,d,e,f,g,h) umfpack_dl_symbolic(a,b,(SuiteSparse_long*)c,(SuiteSparse_long*)d,e,f,g,h)
41: #define umfpack_UMF_defaults umfpack_dl_defaults
42: #endif
44: #else
45: #if defined(PETSC_USE_COMPLEX)
46: #define umfpack_UMF_free_symbolic umfpack_zi_free_symbolic
47: #define umfpack_UMF_free_numeric umfpack_zi_free_numeric
48: #define umfpack_UMF_wsolve umfpack_zi_wsolve
49: #define umfpack_UMF_numeric umfpack_zi_numeric
50: #define umfpack_UMF_report_numeric umfpack_zi_report_numeric
51: #define umfpack_UMF_report_control umfpack_zi_report_control
52: #define umfpack_UMF_report_status umfpack_zi_report_status
53: #define umfpack_UMF_report_info umfpack_zi_report_info
54: #define umfpack_UMF_report_symbolic umfpack_zi_report_symbolic
55: #define umfpack_UMF_qsymbolic umfpack_zi_qsymbolic
56: #define umfpack_UMF_symbolic umfpack_zi_symbolic
57: #define umfpack_UMF_defaults umfpack_zi_defaults
59: #else
60: #define umfpack_UMF_free_symbolic umfpack_di_free_symbolic
61: #define umfpack_UMF_free_numeric umfpack_di_free_numeric
62: #define umfpack_UMF_wsolve umfpack_di_wsolve
63: #define umfpack_UMF_numeric umfpack_di_numeric
64: #define umfpack_UMF_report_numeric umfpack_di_report_numeric
65: #define umfpack_UMF_report_control umfpack_di_report_control
66: #define umfpack_UMF_report_status umfpack_di_report_status
67: #define umfpack_UMF_report_info umfpack_di_report_info
68: #define umfpack_UMF_report_symbolic umfpack_di_report_symbolic
69: #define umfpack_UMF_qsymbolic umfpack_di_qsymbolic
70: #define umfpack_UMF_symbolic umfpack_di_symbolic
71: #define umfpack_UMF_defaults umfpack_di_defaults
72: #endif
73: #endif
75: EXTERN_C_BEGIN
76: #include <umfpack.h>
77: EXTERN_C_END
79: static const char *const UmfpackOrderingTypes[] = {"CHOLMOD","AMD","GIVEN","METIS","BEST","NONE","USER","UmfpackOrderingTypes","UMFPACK_ORDERING_",0};
81: typedef struct {
82: void *Symbolic, *Numeric;
83: double Info[UMFPACK_INFO], Control[UMFPACK_CONTROL],*W;
84: PetscInt *Wi,*perm_c;
85: Mat A; /* Matrix used for factorization */
86: MatStructure flg;
88: /* Flag to clean up UMFPACK objects during Destroy */
89: PetscBool CleanUpUMFPACK;
90: } Mat_UMFPACK;
92: static PetscErrorCode MatDestroy_UMFPACK(Mat A)
93: {
94: Mat_UMFPACK *lu=(Mat_UMFPACK*)A->data;
96: if (lu->CleanUpUMFPACK) {
97: umfpack_UMF_free_symbolic(&lu->Symbolic);
98: umfpack_UMF_free_numeric(&lu->Numeric);
99: PetscFree(lu->Wi);
100: PetscFree(lu->W);
101: PetscFree(lu->perm_c);
102: }
103: MatDestroy(&lu->A);
104: PetscFree(A->data);
105: return 0;
106: }
108: static PetscErrorCode MatSolve_UMFPACK_Private(Mat A,Vec b,Vec x,int uflag)
109: {
110: Mat_UMFPACK *lu = (Mat_UMFPACK*)A->data;
111: Mat_SeqAIJ *a = (Mat_SeqAIJ*)lu->A->data;
112: PetscScalar *av = a->a,*xa;
113: const PetscScalar *ba;
114: PetscInt *ai = a->i,*aj = a->j,status;
115: static PetscBool cite = PETSC_FALSE;
117: if (!A->rmap->n) return 0;
118: PetscCitationsRegister("@article{davis2004algorithm,\n title={Algorithm 832: {UMFPACK} V4.3---An Unsymmetric-Pattern Multifrontal Method},\n author={Davis, Timothy A},\n journal={ACM Transactions on Mathematical Software (TOMS)},\n volume={30},\n number={2},\n pages={196--199},\n year={2004},\n publisher={ACM}\n}\n",&cite);
119: /* solve Ax = b by umfpack_*_wsolve */
120: /* ----------------------------------*/
122: if (!lu->Wi) { /* first time, allocate working space for wsolve */
123: PetscMalloc1(A->rmap->n,&lu->Wi);
124: PetscMalloc1(5*A->rmap->n,&lu->W);
125: }
127: VecGetArrayRead(b,&ba);
128: VecGetArray(x,&xa);
129: #if defined(PETSC_USE_COMPLEX)
130: status = umfpack_UMF_wsolve(uflag,ai,aj,(PetscReal*)av,NULL,(PetscReal*)xa,NULL,(PetscReal*)ba,NULL,lu->Numeric,lu->Control,lu->Info,lu->Wi,lu->W);
131: #else
132: status = umfpack_UMF_wsolve(uflag,ai,aj,av,xa,ba,lu->Numeric,lu->Control,lu->Info,lu->Wi,lu->W);
133: #endif
134: umfpack_UMF_report_info(lu->Control, lu->Info);
135: if (status < 0) {
136: umfpack_UMF_report_status(lu->Control, status);
137: SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"umfpack_UMF_wsolve failed");
138: }
140: VecRestoreArrayRead(b,&ba);
141: VecRestoreArray(x,&xa);
142: return 0;
143: }
145: static PetscErrorCode MatSolve_UMFPACK(Mat A,Vec b,Vec x)
146: {
147: /* We gave UMFPACK the algebraic transpose (because it assumes column alignment) */
148: MatSolve_UMFPACK_Private(A,b,x,UMFPACK_Aat);
149: return 0;
150: }
152: static PetscErrorCode MatSolveTranspose_UMFPACK(Mat A,Vec b,Vec x)
153: {
154: /* We gave UMFPACK the algebraic transpose (because it assumes column alignment) */
155: MatSolve_UMFPACK_Private(A,b,x,UMFPACK_A);
156: return 0;
157: }
159: static PetscErrorCode MatLUFactorNumeric_UMFPACK(Mat F,Mat A,const MatFactorInfo *info)
160: {
161: Mat_UMFPACK *lu = (Mat_UMFPACK*)(F)->data;
162: Mat_SeqAIJ *a = (Mat_SeqAIJ*)A->data;
163: PetscInt *ai = a->i,*aj=a->j,status;
164: PetscScalar *av = a->a;
166: if (!A->rmap->n) return 0;
167: /* numeric factorization of A' */
168: /* ----------------------------*/
170: if (lu->flg == SAME_NONZERO_PATTERN && lu->Numeric) {
171: umfpack_UMF_free_numeric(&lu->Numeric);
172: }
173: #if defined(PETSC_USE_COMPLEX)
174: status = umfpack_UMF_numeric(ai,aj,(double*)av,NULL,lu->Symbolic,&lu->Numeric,lu->Control,lu->Info);
175: #else
176: status = umfpack_UMF_numeric(ai,aj,av,lu->Symbolic,&lu->Numeric,lu->Control,lu->Info);
177: #endif
178: if (status < 0) {
179: umfpack_UMF_report_status(lu->Control, status);
180: SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"umfpack_UMF_numeric failed");
181: }
182: /* report numeric factorization of A' when Control[PRL] > 3 */
183: (void) umfpack_UMF_report_numeric(lu->Numeric, lu->Control);
185: PetscObjectReference((PetscObject)A);
186: MatDestroy(&lu->A);
188: lu->A = A;
189: lu->flg = SAME_NONZERO_PATTERN;
190: lu->CleanUpUMFPACK = PETSC_TRUE;
191: F->ops->solve = MatSolve_UMFPACK;
192: F->ops->solvetranspose = MatSolveTranspose_UMFPACK;
193: return 0;
194: }
196: static PetscErrorCode MatLUFactorSymbolic_UMFPACK(Mat F,Mat A,IS r,IS c,const MatFactorInfo *info)
197: {
198: Mat_SeqAIJ *a = (Mat_SeqAIJ*)A->data;
199: Mat_UMFPACK *lu = (Mat_UMFPACK*)(F->data);
200: PetscInt i,*ai = a->i,*aj = a->j,m=A->rmap->n,n=A->cmap->n;
201: #if !defined(PETSC_USE_COMPLEX)
202: PetscScalar *av = a->a;
203: #endif
204: const PetscInt *ra;
205: PetscInt status;
207: (F)->ops->lufactornumeric = MatLUFactorNumeric_UMFPACK;
208: if (!n) return 0;
209: if (r) {
210: ISGetIndices(r,&ra);
211: PetscMalloc1(m,&lu->perm_c);
212: /* we cannot simply memcpy on 64 bit archs */
213: for (i = 0; i < m; i++) lu->perm_c[i] = ra[i];
214: ISRestoreIndices(r,&ra);
215: }
217: /* print the control parameters */
218: if (lu->Control[UMFPACK_PRL] > 1) umfpack_UMF_report_control(lu->Control);
220: /* symbolic factorization of A' */
221: /* ---------------------------------------------------------------------- */
222: if (r) { /* use Petsc row ordering */
223: #if !defined(PETSC_USE_COMPLEX)
224: status = umfpack_UMF_qsymbolic(n,m,ai,aj,av,lu->perm_c,&lu->Symbolic,lu->Control,lu->Info);
225: #else
226: status = umfpack_UMF_qsymbolic(n,m,ai,aj,NULL,NULL,lu->perm_c,&lu->Symbolic,lu->Control,lu->Info);
227: #endif
228: } else { /* use Umfpack col ordering */
229: #if !defined(PETSC_USE_COMPLEX)
230: status = umfpack_UMF_symbolic(n,m,ai,aj,av,&lu->Symbolic,lu->Control,lu->Info);
231: #else
232: status = umfpack_UMF_symbolic(n,m,ai,aj,NULL,NULL,&lu->Symbolic,lu->Control,lu->Info);
233: #endif
234: }
235: if (status < 0) {
236: umfpack_UMF_report_info(lu->Control, lu->Info);
237: umfpack_UMF_report_status(lu->Control, status);
238: SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"umfpack_UMF_symbolic failed");
239: }
240: /* report sumbolic factorization of A' when Control[PRL] > 3 */
241: (void) umfpack_UMF_report_symbolic(lu->Symbolic, lu->Control);
243: lu->flg = DIFFERENT_NONZERO_PATTERN;
244: lu->CleanUpUMFPACK = PETSC_TRUE;
245: return 0;
246: }
248: static PetscErrorCode MatView_Info_UMFPACK(Mat A,PetscViewer viewer)
249: {
250: Mat_UMFPACK *lu= (Mat_UMFPACK*)A->data;
252: /* check if matrix is UMFPACK type */
253: if (A->ops->solve != MatSolve_UMFPACK) return 0;
255: PetscViewerASCIIPrintf(viewer,"UMFPACK run parameters:\n");
256: /* Control parameters used by reporting routiones */
257: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_PRL]: %g\n",lu->Control[UMFPACK_PRL]);
259: /* Control parameters used by symbolic factorization */
260: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_STRATEGY]: %g\n",lu->Control[UMFPACK_STRATEGY]);
261: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_DENSE_COL]: %g\n",lu->Control[UMFPACK_DENSE_COL]);
262: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_DENSE_ROW]: %g\n",lu->Control[UMFPACK_DENSE_ROW]);
263: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_AMD_DENSE]: %g\n",lu->Control[UMFPACK_AMD_DENSE]);
264: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_BLOCK_SIZE]: %g\n",lu->Control[UMFPACK_BLOCK_SIZE]);
265: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_FIXQ]: %g\n",lu->Control[UMFPACK_FIXQ]);
266: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_AGGRESSIVE]: %g\n",lu->Control[UMFPACK_AGGRESSIVE]);
268: /* Control parameters used by numeric factorization */
269: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_PIVOT_TOLERANCE]: %g\n",lu->Control[UMFPACK_PIVOT_TOLERANCE]);
270: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_SYM_PIVOT_TOLERANCE]: %g\n",lu->Control[UMFPACK_SYM_PIVOT_TOLERANCE]);
271: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_SCALE]: %g\n",lu->Control[UMFPACK_SCALE]);
272: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_ALLOC_INIT]: %g\n",lu->Control[UMFPACK_ALLOC_INIT]);
273: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_DROPTOL]: %g\n",lu->Control[UMFPACK_DROPTOL]);
275: /* Control parameters used by solve */
276: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_IRSTEP]: %g\n",lu->Control[UMFPACK_IRSTEP]);
278: /* mat ordering */
279: if (!lu->perm_c) {
280: PetscViewerASCIIPrintf(viewer," Control[UMFPACK_ORDERING]: %s (not using the PETSc ordering)\n",UmfpackOrderingTypes[(int)lu->Control[UMFPACK_ORDERING]]);
281: }
282: return 0;
283: }
285: static PetscErrorCode MatView_UMFPACK(Mat A,PetscViewer viewer)
286: {
287: PetscBool iascii;
288: PetscViewerFormat format;
290: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
291: if (iascii) {
292: PetscViewerGetFormat(viewer,&format);
293: if (format == PETSC_VIEWER_ASCII_INFO) {
294: MatView_Info_UMFPACK(A,viewer);
295: }
296: }
297: return 0;
298: }
300: PetscErrorCode MatFactorGetSolverType_seqaij_umfpack(Mat A,MatSolverType *type)
301: {
302: *type = MATSOLVERUMFPACK;
303: return 0;
304: }
306: /*MC
307: MATSOLVERUMFPACK = "umfpack" - A matrix type providing direct solvers (LU) for sequential matrices
308: via the external package UMFPACK.
310: Use ./configure --download-suitesparse to install PETSc to use UMFPACK
312: Use -pc_type lu -pc_factor_mat_solver_type umfpack to use this direct solver
314: Consult UMFPACK documentation for more information about the Control parameters
315: which correspond to the options database keys below.
317: Options Database Keys:
318: + -mat_umfpack_ordering - CHOLMOD, AMD, GIVEN, METIS, BEST, NONE
319: . -mat_umfpack_prl - UMFPACK print level: Control[UMFPACK_PRL]
320: . -mat_umfpack_strategy <AUTO> - (choose one of) AUTO UNSYMMETRIC SYMMETRIC 2BY2
321: . -mat_umfpack_dense_col <alpha_c> - UMFPACK dense column threshold: Control[UMFPACK_DENSE_COL]
322: . -mat_umfpack_dense_row <0.2> - Control[UMFPACK_DENSE_ROW]
323: . -mat_umfpack_amd_dense <10> - Control[UMFPACK_AMD_DENSE]
324: . -mat_umfpack_block_size <bs> - UMFPACK block size for BLAS-Level 3 calls: Control[UMFPACK_BLOCK_SIZE]
325: . -mat_umfpack_2by2_tolerance <0.01> - Control[UMFPACK_2BY2_TOLERANCE]
326: . -mat_umfpack_fixq <0> - Control[UMFPACK_FIXQ]
327: . -mat_umfpack_aggressive <1> - Control[UMFPACK_AGGRESSIVE]
328: . -mat_umfpack_pivot_tolerance <delta> - UMFPACK partial pivot tolerance: Control[UMFPACK_PIVOT_TOLERANCE]
329: . -mat_umfpack_sym_pivot_tolerance <0.001> - Control[UMFPACK_SYM_PIVOT_TOLERANCE]
330: . -mat_umfpack_scale <NONE> - (choose one of) NONE SUM MAX
331: . -mat_umfpack_alloc_init <delta> - UMFPACK factorized matrix allocation modifier: Control[UMFPACK_ALLOC_INIT]
332: . -mat_umfpack_droptol <0> - Control[UMFPACK_DROPTOL]
333: - -mat_umfpack_irstep <maxit> - UMFPACK maximum number of iterative refinement steps: Control[UMFPACK_IRSTEP]
335: Level: beginner
337: Note: UMFPACK is part of SuiteSparse http://faculty.cse.tamu.edu/davis/suitesparse.html
339: .seealso: PCLU, MATSOLVERSUPERLU, MATSOLVERMUMPS, PCFactorSetMatSolverType(), MatSolverType
340: M*/
342: PETSC_EXTERN PetscErrorCode MatGetFactor_seqaij_umfpack(Mat A,MatFactorType ftype,Mat *F)
343: {
344: Mat B;
345: Mat_UMFPACK *lu;
347: PetscInt m=A->rmap->n,n=A->cmap->n,idx;
348: const char *strategy[]={"AUTO","UNSYMMETRIC","SYMMETRIC"};
349: const char *scale[] ={"NONE","SUM","MAX"};
350: PetscBool flg;
352: /* Create the factorization matrix F */
353: MatCreate(PetscObjectComm((PetscObject)A),&B);
354: MatSetSizes(B,PETSC_DECIDE,PETSC_DECIDE,m,n);
355: PetscStrallocpy("umfpack",&((PetscObject)B)->type_name);
356: MatSetUp(B);
358: PetscNewLog(B,&lu);
360: B->data = lu;
361: B->ops->getinfo = MatGetInfo_External;
362: B->ops->lufactorsymbolic = MatLUFactorSymbolic_UMFPACK;
363: B->ops->destroy = MatDestroy_UMFPACK;
364: B->ops->view = MatView_UMFPACK;
365: B->ops->matsolve = NULL;
367: PetscObjectComposeFunction((PetscObject)B,"MatFactorGetSolverType_C",MatFactorGetSolverType_seqaij_umfpack);
369: B->factortype = MAT_FACTOR_LU;
370: B->assembled = PETSC_TRUE; /* required by -ksp_view */
371: B->preallocated = PETSC_TRUE;
373: PetscFree(B->solvertype);
374: PetscStrallocpy(MATSOLVERUMFPACK,&B->solvertype);
375: B->canuseordering = PETSC_TRUE;
376: PetscStrallocpy(MATORDERINGEXTERNAL,(char**)&B->preferredordering[MAT_FACTOR_LU]);
378: /* initializations */
379: /* ------------------------------------------------*/
380: /* get the default control parameters */
381: umfpack_UMF_defaults(lu->Control);
382: lu->perm_c = NULL; /* use defaul UMFPACK col permutation */
383: lu->Control[UMFPACK_IRSTEP] = 0; /* max num of iterative refinement steps to attempt */
385: PetscOptionsBegin(PetscObjectComm((PetscObject)A),((PetscObject)A)->prefix,"UMFPACK Options","Mat");
386: /* Control parameters used by reporting routiones */
387: PetscOptionsReal("-mat_umfpack_prl","Control[UMFPACK_PRL]","None",lu->Control[UMFPACK_PRL],&lu->Control[UMFPACK_PRL],NULL);
389: /* Control parameters for symbolic factorization */
390: PetscOptionsEList("-mat_umfpack_strategy","ordering and pivoting strategy","None",strategy,3,strategy[0],&idx,&flg);
391: if (flg) {
392: switch (idx) {
393: case 0: lu->Control[UMFPACK_STRATEGY] = UMFPACK_STRATEGY_AUTO; break;
394: case 1: lu->Control[UMFPACK_STRATEGY] = UMFPACK_STRATEGY_UNSYMMETRIC; break;
395: case 2: lu->Control[UMFPACK_STRATEGY] = UMFPACK_STRATEGY_SYMMETRIC; break;
396: }
397: }
398: PetscOptionsEList("-mat_umfpack_ordering","Internal ordering method","None",UmfpackOrderingTypes,sizeof(UmfpackOrderingTypes)/sizeof(UmfpackOrderingTypes[0]),UmfpackOrderingTypes[(int)lu->Control[UMFPACK_ORDERING]],&idx,&flg);
399: if (flg) lu->Control[UMFPACK_ORDERING] = (int)idx;
400: PetscOptionsReal("-mat_umfpack_dense_col","Control[UMFPACK_DENSE_COL]","None",lu->Control[UMFPACK_DENSE_COL],&lu->Control[UMFPACK_DENSE_COL],NULL);
401: PetscOptionsReal("-mat_umfpack_dense_row","Control[UMFPACK_DENSE_ROW]","None",lu->Control[UMFPACK_DENSE_ROW],&lu->Control[UMFPACK_DENSE_ROW],NULL);
402: PetscOptionsReal("-mat_umfpack_amd_dense","Control[UMFPACK_AMD_DENSE]","None",lu->Control[UMFPACK_AMD_DENSE],&lu->Control[UMFPACK_AMD_DENSE],NULL);
403: PetscOptionsReal("-mat_umfpack_block_size","Control[UMFPACK_BLOCK_SIZE]","None",lu->Control[UMFPACK_BLOCK_SIZE],&lu->Control[UMFPACK_BLOCK_SIZE],NULL);
404: PetscOptionsReal("-mat_umfpack_fixq","Control[UMFPACK_FIXQ]","None",lu->Control[UMFPACK_FIXQ],&lu->Control[UMFPACK_FIXQ],NULL);
405: PetscOptionsReal("-mat_umfpack_aggressive","Control[UMFPACK_AGGRESSIVE]","None",lu->Control[UMFPACK_AGGRESSIVE],&lu->Control[UMFPACK_AGGRESSIVE],NULL);
407: /* Control parameters used by numeric factorization */
408: PetscOptionsReal("-mat_umfpack_pivot_tolerance","Control[UMFPACK_PIVOT_TOLERANCE]","None",lu->Control[UMFPACK_PIVOT_TOLERANCE],&lu->Control[UMFPACK_PIVOT_TOLERANCE],NULL);
409: PetscOptionsReal("-mat_umfpack_sym_pivot_tolerance","Control[UMFPACK_SYM_PIVOT_TOLERANCE]","None",lu->Control[UMFPACK_SYM_PIVOT_TOLERANCE],&lu->Control[UMFPACK_SYM_PIVOT_TOLERANCE],NULL);
410: PetscOptionsEList("-mat_umfpack_scale","Control[UMFPACK_SCALE]","None",scale,3,scale[0],&idx,&flg);
411: if (flg) {
412: switch (idx) {
413: case 0: lu->Control[UMFPACK_SCALE] = UMFPACK_SCALE_NONE; break;
414: case 1: lu->Control[UMFPACK_SCALE] = UMFPACK_SCALE_SUM; break;
415: case 2: lu->Control[UMFPACK_SCALE] = UMFPACK_SCALE_MAX; break;
416: }
417: }
418: PetscOptionsReal("-mat_umfpack_alloc_init","Control[UMFPACK_ALLOC_INIT]","None",lu->Control[UMFPACK_ALLOC_INIT],&lu->Control[UMFPACK_ALLOC_INIT],NULL);
419: PetscOptionsReal("-mat_umfpack_front_alloc_init","Control[UMFPACK_FRONT_ALLOC_INIT]","None",lu->Control[UMFPACK_FRONT_ALLOC_INIT],&lu->Control[UMFPACK_ALLOC_INIT],NULL);
420: PetscOptionsReal("-mat_umfpack_droptol","Control[UMFPACK_DROPTOL]","None",lu->Control[UMFPACK_DROPTOL],&lu->Control[UMFPACK_DROPTOL],NULL);
422: /* Control parameters used by solve */
423: PetscOptionsReal("-mat_umfpack_irstep","Control[UMFPACK_IRSTEP]","None",lu->Control[UMFPACK_IRSTEP],&lu->Control[UMFPACK_IRSTEP],NULL);
424: PetscOptionsEnd();
425: *F = B;
426: return 0;
427: }
429: PETSC_INTERN PetscErrorCode MatGetFactor_seqaij_cholmod(Mat,MatFactorType,Mat*);
430: PETSC_INTERN PetscErrorCode MatGetFactor_seqsbaij_cholmod(Mat,MatFactorType,Mat*);
431: PETSC_INTERN PetscErrorCode MatGetFactor_seqaij_klu(Mat,MatFactorType,Mat*);
432: PETSC_INTERN PetscErrorCode MatGetFactor_seqaij_spqr(Mat,MatFactorType,Mat*);
434: PETSC_EXTERN PetscErrorCode MatSolverTypeRegister_SuiteSparse(void)
435: {
436: MatSolverTypeRegister(MATSOLVERUMFPACK,MATSEQAIJ, MAT_FACTOR_LU,MatGetFactor_seqaij_umfpack);
437: MatSolverTypeRegister(MATSOLVERCHOLMOD,MATSEQAIJ, MAT_FACTOR_CHOLESKY,MatGetFactor_seqaij_cholmod);
438: MatSolverTypeRegister(MATSOLVERCHOLMOD,MATSEQSBAIJ,MAT_FACTOR_CHOLESKY,MatGetFactor_seqsbaij_cholmod);
439: MatSolverTypeRegister(MATSOLVERKLU,MATSEQAIJ, MAT_FACTOR_LU,MatGetFactor_seqaij_klu);
440: MatSolverTypeRegister(MATSOLVERSPQR,MATSEQAIJ, MAT_FACTOR_QR,MatGetFactor_seqaij_spqr);
441: if (!PetscDefined(USE_COMPLEX)) {
442: MatSolverTypeRegister(MATSOLVERSPQR,MATNORMAL, MAT_FACTOR_QR,MatGetFactor_seqaij_spqr);
443: }
444: MatSolverTypeRegister(MATSOLVERSPQR,MATNORMALHERMITIAN, MAT_FACTOR_QR,MatGetFactor_seqaij_spqr);
445: return 0;
446: }