Actual source code: mumps.c


  2: /*
  3:     Provides an interface to the MUMPS sparse solver
  4: */
  5: #include <petscpkg_version.h>
  6: #include <../src/mat/impls/aij/mpi/mpiaij.h>
  7: #include <../src/mat/impls/sbaij/mpi/mpisbaij.h>
  8: #include <../src/mat/impls/sell/mpi/mpisell.h>

 10: EXTERN_C_BEGIN
 11: #if defined(PETSC_USE_COMPLEX)
 12: #if defined(PETSC_USE_REAL_SINGLE)
 13: #include <cmumps_c.h>
 14: #else
 15: #include <zmumps_c.h>
 16: #endif
 17: #else
 18: #if defined(PETSC_USE_REAL_SINGLE)
 19: #include <smumps_c.h>
 20: #else
 21: #include <dmumps_c.h>
 22: #endif
 23: #endif
 24: EXTERN_C_END
 25: #define JOB_INIT -1
 26: #define JOB_FACTSYMBOLIC 1
 27: #define JOB_FACTNUMERIC 2
 28: #define JOB_SOLVE 3
 29: #define JOB_END -2

 31: /* calls to MUMPS */
 32: #if defined(PETSC_USE_COMPLEX)
 33: #if defined(PETSC_USE_REAL_SINGLE)
 34: #define MUMPS_c cmumps_c
 35: #else
 36: #define MUMPS_c zmumps_c
 37: #endif
 38: #else
 39: #if defined(PETSC_USE_REAL_SINGLE)
 40: #define MUMPS_c smumps_c
 41: #else
 42: #define MUMPS_c dmumps_c
 43: #endif
 44: #endif

 46: /* MUMPS uses MUMPS_INT for nonzero indices such as irn/jcn, irn_loc/jcn_loc and uses int64_t for
 47:    number of nonzeros such as nnz, nnz_loc. We typedef MUMPS_INT to PetscMUMPSInt to follow the
 48:    naming convention in PetscMPIInt, PetscBLASInt etc.
 49: */
 50: typedef MUMPS_INT PetscMUMPSInt;

 52: #if PETSC_PKG_MUMPS_VERSION_GE(5,3,0)
 53:   #if defined(MUMPS_INTSIZE64) /* MUMPS_INTSIZE64 is in MUMPS headers if it is built in full 64-bit mode, therefore the macro is more reliable */
 54:     #error "Petsc has not been tested with full 64-bit MUMPS and we choose to error out"
 55:   #endif
 56: #else
 57:   #if defined(INTSIZE64) /* INTSIZE64 is a command line macro one used to build MUMPS in full 64-bit mode */
 58:     #error "Petsc has not been tested with full 64-bit MUMPS and we choose to error out"
 59:   #endif
 60: #endif

 62: #define MPIU_MUMPSINT             MPI_INT
 63: #define PETSC_MUMPS_INT_MAX       2147483647
 64: #define PETSC_MUMPS_INT_MIN       -2147483648

 66: /* Cast PetscInt to PetscMUMPSInt. Usually there is no overflow since <a> is row/col indices or some small integers*/
 67: static inline PetscErrorCode PetscMUMPSIntCast(PetscInt a,PetscMUMPSInt *b)
 68: {
 69: #if PetscDefined(USE_64BIT_INDICES)
 70:   PetscAssert(a <= PETSC_MUMPS_INT_MAX && a >= PETSC_MUMPS_INT_MIN,PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"PetscInt too long for PetscMUMPSInt");
 71: #endif
 72:   *b = (PetscMUMPSInt)(a);
 73:   return 0;
 74: }

 76: /* Put these utility routines here since they are only used in this file */
 77: static inline PetscErrorCode PetscOptionsMUMPSInt_Private(PetscOptionItems *PetscOptionsObject,const char opt[],const char text[],const char man[],PetscMUMPSInt currentvalue,PetscMUMPSInt *value,PetscBool *set,PetscMUMPSInt lb,PetscMUMPSInt ub)
 78: {
 79:   PetscInt       myval;
 80:   PetscBool      myset;
 81:   /* PetscInt's size should be always >= PetscMUMPSInt's. It is safe to call PetscOptionsInt_Private to read a PetscMUMPSInt */
 82:   PetscOptionsInt_Private(PetscOptionsObject,opt,text,man,(PetscInt)currentvalue,&myval,&myset,lb,ub);
 83:   if (myset) PetscMUMPSIntCast(myval,value);
 84:   if (set) *set = myset;
 85:   return 0;
 86: }
 87: #define PetscOptionsMUMPSInt(a,b,c,d,e,f) PetscOptionsMUMPSInt_Private(PetscOptionsObject,a,b,c,d,e,f,PETSC_MUMPS_INT_MIN,PETSC_MUMPS_INT_MAX)

 89: /* if using PETSc OpenMP support, we only call MUMPS on master ranks. Before/after the call, we change/restore CPUs the master ranks can run on */
 90: #if defined(PETSC_HAVE_OPENMP_SUPPORT)
 91: #define PetscMUMPS_c(mumps) \
 92:   do { \
 93:     if (mumps->use_petsc_omp_support) { \
 94:       if (mumps->is_omp_master) { \
 95:         PetscOmpCtrlOmpRegionOnMasterBegin(mumps->omp_ctrl); \
 96:         MUMPS_c(&mumps->id); \
 97:         PetscOmpCtrlOmpRegionOnMasterEnd(mumps->omp_ctrl); \
 98:       } \
 99:       PetscOmpCtrlBarrier(mumps->omp_ctrl); \
100:       /* Global info is same on all processes so we Bcast it within omp_comm. Local info is specific      \
101:          to processes, so we only Bcast info[1], an error code and leave others (since they do not have   \
102:          an easy translation between omp_comm and petsc_comm). See MUMPS-5.1.2 manual p82.                   \
103:          omp_comm is a small shared memory communicator, hence doing multiple Bcast as shown below is OK. \
104:       */ \
105:       MPI_Bcast(mumps->id.infog, 40,MPIU_MUMPSINT, 0,mumps->omp_comm);\
106:       MPI_Bcast(mumps->id.rinfog,20,MPIU_REAL,     0,mumps->omp_comm);\
107:       MPI_Bcast(mumps->id.info,  1, MPIU_MUMPSINT, 0,mumps->omp_comm);\
108:     } else { \
109:       MUMPS_c(&mumps->id); \
110:     } \
111:   } while (0)
112: #else
113: #define PetscMUMPS_c(mumps) \
114:   do { MUMPS_c(&mumps->id); } while (0)
115: #endif

117: /* declare MumpsScalar */
118: #if defined(PETSC_USE_COMPLEX)
119: #if defined(PETSC_USE_REAL_SINGLE)
120: #define MumpsScalar mumps_complex
121: #else
122: #define MumpsScalar mumps_double_complex
123: #endif
124: #else
125: #define MumpsScalar PetscScalar
126: #endif

128: /* macros s.t. indices match MUMPS documentation */
129: #define ICNTL(I) icntl[(I)-1]
130: #define CNTL(I) cntl[(I)-1]
131: #define INFOG(I) infog[(I)-1]
132: #define INFO(I) info[(I)-1]
133: #define RINFOG(I) rinfog[(I)-1]
134: #define RINFO(I) rinfo[(I)-1]

136: typedef struct Mat_MUMPS Mat_MUMPS;
137: struct Mat_MUMPS {
138: #if defined(PETSC_USE_COMPLEX)
139: #if defined(PETSC_USE_REAL_SINGLE)
140:   CMUMPS_STRUC_C id;
141: #else
142:   ZMUMPS_STRUC_C id;
143: #endif
144: #else
145: #if defined(PETSC_USE_REAL_SINGLE)
146:   SMUMPS_STRUC_C id;
147: #else
148:   DMUMPS_STRUC_C id;
149: #endif
150: #endif

152:   MatStructure   matstruc;
153:   PetscMPIInt    myid,petsc_size;
154:   PetscMUMPSInt  *irn,*jcn;             /* the (i,j,v) triplets passed to mumps. */
155:   PetscScalar    *val,*val_alloc;       /* For some matrices, we can directly access their data array without a buffer. For others, we need a buffer. So comes val_alloc. */
156:   PetscInt64     nnz;                   /* number of nonzeros. The type is called selective 64-bit in mumps */
157:   PetscMUMPSInt  sym;
158:   MPI_Comm       mumps_comm;
159:   PetscMUMPSInt  ICNTL9_pre;            /* check if ICNTL(9) is changed from previous MatSolve */
160:   VecScatter     scat_rhs, scat_sol;    /* used by MatSolve() */
161:   PetscMUMPSInt  ICNTL20;               /* use centralized (0) or distributed (10) dense RHS */
162:   PetscMUMPSInt  lrhs_loc,nloc_rhs,*irhs_loc;
163: #if defined(PETSC_HAVE_OPENMP_SUPPORT)
164:   PetscInt       *rhs_nrow,max_nrhs;
165:   PetscMPIInt    *rhs_recvcounts,*rhs_disps;
166:   PetscScalar    *rhs_loc,*rhs_recvbuf;
167: #endif
168:   Vec            b_seq,x_seq;
169:   PetscInt       ninfo,*info;           /* which INFO to display */
170:   PetscInt       sizeredrhs;
171:   PetscScalar    *schur_sol;
172:   PetscInt       schur_sizesol;
173:   PetscMUMPSInt  *ia_alloc,*ja_alloc;   /* work arrays used for the CSR struct for sparse rhs */
174:   PetscInt64     cur_ilen,cur_jlen;     /* current len of ia_alloc[], ja_alloc[] */
175:   PetscErrorCode (*ConvertToTriples)(Mat,PetscInt,MatReuse,Mat_MUMPS*);

177:   /* stuff used by petsc/mumps OpenMP support*/
178:   PetscBool      use_petsc_omp_support;
179:   PetscOmpCtrl   omp_ctrl;              /* an OpenMP controler that blocked processes will release their CPU (MPI_Barrier does not have this guarantee) */
180:   MPI_Comm       petsc_comm,omp_comm;   /* petsc_comm is petsc matrix's comm */
181:   PetscInt64     *recvcount;            /* a collection of nnz on omp_master */
182:   PetscMPIInt    tag,omp_comm_size;
183:   PetscBool      is_omp_master;         /* is this rank the master of omp_comm */
184:   MPI_Request    *reqs;
185: };

187: /* Cast a 1-based CSR represented by (nrow, ia, ja) of type PetscInt to a CSR of type PetscMUMPSInt.
188:    Here, nrow is number of rows, ia[] is row pointer and ja[] is column indices.
189:  */
190: static PetscErrorCode PetscMUMPSIntCSRCast(Mat_MUMPS *mumps,PetscInt nrow,PetscInt *ia,PetscInt *ja,PetscMUMPSInt **ia_mumps,PetscMUMPSInt **ja_mumps,PetscMUMPSInt *nnz_mumps)
191: {
192:   PetscInt       nnz=ia[nrow]-1; /* mumps uses 1-based indices. Uses PetscInt instead of PetscInt64 since mumps only uses PetscMUMPSInt for rhs */

194: #if defined(PETSC_USE_64BIT_INDICES)
195:   {
196:     PetscInt i;
197:     if (nrow+1 > mumps->cur_ilen) { /* realloc ia_alloc/ja_alloc to fit ia/ja */
198:       PetscFree(mumps->ia_alloc);
199:       PetscMalloc1(nrow+1,&mumps->ia_alloc);
200:       mumps->cur_ilen = nrow+1;
201:     }
202:     if (nnz > mumps->cur_jlen) {
203:       PetscFree(mumps->ja_alloc);
204:       PetscMalloc1(nnz,&mumps->ja_alloc);
205:       mumps->cur_jlen = nnz;
206:     }
207:     for (i=0; i<nrow+1; i++) PetscMUMPSIntCast(ia[i],&(mumps->ia_alloc[i]));
208:     for (i=0; i<nnz; i++)    PetscMUMPSIntCast(ja[i],&(mumps->ja_alloc[i]));
209:     *ia_mumps = mumps->ia_alloc;
210:     *ja_mumps = mumps->ja_alloc;
211:   }
212: #else
213:   *ia_mumps = ia;
214:   *ja_mumps = ja;
215: #endif
216:   PetscMUMPSIntCast(nnz,nnz_mumps);
217:   return 0;
218: }

220: static PetscErrorCode MatMumpsResetSchur_Private(Mat_MUMPS* mumps)
221: {
222:   PetscFree(mumps->id.listvar_schur);
223:   PetscFree(mumps->id.redrhs);
224:   PetscFree(mumps->schur_sol);
225:   mumps->id.size_schur = 0;
226:   mumps->id.schur_lld  = 0;
227:   mumps->id.ICNTL(19)  = 0;
228:   return 0;
229: }

231: /* solve with rhs in mumps->id.redrhs and return in the same location */
232: static PetscErrorCode MatMumpsSolveSchur_Private(Mat F)
233: {
234:   Mat_MUMPS            *mumps=(Mat_MUMPS*)F->data;
235:   Mat                  S,B,X;
236:   MatFactorSchurStatus schurstatus;
237:   PetscInt             sizesol;

239:   MatFactorFactorizeSchurComplement(F);
240:   MatFactorGetSchurComplement(F,&S,&schurstatus);
241:   MatCreateSeqDense(PETSC_COMM_SELF,mumps->id.size_schur,mumps->id.nrhs,(PetscScalar*)mumps->id.redrhs,&B);
242:   MatSetType(B,((PetscObject)S)->type_name);
243: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
244:   MatBindToCPU(B,S->boundtocpu);
245: #endif
246:   switch (schurstatus) {
247:   case MAT_FACTOR_SCHUR_FACTORED:
248:     MatCreateSeqDense(PETSC_COMM_SELF,mumps->id.size_schur,mumps->id.nrhs,(PetscScalar*)mumps->id.redrhs,&X);
249:     MatSetType(X,((PetscObject)S)->type_name);
250: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
251:     MatBindToCPU(X,S->boundtocpu);
252: #endif
253:     if (!mumps->id.ICNTL(9)) { /* transpose solve */
254:       MatMatSolveTranspose(S,B,X);
255:     } else {
256:       MatMatSolve(S,B,X);
257:     }
258:     break;
259:   case MAT_FACTOR_SCHUR_INVERTED:
260:     sizesol = mumps->id.nrhs*mumps->id.size_schur;
261:     if (!mumps->schur_sol || sizesol > mumps->schur_sizesol) {
262:       PetscFree(mumps->schur_sol);
263:       PetscMalloc1(sizesol,&mumps->schur_sol);
264:       mumps->schur_sizesol = sizesol;
265:     }
266:     MatCreateSeqDense(PETSC_COMM_SELF,mumps->id.size_schur,mumps->id.nrhs,mumps->schur_sol,&X);
267:     MatSetType(X,((PetscObject)S)->type_name);
268: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
269:     MatBindToCPU(X,S->boundtocpu);
270: #endif
271:     MatProductCreateWithMat(S,B,NULL,X);
272:     if (!mumps->id.ICNTL(9)) { /* transpose solve */
273:       MatProductSetType(X,MATPRODUCT_AtB);
274:     } else {
275:       MatProductSetType(X,MATPRODUCT_AB);
276:     }
277:     MatProductSetFromOptions(X);
278:     MatProductSymbolic(X);
279:     MatProductNumeric(X);

281:     MatCopy(X,B,SAME_NONZERO_PATTERN);
282:     break;
283:   default:
284:     SETERRQ(PetscObjectComm((PetscObject)F),PETSC_ERR_SUP,"Unhandled MatFactorSchurStatus %d",F->schur_status);
285:   }
286:   MatFactorRestoreSchurComplement(F,&S,schurstatus);
287:   MatDestroy(&B);
288:   MatDestroy(&X);
289:   return 0;
290: }

292: static PetscErrorCode MatMumpsHandleSchur_Private(Mat F, PetscBool expansion)
293: {
294:   Mat_MUMPS     *mumps=(Mat_MUMPS*)F->data;

296:   if (!mumps->id.ICNTL(19)) { /* do nothing when Schur complement has not been computed */
297:     return 0;
298:   }
299:   if (!expansion) { /* prepare for the condensation step */
300:     PetscInt sizeredrhs = mumps->id.nrhs*mumps->id.size_schur;
301:     /* allocate MUMPS internal array to store reduced right-hand sides */
302:     if (!mumps->id.redrhs || sizeredrhs > mumps->sizeredrhs) {
303:       PetscFree(mumps->id.redrhs);
304:       mumps->id.lredrhs = mumps->id.size_schur;
305:       PetscMalloc1(mumps->id.nrhs*mumps->id.lredrhs,&mumps->id.redrhs);
306:       mumps->sizeredrhs = mumps->id.nrhs*mumps->id.lredrhs;
307:     }
308:     mumps->id.ICNTL(26) = 1; /* condensation phase */
309:   } else { /* prepare for the expansion step */
310:     /* solve Schur complement (this has to be done by the MUMPS user, so basically us) */
311:     MatMumpsSolveSchur_Private(F);
312:     mumps->id.ICNTL(26) = 2; /* expansion phase */
313:     PetscMUMPS_c(mumps);
315:     /* restore defaults */
316:     mumps->id.ICNTL(26) = -1;
317:     /* free MUMPS internal array for redrhs if we have solved for multiple rhs in order to save memory space */
318:     if (mumps->id.nrhs > 1) {
319:       PetscFree(mumps->id.redrhs);
320:       mumps->id.lredrhs = 0;
321:       mumps->sizeredrhs = 0;
322:     }
323:   }
324:   return 0;
325: }

327: /*
328:   MatConvertToTriples_A_B - convert Petsc matrix to triples: row[nz], col[nz], val[nz]

330:   input:
331:     A       - matrix in aij,baij or sbaij format
332:     shift   - 0: C style output triple; 1: Fortran style output triple.
333:     reuse   - MAT_INITIAL_MATRIX: spaces are allocated and values are set for the triple
334:               MAT_REUSE_MATRIX:   only the values in v array are updated
335:   output:
336:     nnz     - dim of r, c, and v (number of local nonzero entries of A)
337:     r, c, v - row and col index, matrix values (matrix triples)

339:   The returned values r, c, and sometimes v are obtained in a single PetscMalloc(). Then in MatDestroy_MUMPS() it is
340:   freed with PetscFree(mumps->irn);  This is not ideal code, the fact that v is ONLY sometimes part of mumps->irn means
341:   that the PetscMalloc() cannot easily be replaced with a PetscMalloc3().

343:  */

345: PetscErrorCode MatConvertToTriples_seqaij_seqaij(Mat A,PetscInt shift,MatReuse reuse,Mat_MUMPS *mumps)
346: {
347:   const PetscScalar *av;
348:   const PetscInt    *ai,*aj,*ajj,M=A->rmap->n;
349:   PetscInt64        nz,rnz,i,j,k;
350:   PetscMUMPSInt     *row,*col;
351:   Mat_SeqAIJ        *aa=(Mat_SeqAIJ*)A->data;

353:   MatSeqAIJGetArrayRead(A,&av);
354:   mumps->val = (PetscScalar*)av;
355:   if (reuse == MAT_INITIAL_MATRIX) {
356:     nz   = aa->nz;
357:     ai   = aa->i;
358:     aj   = aa->j;
359:     PetscMalloc2(nz,&row,nz,&col);
360:     for (i=k=0; i<M; i++) {
361:       rnz = ai[i+1] - ai[i];
362:       ajj = aj + ai[i];
363:       for (j=0; j<rnz; j++) {
364:         PetscMUMPSIntCast(i+shift,&row[k]);
365:         PetscMUMPSIntCast(ajj[j] + shift,&col[k]);
366:         k++;
367:       }
368:     }
369:     mumps->irn = row;
370:     mumps->jcn = col;
371:     mumps->nnz = nz;
372:   }
373:   MatSeqAIJRestoreArrayRead(A,&av);
374:   return 0;
375: }

377: PetscErrorCode MatConvertToTriples_seqsell_seqaij(Mat A,PetscInt shift,MatReuse reuse,Mat_MUMPS *mumps)
378: {
379:   PetscInt64     nz,i,j,k,r;
380:   Mat_SeqSELL    *a=(Mat_SeqSELL*)A->data;
381:   PetscMUMPSInt  *row,*col;

383:   mumps->val = a->val;
384:   if (reuse == MAT_INITIAL_MATRIX) {
385:     nz   = a->sliidx[a->totalslices];
386:     PetscMalloc2(nz,&row,nz,&col);
387:     for (i=k=0; i<a->totalslices; i++) {
388:       for (j=a->sliidx[i],r=0; j<a->sliidx[i+1]; j++,r=((r+1)&0x07)) {
389:         PetscMUMPSIntCast(8*i+r+shift,&row[k++]);
390:       }
391:     }
392:     for (i=0;i<nz;i++) PetscMUMPSIntCast(a->colidx[i]+shift,&col[i]);
393:     mumps->irn = row;
394:     mumps->jcn = col;
395:     mumps->nnz = nz;
396:   }
397:   return 0;
398: }

400: PetscErrorCode MatConvertToTriples_seqbaij_seqaij(Mat A,PetscInt shift,MatReuse reuse,Mat_MUMPS *mumps)
401: {
402:   Mat_SeqBAIJ    *aa=(Mat_SeqBAIJ*)A->data;
403:   const PetscInt *ai,*aj,*ajj,bs2 = aa->bs2;
404:   PetscInt64     M,nz,idx=0,rnz,i,j,k,m;
405:   PetscInt       bs;
406:   PetscMUMPSInt  *row,*col;

408:   MatGetBlockSize(A,&bs);
409:   M          = A->rmap->N/bs;
410:   mumps->val = aa->a;
411:   if (reuse == MAT_INITIAL_MATRIX) {
412:     ai   = aa->i; aj = aa->j;
413:     nz   = bs2*aa->nz;
414:     PetscMalloc2(nz,&row,nz,&col);
415:     for (i=0; i<M; i++) {
416:       ajj = aj + ai[i];
417:       rnz = ai[i+1] - ai[i];
418:       for (k=0; k<rnz; k++) {
419:         for (j=0; j<bs; j++) {
420:           for (m=0; m<bs; m++) {
421:             PetscMUMPSIntCast(i*bs + m + shift,&row[idx]);
422:             PetscMUMPSIntCast(bs*ajj[k] + j + shift,&col[idx]);
423:             idx++;
424:           }
425:         }
426:       }
427:     }
428:     mumps->irn = row;
429:     mumps->jcn = col;
430:     mumps->nnz = nz;
431:   }
432:   return 0;
433: }

435: PetscErrorCode MatConvertToTriples_seqsbaij_seqsbaij(Mat A,PetscInt shift,MatReuse reuse,Mat_MUMPS *mumps)
436: {
437:   const PetscInt *ai, *aj,*ajj;
438:   PetscInt        bs;
439:   PetscInt64      nz,rnz,i,j,k,m;
440:   PetscMUMPSInt   *row,*col;
441:   PetscScalar     *val;
442:   Mat_SeqSBAIJ    *aa=(Mat_SeqSBAIJ*)A->data;
443:   const PetscInt  bs2=aa->bs2,mbs=aa->mbs;
444: #if defined(PETSC_USE_COMPLEX)
445:   PetscBool       hermitian;
446: #endif

448: #if defined(PETSC_USE_COMPLEX)
449:   MatGetOption(A,MAT_HERMITIAN,&hermitian);
451: #endif
452:   ai   = aa->i;
453:   aj   = aa->j;
454:   MatGetBlockSize(A,&bs);
455:   if (reuse == MAT_INITIAL_MATRIX) {
456:     nz   = aa->nz;
457:     PetscMalloc2(bs2*nz,&row,bs2*nz,&col);
458:     if (bs>1) {
459:       PetscMalloc1(bs2*nz,&mumps->val_alloc);
460:       mumps->val = mumps->val_alloc;
461:     } else {
462:       mumps->val = aa->a;
463:     }
464:     mumps->irn = row;
465:     mumps->jcn = col;
466:   } else {
467:     if (bs == 1) mumps->val = aa->a;
468:     row = mumps->irn;
469:     col = mumps->jcn;
470:   }
471:   val = mumps->val;

473:   nz = 0;
474:   if (bs>1) {
475:     for (i=0; i<mbs; i++) {
476:       rnz = ai[i+1] - ai[i];
477:       ajj = aj + ai[i];
478:       for (j=0; j<rnz; j++) {
479:         for (k=0; k<bs; k++) {
480:           for (m=0; m<bs; m++) {
481:             if (ajj[j]>i || k>=m) {
482:               if (reuse == MAT_INITIAL_MATRIX) {
483:                 PetscMUMPSIntCast(i*bs + m + shift,&row[nz]);
484:                 PetscMUMPSIntCast(ajj[j]*bs + k + shift,&col[nz]);
485:               }
486:               val[nz++] = aa->a[(ai[i]+j)*bs2 + m + k*bs];
487:             }
488:           }
489:         }
490:       }
491:     }
492:   } else if (reuse == MAT_INITIAL_MATRIX) {
493:     for (i=0; i<mbs; i++) {
494:       rnz = ai[i+1] - ai[i];
495:       ajj = aj + ai[i];
496:       for (j=0; j<rnz; j++) {
497:         PetscMUMPSIntCast(i+shift,&row[nz]);
498:         PetscMUMPSIntCast(ajj[j] + shift,&col[nz]);
499:         nz++;
500:       }
501:     }
503:   }
504:   if (reuse == MAT_INITIAL_MATRIX) mumps->nnz = nz;
505:   return 0;
506: }

508: PetscErrorCode MatConvertToTriples_seqaij_seqsbaij(Mat A,PetscInt shift,MatReuse reuse,Mat_MUMPS *mumps)
509: {
510:   const PetscInt    *ai,*aj,*ajj,*adiag,M=A->rmap->n;
511:   PetscInt64        nz,rnz,i,j;
512:   const PetscScalar *av,*v1;
513:   PetscScalar       *val;
514:   PetscMUMPSInt     *row,*col;
515:   Mat_SeqAIJ        *aa=(Mat_SeqAIJ*)A->data;
516:   PetscBool         missing;
517: #if defined(PETSC_USE_COMPLEX)
518:   PetscBool         hermitian;
519: #endif

521: #if defined(PETSC_USE_COMPLEX)
522:   MatGetOption(A,MAT_HERMITIAN,&hermitian);
524: #endif
525:   MatSeqAIJGetArrayRead(A,&av);
526:   ai    = aa->i; aj = aa->j;
527:   adiag = aa->diag;
528:   MatMissingDiagonal_SeqAIJ(A,&missing,NULL);
529:   if (reuse == MAT_INITIAL_MATRIX) {
530:     /* count nz in the upper triangular part of A */
531:     nz = 0;
532:     if (missing) {
533:       for (i=0; i<M; i++) {
534:         if (PetscUnlikely(adiag[i] >= ai[i+1])) {
535:           for (j=ai[i];j<ai[i+1];j++) {
536:             if (aj[j] < i) continue;
537:             nz++;
538:           }
539:         } else {
540:           nz += ai[i+1] - adiag[i];
541:         }
542:       }
543:     } else {
544:       for (i=0; i<M; i++) nz += ai[i+1] - adiag[i];
545:     }
546:     PetscMalloc2(nz,&row,nz,&col);
547:     PetscMalloc1(nz,&val);
548:     mumps->nnz = nz;
549:     mumps->irn = row;
550:     mumps->jcn = col;
551:     mumps->val = mumps->val_alloc = val;

553:     nz = 0;
554:     if (missing) {
555:       for (i=0; i<M; i++) {
556:         if (PetscUnlikely(adiag[i] >= ai[i+1])) {
557:           for (j=ai[i];j<ai[i+1];j++) {
558:             if (aj[j] < i) continue;
559:             PetscMUMPSIntCast(i+shift,&row[nz]);
560:             PetscMUMPSIntCast(aj[j]+shift,&col[nz]);
561:             val[nz] = av[j];
562:             nz++;
563:           }
564:         } else {
565:           rnz = ai[i+1] - adiag[i];
566:           ajj = aj + adiag[i];
567:           v1  = av + adiag[i];
568:           for (j=0; j<rnz; j++) {
569:             PetscMUMPSIntCast(i+shift,&row[nz]);
570:             PetscMUMPSIntCast(ajj[j] + shift,&col[nz]);
571:             val[nz++] = v1[j];
572:           }
573:         }
574:       }
575:     } else {
576:       for (i=0; i<M; i++) {
577:         rnz = ai[i+1] - adiag[i];
578:         ajj = aj + adiag[i];
579:         v1  = av + adiag[i];
580:         for (j=0; j<rnz; j++) {
581:           PetscMUMPSIntCast(i+shift,&row[nz]);
582:           PetscMUMPSIntCast(ajj[j] + shift,&col[nz]);
583:           val[nz++] = v1[j];
584:         }
585:       }
586:     }
587:   } else {
588:     nz = 0;
589:     val = mumps->val;
590:     if (missing) {
591:       for (i=0; i <M; i++) {
592:         if (PetscUnlikely(adiag[i] >= ai[i+1])) {
593:           for (j=ai[i];j<ai[i+1];j++) {
594:             if (aj[j] < i) continue;
595:             val[nz++] = av[j];
596:           }
597:         } else {
598:           rnz = ai[i+1] - adiag[i];
599:           v1  = av + adiag[i];
600:           for (j=0; j<rnz; j++) {
601:             val[nz++] = v1[j];
602:           }
603:         }
604:       }
605:     } else {
606:       for (i=0; i <M; i++) {
607:         rnz = ai[i+1] - adiag[i];
608:         v1  = av + adiag[i];
609:         for (j=0; j<rnz; j++) {
610:           val[nz++] = v1[j];
611:         }
612:       }
613:     }
614:   }
615:   MatSeqAIJRestoreArrayRead(A,&av);
616:   return 0;
617: }

619: PetscErrorCode MatConvertToTriples_mpisbaij_mpisbaij(Mat A,PetscInt shift,MatReuse reuse,Mat_MUMPS *mumps)
620: {
621:   const PetscInt    *ai,*aj,*bi,*bj,*garray,*ajj,*bjj;
622:   PetscInt          bs;
623:   PetscInt64        rstart,nz,i,j,k,m,jj,irow,countA,countB;
624:   PetscMUMPSInt     *row,*col;
625:   const PetscScalar *av,*bv,*v1,*v2;
626:   PetscScalar       *val;
627:   Mat_MPISBAIJ      *mat = (Mat_MPISBAIJ*)A->data;
628:   Mat_SeqSBAIJ      *aa  = (Mat_SeqSBAIJ*)(mat->A)->data;
629:   Mat_SeqBAIJ       *bb  = (Mat_SeqBAIJ*)(mat->B)->data;
630:   const PetscInt    bs2=aa->bs2,mbs=aa->mbs;
631: #if defined(PETSC_USE_COMPLEX)
632:   PetscBool         hermitian;
633: #endif

635: #if defined(PETSC_USE_COMPLEX)
636:   MatGetOption(A,MAT_HERMITIAN,&hermitian);
638: #endif
639:   MatGetBlockSize(A,&bs);
640:   rstart = A->rmap->rstart;
641:   ai = aa->i;
642:   aj = aa->j;
643:   bi = bb->i;
644:   bj = bb->j;
645:   av = aa->a;
646:   bv = bb->a;

648:   garray = mat->garray;

650:   if (reuse == MAT_INITIAL_MATRIX) {
651:     nz   = (aa->nz+bb->nz)*bs2; /* just a conservative estimate */
652:     PetscMalloc2(nz,&row,nz,&col);
653:     PetscMalloc1(nz,&val);
654:     /* can not decide the exact mumps->nnz now because of the SBAIJ */
655:     mumps->irn = row;
656:     mumps->jcn = col;
657:     mumps->val = mumps->val_alloc = val;
658:   } else {
659:     val = mumps->val;
660:   }

662:   jj = 0; irow = rstart;
663:   for (i=0; i<mbs; i++) {
664:     ajj    = aj + ai[i];                 /* ptr to the beginning of this row */
665:     countA = ai[i+1] - ai[i];
666:     countB = bi[i+1] - bi[i];
667:     bjj    = bj + bi[i];
668:     v1     = av + ai[i]*bs2;
669:     v2     = bv + bi[i]*bs2;

671:     if (bs>1) {
672:       /* A-part */
673:       for (j=0; j<countA; j++) {
674:         for (k=0; k<bs; k++) {
675:           for (m=0; m<bs; m++) {
676:             if (rstart + ajj[j]*bs>irow || k>=m) {
677:               if (reuse == MAT_INITIAL_MATRIX) {
678:                 PetscMUMPSIntCast(irow + m + shift,&row[jj]);
679:                 PetscMUMPSIntCast(rstart + ajj[j]*bs + k + shift,&col[jj]);
680:               }
681:               val[jj++] = v1[j*bs2 + m + k*bs];
682:             }
683:           }
684:         }
685:       }

687:       /* B-part */
688:       for (j=0; j < countB; j++) {
689:         for (k=0; k<bs; k++) {
690:           for (m=0; m<bs; m++) {
691:             if (reuse == MAT_INITIAL_MATRIX) {
692:               PetscMUMPSIntCast(irow + m + shift,&row[jj]);
693:               PetscMUMPSIntCast(garray[bjj[j]]*bs + k + shift,&col[jj]);
694:             }
695:             val[jj++] = v2[j*bs2 + m + k*bs];
696:           }
697:         }
698:       }
699:     } else {
700:       /* A-part */
701:       for (j=0; j<countA; j++) {
702:         if (reuse == MAT_INITIAL_MATRIX) {
703:           PetscMUMPSIntCast(irow + shift,&row[jj]);
704:           PetscMUMPSIntCast(rstart + ajj[j] + shift,&col[jj]);
705:         }
706:         val[jj++] = v1[j];
707:       }

709:       /* B-part */
710:       for (j=0; j < countB; j++) {
711:         if (reuse == MAT_INITIAL_MATRIX) {
712:           PetscMUMPSIntCast(irow + shift,&row[jj]);
713:           PetscMUMPSIntCast(garray[bjj[j]] + shift,&col[jj]);
714:         }
715:         val[jj++] = v2[j];
716:       }
717:     }
718:     irow+=bs;
719:   }
720:   mumps->nnz = jj;
721:   return 0;
722: }

724: PetscErrorCode MatConvertToTriples_mpiaij_mpiaij(Mat A,PetscInt shift,MatReuse reuse,Mat_MUMPS *mumps)
725: {
726:   const PetscInt    *ai, *aj, *bi, *bj,*garray,m=A->rmap->n,*ajj,*bjj;
727:   PetscInt64        rstart,nz,i,j,jj,irow,countA,countB;
728:   PetscMUMPSInt     *row,*col;
729:   const PetscScalar *av, *bv,*v1,*v2;
730:   PetscScalar       *val;
731:   Mat               Ad,Ao;
732:   Mat_SeqAIJ        *aa;
733:   Mat_SeqAIJ        *bb;

735:   MatMPIAIJGetSeqAIJ(A,&Ad,&Ao,&garray);
736:   MatSeqAIJGetArrayRead(Ad,&av);
737:   MatSeqAIJGetArrayRead(Ao,&bv);

739:   aa = (Mat_SeqAIJ*)(Ad)->data;
740:   bb = (Mat_SeqAIJ*)(Ao)->data;
741:   ai = aa->i;
742:   aj = aa->j;
743:   bi = bb->i;
744:   bj = bb->j;

746:   rstart = A->rmap->rstart;

748:   if (reuse == MAT_INITIAL_MATRIX) {
749:     nz   = (PetscInt64)aa->nz + bb->nz; /* make sure the sum won't overflow PetscInt */
750:     PetscMalloc2(nz,&row,nz,&col);
751:     PetscMalloc1(nz,&val);
752:     mumps->nnz = nz;
753:     mumps->irn = row;
754:     mumps->jcn = col;
755:     mumps->val = mumps->val_alloc = val;
756:   } else {
757:     val = mumps->val;
758:   }

760:   jj = 0; irow = rstart;
761:   for (i=0; i<m; i++) {
762:     ajj    = aj + ai[i];                 /* ptr to the beginning of this row */
763:     countA = ai[i+1] - ai[i];
764:     countB = bi[i+1] - bi[i];
765:     bjj    = bj + bi[i];
766:     v1     = av + ai[i];
767:     v2     = bv + bi[i];

769:     /* A-part */
770:     for (j=0; j<countA; j++) {
771:       if (reuse == MAT_INITIAL_MATRIX) {
772:         PetscMUMPSIntCast(irow + shift,&row[jj]);
773:         PetscMUMPSIntCast(rstart + ajj[j] + shift,&col[jj]);
774:       }
775:       val[jj++] = v1[j];
776:     }

778:     /* B-part */
779:     for (j=0; j < countB; j++) {
780:       if (reuse == MAT_INITIAL_MATRIX) {
781:         PetscMUMPSIntCast(irow + shift,&row[jj]);
782:         PetscMUMPSIntCast(garray[bjj[j]] + shift,&col[jj]);
783:       }
784:       val[jj++] = v2[j];
785:     }
786:     irow++;
787:   }
788:   MatSeqAIJRestoreArrayRead(Ad,&av);
789:   MatSeqAIJRestoreArrayRead(Ao,&bv);
790:   return 0;
791: }

793: PetscErrorCode MatConvertToTriples_mpibaij_mpiaij(Mat A,PetscInt shift,MatReuse reuse,Mat_MUMPS *mumps)
794: {
795:   Mat_MPIBAIJ       *mat    = (Mat_MPIBAIJ*)A->data;
796:   Mat_SeqBAIJ       *aa     = (Mat_SeqBAIJ*)(mat->A)->data;
797:   Mat_SeqBAIJ       *bb     = (Mat_SeqBAIJ*)(mat->B)->data;
798:   const PetscInt    *ai     = aa->i, *bi = bb->i, *aj = aa->j, *bj = bb->j,*ajj, *bjj;
799:   const PetscInt    *garray = mat->garray,mbs=mat->mbs,rstart=A->rmap->rstart;
800:   const PetscInt    bs2=mat->bs2;
801:   PetscInt          bs;
802:   PetscInt64        nz,i,j,k,n,jj,irow,countA,countB,idx;
803:   PetscMUMPSInt     *row,*col;
804:   const PetscScalar *av=aa->a, *bv=bb->a,*v1,*v2;
805:   PetscScalar       *val;

807:   MatGetBlockSize(A,&bs);
808:   if (reuse == MAT_INITIAL_MATRIX) {
809:     nz   = bs2*(aa->nz + bb->nz);
810:     PetscMalloc2(nz,&row,nz,&col);
811:     PetscMalloc1(nz,&val);
812:     mumps->nnz = nz;
813:     mumps->irn = row;
814:     mumps->jcn = col;
815:     mumps->val = mumps->val_alloc = val;
816:   } else {
817:     val = mumps->val;
818:   }

820:   jj = 0; irow = rstart;
821:   for (i=0; i<mbs; i++) {
822:     countA = ai[i+1] - ai[i];
823:     countB = bi[i+1] - bi[i];
824:     ajj    = aj + ai[i];
825:     bjj    = bj + bi[i];
826:     v1     = av + bs2*ai[i];
827:     v2     = bv + bs2*bi[i];

829:     idx = 0;
830:     /* A-part */
831:     for (k=0; k<countA; k++) {
832:       for (j=0; j<bs; j++) {
833:         for (n=0; n<bs; n++) {
834:           if (reuse == MAT_INITIAL_MATRIX) {
835:             PetscMUMPSIntCast(irow + n + shift,&row[jj]);
836:             PetscMUMPSIntCast(rstart + bs*ajj[k] + j + shift,&col[jj]);
837:           }
838:           val[jj++] = v1[idx++];
839:         }
840:       }
841:     }

843:     idx = 0;
844:     /* B-part */
845:     for (k=0; k<countB; k++) {
846:       for (j=0; j<bs; j++) {
847:         for (n=0; n<bs; n++) {
848:           if (reuse == MAT_INITIAL_MATRIX) {
849:             PetscMUMPSIntCast(irow + n + shift,&row[jj]);
850:             PetscMUMPSIntCast(bs*garray[bjj[k]] + j + shift,&col[jj]);
851:           }
852:           val[jj++] = v2[idx++];
853:         }
854:       }
855:     }
856:     irow += bs;
857:   }
858:   return 0;
859: }

861: PetscErrorCode MatConvertToTriples_mpiaij_mpisbaij(Mat A,PetscInt shift,MatReuse reuse,Mat_MUMPS *mumps)
862: {
863:   const PetscInt    *ai, *aj,*adiag, *bi, *bj,*garray,m=A->rmap->n,*ajj,*bjj;
864:   PetscInt64        rstart,nz,nza,nzb,i,j,jj,irow,countA,countB;
865:   PetscMUMPSInt     *row,*col;
866:   const PetscScalar *av, *bv,*v1,*v2;
867:   PetscScalar       *val;
868:   Mat               Ad,Ao;
869:   Mat_SeqAIJ        *aa;
870:   Mat_SeqAIJ        *bb;
871: #if defined(PETSC_USE_COMPLEX)
872:   PetscBool         hermitian;
873: #endif

875: #if defined(PETSC_USE_COMPLEX)
876:   MatGetOption(A,MAT_HERMITIAN,&hermitian);
878: #endif
879:   MatMPIAIJGetSeqAIJ(A,&Ad,&Ao,&garray);
880:   MatSeqAIJGetArrayRead(Ad,&av);
881:   MatSeqAIJGetArrayRead(Ao,&bv);

883:   aa    = (Mat_SeqAIJ*)(Ad)->data;
884:   bb    = (Mat_SeqAIJ*)(Ao)->data;
885:   ai    = aa->i;
886:   aj    = aa->j;
887:   adiag = aa->diag;
888:   bi    = bb->i;
889:   bj    = bb->j;

891:   rstart = A->rmap->rstart;

893:   if (reuse == MAT_INITIAL_MATRIX) {
894:     nza = 0;    /* num of upper triangular entries in mat->A, including diagonals */
895:     nzb = 0;    /* num of upper triangular entries in mat->B */
896:     for (i=0; i<m; i++) {
897:       nza   += (ai[i+1] - adiag[i]);
898:       countB = bi[i+1] - bi[i];
899:       bjj    = bj + bi[i];
900:       for (j=0; j<countB; j++) {
901:         if (garray[bjj[j]] > rstart) nzb++;
902:       }
903:     }

905:     nz   = nza + nzb; /* total nz of upper triangular part of mat */
906:     PetscMalloc2(nz,&row,nz,&col);
907:     PetscMalloc1(nz,&val);
908:     mumps->nnz = nz;
909:     mumps->irn = row;
910:     mumps->jcn = col;
911:     mumps->val = mumps->val_alloc = val;
912:   } else {
913:     val = mumps->val;
914:   }

916:   jj = 0; irow = rstart;
917:   for (i=0; i<m; i++) {
918:     ajj    = aj + adiag[i];                 /* ptr to the beginning of the diagonal of this row */
919:     v1     = av + adiag[i];
920:     countA = ai[i+1] - adiag[i];
921:     countB = bi[i+1] - bi[i];
922:     bjj    = bj + bi[i];
923:     v2     = bv + bi[i];

925:     /* A-part */
926:     for (j=0; j<countA; j++) {
927:       if (reuse == MAT_INITIAL_MATRIX) {
928:         PetscMUMPSIntCast(irow + shift,&row[jj]);
929:         PetscMUMPSIntCast(rstart + ajj[j] + shift,&col[jj]);
930:       }
931:       val[jj++] = v1[j];
932:     }

934:     /* B-part */
935:     for (j=0; j < countB; j++) {
936:       if (garray[bjj[j]] > rstart) {
937:         if (reuse == MAT_INITIAL_MATRIX) {
938:           PetscMUMPSIntCast(irow + shift,&row[jj]);
939:           PetscMUMPSIntCast(garray[bjj[j]] + shift,&col[jj]);
940:         }
941:         val[jj++] = v2[j];
942:       }
943:     }
944:     irow++;
945:   }
946:   MatSeqAIJRestoreArrayRead(Ad,&av);
947:   MatSeqAIJRestoreArrayRead(Ao,&bv);
948:   return 0;
949: }

951: PetscErrorCode MatDestroy_MUMPS(Mat A)
952: {
953:   Mat_MUMPS      *mumps=(Mat_MUMPS*)A->data;

955:   PetscFree2(mumps->id.sol_loc,mumps->id.isol_loc);
956:   VecScatterDestroy(&mumps->scat_rhs);
957:   VecScatterDestroy(&mumps->scat_sol);
958:   VecDestroy(&mumps->b_seq);
959:   VecDestroy(&mumps->x_seq);
960:   PetscFree(mumps->id.perm_in);
961:   PetscFree2(mumps->irn,mumps->jcn);
962:   PetscFree(mumps->val_alloc);
963:   PetscFree(mumps->info);
964:   MatMumpsResetSchur_Private(mumps);
965:   mumps->id.job = JOB_END;
966:   PetscMUMPS_c(mumps);
968: #if defined(PETSC_HAVE_OPENMP_SUPPORT)
969:   if (mumps->use_petsc_omp_support) {
970:     PetscOmpCtrlDestroy(&mumps->omp_ctrl);
971:     PetscFree2(mumps->rhs_loc,mumps->rhs_recvbuf);
972:     PetscFree3(mumps->rhs_nrow,mumps->rhs_recvcounts,mumps->rhs_disps);
973:   }
974: #endif
975:   PetscFree(mumps->ia_alloc);
976:   PetscFree(mumps->ja_alloc);
977:   PetscFree(mumps->recvcount);
978:   PetscFree(mumps->reqs);
979:   PetscFree(mumps->irhs_loc);
980:   if (mumps->mumps_comm != MPI_COMM_NULL) PetscCommRestoreComm(PetscObjectComm((PetscObject)A),&mumps->mumps_comm);
981:   PetscFree(A->data);

983:   /* clear composed functions */
984:   PetscObjectComposeFunction((PetscObject)A,"MatFactorGetSolverType_C",NULL);
985:   PetscObjectComposeFunction((PetscObject)A,"MatFactorSetSchurIS_C",NULL);
986:   PetscObjectComposeFunction((PetscObject)A,"MatFactorCreateSchurComplement_C",NULL);
987:   PetscObjectComposeFunction((PetscObject)A,"MatMumpsSetIcntl_C",NULL);
988:   PetscObjectComposeFunction((PetscObject)A,"MatMumpsGetIcntl_C",NULL);
989:   PetscObjectComposeFunction((PetscObject)A,"MatMumpsSetCntl_C",NULL);
990:   PetscObjectComposeFunction((PetscObject)A,"MatMumpsGetCntl_C",NULL);
991:   PetscObjectComposeFunction((PetscObject)A,"MatMumpsGetInfo_C",NULL);
992:   PetscObjectComposeFunction((PetscObject)A,"MatMumpsGetInfog_C",NULL);
993:   PetscObjectComposeFunction((PetscObject)A,"MatMumpsGetRinfo_C",NULL);
994:   PetscObjectComposeFunction((PetscObject)A,"MatMumpsGetRinfog_C",NULL);
995:   PetscObjectComposeFunction((PetscObject)A,"MatMumpsGetInverse_C",NULL);
996:   PetscObjectComposeFunction((PetscObject)A,"MatMumpsGetInverseTranspose_C",NULL);
997:   return 0;
998: }

1000: /* Set up the distributed RHS info for MUMPS. <nrhs> is the number of RHS. <array> points to start of RHS on the local processor. */
1001: static PetscErrorCode MatMumpsSetUpDistRHSInfo(Mat A,PetscInt nrhs,const PetscScalar *array)
1002: {
1003:   Mat_MUMPS          *mumps=(Mat_MUMPS*)A->data;
1004:   const PetscMPIInt  ompsize=mumps->omp_comm_size;
1005:   PetscInt           i,m,M,rstart;

1007:   MatGetSize(A,&M,NULL);
1008:   MatGetLocalSize(A,&m,NULL);
1010:   if (ompsize == 1) {
1011:     if (!mumps->irhs_loc) {
1012:       mumps->nloc_rhs = m;
1013:       PetscMalloc1(m,&mumps->irhs_loc);
1014:       MatGetOwnershipRange(A,&rstart,NULL);
1015:       for (i=0; i<m; i++) mumps->irhs_loc[i] = rstart+i+1; /* use 1-based indices */
1016:     }
1017:     mumps->id.rhs_loc = (MumpsScalar*)array;
1018:   } else {
1019:   #if defined(PETSC_HAVE_OPENMP_SUPPORT)
1020:     const PetscInt  *ranges;
1021:     PetscMPIInt     j,k,sendcount,*petsc_ranks,*omp_ranks;
1022:     MPI_Group       petsc_group,omp_group;
1023:     PetscScalar     *recvbuf=NULL;

1025:     if (mumps->is_omp_master) {
1026:       /* Lazily initialize the omp stuff for distributed rhs */
1027:       if (!mumps->irhs_loc) {
1028:         PetscMalloc2(ompsize,&omp_ranks,ompsize,&petsc_ranks);
1029:         PetscMalloc3(ompsize,&mumps->rhs_nrow,ompsize,&mumps->rhs_recvcounts,ompsize,&mumps->rhs_disps);
1030:         MPI_Comm_group(mumps->petsc_comm,&petsc_group);
1031:         MPI_Comm_group(mumps->omp_comm,&omp_group);
1032:         for (j=0; j<ompsize; j++) omp_ranks[j] = j;
1033:         MPI_Group_translate_ranks(omp_group,ompsize,omp_ranks,petsc_group,petsc_ranks);

1035:         /* Populate mumps->irhs_loc[], rhs_nrow[] */
1036:         mumps->nloc_rhs = 0;
1037:         MatGetOwnershipRanges(A,&ranges);
1038:         for (j=0; j<ompsize; j++) {
1039:           mumps->rhs_nrow[j] = ranges[petsc_ranks[j]+1] - ranges[petsc_ranks[j]];
1040:           mumps->nloc_rhs   += mumps->rhs_nrow[j];
1041:         }
1042:         PetscMalloc1(mumps->nloc_rhs,&mumps->irhs_loc);
1043:         for (j=k=0; j<ompsize; j++) {
1044:           for (i=ranges[petsc_ranks[j]]; i<ranges[petsc_ranks[j]+1]; i++,k++) mumps->irhs_loc[k] = i+1; /* uses 1-based indices */
1045:         }

1047:         PetscFree2(omp_ranks,petsc_ranks);
1048:         MPI_Group_free(&petsc_group);
1049:         MPI_Group_free(&omp_group);
1050:       }

1052:       /* Realloc buffers when current nrhs is bigger than what we have met */
1053:       if (nrhs > mumps->max_nrhs) {
1054:         PetscFree2(mumps->rhs_loc,mumps->rhs_recvbuf);
1055:         PetscMalloc2(mumps->nloc_rhs*nrhs,&mumps->rhs_loc,mumps->nloc_rhs*nrhs,&mumps->rhs_recvbuf);
1056:         mumps->max_nrhs = nrhs;
1057:       }

1059:       /* Setup recvcounts[], disps[], recvbuf on omp rank 0 for the upcoming MPI_Gatherv */
1060:       for (j=0; j<ompsize; j++) PetscMPIIntCast(mumps->rhs_nrow[j]*nrhs,&mumps->rhs_recvcounts[j]);
1061:       mumps->rhs_disps[0] = 0;
1062:       for (j=1; j<ompsize; j++) {
1063:         mumps->rhs_disps[j] = mumps->rhs_disps[j-1] + mumps->rhs_recvcounts[j-1];
1065:       }
1066:       recvbuf = (nrhs == 1) ? mumps->rhs_loc : mumps->rhs_recvbuf; /* Directly use rhs_loc[] as recvbuf. Single rhs is common in Ax=b */
1067:     }

1069:     PetscMPIIntCast(m*nrhs,&sendcount);
1070:     MPI_Gatherv(array,sendcount,MPIU_SCALAR,recvbuf,mumps->rhs_recvcounts,mumps->rhs_disps,MPIU_SCALAR,0,mumps->omp_comm);

1072:     if (mumps->is_omp_master) {
1073:       if (nrhs > 1) { /* Copy & re-arrange data from rhs_recvbuf[] to mumps->rhs_loc[] only when there are multiple rhs */
1074:         PetscScalar *dst,*dstbase = mumps->rhs_loc;
1075:         for (j=0; j<ompsize; j++) {
1076:           const PetscScalar *src = mumps->rhs_recvbuf + mumps->rhs_disps[j];
1077:           dst = dstbase;
1078:           for (i=0; i<nrhs; i++) {
1079:             PetscArraycpy(dst,src,mumps->rhs_nrow[j]);
1080:             src += mumps->rhs_nrow[j];
1081:             dst += mumps->nloc_rhs;
1082:           }
1083:           dstbase += mumps->rhs_nrow[j];
1084:         }
1085:       }
1086:       mumps->id.rhs_loc = (MumpsScalar*)mumps->rhs_loc;
1087:     }
1088:   #endif /* PETSC_HAVE_OPENMP_SUPPORT */
1089:   }
1090:   mumps->id.nrhs     = nrhs;
1091:   mumps->id.nloc_rhs = mumps->nloc_rhs;
1092:   mumps->id.lrhs_loc = mumps->nloc_rhs;
1093:   mumps->id.irhs_loc = mumps->irhs_loc;
1094:   return 0;
1095: }

1097: PetscErrorCode MatSolve_MUMPS(Mat A,Vec b,Vec x)
1098: {
1099:   Mat_MUMPS          *mumps=(Mat_MUMPS*)A->data;
1100:   const PetscScalar  *rarray = NULL;
1101:   PetscScalar        *array;
1102:   IS                 is_iden,is_petsc;
1103:   PetscInt           i;
1104:   PetscBool          second_solve = PETSC_FALSE;
1105:   static PetscBool   cite1 = PETSC_FALSE,cite2 = PETSC_FALSE;

1107:   PetscCitationsRegister("@article{MUMPS01,\n  author = {P.~R. Amestoy and I.~S. Duff and J.-Y. L'Excellent and J. Koster},\n  title = {A fully asynchronous multifrontal solver using distributed dynamic scheduling},\n  journal = {SIAM Journal on Matrix Analysis and Applications},\n  volume = {23},\n  number = {1},\n  pages = {15--41},\n  year = {2001}\n}\n",&cite1);
1108:   PetscCitationsRegister("@article{MUMPS02,\n  author = {P.~R. Amestoy and A. Guermouche and J.-Y. L'Excellent and S. Pralet},\n  title = {Hybrid scheduling for the parallel solution of linear systems},\n  journal = {Parallel Computing},\n  volume = {32},\n  number = {2},\n  pages = {136--156},\n  year = {2006}\n}\n",&cite2);

1110:   if (A->factorerrortype) {
1111:     PetscInfo(A,"MatSolve is called with singular matrix factor, INFOG(1)=%d, INFO(2)=%d\n",mumps->id.INFOG(1),mumps->id.INFO(2));
1112:     VecSetInf(x);
1113:     return 0;
1114:   }

1116:   mumps->id.nrhs = 1;
1117:   if (mumps->petsc_size > 1) {
1118:     if (mumps->ICNTL20 == 10) {
1119:       mumps->id.ICNTL(20) = 10; /* dense distributed RHS */
1120:       VecGetArrayRead(b,&rarray);
1121:       MatMumpsSetUpDistRHSInfo(A,1,rarray);
1122:     } else {
1123:       mumps->id.ICNTL(20) = 0; /* dense centralized RHS; Scatter b into a sequential rhs vector*/
1124:       VecScatterBegin(mumps->scat_rhs,b,mumps->b_seq,INSERT_VALUES,SCATTER_FORWARD);
1125:       VecScatterEnd(mumps->scat_rhs,b,mumps->b_seq,INSERT_VALUES,SCATTER_FORWARD);
1126:       if (!mumps->myid) {
1127:         VecGetArray(mumps->b_seq,&array);
1128:         mumps->id.rhs = (MumpsScalar*)array;
1129:       }
1130:     }
1131:   } else {  /* petsc_size == 1 */
1132:     mumps->id.ICNTL(20) = 0; /* dense centralized RHS */
1133:     VecCopy(b,x);
1134:     VecGetArray(x,&array);
1135:     mumps->id.rhs = (MumpsScalar*)array;
1136:   }

1138:   /*
1139:      handle condensation step of Schur complement (if any)
1140:      We set by default ICNTL(26) == -1 when Schur indices have been provided by the user.
1141:      According to MUMPS (5.0.0) manual, any value should be harmful during the factorization phase
1142:      Unless the user provides a valid value for ICNTL(26), MatSolve and MatMatSolve routines solve the full system.
1143:      This requires an extra call to PetscMUMPS_c and the computation of the factors for S
1144:   */
1145:   if (mumps->id.size_schur > 0 && (mumps->id.ICNTL(26) < 0 || mumps->id.ICNTL(26) > 2)) {
1147:     second_solve = PETSC_TRUE;
1148:     MatMumpsHandleSchur_Private(A,PETSC_FALSE);
1149:   }
1150:   /* solve phase */
1151:   /*-------------*/
1152:   mumps->id.job = JOB_SOLVE;
1153:   PetscMUMPS_c(mumps);

1156:   /* handle expansion step of Schur complement (if any) */
1157:   if (second_solve) {
1158:     MatMumpsHandleSchur_Private(A,PETSC_TRUE);
1159:   }

1161:   if (mumps->petsc_size > 1) { /* convert mumps distributed solution to petsc mpi x */
1162:     if (mumps->scat_sol && mumps->ICNTL9_pre != mumps->id.ICNTL(9)) {
1163:       /* when id.ICNTL(9) changes, the contents of lsol_loc may change (not its size, lsol_loc), recreates scat_sol */
1164:       VecScatterDestroy(&mumps->scat_sol);
1165:     }
1166:     if (!mumps->scat_sol) { /* create scatter scat_sol */
1167:       PetscInt *isol2_loc=NULL;
1168:       ISCreateStride(PETSC_COMM_SELF,mumps->id.lsol_loc,0,1,&is_iden); /* from */
1169:       PetscMalloc1(mumps->id.lsol_loc,&isol2_loc);
1170:       for (i=0; i<mumps->id.lsol_loc; i++) isol2_loc[i] = mumps->id.isol_loc[i]-1; /* change Fortran style to C style */
1171:       ISCreateGeneral(PETSC_COMM_SELF,mumps->id.lsol_loc,isol2_loc,PETSC_OWN_POINTER,&is_petsc);  /* to */
1172:       VecScatterCreate(mumps->x_seq,is_iden,x,is_petsc,&mumps->scat_sol);
1173:       ISDestroy(&is_iden);
1174:       ISDestroy(&is_petsc);
1175:       mumps->ICNTL9_pre = mumps->id.ICNTL(9); /* save current value of id.ICNTL(9) */
1176:     }

1178:     VecScatterBegin(mumps->scat_sol,mumps->x_seq,x,INSERT_VALUES,SCATTER_FORWARD);
1179:     VecScatterEnd(mumps->scat_sol,mumps->x_seq,x,INSERT_VALUES,SCATTER_FORWARD);
1180:   }

1182:   if (mumps->petsc_size > 1) {
1183:     if (mumps->ICNTL20 == 10) {
1184:       VecRestoreArrayRead(b,&rarray);
1185:     } else if (!mumps->myid) {
1186:       VecRestoreArray(mumps->b_seq,&array);
1187:     }
1188:   } else VecRestoreArray(x,&array);

1190:   PetscLogFlops(2.0*mumps->id.RINFO(3));
1191:   return 0;
1192: }

1194: PetscErrorCode MatSolveTranspose_MUMPS(Mat A,Vec b,Vec x)
1195: {
1196:   Mat_MUMPS      *mumps=(Mat_MUMPS*)A->data;

1198:   mumps->id.ICNTL(9) = 0;
1199:   MatSolve_MUMPS(A,b,x);
1200:   mumps->id.ICNTL(9) = 1;
1201:   return 0;
1202: }

1204: PetscErrorCode MatMatSolve_MUMPS(Mat A,Mat B,Mat X)
1205: {
1206:   Mat               Bt = NULL;
1207:   PetscBool         denseX,denseB,flg,flgT;
1208:   Mat_MUMPS         *mumps=(Mat_MUMPS*)A->data;
1209:   PetscInt          i,nrhs,M;
1210:   PetscScalar       *array;
1211:   const PetscScalar *rbray;
1212:   PetscInt          lsol_loc,nlsol_loc,*idxx,iidx = 0;
1213:   PetscMUMPSInt     *isol_loc,*isol_loc_save;
1214:   PetscScalar       *bray,*sol_loc,*sol_loc_save;
1215:   IS                is_to,is_from;
1216:   PetscInt          k,proc,j,m,myrstart;
1217:   const PetscInt    *rstart;
1218:   Vec               v_mpi,msol_loc;
1219:   VecScatter        scat_sol;
1220:   Vec               b_seq;
1221:   VecScatter        scat_rhs;
1222:   PetscScalar       *aa;
1223:   PetscInt          spnr,*ia,*ja;
1224:   Mat_MPIAIJ        *b = NULL;

1226:   PetscObjectTypeCompareAny((PetscObject)X,&denseX,MATSEQDENSE,MATMPIDENSE,NULL);

1229:   PetscObjectTypeCompareAny((PetscObject)B,&denseB,MATSEQDENSE,MATMPIDENSE,NULL);
1230:   if (denseB) {
1232:     mumps->id.ICNTL(20)= 0; /* dense RHS */
1233:   } else { /* sparse B */
1235:     PetscObjectTypeCompare((PetscObject)B,MATTRANSPOSEMAT,&flgT);
1236:     if (flgT) { /* input B is transpose of actural RHS matrix,
1237:                  because mumps requires sparse compressed COLUMN storage! See MatMatTransposeSolve_MUMPS() */
1238:       MatTransposeGetMat(B,&Bt);
1239:     } else SETERRQ(PetscObjectComm((PetscObject)B),PETSC_ERR_ARG_WRONG,"Matrix B must be MATTRANSPOSEMAT matrix");
1240:     mumps->id.ICNTL(20)= 1; /* sparse RHS */
1241:   }

1243:   MatGetSize(B,&M,&nrhs);
1244:   mumps->id.nrhs = nrhs;
1245:   mumps->id.lrhs = M;
1246:   mumps->id.rhs  = NULL;

1248:   if (mumps->petsc_size == 1) {
1249:     PetscScalar *aa;
1250:     PetscInt    spnr,*ia,*ja;
1251:     PetscBool   second_solve = PETSC_FALSE;

1253:     MatDenseGetArray(X,&array);
1254:     mumps->id.rhs = (MumpsScalar*)array;

1256:     if (denseB) {
1257:       /* copy B to X */
1258:       MatDenseGetArrayRead(B,&rbray);
1259:       PetscArraycpy(array,rbray,M*nrhs);
1260:       MatDenseRestoreArrayRead(B,&rbray);
1261:     } else { /* sparse B */
1262:       MatSeqAIJGetArray(Bt,&aa);
1263:       MatGetRowIJ(Bt,1,PETSC_FALSE,PETSC_FALSE,&spnr,(const PetscInt**)&ia,(const PetscInt**)&ja,&flg);
1265:       PetscMUMPSIntCSRCast(mumps,spnr,ia,ja,&mumps->id.irhs_ptr,&mumps->id.irhs_sparse,&mumps->id.nz_rhs);
1266:       mumps->id.rhs_sparse  = (MumpsScalar*)aa;
1267:     }
1268:     /* handle condensation step of Schur complement (if any) */
1269:     if (mumps->id.size_schur > 0 && (mumps->id.ICNTL(26) < 0 || mumps->id.ICNTL(26) > 2)) {
1270:       second_solve = PETSC_TRUE;
1271:       MatMumpsHandleSchur_Private(A,PETSC_FALSE);
1272:     }
1273:     /* solve phase */
1274:     /*-------------*/
1275:     mumps->id.job = JOB_SOLVE;
1276:     PetscMUMPS_c(mumps);

1279:     /* handle expansion step of Schur complement (if any) */
1280:     if (second_solve) {
1281:       MatMumpsHandleSchur_Private(A,PETSC_TRUE);
1282:     }
1283:     if (!denseB) { /* sparse B */
1284:       MatSeqAIJRestoreArray(Bt,&aa);
1285:       MatRestoreRowIJ(Bt,1,PETSC_FALSE,PETSC_FALSE,&spnr,(const PetscInt**)&ia,(const PetscInt**)&ja,&flg);
1287:     }
1288:     MatDenseRestoreArray(X,&array);
1289:     return 0;
1290:   }

1292:   /*--------- parallel case: MUMPS requires rhs B to be centralized on the host! --------*/

1295:   /* create msol_loc to hold mumps local solution */
1296:   isol_loc_save = mumps->id.isol_loc; /* save it for MatSolve() */
1297:   sol_loc_save  = (PetscScalar*)mumps->id.sol_loc;

1299:   lsol_loc  = mumps->id.lsol_loc;
1300:   nlsol_loc = nrhs*lsol_loc;     /* length of sol_loc */
1301:   PetscMalloc2(nlsol_loc,&sol_loc,lsol_loc,&isol_loc);
1302:   mumps->id.sol_loc  = (MumpsScalar*)sol_loc;
1303:   mumps->id.isol_loc = isol_loc;

1305:   VecCreateSeqWithArray(PETSC_COMM_SELF,1,nlsol_loc,(PetscScalar*)sol_loc,&msol_loc);

1307:   if (denseB) {
1308:     if (mumps->ICNTL20 == 10) {
1309:       mumps->id.ICNTL(20) = 10; /* dense distributed RHS */
1310:       MatDenseGetArrayRead(B,&rbray);
1311:       MatMumpsSetUpDistRHSInfo(A,nrhs,rbray);
1312:       MatDenseRestoreArrayRead(B,&rbray);
1313:       MatGetLocalSize(B,&m,NULL);
1314:       VecCreateMPIWithArray(PetscObjectComm((PetscObject)B),1,nrhs*m,nrhs*M,NULL,&v_mpi);
1315:     } else {
1316:       mumps->id.ICNTL(20) = 0; /* dense centralized RHS */
1317:       /* TODO: Because of non-contiguous indices, the created vecscatter scat_rhs is not done in MPI_Gather, resulting in
1318:         very inefficient communication. An optimization is to use VecScatterCreateToZero to gather B to rank 0. Then on rank
1319:         0, re-arrange B into desired order, which is a local operation.
1320:       */

1322:       /* scatter v_mpi to b_seq because MUMPS before 5.3.0 only supports centralized rhs */
1323:       /* wrap dense rhs matrix B into a vector v_mpi */
1324:       MatGetLocalSize(B,&m,NULL);
1325:       MatDenseGetArray(B,&bray);
1326:       VecCreateMPIWithArray(PetscObjectComm((PetscObject)B),1,nrhs*m,nrhs*M,(const PetscScalar*)bray,&v_mpi);
1327:       MatDenseRestoreArray(B,&bray);

1329:       /* scatter v_mpi to b_seq in proc[0]. MUMPS requires rhs to be centralized on the host! */
1330:       if (!mumps->myid) {
1331:         PetscInt *idx;
1332:         /* idx: maps from k-th index of v_mpi to (i,j)-th global entry of B */
1333:         PetscMalloc1(nrhs*M,&idx);
1334:         MatGetOwnershipRanges(B,&rstart);
1335:         k = 0;
1336:         for (proc=0; proc<mumps->petsc_size; proc++) {
1337:           for (j=0; j<nrhs; j++) {
1338:             for (i=rstart[proc]; i<rstart[proc+1]; i++) idx[k++] = j*M + i;
1339:           }
1340:         }

1342:         VecCreateSeq(PETSC_COMM_SELF,nrhs*M,&b_seq);
1343:         ISCreateGeneral(PETSC_COMM_SELF,nrhs*M,idx,PETSC_OWN_POINTER,&is_to);
1344:         ISCreateStride(PETSC_COMM_SELF,nrhs*M,0,1,&is_from);
1345:       } else {
1346:         VecCreateSeq(PETSC_COMM_SELF,0,&b_seq);
1347:         ISCreateStride(PETSC_COMM_SELF,0,0,1,&is_to);
1348:         ISCreateStride(PETSC_COMM_SELF,0,0,1,&is_from);
1349:       }
1350:       VecScatterCreate(v_mpi,is_from,b_seq,is_to,&scat_rhs);
1351:       VecScatterBegin(scat_rhs,v_mpi,b_seq,INSERT_VALUES,SCATTER_FORWARD);
1352:       ISDestroy(&is_to);
1353:       ISDestroy(&is_from);
1354:       VecScatterEnd(scat_rhs,v_mpi,b_seq,INSERT_VALUES,SCATTER_FORWARD);

1356:       if (!mumps->myid) { /* define rhs on the host */
1357:         VecGetArray(b_seq,&bray);
1358:         mumps->id.rhs = (MumpsScalar*)bray;
1359:         VecRestoreArray(b_seq,&bray);
1360:       }
1361:     }
1362:   } else { /* sparse B */
1363:     b = (Mat_MPIAIJ*)Bt->data;

1365:     /* wrap dense X into a vector v_mpi */
1366:     MatGetLocalSize(X,&m,NULL);
1367:     MatDenseGetArray(X,&bray);
1368:     VecCreateMPIWithArray(PetscObjectComm((PetscObject)X),1,nrhs*m,nrhs*M,(const PetscScalar*)bray,&v_mpi);
1369:     MatDenseRestoreArray(X,&bray);

1371:     if (!mumps->myid) {
1372:       MatSeqAIJGetArray(b->A,&aa);
1373:       MatGetRowIJ(b->A,1,PETSC_FALSE,PETSC_FALSE,&spnr,(const PetscInt**)&ia,(const PetscInt**)&ja,&flg);
1375:       PetscMUMPSIntCSRCast(mumps,spnr,ia,ja,&mumps->id.irhs_ptr,&mumps->id.irhs_sparse,&mumps->id.nz_rhs);
1376:       mumps->id.rhs_sparse  = (MumpsScalar*)aa;
1377:     } else {
1378:       mumps->id.irhs_ptr    = NULL;
1379:       mumps->id.irhs_sparse = NULL;
1380:       mumps->id.nz_rhs      = 0;
1381:       mumps->id.rhs_sparse  = NULL;
1382:     }
1383:   }

1385:   /* solve phase */
1386:   /*-------------*/
1387:   mumps->id.job = JOB_SOLVE;
1388:   PetscMUMPS_c(mumps);

1391:   /* scatter mumps distributed solution to petsc vector v_mpi, which shares local arrays with solution matrix X */
1392:   MatDenseGetArray(X,&array);
1393:   VecPlaceArray(v_mpi,array);

1395:   /* create scatter scat_sol */
1396:   MatGetOwnershipRanges(X,&rstart);
1397:   /* iidx: index for scatter mumps solution to petsc X */

1399:   ISCreateStride(PETSC_COMM_SELF,nlsol_loc,0,1,&is_from);
1400:   PetscMalloc1(nlsol_loc,&idxx);
1401:   for (i=0; i<lsol_loc; i++) {
1402:     isol_loc[i] -= 1; /* change Fortran style to C style. isol_loc[i+j*lsol_loc] contains x[isol_loc[i]] in j-th vector */

1404:     for (proc=0; proc<mumps->petsc_size; proc++) {
1405:       if (isol_loc[i] >= rstart[proc] && isol_loc[i] < rstart[proc+1]) {
1406:         myrstart = rstart[proc];
1407:         k        = isol_loc[i] - myrstart;        /* local index on 1st column of petsc vector X */
1408:         iidx     = k + myrstart*nrhs;             /* maps mumps isol_loc[i] to petsc index in X */
1409:         m        = rstart[proc+1] - rstart[proc]; /* rows of X for this proc */
1410:         break;
1411:       }
1412:     }

1414:     for (j=0; j<nrhs; j++) idxx[i+j*lsol_loc] = iidx + j*m;
1415:   }
1416:   ISCreateGeneral(PETSC_COMM_SELF,nlsol_loc,idxx,PETSC_COPY_VALUES,&is_to);
1417:   VecScatterCreate(msol_loc,is_from,v_mpi,is_to,&scat_sol);
1418:   VecScatterBegin(scat_sol,msol_loc,v_mpi,INSERT_VALUES,SCATTER_FORWARD);
1419:   ISDestroy(&is_from);
1420:   ISDestroy(&is_to);
1421:   VecScatterEnd(scat_sol,msol_loc,v_mpi,INSERT_VALUES,SCATTER_FORWARD);
1422:   MatDenseRestoreArray(X,&array);

1424:   /* free spaces */
1425:   mumps->id.sol_loc  = (MumpsScalar*)sol_loc_save;
1426:   mumps->id.isol_loc = isol_loc_save;

1428:   PetscFree2(sol_loc,isol_loc);
1429:   PetscFree(idxx);
1430:   VecDestroy(&msol_loc);
1431:   VecDestroy(&v_mpi);
1432:   if (!denseB) {
1433:     if (!mumps->myid) {
1434:       b = (Mat_MPIAIJ*)Bt->data;
1435:       MatSeqAIJRestoreArray(b->A,&aa);
1436:       MatRestoreRowIJ(b->A,1,PETSC_FALSE,PETSC_FALSE,&spnr,(const PetscInt**)&ia,(const PetscInt**)&ja,&flg);
1438:     }
1439:   } else {
1440:     if (mumps->ICNTL20 == 0) {
1441:       VecDestroy(&b_seq);
1442:       VecScatterDestroy(&scat_rhs);
1443:     }
1444:   }
1445:   VecScatterDestroy(&scat_sol);
1446:   PetscLogFlops(2.0*nrhs*mumps->id.RINFO(3));
1447:   return 0;
1448: }

1450: PetscErrorCode MatMatTransposeSolve_MUMPS(Mat A,Mat Bt,Mat X)
1451: {
1452:   PetscBool      flg;
1453:   Mat            B;

1455:   PetscObjectTypeCompareAny((PetscObject)Bt,&flg,MATSEQAIJ,MATMPIAIJ,NULL);

1458:   /* Create B=Bt^T that uses Bt's data structure */
1459:   MatCreateTranspose(Bt,&B);

1461:   MatMatSolve_MUMPS(A,B,X);
1462:   MatDestroy(&B);
1463:   return 0;
1464: }

1466: #if !defined(PETSC_USE_COMPLEX)
1467: /*
1468:   input:
1469:    F:        numeric factor
1470:   output:
1471:    nneg:     total number of negative pivots
1472:    nzero:    total number of zero pivots
1473:    npos:     (global dimension of F) - nneg - nzero
1474: */
1475: PetscErrorCode MatGetInertia_SBAIJMUMPS(Mat F,PetscInt *nneg,PetscInt *nzero,PetscInt *npos)
1476: {
1477:   Mat_MUMPS      *mumps =(Mat_MUMPS*)F->data;
1478:   PetscMPIInt    size;

1480:   MPI_Comm_size(PetscObjectComm((PetscObject)F),&size);
1481:   /* MUMPS 4.3.1 calls ScaLAPACK when ICNTL(13)=0 (default), which does not offer the possibility to compute the inertia of a dense matrix. Set ICNTL(13)=1 to skip ScaLAPACK */

1484:   if (nneg) *nneg = mumps->id.INFOG(12);
1485:   if (nzero || npos) {
1487:     if (nzero) *nzero = mumps->id.INFOG(28);
1488:     if (npos) *npos   = F->rmap->N - (mumps->id.INFOG(12) + mumps->id.INFOG(28));
1489:   }
1490:   return 0;
1491: }
1492: #endif

1494: PetscErrorCode MatMumpsGatherNonzerosOnMaster(MatReuse reuse,Mat_MUMPS *mumps)
1495: {
1496:   PetscInt       i,nreqs;
1497:   PetscMUMPSInt  *irn,*jcn;
1498:   PetscMPIInt    count;
1499:   PetscInt64     totnnz,remain;
1500:   const PetscInt osize=mumps->omp_comm_size;
1501:   PetscScalar    *val;

1503:   if (osize > 1) {
1504:     if (reuse == MAT_INITIAL_MATRIX) {
1505:       /* master first gathers counts of nonzeros to receive */
1506:       if (mumps->is_omp_master) PetscMalloc1(osize,&mumps->recvcount);
1507:       MPI_Gather(&mumps->nnz,1,MPIU_INT64,mumps->recvcount,1,MPIU_INT64,0/*master*/,mumps->omp_comm);

1509:       /* Then each computes number of send/recvs */
1510:       if (mumps->is_omp_master) {
1511:         /* Start from 1 since self communication is not done in MPI */
1512:         nreqs = 0;
1513:         for (i=1; i<osize; i++) nreqs += (mumps->recvcount[i]+PETSC_MPI_INT_MAX-1)/PETSC_MPI_INT_MAX;
1514:       } else {
1515:         nreqs = (mumps->nnz+PETSC_MPI_INT_MAX-1)/PETSC_MPI_INT_MAX;
1516:       }
1517:       PetscMalloc1(nreqs*3,&mumps->reqs); /* Triple the requests since we send irn, jcn and val seperately */

1519:       /* The following code is doing a very simple thing: omp_master rank gathers irn/jcn/val from others.
1520:          MPI_Gatherv would be enough if it supports big counts > 2^31-1. Since it does not, and mumps->nnz
1521:          might be a prime number > 2^31-1, we have to slice the message. Note omp_comm_size
1522:          is very small, the current approach should have no extra overhead compared to MPI_Gatherv.
1523:        */
1524:       nreqs = 0; /* counter for actual send/recvs */
1525:       if (mumps->is_omp_master) {
1526:         for (i=0,totnnz=0; i<osize; i++) totnnz += mumps->recvcount[i]; /* totnnz = sum of nnz over omp_comm */
1527:         PetscMalloc2(totnnz,&irn,totnnz,&jcn);
1528:         PetscMalloc1(totnnz,&val);

1530:         /* Self communication */
1531:         PetscArraycpy(irn,mumps->irn,mumps->nnz);
1532:         PetscArraycpy(jcn,mumps->jcn,mumps->nnz);
1533:         PetscArraycpy(val,mumps->val,mumps->nnz);

1535:         /* Replace mumps->irn/jcn etc on master with the newly allocated bigger arrays */
1536:         PetscFree2(mumps->irn,mumps->jcn);
1537:         PetscFree(mumps->val_alloc);
1538:         mumps->nnz = totnnz;
1539:         mumps->irn = irn;
1540:         mumps->jcn = jcn;
1541:         mumps->val = mumps->val_alloc = val;

1543:         irn += mumps->recvcount[0]; /* recvcount[0] is old mumps->nnz on omp rank 0 */
1544:         jcn += mumps->recvcount[0];
1545:         val += mumps->recvcount[0];

1547:         /* Remote communication */
1548:         for (i=1; i<osize; i++) {
1549:           count  = PetscMin(mumps->recvcount[i],PETSC_MPI_INT_MAX);
1550:           remain = mumps->recvcount[i] - count;
1551:           while (count>0) {
1552:             MPI_Irecv(irn,count,MPIU_MUMPSINT,i,mumps->tag,mumps->omp_comm,&mumps->reqs[nreqs++]);
1553:             MPI_Irecv(jcn,count,MPIU_MUMPSINT,i,mumps->tag,mumps->omp_comm,&mumps->reqs[nreqs++]);
1554:             MPI_Irecv(val,count,MPIU_SCALAR,  i,mumps->tag,mumps->omp_comm,&mumps->reqs[nreqs++]);
1555:             irn    += count;
1556:             jcn    += count;
1557:             val    += count;
1558:             count   = PetscMin(remain,PETSC_MPI_INT_MAX);
1559:             remain -= count;
1560:           }
1561:         }
1562:       } else {
1563:         irn    = mumps->irn;
1564:         jcn    = mumps->jcn;
1565:         val    = mumps->val;
1566:         count  = PetscMin(mumps->nnz,PETSC_MPI_INT_MAX);
1567:         remain = mumps->nnz - count;
1568:         while (count>0) {
1569:           MPI_Isend(irn,count,MPIU_MUMPSINT,0,mumps->tag,mumps->omp_comm,&mumps->reqs[nreqs++]);
1570:           MPI_Isend(jcn,count,MPIU_MUMPSINT,0,mumps->tag,mumps->omp_comm,&mumps->reqs[nreqs++]);
1571:           MPI_Isend(val,count,MPIU_SCALAR,  0,mumps->tag,mumps->omp_comm,&mumps->reqs[nreqs++]);
1572:           irn    += count;
1573:           jcn    += count;
1574:           val    += count;
1575:           count   = PetscMin(remain,PETSC_MPI_INT_MAX);
1576:           remain -= count;
1577:         }
1578:       }
1579:     } else {
1580:       nreqs = 0;
1581:       if (mumps->is_omp_master) {
1582:         val = mumps->val + mumps->recvcount[0];
1583:         for (i=1; i<osize; i++) { /* Remote communication only since self data is already in place */
1584:           count  = PetscMin(mumps->recvcount[i],PETSC_MPI_INT_MAX);
1585:           remain = mumps->recvcount[i] - count;
1586:           while (count>0) {
1587:             MPI_Irecv(val,count,MPIU_SCALAR,i,mumps->tag,mumps->omp_comm,&mumps->reqs[nreqs++]);
1588:             val    += count;
1589:             count   = PetscMin(remain,PETSC_MPI_INT_MAX);
1590:             remain -= count;
1591:           }
1592:         }
1593:       } else {
1594:         val    = mumps->val;
1595:         count  = PetscMin(mumps->nnz,PETSC_MPI_INT_MAX);
1596:         remain = mumps->nnz - count;
1597:         while (count>0) {
1598:           MPI_Isend(val,count,MPIU_SCALAR,0,mumps->tag,mumps->omp_comm,&mumps->reqs[nreqs++]);
1599:           val    += count;
1600:           count   = PetscMin(remain,PETSC_MPI_INT_MAX);
1601:           remain -= count;
1602:         }
1603:       }
1604:     }
1605:     MPI_Waitall(nreqs,mumps->reqs,MPI_STATUSES_IGNORE);
1606:     mumps->tag++; /* It is totally fine for above send/recvs to share one mpi tag */
1607:   }
1608:   return 0;
1609: }

1611: PetscErrorCode MatFactorNumeric_MUMPS(Mat F,Mat A,const MatFactorInfo *info)
1612: {
1613:   Mat_MUMPS      *mumps =(Mat_MUMPS*)(F)->data;
1614:   PetscBool      isMPIAIJ;

1616:   if (mumps->id.INFOG(1) < 0 && !(mumps->id.INFOG(1) == -16 && mumps->id.INFOG(1) == 0)) {
1617:     if (mumps->id.INFOG(1) == -6) {
1618:       PetscInfo(A,"MatFactorNumeric is called with singular matrix structure, INFOG(1)=%d, INFO(2)=%d\n",mumps->id.INFOG(1),mumps->id.INFO(2));
1619:     }
1620:     PetscInfo(A,"MatFactorNumeric is called after analysis phase fails, INFOG(1)=%d, INFO(2)=%d\n",mumps->id.INFOG(1),mumps->id.INFO(2));
1621:     return 0;
1622:   }

1624:   (*mumps->ConvertToTriples)(A, 1, MAT_REUSE_MATRIX, mumps);
1625:   MatMumpsGatherNonzerosOnMaster(MAT_REUSE_MATRIX,mumps);

1627:   /* numerical factorization phase */
1628:   /*-------------------------------*/
1629:   mumps->id.job = JOB_FACTNUMERIC;
1630:   if (!mumps->id.ICNTL(18)) { /* A is centralized */
1631:     if (!mumps->myid) {
1632:       mumps->id.a = (MumpsScalar*)mumps->val;
1633:     }
1634:   } else {
1635:     mumps->id.a_loc = (MumpsScalar*)mumps->val;
1636:   }
1637:   PetscMUMPS_c(mumps);
1638:   if (mumps->id.INFOG(1) < 0) {
1639:     if (A->erroriffailure) {
1640:       SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MUMPS in numerical factorization phase: INFOG(1)=%d, INFO(2)=%d",mumps->id.INFOG(1),mumps->id.INFO(2));
1641:     } else {
1642:       if (mumps->id.INFOG(1) == -10) { /* numerically singular matrix */
1643:         PetscInfo(F,"matrix is numerically singular, INFOG(1)=%d, INFO(2)=%d\n",mumps->id.INFOG(1),mumps->id.INFO(2));
1644:         F->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1645:       } else if (mumps->id.INFOG(1) == -13) {
1646:         PetscInfo(F,"MUMPS in numerical factorization phase: INFOG(1)=%d, cannot allocate required memory %d megabytes\n",mumps->id.INFOG(1),mumps->id.INFO(2));
1647:         F->factorerrortype = MAT_FACTOR_OUTMEMORY;
1648:       } else if (mumps->id.INFOG(1) == -8 || mumps->id.INFOG(1) == -9 || (-16 < mumps->id.INFOG(1) && mumps->id.INFOG(1) < -10)) {
1649:         PetscInfo(F,"MUMPS in numerical factorization phase: INFOG(1)=%d, INFO(2)=%d, problem with workarray \n",mumps->id.INFOG(1),mumps->id.INFO(2));
1650:         F->factorerrortype = MAT_FACTOR_OUTMEMORY;
1651:       } else {
1652:         PetscInfo(F,"MUMPS in numerical factorization phase: INFOG(1)=%d, INFO(2)=%d\n",mumps->id.INFOG(1),mumps->id.INFO(2));
1653:         F->factorerrortype = MAT_FACTOR_OTHER;
1654:       }
1655:     }
1656:   }

1659:   F->assembled    = PETSC_TRUE;

1661:   if (F->schur) { /* reset Schur status to unfactored */
1662: #if defined(PETSC_HAVE_CUDA)
1663:     F->schur->offloadmask = PETSC_OFFLOAD_CPU;
1664: #endif
1665:     if (mumps->id.ICNTL(19) == 1) { /* stored by rows */
1666:       mumps->id.ICNTL(19) = 2;
1667:       MatTranspose(F->schur,MAT_INPLACE_MATRIX,&F->schur);
1668:     }
1669:     MatFactorRestoreSchurComplement(F,NULL,MAT_FACTOR_SCHUR_UNFACTORED);
1670:   }

1672:   /* just to be sure that ICNTL(19) value returned by a call from MatMumpsGetIcntl is always consistent */
1673:   if (!mumps->sym && mumps->id.ICNTL(19) && mumps->id.ICNTL(19) != 1) mumps->id.ICNTL(19) = 3;

1675:   if (!mumps->is_omp_master) mumps->id.INFO(23) = 0;
1676:   if (mumps->petsc_size > 1) {
1677:     PetscInt    lsol_loc;
1678:     PetscScalar *sol_loc;

1680:     PetscObjectTypeCompare((PetscObject)A,MATMPIAIJ,&isMPIAIJ);

1682:     /* distributed solution; Create x_seq=sol_loc for repeated use */
1683:     if (mumps->x_seq) {
1684:       VecScatterDestroy(&mumps->scat_sol);
1685:       PetscFree2(mumps->id.sol_loc,mumps->id.isol_loc);
1686:       VecDestroy(&mumps->x_seq);
1687:     }
1688:     lsol_loc = mumps->id.INFO(23); /* length of sol_loc */
1689:     PetscMalloc2(lsol_loc,&sol_loc,lsol_loc,&mumps->id.isol_loc);
1690:     mumps->id.lsol_loc = lsol_loc;
1691:     mumps->id.sol_loc = (MumpsScalar*)sol_loc;
1692:     VecCreateSeqWithArray(PETSC_COMM_SELF,1,lsol_loc,sol_loc,&mumps->x_seq);
1693:   }
1694:   PetscLogFlops(mumps->id.RINFO(2));
1695:   return 0;
1696: }

1698: /* Sets MUMPS options from the options database */
1699: PetscErrorCode PetscSetMUMPSFromOptions(Mat F, Mat A)
1700: {
1701:   Mat_MUMPS      *mumps = (Mat_MUMPS*)F->data;
1703:   PetscMUMPSInt  icntl=0;
1704:   PetscInt       info[80],i,ninfo=80;
1705:   PetscBool      flg=PETSC_FALSE;

1707:   PetscOptionsBegin(PetscObjectComm((PetscObject)A),((PetscObject)A)->prefix,"MUMPS Options","Mat");
1708:   PetscOptionsMUMPSInt("-mat_mumps_icntl_1","ICNTL(1): output stream for error messages","None",mumps->id.ICNTL(1),&icntl,&flg);
1709:   if (flg) mumps->id.ICNTL(1) = icntl;
1710:   PetscOptionsMUMPSInt("-mat_mumps_icntl_2","ICNTL(2): output stream for diagnostic printing, statistics, and warning","None",mumps->id.ICNTL(2),&icntl,&flg);
1711:   if (flg) mumps->id.ICNTL(2) = icntl;
1712:   PetscOptionsMUMPSInt("-mat_mumps_icntl_3","ICNTL(3): output stream for global information, collected on the host","None",mumps->id.ICNTL(3),&icntl,&flg);
1713:   if (flg) mumps->id.ICNTL(3) = icntl;

1715:   PetscOptionsMUMPSInt("-mat_mumps_icntl_4","ICNTL(4): level of printing (0 to 4)","None",mumps->id.ICNTL(4),&icntl,&flg);
1716:   if (flg) mumps->id.ICNTL(4) = icntl;
1717:   if (mumps->id.ICNTL(4) || PetscLogPrintInfo) mumps->id.ICNTL(3) = 6; /* resume MUMPS default id.ICNTL(3) = 6 */

1719:   PetscOptionsMUMPSInt("-mat_mumps_icntl_6","ICNTL(6): permutes to a zero-free diagonal and/or scale the matrix (0 to 7)","None",mumps->id.ICNTL(6),&icntl,&flg);
1720:   if (flg) mumps->id.ICNTL(6) = icntl;

1722:   PetscOptionsMUMPSInt("-mat_mumps_icntl_7","ICNTL(7): computes a symmetric permutation in sequential analysis. 0=AMD, 2=AMF, 3=Scotch, 4=PORD, 5=Metis, 6=QAMD, and 7=auto(default)","None",mumps->id.ICNTL(7),&icntl,&flg);
1723:   if (flg) {
1725:     mumps->id.ICNTL(7) = icntl;
1726:   }

1728:   PetscOptionsMUMPSInt("-mat_mumps_icntl_8","ICNTL(8): scaling strategy (-2 to 8 or 77)","None",mumps->id.ICNTL(8),&mumps->id.ICNTL(8),NULL);
1729:   /* PetscOptionsInt("-mat_mumps_icntl_9","ICNTL(9): computes the solution using A or A^T","None",mumps->id.ICNTL(9),&mumps->id.ICNTL(9),NULL); handled by MatSolveTranspose_MUMPS() */
1730:   PetscOptionsMUMPSInt("-mat_mumps_icntl_10","ICNTL(10): max num of refinements","None",mumps->id.ICNTL(10),&mumps->id.ICNTL(10),NULL);
1731:   PetscOptionsMUMPSInt("-mat_mumps_icntl_11","ICNTL(11): statistics related to an error analysis (via -ksp_view)","None",mumps->id.ICNTL(11),&mumps->id.ICNTL(11),NULL);
1732:   PetscOptionsMUMPSInt("-mat_mumps_icntl_12","ICNTL(12): an ordering strategy for symmetric matrices (0 to 3)","None",mumps->id.ICNTL(12),&mumps->id.ICNTL(12),NULL);
1733:   PetscOptionsMUMPSInt("-mat_mumps_icntl_13","ICNTL(13): parallelism of the root node (enable ScaLAPACK) and its splitting","None",mumps->id.ICNTL(13),&mumps->id.ICNTL(13),NULL);
1734:   PetscOptionsMUMPSInt("-mat_mumps_icntl_14","ICNTL(14): percentage increase in the estimated working space","None",mumps->id.ICNTL(14),&mumps->id.ICNTL(14),NULL);
1735:   PetscOptionsMUMPSInt("-mat_mumps_icntl_19","ICNTL(19): computes the Schur complement","None",mumps->id.ICNTL(19),&mumps->id.ICNTL(19),NULL);
1736:   if (mumps->id.ICNTL(19) <= 0 || mumps->id.ICNTL(19) > 3) { /* reset any schur data (if any) */
1737:     MatDestroy(&F->schur);
1738:     MatMumpsResetSchur_Private(mumps);
1739:   }

1741:   /* Two MPICH Fortran MPI_IN_PLACE binding bugs prevented the use of 'mpich + mumps'. One happened with "mpi4py + mpich + mumps",
1742:      and was reported by Firedrake. See https://bitbucket.org/mpi4py/mpi4py/issues/162/mpi4py-initialization-breaks-fortran
1743:      and a petsc-maint mailing list thread with subject 'MUMPS segfaults in parallel because of ...'
1744:      This bug was fixed by https://github.com/pmodels/mpich/pull/4149. But the fix brought a new bug,
1745:      see https://github.com/pmodels/mpich/issues/5589. This bug was fixed by https://github.com/pmodels/mpich/pull/5590.
1746:      In short, we could not use distributed RHS with MPICH until v4.0b1.
1747:    */
1748: #if PETSC_PKG_MUMPS_VERSION_LT(5,3,0) || (defined(PETSC_HAVE_MPICH_NUMVERSION) && (PETSC_HAVE_MPICH_NUMVERSION < 40000101))
1749:   mumps->ICNTL20 = 0;  /* Centralized dense RHS*/
1750: #else
1751:   mumps->ICNTL20 = 10; /* Distributed dense RHS*/
1752: #endif
1753:   PetscOptionsMUMPSInt("-mat_mumps_icntl_20","ICNTL(20): give mumps centralized (0) or distributed (10) dense right-hand sides","None",mumps->ICNTL20,&mumps->ICNTL20,&flg);
1755: #if PETSC_PKG_MUMPS_VERSION_LT(5,3,0)
1757: #endif
1758:   /* PetscOptionsMUMPSInt("-mat_mumps_icntl_21","ICNTL(21): the distribution (centralized or distributed) of the solution vectors","None",mumps->id.ICNTL(21),&mumps->id.ICNTL(21),NULL); we only use distributed solution vector */

1760:   PetscOptionsMUMPSInt("-mat_mumps_icntl_22","ICNTL(22): in-core/out-of-core factorization and solve (0 or 1)","None",mumps->id.ICNTL(22),&mumps->id.ICNTL(22),NULL);
1761:   PetscOptionsMUMPSInt("-mat_mumps_icntl_23","ICNTL(23): max size of the working memory (MB) that can allocate per processor","None",mumps->id.ICNTL(23),&mumps->id.ICNTL(23),NULL);
1762:   PetscOptionsMUMPSInt("-mat_mumps_icntl_24","ICNTL(24): detection of null pivot rows (0 or 1)","None",mumps->id.ICNTL(24),&mumps->id.ICNTL(24),NULL);
1763:   if (mumps->id.ICNTL(24)) {
1764:     mumps->id.ICNTL(13) = 1; /* turn-off ScaLAPACK to help with the correct detection of null pivots */
1765:   }

1767:   PetscOptionsMUMPSInt("-mat_mumps_icntl_25","ICNTL(25): computes a solution of a deficient matrix and a null space basis","None",mumps->id.ICNTL(25),&mumps->id.ICNTL(25),NULL);
1768:   PetscOptionsMUMPSInt("-mat_mumps_icntl_26","ICNTL(26): drives the solution phase if a Schur complement matrix","None",mumps->id.ICNTL(26),&mumps->id.ICNTL(26),NULL);
1769:   PetscOptionsMUMPSInt("-mat_mumps_icntl_27","ICNTL(27): controls the blocking size for multiple right-hand sides","None",mumps->id.ICNTL(27),&mumps->id.ICNTL(27),NULL);
1770:   PetscOptionsMUMPSInt("-mat_mumps_icntl_28","ICNTL(28): use 1 for sequential analysis and ictnl(7) ordering, or 2 for parallel analysis and ictnl(29) ordering","None",mumps->id.ICNTL(28),&mumps->id.ICNTL(28),NULL);
1771:   PetscOptionsMUMPSInt("-mat_mumps_icntl_29","ICNTL(29): parallel ordering 1 = ptscotch, 2 = parmetis","None",mumps->id.ICNTL(29),&mumps->id.ICNTL(29),NULL);
1772:   /* PetscOptionsMUMPSInt("-mat_mumps_icntl_30","ICNTL(30): compute user-specified set of entries in inv(A)","None",mumps->id.ICNTL(30),&mumps->id.ICNTL(30),NULL); */ /* call MatMumpsGetInverse() directly */
1773:   PetscOptionsMUMPSInt("-mat_mumps_icntl_31","ICNTL(31): indicates which factors may be discarded during factorization","None",mumps->id.ICNTL(31),&mumps->id.ICNTL(31),NULL);
1774:   /* PetscOptionsMUMPSInt("-mat_mumps_icntl_32","ICNTL(32): performs the forward elemination of the right-hand sides during factorization","None",mumps->id.ICNTL(32),&mumps->id.ICNTL(32),NULL);  -- not supported by PETSc API */
1775:   PetscOptionsMUMPSInt("-mat_mumps_icntl_33","ICNTL(33): compute determinant","None",mumps->id.ICNTL(33),&mumps->id.ICNTL(33),NULL);
1776:   PetscOptionsMUMPSInt("-mat_mumps_icntl_35","ICNTL(35): activates Block Low Rank (BLR) based factorization","None",mumps->id.ICNTL(35),&mumps->id.ICNTL(35),NULL);
1777:   PetscOptionsMUMPSInt("-mat_mumps_icntl_36","ICNTL(36): choice of BLR factorization variant","None",mumps->id.ICNTL(36),&mumps->id.ICNTL(36),NULL);
1778:   PetscOptionsMUMPSInt("-mat_mumps_icntl_38","ICNTL(38): estimated compression rate of LU factors with BLR","None",mumps->id.ICNTL(38),&mumps->id.ICNTL(38),NULL);

1780:   PetscOptionsReal("-mat_mumps_cntl_1","CNTL(1): relative pivoting threshold","None",mumps->id.CNTL(1),&mumps->id.CNTL(1),NULL);
1781:   PetscOptionsReal("-mat_mumps_cntl_2","CNTL(2): stopping criterion of refinement","None",mumps->id.CNTL(2),&mumps->id.CNTL(2),NULL);
1782:   PetscOptionsReal("-mat_mumps_cntl_3","CNTL(3): absolute pivoting threshold","None",mumps->id.CNTL(3),&mumps->id.CNTL(3),NULL);
1783:   PetscOptionsReal("-mat_mumps_cntl_4","CNTL(4): value for static pivoting","None",mumps->id.CNTL(4),&mumps->id.CNTL(4),NULL);
1784:   PetscOptionsReal("-mat_mumps_cntl_5","CNTL(5): fixation for null pivots","None",mumps->id.CNTL(5),&mumps->id.CNTL(5),NULL);
1785:   PetscOptionsReal("-mat_mumps_cntl_7","CNTL(7): dropping parameter used during BLR","None",mumps->id.CNTL(7),&mumps->id.CNTL(7),NULL);

1787:   PetscOptionsString("-mat_mumps_ooc_tmpdir", "out of core directory", "None", mumps->id.ooc_tmpdir, mumps->id.ooc_tmpdir, sizeof(mumps->id.ooc_tmpdir), NULL);

1789:   PetscOptionsIntArray("-mat_mumps_view_info","request INFO local to each processor","",info,&ninfo,NULL);
1790:   if (ninfo) {
1792:     PetscMalloc1(ninfo,&mumps->info);
1793:     mumps->ninfo = ninfo;
1794:     for (i=0; i<ninfo; i++) {
1796:       else  mumps->info[i] = info[i];
1797:     }
1798:   }

1800:   PetscOptionsEnd();
1801:   return 0;
1802: }

1804: PetscErrorCode PetscInitializeMUMPS(Mat A,Mat_MUMPS *mumps)
1805: {
1806:   PetscInt       nthreads=0;

1808:   mumps->petsc_comm = PetscObjectComm((PetscObject)A);
1809:   MPI_Comm_size(mumps->petsc_comm,&mumps->petsc_size);
1810:   MPI_Comm_rank(mumps->petsc_comm,&mumps->myid);/* "if (!myid)" still works even if mumps_comm is different */

1812:   PetscOptionsHasName(NULL,((PetscObject)A)->prefix,"-mat_mumps_use_omp_threads",&mumps->use_petsc_omp_support);
1813:   if (mumps->use_petsc_omp_support) nthreads = -1; /* -1 will let PetscOmpCtrlCreate() guess a proper value when user did not supply one */
1814:   PetscOptionsGetInt(NULL,((PetscObject)A)->prefix,"-mat_mumps_use_omp_threads",&nthreads,NULL);
1815:   if (mumps->use_petsc_omp_support) {
1816: #if defined(PETSC_HAVE_OPENMP_SUPPORT)
1817:     PetscOmpCtrlCreate(mumps->petsc_comm,nthreads,&mumps->omp_ctrl);
1818:     PetscOmpCtrlGetOmpComms(mumps->omp_ctrl,&mumps->omp_comm,&mumps->mumps_comm,&mumps->is_omp_master);
1819: #else
1820:     SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP_SYS,"the system does not have PETSc OpenMP support but you added the -%smat_mumps_use_omp_threads option. Configure PETSc with --with-openmp --download-hwloc (or --with-hwloc) to enable it, see more in MATSOLVERMUMPS manual",((PetscObject)A)->prefix?((PetscObject)A)->prefix:"");
1821: #endif
1822:   } else {
1823:     mumps->omp_comm      = PETSC_COMM_SELF;
1824:     mumps->mumps_comm    = mumps->petsc_comm;
1825:     mumps->is_omp_master = PETSC_TRUE;
1826:   }
1827:   MPI_Comm_size(mumps->omp_comm,&mumps->omp_comm_size);
1828:   mumps->reqs = NULL;
1829:   mumps->tag  = 0;

1831:   /* It looks like MUMPS does not dup the input comm. Dup a new comm for MUMPS to avoid any tag mismatches. */
1832:   if (mumps->mumps_comm != MPI_COMM_NULL) {
1833:     PetscCommGetComm(PetscObjectComm((PetscObject)A),&mumps->mumps_comm);
1834:   }

1836:   mumps->id.comm_fortran = MPI_Comm_c2f(mumps->mumps_comm);
1837:   mumps->id.job = JOB_INIT;
1838:   mumps->id.par = 1;  /* host participates factorizaton and solve */
1839:   mumps->id.sym = mumps->sym;

1841:   PetscMUMPS_c(mumps);

1844:   /* copy MUMPS default control values from master to slaves. Although slaves do not call MUMPS, they may access these values in code.
1845:      For example, ICNTL(9) is initialized to 1 by MUMPS and slaves check ICNTL(9) in MatSolve_MUMPS.
1846:    */
1847:   MPI_Bcast(mumps->id.icntl,40,MPI_INT,  0,mumps->omp_comm);
1848:   MPI_Bcast(mumps->id.cntl, 15,MPIU_REAL,0,mumps->omp_comm);

1850:   mumps->scat_rhs = NULL;
1851:   mumps->scat_sol = NULL;

1853:   /* set PETSc-MUMPS default options - override MUMPS default */
1854:   mumps->id.ICNTL(3) = 0;
1855:   mumps->id.ICNTL(4) = 0;
1856:   if (mumps->petsc_size == 1) {
1857:     mumps->id.ICNTL(18) = 0;   /* centralized assembled matrix input */
1858:     mumps->id.ICNTL(7)  = 7;   /* automatic choice of ordering done by the package */
1859:   } else {
1860:     mumps->id.ICNTL(18) = 3;   /* distributed assembled matrix input */
1861:     mumps->id.ICNTL(21) = 1;   /* distributed solution */
1862:   }

1864:   /* schur */
1865:   mumps->id.size_schur    = 0;
1866:   mumps->id.listvar_schur = NULL;
1867:   mumps->id.schur         = NULL;
1868:   mumps->sizeredrhs       = 0;
1869:   mumps->schur_sol        = NULL;
1870:   mumps->schur_sizesol    = 0;
1871:   return 0;
1872: }

1874: PetscErrorCode MatFactorSymbolic_MUMPS_ReportIfError(Mat F,Mat A,const MatFactorInfo *info,Mat_MUMPS *mumps)
1875: {
1876:   if (mumps->id.INFOG(1) < 0) {
1877:     if (A->erroriffailure) {
1878:       SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MUMPS in analysis phase: INFOG(1)=%d",mumps->id.INFOG(1));
1879:     } else {
1880:       if (mumps->id.INFOG(1) == -6) {
1881:         PetscInfo(F,"matrix is singular in structure, INFOG(1)=%d, INFO(2)=%d\n",mumps->id.INFOG(1),mumps->id.INFO(2));
1882:         F->factorerrortype = MAT_FACTOR_STRUCT_ZEROPIVOT;
1883:       } else if (mumps->id.INFOG(1) == -5 || mumps->id.INFOG(1) == -7) {
1884:         PetscInfo(F,"problem of workspace, INFOG(1)=%d, INFO(2)=%d\n",mumps->id.INFOG(1),mumps->id.INFO(2));
1885:         F->factorerrortype = MAT_FACTOR_OUTMEMORY;
1886:       } else if (mumps->id.INFOG(1) == -16 && mumps->id.INFOG(1) == 0) {
1887:         PetscInfo(F,"Empty matrix\n");
1888:       } else {
1889:         PetscInfo(F,"Error reported by MUMPS in analysis phase: INFOG(1)=%d, INFO(2)=%d\n",mumps->id.INFOG(1),mumps->id.INFO(2));
1890:         F->factorerrortype = MAT_FACTOR_OTHER;
1891:       }
1892:     }
1893:   }
1894:   return 0;
1895: }

1897: PetscErrorCode MatLUFactorSymbolic_AIJMUMPS(Mat F,Mat A,IS r,IS c,const MatFactorInfo *info)
1898: {
1899:   Mat_MUMPS      *mumps = (Mat_MUMPS*)F->data;
1900:   Vec            b;
1901:   const PetscInt M = A->rmap->N;

1903:   if (mumps->matstruc == SAME_NONZERO_PATTERN) {
1904:     /* F is assembled by a previous call of MatLUFactorSymbolic_AIJMUMPS() */
1905:     return 0;
1906:   }

1908:   /* Set MUMPS options from the options database */
1909:   PetscSetMUMPSFromOptions(F,A);

1911:   (*mumps->ConvertToTriples)(A, 1, MAT_INITIAL_MATRIX, mumps);
1912:   MatMumpsGatherNonzerosOnMaster(MAT_INITIAL_MATRIX,mumps);

1914:   /* analysis phase */
1915:   /*----------------*/
1916:   mumps->id.job = JOB_FACTSYMBOLIC;
1917:   mumps->id.n   = M;
1918:   switch (mumps->id.ICNTL(18)) {
1919:   case 0:  /* centralized assembled matrix input */
1920:     if (!mumps->myid) {
1921:       mumps->id.nnz = mumps->nnz;
1922:       mumps->id.irn = mumps->irn;
1923:       mumps->id.jcn = mumps->jcn;
1924:       if (mumps->id.ICNTL(6)>1) mumps->id.a = (MumpsScalar*)mumps->val;
1925:       if (r) {
1926:         mumps->id.ICNTL(7) = 1;
1927:         if (!mumps->myid) {
1928:           const PetscInt *idx;
1929:           PetscInt       i;

1931:           PetscMalloc1(M,&mumps->id.perm_in);
1932:           ISGetIndices(r,&idx);
1933:           for (i=0; i<M; i++) PetscMUMPSIntCast(idx[i]+1,&(mumps->id.perm_in[i])); /* perm_in[]: start from 1, not 0! */
1934:           ISRestoreIndices(r,&idx);
1935:         }
1936:       }
1937:     }
1938:     break;
1939:   case 3:  /* distributed assembled matrix input (size>1) */
1940:     mumps->id.nnz_loc = mumps->nnz;
1941:     mumps->id.irn_loc = mumps->irn;
1942:     mumps->id.jcn_loc = mumps->jcn;
1943:     if (mumps->id.ICNTL(6)>1) mumps->id.a_loc = (MumpsScalar*)mumps->val;
1944:     if (mumps->ICNTL20 == 0) { /* Centralized rhs. Create scatter scat_rhs for repeated use in MatSolve() */
1945:       MatCreateVecs(A,NULL,&b);
1946:       VecScatterCreateToZero(b,&mumps->scat_rhs,&mumps->b_seq);
1947:       VecDestroy(&b);
1948:     }
1949:     break;
1950:   }
1951:   PetscMUMPS_c(mumps);
1952:   MatFactorSymbolic_MUMPS_ReportIfError(F,A,info,mumps);

1954:   F->ops->lufactornumeric = MatFactorNumeric_MUMPS;
1955:   F->ops->solve           = MatSolve_MUMPS;
1956:   F->ops->solvetranspose  = MatSolveTranspose_MUMPS;
1957:   F->ops->matsolve        = MatMatSolve_MUMPS;
1958:   F->ops->mattransposesolve = MatMatTransposeSolve_MUMPS;

1960:   mumps->matstruc = SAME_NONZERO_PATTERN;
1961:   return 0;
1962: }

1964: /* Note the Petsc r and c permutations are ignored */
1965: PetscErrorCode MatLUFactorSymbolic_BAIJMUMPS(Mat F,Mat A,IS r,IS c,const MatFactorInfo *info)
1966: {
1967:   Mat_MUMPS      *mumps = (Mat_MUMPS*)F->data;
1968:   Vec            b;
1969:   const PetscInt M = A->rmap->N;

1971:   if (mumps->matstruc == SAME_NONZERO_PATTERN) {
1972:     /* F is assembled by a previous call of MatLUFactorSymbolic_AIJMUMPS() */
1973:     return 0;
1974:   }

1976:   /* Set MUMPS options from the options database */
1977:   PetscSetMUMPSFromOptions(F,A);

1979:   (*mumps->ConvertToTriples)(A, 1, MAT_INITIAL_MATRIX, mumps);
1980:   MatMumpsGatherNonzerosOnMaster(MAT_INITIAL_MATRIX,mumps);

1982:   /* analysis phase */
1983:   /*----------------*/
1984:   mumps->id.job = JOB_FACTSYMBOLIC;
1985:   mumps->id.n   = M;
1986:   switch (mumps->id.ICNTL(18)) {
1987:   case 0:  /* centralized assembled matrix input */
1988:     if (!mumps->myid) {
1989:       mumps->id.nnz = mumps->nnz;
1990:       mumps->id.irn = mumps->irn;
1991:       mumps->id.jcn = mumps->jcn;
1992:       if (mumps->id.ICNTL(6)>1) {
1993:         mumps->id.a = (MumpsScalar*)mumps->val;
1994:       }
1995:     }
1996:     break;
1997:   case 3:  /* distributed assembled matrix input (size>1) */
1998:     mumps->id.nnz_loc = mumps->nnz;
1999:     mumps->id.irn_loc = mumps->irn;
2000:     mumps->id.jcn_loc = mumps->jcn;
2001:     if (mumps->id.ICNTL(6)>1) {
2002:       mumps->id.a_loc = (MumpsScalar*)mumps->val;
2003:     }
2004:     if (mumps->ICNTL20 == 0) { /* Centralized rhs. Create scatter scat_rhs for repeated use in MatSolve() */
2005:       MatCreateVecs(A,NULL,&b);
2006:       VecScatterCreateToZero(b,&mumps->scat_rhs,&mumps->b_seq);
2007:       VecDestroy(&b);
2008:     }
2009:     break;
2010:   }
2011:   PetscMUMPS_c(mumps);
2012:   MatFactorSymbolic_MUMPS_ReportIfError(F,A,info,mumps);

2014:   F->ops->lufactornumeric = MatFactorNumeric_MUMPS;
2015:   F->ops->solve           = MatSolve_MUMPS;
2016:   F->ops->solvetranspose  = MatSolveTranspose_MUMPS;

2018:   mumps->matstruc = SAME_NONZERO_PATTERN;
2019:   return 0;
2020: }

2022: /* Note the Petsc r permutation and factor info are ignored */
2023: PetscErrorCode MatCholeskyFactorSymbolic_MUMPS(Mat F,Mat A,IS r,const MatFactorInfo *info)
2024: {
2025:   Mat_MUMPS      *mumps = (Mat_MUMPS*)F->data;
2026:   Vec            b;
2027:   const PetscInt M = A->rmap->N;

2029:   if (mumps->matstruc == SAME_NONZERO_PATTERN) {
2030:     /* F is assembled by a previous call of MatLUFactorSymbolic_AIJMUMPS() */
2031:     return 0;
2032:   }

2034:   /* Set MUMPS options from the options database */
2035:   PetscSetMUMPSFromOptions(F,A);

2037:   (*mumps->ConvertToTriples)(A, 1, MAT_INITIAL_MATRIX, mumps);
2038:   MatMumpsGatherNonzerosOnMaster(MAT_INITIAL_MATRIX,mumps);

2040:   /* analysis phase */
2041:   /*----------------*/
2042:   mumps->id.job = JOB_FACTSYMBOLIC;
2043:   mumps->id.n   = M;
2044:   switch (mumps->id.ICNTL(18)) {
2045:   case 0:  /* centralized assembled matrix input */
2046:     if (!mumps->myid) {
2047:       mumps->id.nnz = mumps->nnz;
2048:       mumps->id.irn = mumps->irn;
2049:       mumps->id.jcn = mumps->jcn;
2050:       if (mumps->id.ICNTL(6)>1) {
2051:         mumps->id.a = (MumpsScalar*)mumps->val;
2052:       }
2053:     }
2054:     break;
2055:   case 3:  /* distributed assembled matrix input (size>1) */
2056:     mumps->id.nnz_loc = mumps->nnz;
2057:     mumps->id.irn_loc = mumps->irn;
2058:     mumps->id.jcn_loc = mumps->jcn;
2059:     if (mumps->id.ICNTL(6)>1) {
2060:       mumps->id.a_loc = (MumpsScalar*)mumps->val;
2061:     }
2062:     if (mumps->ICNTL20 == 0) { /* Centralized rhs. Create scatter scat_rhs for repeated use in MatSolve() */
2063:       MatCreateVecs(A,NULL,&b);
2064:       VecScatterCreateToZero(b,&mumps->scat_rhs,&mumps->b_seq);
2065:       VecDestroy(&b);
2066:     }
2067:     break;
2068:   }
2069:   PetscMUMPS_c(mumps);
2070:   MatFactorSymbolic_MUMPS_ReportIfError(F,A,info,mumps);

2072:   F->ops->choleskyfactornumeric = MatFactorNumeric_MUMPS;
2073:   F->ops->solve                 = MatSolve_MUMPS;
2074:   F->ops->solvetranspose        = MatSolve_MUMPS;
2075:   F->ops->matsolve              = MatMatSolve_MUMPS;
2076:   F->ops->mattransposesolve     = MatMatTransposeSolve_MUMPS;
2077: #if defined(PETSC_USE_COMPLEX)
2078:   F->ops->getinertia = NULL;
2079: #else
2080:   F->ops->getinertia = MatGetInertia_SBAIJMUMPS;
2081: #endif

2083:   mumps->matstruc = SAME_NONZERO_PATTERN;
2084:   return 0;
2085: }

2087: PetscErrorCode MatView_MUMPS(Mat A,PetscViewer viewer)
2088: {
2089:   PetscBool         iascii;
2090:   PetscViewerFormat format;
2091:   Mat_MUMPS         *mumps=(Mat_MUMPS*)A->data;

2093:   /* check if matrix is mumps type */
2094:   if (A->ops->solve != MatSolve_MUMPS) return 0;

2096:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
2097:   if (iascii) {
2098:     PetscViewerGetFormat(viewer,&format);
2099:     if (format == PETSC_VIEWER_ASCII_INFO) {
2100:       PetscViewerASCIIPrintf(viewer,"MUMPS run parameters:\n");
2101:       PetscViewerASCIIPrintf(viewer,"  SYM (matrix type):                   %d\n",mumps->id.sym);
2102:       PetscViewerASCIIPrintf(viewer,"  PAR (host participation):            %d\n",mumps->id.par);
2103:       PetscViewerASCIIPrintf(viewer,"  ICNTL(1) (output for error):         %d\n",mumps->id.ICNTL(1));
2104:       PetscViewerASCIIPrintf(viewer,"  ICNTL(2) (output of diagnostic msg): %d\n",mumps->id.ICNTL(2));
2105:       PetscViewerASCIIPrintf(viewer,"  ICNTL(3) (output for global info):   %d\n",mumps->id.ICNTL(3));
2106:       PetscViewerASCIIPrintf(viewer,"  ICNTL(4) (level of printing):        %d\n",mumps->id.ICNTL(4));
2107:       PetscViewerASCIIPrintf(viewer,"  ICNTL(5) (input mat struct):         %d\n",mumps->id.ICNTL(5));
2108:       PetscViewerASCIIPrintf(viewer,"  ICNTL(6) (matrix prescaling):        %d\n",mumps->id.ICNTL(6));
2109:       PetscViewerASCIIPrintf(viewer,"  ICNTL(7) (sequential matrix ordering):%d\n",mumps->id.ICNTL(7));
2110:       PetscViewerASCIIPrintf(viewer,"  ICNTL(8) (scaling strategy):        %d\n",mumps->id.ICNTL(8));
2111:       PetscViewerASCIIPrintf(viewer,"  ICNTL(10) (max num of refinements):  %d\n",mumps->id.ICNTL(10));
2112:       PetscViewerASCIIPrintf(viewer,"  ICNTL(11) (error analysis):          %d\n",mumps->id.ICNTL(11));
2113:       if (mumps->id.ICNTL(11)>0) {
2114:         PetscViewerASCIIPrintf(viewer,"    RINFOG(4) (inf norm of input mat):        %g\n",mumps->id.RINFOG(4));
2115:         PetscViewerASCIIPrintf(viewer,"    RINFOG(5) (inf norm of solution):         %g\n",mumps->id.RINFOG(5));
2116:         PetscViewerASCIIPrintf(viewer,"    RINFOG(6) (inf norm of residual):         %g\n",mumps->id.RINFOG(6));
2117:         PetscViewerASCIIPrintf(viewer,"    RINFOG(7),RINFOG(8) (backward error est): %g, %g\n",mumps->id.RINFOG(7),mumps->id.RINFOG(8));
2118:         PetscViewerASCIIPrintf(viewer,"    RINFOG(9) (error estimate):               %g \n",mumps->id.RINFOG(9));
2119:         PetscViewerASCIIPrintf(viewer,"    RINFOG(10),RINFOG(11)(condition numbers): %g, %g\n",mumps->id.RINFOG(10),mumps->id.RINFOG(11));
2120:       }
2121:       PetscViewerASCIIPrintf(viewer,"  ICNTL(12) (efficiency control):                         %d\n",mumps->id.ICNTL(12));
2122:       PetscViewerASCIIPrintf(viewer,"  ICNTL(13) (sequential factorization of the root node):  %d\n",mumps->id.ICNTL(13));
2123:       PetscViewerASCIIPrintf(viewer,"  ICNTL(14) (percentage of estimated workspace increase): %d\n",mumps->id.ICNTL(14));
2124:       /* ICNTL(15-17) not used */
2125:       PetscViewerASCIIPrintf(viewer,"  ICNTL(18) (input mat struct):                           %d\n",mumps->id.ICNTL(18));
2126:       PetscViewerASCIIPrintf(viewer,"  ICNTL(19) (Schur complement info):                      %d\n",mumps->id.ICNTL(19));
2127:       PetscViewerASCIIPrintf(viewer,"  ICNTL(20) (RHS sparse pattern):                         %d\n",mumps->id.ICNTL(20));
2128:       PetscViewerASCIIPrintf(viewer,"  ICNTL(21) (solution struct):                            %d\n",mumps->id.ICNTL(21));
2129:       PetscViewerASCIIPrintf(viewer,"  ICNTL(22) (in-core/out-of-core facility):               %d\n",mumps->id.ICNTL(22));
2130:       PetscViewerASCIIPrintf(viewer,"  ICNTL(23) (max size of memory can be allocated locally):%d\n",mumps->id.ICNTL(23));

2132:       PetscViewerASCIIPrintf(viewer,"  ICNTL(24) (detection of null pivot rows):               %d\n",mumps->id.ICNTL(24));
2133:       PetscViewerASCIIPrintf(viewer,"  ICNTL(25) (computation of a null space basis):          %d\n",mumps->id.ICNTL(25));
2134:       PetscViewerASCIIPrintf(viewer,"  ICNTL(26) (Schur options for RHS or solution):          %d\n",mumps->id.ICNTL(26));
2135:       PetscViewerASCIIPrintf(viewer,"  ICNTL(27) (blocking size for multiple RHS):             %d\n",mumps->id.ICNTL(27));
2136:       PetscViewerASCIIPrintf(viewer,"  ICNTL(28) (use parallel or sequential ordering):        %d\n",mumps->id.ICNTL(28));
2137:       PetscViewerASCIIPrintf(viewer,"  ICNTL(29) (parallel ordering):                          %d\n",mumps->id.ICNTL(29));

2139:       PetscViewerASCIIPrintf(viewer,"  ICNTL(30) (user-specified set of entries in inv(A)):    %d\n",mumps->id.ICNTL(30));
2140:       PetscViewerASCIIPrintf(viewer,"  ICNTL(31) (factors is discarded in the solve phase):    %d\n",mumps->id.ICNTL(31));
2141:       PetscViewerASCIIPrintf(viewer,"  ICNTL(33) (compute determinant):                        %d\n",mumps->id.ICNTL(33));
2142:       PetscViewerASCIIPrintf(viewer,"  ICNTL(35) (activate BLR based factorization):           %d\n",mumps->id.ICNTL(35));
2143:       PetscViewerASCIIPrintf(viewer,"  ICNTL(36) (choice of BLR factorization variant):        %d\n",mumps->id.ICNTL(36));
2144:       PetscViewerASCIIPrintf(viewer,"  ICNTL(38) (estimated compression rate of LU factors):   %d\n",mumps->id.ICNTL(38));

2146:       PetscViewerASCIIPrintf(viewer,"  CNTL(1) (relative pivoting threshold):      %g \n",mumps->id.CNTL(1));
2147:       PetscViewerASCIIPrintf(viewer,"  CNTL(2) (stopping criterion of refinement): %g \n",mumps->id.CNTL(2));
2148:       PetscViewerASCIIPrintf(viewer,"  CNTL(3) (absolute pivoting threshold):      %g \n",mumps->id.CNTL(3));
2149:       PetscViewerASCIIPrintf(viewer,"  CNTL(4) (value of static pivoting):         %g \n",mumps->id.CNTL(4));
2150:       PetscViewerASCIIPrintf(viewer,"  CNTL(5) (fixation for null pivots):         %g \n",mumps->id.CNTL(5));
2151:       PetscViewerASCIIPrintf(viewer,"  CNTL(7) (dropping parameter for BLR):       %g \n",mumps->id.CNTL(7));

2153:       /* information local to each processor */
2154:       PetscViewerASCIIPrintf(viewer, "  RINFO(1) (local estimated flops for the elimination after analysis): \n");
2155:       PetscViewerASCIIPushSynchronized(viewer);
2156:       PetscViewerASCIISynchronizedPrintf(viewer,"    [%d] %g \n",mumps->myid,mumps->id.RINFO(1));
2157:       PetscViewerFlush(viewer);
2158:       PetscViewerASCIIPrintf(viewer, "  RINFO(2) (local estimated flops for the assembly after factorization): \n");
2159:       PetscViewerASCIISynchronizedPrintf(viewer,"    [%d]  %g \n",mumps->myid,mumps->id.RINFO(2));
2160:       PetscViewerFlush(viewer);
2161:       PetscViewerASCIIPrintf(viewer, "  RINFO(3) (local estimated flops for the elimination after factorization): \n");
2162:       PetscViewerASCIISynchronizedPrintf(viewer,"    [%d]  %g \n",mumps->myid,mumps->id.RINFO(3));
2163:       PetscViewerFlush(viewer);

2165:       PetscViewerASCIIPrintf(viewer, "  INFO(15) (estimated size of (in MB) MUMPS internal data for running numerical factorization): \n");
2166:       PetscViewerASCIISynchronizedPrintf(viewer,"  [%d] %d\n",mumps->myid,mumps->id.INFO(15));
2167:       PetscViewerFlush(viewer);

2169:       PetscViewerASCIIPrintf(viewer, "  INFO(16) (size of (in MB) MUMPS internal data used during numerical factorization): \n");
2170:       PetscViewerASCIISynchronizedPrintf(viewer,"    [%d] %d\n",mumps->myid,mumps->id.INFO(16));
2171:       PetscViewerFlush(viewer);

2173:       PetscViewerASCIIPrintf(viewer, "  INFO(23) (num of pivots eliminated on this processor after factorization): \n");
2174:       PetscViewerASCIISynchronizedPrintf(viewer,"    [%d] %d\n",mumps->myid,mumps->id.INFO(23));
2175:       PetscViewerFlush(viewer);

2177:       if (mumps->ninfo && mumps->ninfo <= 80) {
2178:         PetscInt i;
2179:         for (i=0; i<mumps->ninfo; i++) {
2180:           PetscViewerASCIIPrintf(viewer, "  INFO(%" PetscInt_FMT "): \n",mumps->info[i]);
2181:           PetscViewerASCIISynchronizedPrintf(viewer,"    [%d] %d\n",mumps->myid,mumps->id.INFO(mumps->info[i]));
2182:           PetscViewerFlush(viewer);
2183:         }
2184:       }
2185:       PetscViewerASCIIPopSynchronized(viewer);

2187:       if (!mumps->myid) { /* information from the host */
2188:         PetscViewerASCIIPrintf(viewer,"  RINFOG(1) (global estimated flops for the elimination after analysis): %g \n",mumps->id.RINFOG(1));
2189:         PetscViewerASCIIPrintf(viewer,"  RINFOG(2) (global estimated flops for the assembly after factorization): %g \n",mumps->id.RINFOG(2));
2190:         PetscViewerASCIIPrintf(viewer,"  RINFOG(3) (global estimated flops for the elimination after factorization): %g \n",mumps->id.RINFOG(3));
2191:         PetscViewerASCIIPrintf(viewer,"  (RINFOG(12) RINFOG(13))*2^INFOG(34) (determinant): (%g,%g)*(2^%d)\n",mumps->id.RINFOG(12),mumps->id.RINFOG(13),mumps->id.INFOG(34));

2193:         PetscViewerASCIIPrintf(viewer,"  INFOG(3) (estimated real workspace for factors on all processors after analysis): %d\n",mumps->id.INFOG(3));
2194:         PetscViewerASCIIPrintf(viewer,"  INFOG(4) (estimated integer workspace for factors on all processors after analysis): %d\n",mumps->id.INFOG(4));
2195:         PetscViewerASCIIPrintf(viewer,"  INFOG(5) (estimated maximum front size in the complete tree): %d\n",mumps->id.INFOG(5));
2196:         PetscViewerASCIIPrintf(viewer,"  INFOG(6) (number of nodes in the complete tree): %d\n",mumps->id.INFOG(6));
2197:         PetscViewerASCIIPrintf(viewer,"  INFOG(7) (ordering option effectively used after analysis): %d\n",mumps->id.INFOG(7));
2198:         PetscViewerASCIIPrintf(viewer,"  INFOG(8) (structural symmetry in percent of the permuted matrix after analysis): %d\n",mumps->id.INFOG(8));
2199:         PetscViewerASCIIPrintf(viewer,"  INFOG(9) (total real/complex workspace to store the matrix factors after factorization): %d\n",mumps->id.INFOG(9));
2200:         PetscViewerASCIIPrintf(viewer,"  INFOG(10) (total integer space store the matrix factors after factorization): %d\n",mumps->id.INFOG(10));
2201:         PetscViewerASCIIPrintf(viewer,"  INFOG(11) (order of largest frontal matrix after factorization): %d\n",mumps->id.INFOG(11));
2202:         PetscViewerASCIIPrintf(viewer,"  INFOG(12) (number of off-diagonal pivots): %d\n",mumps->id.INFOG(12));
2203:         PetscViewerASCIIPrintf(viewer,"  INFOG(13) (number of delayed pivots after factorization): %d\n",mumps->id.INFOG(13));
2204:         PetscViewerASCIIPrintf(viewer,"  INFOG(14) (number of memory compress after factorization): %d\n",mumps->id.INFOG(14));
2205:         PetscViewerASCIIPrintf(viewer,"  INFOG(15) (number of steps of iterative refinement after solution): %d\n",mumps->id.INFOG(15));
2206:         PetscViewerASCIIPrintf(viewer,"  INFOG(16) (estimated size (in MB) of all MUMPS internal data for factorization after analysis: value on the most memory consuming processor): %d\n",mumps->id.INFOG(16));
2207:         PetscViewerASCIIPrintf(viewer,"  INFOG(17) (estimated size of all MUMPS internal data for factorization after analysis: sum over all processors): %d\n",mumps->id.INFOG(17));
2208:         PetscViewerASCIIPrintf(viewer,"  INFOG(18) (size of all MUMPS internal data allocated during factorization: value on the most memory consuming processor): %d\n",mumps->id.INFOG(18));
2209:         PetscViewerASCIIPrintf(viewer,"  INFOG(19) (size of all MUMPS internal data allocated during factorization: sum over all processors): %d\n",mumps->id.INFOG(19));
2210:         PetscViewerASCIIPrintf(viewer,"  INFOG(20) (estimated number of entries in the factors): %d\n",mumps->id.INFOG(20));
2211:         PetscViewerASCIIPrintf(viewer,"  INFOG(21) (size in MB of memory effectively used during factorization - value on the most memory consuming processor): %d\n",mumps->id.INFOG(21));
2212:         PetscViewerASCIIPrintf(viewer,"  INFOG(22) (size in MB of memory effectively used during factorization - sum over all processors): %d\n",mumps->id.INFOG(22));
2213:         PetscViewerASCIIPrintf(viewer,"  INFOG(23) (after analysis: value of ICNTL(6) effectively used): %d\n",mumps->id.INFOG(23));
2214:         PetscViewerASCIIPrintf(viewer,"  INFOG(24) (after analysis: value of ICNTL(12) effectively used): %d\n",mumps->id.INFOG(24));
2215:         PetscViewerASCIIPrintf(viewer,"  INFOG(25) (after factorization: number of pivots modified by static pivoting): %d\n",mumps->id.INFOG(25));
2216:         PetscViewerASCIIPrintf(viewer,"  INFOG(28) (after factorization: number of null pivots encountered): %d\n",mumps->id.INFOG(28));
2217:         PetscViewerASCIIPrintf(viewer,"  INFOG(29) (after factorization: effective number of entries in the factors (sum over all processors)): %d\n",mumps->id.INFOG(29));
2218:         PetscViewerASCIIPrintf(viewer,"  INFOG(30, 31) (after solution: size in Mbytes of memory used during solution phase): %d, %d\n",mumps->id.INFOG(30),mumps->id.INFOG(31));
2219:         PetscViewerASCIIPrintf(viewer,"  INFOG(32) (after analysis: type of analysis done): %d\n",mumps->id.INFOG(32));
2220:         PetscViewerASCIIPrintf(viewer,"  INFOG(33) (value used for ICNTL(8)): %d\n",mumps->id.INFOG(33));
2221:         PetscViewerASCIIPrintf(viewer,"  INFOG(34) (exponent of the determinant if determinant is requested): %d\n",mumps->id.INFOG(34));
2222:         PetscViewerASCIIPrintf(viewer,"  INFOG(35) (after factorization: number of entries taking into account BLR factor compression - sum over all processors): %d\n",mumps->id.INFOG(35));
2223:         PetscViewerASCIIPrintf(viewer,"  INFOG(36) (after analysis: estimated size of all MUMPS internal data for running BLR in-core - value on the most memory consuming processor): %d\n",mumps->id.INFOG(36));
2224:         PetscViewerASCIIPrintf(viewer,"  INFOG(37) (after analysis: estimated size of all MUMPS internal data for running BLR in-core - sum over all processors): %d\n",mumps->id.INFOG(37));
2225:         PetscViewerASCIIPrintf(viewer,"  INFOG(38) (after analysis: estimated size of all MUMPS internal data for running BLR out-of-core - value on the most memory consuming processor): %d\n",mumps->id.INFOG(38));
2226:         PetscViewerASCIIPrintf(viewer,"  INFOG(39) (after analysis: estimated size of all MUMPS internal data for running BLR out-of-core - sum over all processors): %d\n",mumps->id.INFOG(39));
2227:       }
2228:     }
2229:   }
2230:   return 0;
2231: }

2233: PetscErrorCode MatGetInfo_MUMPS(Mat A,MatInfoType flag,MatInfo *info)
2234: {
2235:   Mat_MUMPS *mumps =(Mat_MUMPS*)A->data;

2237:   info->block_size        = 1.0;
2238:   info->nz_allocated      = mumps->id.INFOG(20);
2239:   info->nz_used           = mumps->id.INFOG(20);
2240:   info->nz_unneeded       = 0.0;
2241:   info->assemblies        = 0.0;
2242:   info->mallocs           = 0.0;
2243:   info->memory            = 0.0;
2244:   info->fill_ratio_given  = 0;
2245:   info->fill_ratio_needed = 0;
2246:   info->factor_mallocs    = 0;
2247:   return 0;
2248: }

2250: /* -------------------------------------------------------------------------------------------*/
2251: PetscErrorCode MatFactorSetSchurIS_MUMPS(Mat F, IS is)
2252: {
2253:   Mat_MUMPS         *mumps =(Mat_MUMPS*)F->data;
2254:   const PetscScalar *arr;
2255:   const PetscInt    *idxs;
2256:   PetscInt          size,i;

2258:   ISGetLocalSize(is,&size);
2259:   if (mumps->petsc_size > 1) {
2260:     PetscBool ls,gs; /* gs is false if any rank other than root has non-empty IS */

2262:     ls   = mumps->myid ? (size ? PETSC_FALSE : PETSC_TRUE) : PETSC_TRUE; /* always true on root; false on others if their size != 0 */
2263:     MPI_Allreduce(&ls,&gs,1,MPIU_BOOL,MPI_LAND,mumps->petsc_comm);
2265:   }

2267:   /* Schur complement matrix */
2268:   MatDestroy(&F->schur);
2269:   MatCreateSeqDense(PETSC_COMM_SELF,size,size,NULL,&F->schur);
2270:   MatDenseGetArrayRead(F->schur,&arr);
2271:   mumps->id.schur      = (MumpsScalar*)arr;
2272:   mumps->id.size_schur = size;
2273:   mumps->id.schur_lld  = size;
2274:   MatDenseRestoreArrayRead(F->schur,&arr);
2275:   if (mumps->sym == 1) {
2276:     MatSetOption(F->schur,MAT_SPD,PETSC_TRUE);
2277:   }

2279:   /* MUMPS expects Fortran style indices */
2280:   PetscFree(mumps->id.listvar_schur);
2281:   PetscMalloc1(size,&mumps->id.listvar_schur);
2282:   ISGetIndices(is,&idxs);
2283:   for (i=0; i<size; i++) PetscMUMPSIntCast(idxs[i]+1,&(mumps->id.listvar_schur[i]));
2284:   ISRestoreIndices(is,&idxs);
2285:   if (mumps->petsc_size > 1) {
2286:     mumps->id.ICNTL(19) = 1; /* MUMPS returns Schur centralized on the host */
2287:   } else {
2288:     if (F->factortype == MAT_FACTOR_LU) {
2289:       mumps->id.ICNTL(19) = 3; /* MUMPS returns full matrix */
2290:     } else {
2291:       mumps->id.ICNTL(19) = 2; /* MUMPS returns lower triangular part */
2292:     }
2293:   }
2294:   /* set a special value of ICNTL (not handled my MUMPS) to be used in the solve phase by PETSc */
2295:   mumps->id.ICNTL(26) = -1;
2296:   return 0;
2297: }

2299: /* -------------------------------------------------------------------------------------------*/
2300: PetscErrorCode MatFactorCreateSchurComplement_MUMPS(Mat F,Mat* S)
2301: {
2302:   Mat            St;
2303:   Mat_MUMPS      *mumps =(Mat_MUMPS*)F->data;
2304:   PetscScalar    *array;
2305: #if defined(PETSC_USE_COMPLEX)
2306:   PetscScalar    im = PetscSqrtScalar((PetscScalar)-1.0);
2307: #endif

2310:   MatCreate(PETSC_COMM_SELF,&St);
2311:   MatSetSizes(St,PETSC_DECIDE,PETSC_DECIDE,mumps->id.size_schur,mumps->id.size_schur);
2312:   MatSetType(St,MATDENSE);
2313:   MatSetUp(St);
2314:   MatDenseGetArray(St,&array);
2315:   if (!mumps->sym) { /* MUMPS always return a full matrix */
2316:     if (mumps->id.ICNTL(19) == 1) { /* stored by rows */
2317:       PetscInt i,j,N=mumps->id.size_schur;
2318:       for (i=0;i<N;i++) {
2319:         for (j=0;j<N;j++) {
2320: #if !defined(PETSC_USE_COMPLEX)
2321:           PetscScalar val = mumps->id.schur[i*N+j];
2322: #else
2323:           PetscScalar val = mumps->id.schur[i*N+j].r + im*mumps->id.schur[i*N+j].i;
2324: #endif
2325:           array[j*N+i] = val;
2326:         }
2327:       }
2328:     } else { /* stored by columns */
2329:       PetscArraycpy(array,mumps->id.schur,mumps->id.size_schur*mumps->id.size_schur);
2330:     }
2331:   } else { /* either full or lower-triangular (not packed) */
2332:     if (mumps->id.ICNTL(19) == 2) { /* lower triangular stored by columns */
2333:       PetscInt i,j,N=mumps->id.size_schur;
2334:       for (i=0;i<N;i++) {
2335:         for (j=i;j<N;j++) {
2336: #if !defined(PETSC_USE_COMPLEX)
2337:           PetscScalar val = mumps->id.schur[i*N+j];
2338: #else
2339:           PetscScalar val = mumps->id.schur[i*N+j].r + im*mumps->id.schur[i*N+j].i;
2340: #endif
2341:           array[i*N+j] = val;
2342:           array[j*N+i] = val;
2343:         }
2344:       }
2345:     } else if (mumps->id.ICNTL(19) == 3) { /* full matrix */
2346:       PetscArraycpy(array,mumps->id.schur,mumps->id.size_schur*mumps->id.size_schur);
2347:     } else { /* ICNTL(19) == 1 lower triangular stored by rows */
2348:       PetscInt i,j,N=mumps->id.size_schur;
2349:       for (i=0;i<N;i++) {
2350:         for (j=0;j<i+1;j++) {
2351: #if !defined(PETSC_USE_COMPLEX)
2352:           PetscScalar val = mumps->id.schur[i*N+j];
2353: #else
2354:           PetscScalar val = mumps->id.schur[i*N+j].r + im*mumps->id.schur[i*N+j].i;
2355: #endif
2356:           array[i*N+j] = val;
2357:           array[j*N+i] = val;
2358:         }
2359:       }
2360:     }
2361:   }
2362:   MatDenseRestoreArray(St,&array);
2363:   *S   = St;
2364:   return 0;
2365: }

2367: /* -------------------------------------------------------------------------------------------*/
2368: PetscErrorCode MatMumpsSetIcntl_MUMPS(Mat F,PetscInt icntl,PetscInt ival)
2369: {
2370:   Mat_MUMPS *mumps =(Mat_MUMPS*)F->data;

2372:   PetscMUMPSIntCast(ival,&mumps->id.ICNTL(icntl));
2373:   return 0;
2374: }

2376: PetscErrorCode MatMumpsGetIcntl_MUMPS(Mat F,PetscInt icntl,PetscInt *ival)
2377: {
2378:   Mat_MUMPS *mumps =(Mat_MUMPS*)F->data;

2380:   *ival = mumps->id.ICNTL(icntl);
2381:   return 0;
2382: }

2384: /*@
2385:   MatMumpsSetIcntl - Set MUMPS parameter ICNTL()

2387:    Logically Collective on Mat

2389:    Input Parameters:
2390: +  F - the factored matrix obtained by calling MatGetFactor() from PETSc-MUMPS interface
2391: .  icntl - index of MUMPS parameter array ICNTL()
2392: -  ival - value of MUMPS ICNTL(icntl)

2394:   Options Database:
2395: .   -mat_mumps_icntl_<icntl> <ival> - change the option numbered icntl to ival

2397:    Level: beginner

2399:    References:
2400: .  * - MUMPS Users' Guide

2402: .seealso: MatGetFactor(), MatMumpsGetIcntl(), MatMumpsSetCntl(), MatMumpsGetCntl(), MatMumpsGetInfo(), MatMumpsGetInfog(), MatMumpsGetRinfo(), MatMumpsGetRinfog()
2403: @*/
2404: PetscErrorCode MatMumpsSetIcntl(Mat F,PetscInt icntl,PetscInt ival)
2405: {
2410:   PetscTryMethod(F,"MatMumpsSetIcntl_C",(Mat,PetscInt,PetscInt),(F,icntl,ival));
2411:   return 0;
2412: }

2414: /*@
2415:   MatMumpsGetIcntl - Get MUMPS parameter ICNTL()

2417:    Logically Collective on Mat

2419:    Input Parameters:
2420: +  F - the factored matrix obtained by calling MatGetFactor() from PETSc-MUMPS interface
2421: -  icntl - index of MUMPS parameter array ICNTL()

2423:   Output Parameter:
2424: .  ival - value of MUMPS ICNTL(icntl)

2426:    Level: beginner

2428:    References:
2429: .  * - MUMPS Users' Guide

2431: .seealso: MatGetFactor(), MatMumpsSetIcntl(), MatMumpsSetCntl(), MatMumpsGetCntl(), MatMumpsGetInfo(), MatMumpsGetInfog(), MatMumpsGetRinfo(), MatMumpsGetRinfog()
2432: @*/
2433: PetscErrorCode MatMumpsGetIcntl(Mat F,PetscInt icntl,PetscInt *ival)
2434: {
2439:   PetscUseMethod(F,"MatMumpsGetIcntl_C",(Mat,PetscInt,PetscInt*),(F,icntl,ival));
2440:   return 0;
2441: }

2443: /* -------------------------------------------------------------------------------------------*/
2444: PetscErrorCode MatMumpsSetCntl_MUMPS(Mat F,PetscInt icntl,PetscReal val)
2445: {
2446:   Mat_MUMPS *mumps =(Mat_MUMPS*)F->data;

2448:   mumps->id.CNTL(icntl) = val;
2449:   return 0;
2450: }

2452: PetscErrorCode MatMumpsGetCntl_MUMPS(Mat F,PetscInt icntl,PetscReal *val)
2453: {
2454:   Mat_MUMPS *mumps =(Mat_MUMPS*)F->data;

2456:   *val = mumps->id.CNTL(icntl);
2457:   return 0;
2458: }

2460: /*@
2461:   MatMumpsSetCntl - Set MUMPS parameter CNTL()

2463:    Logically Collective on Mat

2465:    Input Parameters:
2466: +  F - the factored matrix obtained by calling MatGetFactor() from PETSc-MUMPS interface
2467: .  icntl - index of MUMPS parameter array CNTL()
2468: -  val - value of MUMPS CNTL(icntl)

2470:   Options Database:
2471: .   -mat_mumps_cntl_<icntl> <val>  - change the option numbered icntl to ival

2473:    Level: beginner

2475:    References:
2476: .  * - MUMPS Users' Guide

2478: .seealso: MatGetFactor(), MatMumpsSetIcntl(), MatMumpsGetIcntl(), MatMumpsGetCntl(), MatMumpsGetInfo(), MatMumpsGetInfog(), MatMumpsGetRinfo(), MatMumpsGetRinfog()
2479: @*/
2480: PetscErrorCode MatMumpsSetCntl(Mat F,PetscInt icntl,PetscReal val)
2481: {
2486:   PetscTryMethod(F,"MatMumpsSetCntl_C",(Mat,PetscInt,PetscReal),(F,icntl,val));
2487:   return 0;
2488: }

2490: /*@
2491:   MatMumpsGetCntl - Get MUMPS parameter CNTL()

2493:    Logically Collective on Mat

2495:    Input Parameters:
2496: +  F - the factored matrix obtained by calling MatGetFactor() from PETSc-MUMPS interface
2497: -  icntl - index of MUMPS parameter array CNTL()

2499:   Output Parameter:
2500: .  val - value of MUMPS CNTL(icntl)

2502:    Level: beginner

2504:    References:
2505: .  * - MUMPS Users' Guide

2507: .seealso: MatGetFactor(), MatMumpsSetIcntl(), MatMumpsGetIcntl(), MatMumpsSetCntl(), MatMumpsGetInfo(), MatMumpsGetInfog(), MatMumpsGetRinfo(), MatMumpsGetRinfog()
2508: @*/
2509: PetscErrorCode MatMumpsGetCntl(Mat F,PetscInt icntl,PetscReal *val)
2510: {
2515:   PetscUseMethod(F,"MatMumpsGetCntl_C",(Mat,PetscInt,PetscReal*),(F,icntl,val));
2516:   return 0;
2517: }

2519: PetscErrorCode MatMumpsGetInfo_MUMPS(Mat F,PetscInt icntl,PetscInt *info)
2520: {
2521:   Mat_MUMPS *mumps =(Mat_MUMPS*)F->data;

2523:   *info = mumps->id.INFO(icntl);
2524:   return 0;
2525: }

2527: PetscErrorCode MatMumpsGetInfog_MUMPS(Mat F,PetscInt icntl,PetscInt *infog)
2528: {
2529:   Mat_MUMPS *mumps =(Mat_MUMPS*)F->data;

2531:   *infog = mumps->id.INFOG(icntl);
2532:   return 0;
2533: }

2535: PetscErrorCode MatMumpsGetRinfo_MUMPS(Mat F,PetscInt icntl,PetscReal *rinfo)
2536: {
2537:   Mat_MUMPS *mumps =(Mat_MUMPS*)F->data;

2539:   *rinfo = mumps->id.RINFO(icntl);
2540:   return 0;
2541: }

2543: PetscErrorCode MatMumpsGetRinfog_MUMPS(Mat F,PetscInt icntl,PetscReal *rinfog)
2544: {
2545:   Mat_MUMPS *mumps =(Mat_MUMPS*)F->data;

2547:   *rinfog = mumps->id.RINFOG(icntl);
2548:   return 0;
2549: }

2551: PetscErrorCode MatMumpsGetInverse_MUMPS(Mat F,Mat spRHS)
2552: {
2553:   Mat            Bt = NULL,Btseq = NULL;
2554:   PetscBool      flg;
2555:   Mat_MUMPS      *mumps =(Mat_MUMPS*)F->data;
2556:   PetscScalar    *aa;
2557:   PetscInt       spnr,*ia,*ja,M,nrhs;

2560:   PetscObjectTypeCompare((PetscObject)spRHS,MATTRANSPOSEMAT,&flg);
2561:   if (flg) {
2562:     MatTransposeGetMat(spRHS,&Bt);
2563:   } else SETERRQ(PetscObjectComm((PetscObject)spRHS),PETSC_ERR_ARG_WRONG,"Matrix spRHS must be type MATTRANSPOSEMAT matrix");

2565:   MatMumpsSetIcntl(F,30,1);

2567:   if (mumps->petsc_size > 1) {
2568:     Mat_MPIAIJ *b = (Mat_MPIAIJ*)Bt->data;
2569:     Btseq = b->A;
2570:   } else {
2571:     Btseq = Bt;
2572:   }

2574:   MatGetSize(spRHS,&M,&nrhs);
2575:   mumps->id.nrhs = nrhs;
2576:   mumps->id.lrhs = M;
2577:   mumps->id.rhs  = NULL;

2579:   if (!mumps->myid) {
2580:     MatSeqAIJGetArray(Btseq,&aa);
2581:     MatGetRowIJ(Btseq,1,PETSC_FALSE,PETSC_FALSE,&spnr,(const PetscInt**)&ia,(const PetscInt**)&ja,&flg);
2583:     PetscMUMPSIntCSRCast(mumps,spnr,ia,ja,&mumps->id.irhs_ptr,&mumps->id.irhs_sparse,&mumps->id.nz_rhs);
2584:     mumps->id.rhs_sparse  = (MumpsScalar*)aa;
2585:   } else {
2586:     mumps->id.irhs_ptr    = NULL;
2587:     mumps->id.irhs_sparse = NULL;
2588:     mumps->id.nz_rhs      = 0;
2589:     mumps->id.rhs_sparse  = NULL;
2590:   }
2591:   mumps->id.ICNTL(20)   = 1; /* rhs is sparse */
2592:   mumps->id.ICNTL(21)   = 0; /* solution is in assembled centralized format */

2594:   /* solve phase */
2595:   /*-------------*/
2596:   mumps->id.job = JOB_SOLVE;
2597:   PetscMUMPS_c(mumps);
2598:   if (mumps->id.INFOG(1) < 0)
2599:     SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MUMPS in solve phase: INFOG(1)=%d INFO(2)=%d",mumps->id.INFOG(1),mumps->id.INFO(2));

2601:   if (!mumps->myid) {
2602:     MatSeqAIJRestoreArray(Btseq,&aa);
2603:     MatRestoreRowIJ(Btseq,1,PETSC_FALSE,PETSC_FALSE,&spnr,(const PetscInt**)&ia,(const PetscInt**)&ja,&flg);
2605:   }
2606:   return 0;
2607: }

2609: /*@
2610:   MatMumpsGetInverse - Get user-specified set of entries in inverse of A

2612:    Logically Collective on Mat

2614:    Input Parameters:
2615: +  F - the factored matrix obtained by calling MatGetFactor() from PETSc-MUMPS interface
2616: -  spRHS - sequential sparse matrix in MATTRANSPOSEMAT format holding specified indices in processor[0]

2618:   Output Parameter:
2619: . spRHS - requested entries of inverse of A

2621:    Level: beginner

2623:    References:
2624: .  * - MUMPS Users' Guide

2626: .seealso: MatGetFactor(), MatCreateTranspose()
2627: @*/
2628: PetscErrorCode MatMumpsGetInverse(Mat F,Mat spRHS)
2629: {
2632:   PetscUseMethod(F,"MatMumpsGetInverse_C",(Mat,Mat),(F,spRHS));
2633:   return 0;
2634: }

2636: PetscErrorCode MatMumpsGetInverseTranspose_MUMPS(Mat F,Mat spRHST)
2637: {
2638:   Mat            spRHS;

2640:   MatCreateTranspose(spRHST,&spRHS);
2641:   MatMumpsGetInverse_MUMPS(F,spRHS);
2642:   MatDestroy(&spRHS);
2643:   return 0;
2644: }

2646: /*@
2647:   MatMumpsGetInverseTranspose - Get user-specified set of entries in inverse of matrix A^T

2649:    Logically Collective on Mat

2651:    Input Parameters:
2652: +  F - the factored matrix of A obtained by calling MatGetFactor() from PETSc-MUMPS interface
2653: -  spRHST - sequential sparse matrix in MATAIJ format holding specified indices of A^T in processor[0]

2655:   Output Parameter:
2656: . spRHST - requested entries of inverse of A^T

2658:    Level: beginner

2660:    References:
2661: .  * - MUMPS Users' Guide

2663: .seealso: MatGetFactor(), MatCreateTranspose(), MatMumpsGetInverse()
2664: @*/
2665: PetscErrorCode MatMumpsGetInverseTranspose(Mat F,Mat spRHST)
2666: {
2667:   PetscBool      flg;

2671:   PetscObjectTypeCompareAny((PetscObject)spRHST,&flg,MATSEQAIJ,MATMPIAIJ,NULL);

2674:   PetscUseMethod(F,"MatMumpsGetInverseTranspose_C",(Mat,Mat),(F,spRHST));
2675:   return 0;
2676: }

2678: /*@
2679:   MatMumpsGetInfo - Get MUMPS parameter INFO()

2681:    Logically Collective on Mat

2683:    Input Parameters:
2684: +  F - the factored matrix obtained by calling MatGetFactor() from PETSc-MUMPS interface
2685: -  icntl - index of MUMPS parameter array INFO()

2687:   Output Parameter:
2688: .  ival - value of MUMPS INFO(icntl)

2690:    Level: beginner

2692:    References:
2693: .  * - MUMPS Users' Guide

2695: .seealso: MatGetFactor(), MatMumpsSetIcntl(), MatMumpsGetIcntl(), MatMumpsSetCntl(), MatMumpsGetCntl(), MatMumpsGetInfog(), MatMumpsGetRinfo(), MatMumpsGetRinfog()
2696: @*/
2697: PetscErrorCode MatMumpsGetInfo(Mat F,PetscInt icntl,PetscInt *ival)
2698: {
2702:   PetscUseMethod(F,"MatMumpsGetInfo_C",(Mat,PetscInt,PetscInt*),(F,icntl,ival));
2703:   return 0;
2704: }

2706: /*@
2707:   MatMumpsGetInfog - Get MUMPS parameter INFOG()

2709:    Logically Collective on Mat

2711:    Input Parameters:
2712: +  F - the factored matrix obtained by calling MatGetFactor() from PETSc-MUMPS interface
2713: -  icntl - index of MUMPS parameter array INFOG()

2715:   Output Parameter:
2716: .  ival - value of MUMPS INFOG(icntl)

2718:    Level: beginner

2720:    References:
2721: .  * - MUMPS Users' Guide

2723: .seealso: MatGetFactor(), MatMumpsSetIcntl(), MatMumpsGetIcntl(), MatMumpsSetCntl(), MatMumpsGetCntl(), MatMumpsGetInfo(), MatMumpsGetRinfo(), MatMumpsGetRinfog()
2724: @*/
2725: PetscErrorCode MatMumpsGetInfog(Mat F,PetscInt icntl,PetscInt *ival)
2726: {
2730:   PetscUseMethod(F,"MatMumpsGetInfog_C",(Mat,PetscInt,PetscInt*),(F,icntl,ival));
2731:   return 0;
2732: }

2734: /*@
2735:   MatMumpsGetRinfo - Get MUMPS parameter RINFO()

2737:    Logically Collective on Mat

2739:    Input Parameters:
2740: +  F - the factored matrix obtained by calling MatGetFactor() from PETSc-MUMPS interface
2741: -  icntl - index of MUMPS parameter array RINFO()

2743:   Output Parameter:
2744: .  val - value of MUMPS RINFO(icntl)

2746:    Level: beginner

2748:    References:
2749: .  * - MUMPS Users' Guide

2751: .seealso: MatGetFactor(), MatMumpsSetIcntl(), MatMumpsGetIcntl(), MatMumpsSetCntl(), MatMumpsGetCntl(), MatMumpsGetInfo(), MatMumpsGetInfog(), MatMumpsGetRinfog()
2752: @*/
2753: PetscErrorCode MatMumpsGetRinfo(Mat F,PetscInt icntl,PetscReal *val)
2754: {
2758:   PetscUseMethod(F,"MatMumpsGetRinfo_C",(Mat,PetscInt,PetscReal*),(F,icntl,val));
2759:   return 0;
2760: }

2762: /*@
2763:   MatMumpsGetRinfog - Get MUMPS parameter RINFOG()

2765:    Logically Collective on Mat

2767:    Input Parameters:
2768: +  F - the factored matrix obtained by calling MatGetFactor() from PETSc-MUMPS interface
2769: -  icntl - index of MUMPS parameter array RINFOG()

2771:   Output Parameter:
2772: .  val - value of MUMPS RINFOG(icntl)

2774:    Level: beginner

2776:    References:
2777: .  * - MUMPS Users' Guide

2779: .seealso: MatGetFactor(), MatMumpsSetIcntl(), MatMumpsGetIcntl(), MatMumpsSetCntl(), MatMumpsGetCntl(), MatMumpsGetInfo(), MatMumpsGetInfog(), MatMumpsGetRinfo()
2780: @*/
2781: PetscErrorCode MatMumpsGetRinfog(Mat F,PetscInt icntl,PetscReal *val)
2782: {
2786:   PetscUseMethod(F,"MatMumpsGetRinfog_C",(Mat,PetscInt,PetscReal*),(F,icntl,val));
2787:   return 0;
2788: }

2790: /*MC
2791:   MATSOLVERMUMPS -  A matrix type providing direct solvers (LU and Cholesky) for
2792:   distributed and sequential matrices via the external package MUMPS.

2794:   Works with MATAIJ and MATSBAIJ matrices

2796:   Use ./configure --download-mumps --download-scalapack --download-parmetis --download-metis --download-ptscotch to have PETSc installed with MUMPS

2798:   Use ./configure --with-openmp --download-hwloc (or --with-hwloc) to enable running MUMPS in MPI+OpenMP hybrid mode and non-MUMPS in flat-MPI mode. See details below.

2800:   Use -pc_type cholesky or lu -pc_factor_mat_solver_type mumps to use this direct solver

2802:   Options Database Keys:
2803: +  -mat_mumps_icntl_1 - ICNTL(1): output stream for error messages
2804: .  -mat_mumps_icntl_2 - ICNTL(2): output stream for diagnostic printing, statistics, and warning
2805: .  -mat_mumps_icntl_3 -  ICNTL(3): output stream for global information, collected on the host
2806: .  -mat_mumps_icntl_4 -  ICNTL(4): level of printing (0 to 4)
2807: .  -mat_mumps_icntl_6 - ICNTL(6): permutes to a zero-free diagonal and/or scale the matrix (0 to 7)
2808: .  -mat_mumps_icntl_7 - ICNTL(7): computes a symmetric permutation in sequential analysis, 0=AMD, 2=AMF, 3=Scotch, 4=PORD, 5=Metis, 6=QAMD, and 7=auto
2809:                         Use -pc_factor_mat_ordering_type <type> to have PETSc perform the ordering (sequential only)
2810: .  -mat_mumps_icntl_8  - ICNTL(8): scaling strategy (-2 to 8 or 77)
2811: .  -mat_mumps_icntl_10  - ICNTL(10): max num of refinements
2812: .  -mat_mumps_icntl_11  - ICNTL(11): statistics related to an error analysis (via -ksp_view)
2813: .  -mat_mumps_icntl_12  - ICNTL(12): an ordering strategy for symmetric matrices (0 to 3)
2814: .  -mat_mumps_icntl_13  - ICNTL(13): parallelism of the root node (enable ScaLAPACK) and its splitting
2815: .  -mat_mumps_icntl_14  - ICNTL(14): percentage increase in the estimated working space
2816: .  -mat_mumps_icntl_19  - ICNTL(19): computes the Schur complement
2817: .  -mat_mumps_icntl_20  - ICNTL(20): give MUMPS centralized (0) or distributed (10) dense RHS
2818: .  -mat_mumps_icntl_22  - ICNTL(22): in-core/out-of-core factorization and solve (0 or 1)
2819: .  -mat_mumps_icntl_23  - ICNTL(23): max size of the working memory (MB) that can allocate per processor
2820: .  -mat_mumps_icntl_24  - ICNTL(24): detection of null pivot rows (0 or 1)
2821: .  -mat_mumps_icntl_25  - ICNTL(25): compute a solution of a deficient matrix and a null space basis
2822: .  -mat_mumps_icntl_26  - ICNTL(26): drives the solution phase if a Schur complement matrix
2823: .  -mat_mumps_icntl_28  - ICNTL(28): use 1 for sequential analysis and ictnl(7) ordering, or 2 for parallel analysis and ictnl(29) ordering
2824: .  -mat_mumps_icntl_29 - ICNTL(29): parallel ordering 1 = ptscotch, 2 = parmetis
2825: .  -mat_mumps_icntl_30 - ICNTL(30): compute user-specified set of entries in inv(A)
2826: .  -mat_mumps_icntl_31 - ICNTL(31): indicates which factors may be discarded during factorization
2827: .  -mat_mumps_icntl_33 - ICNTL(33): compute determinant
2828: .  -mat_mumps_icntl_35 - ICNTL(35): level of activation of BLR (Block Low-Rank) feature
2829: .  -mat_mumps_icntl_36 - ICNTL(36): controls the choice of BLR factorization variant
2830: .  -mat_mumps_icntl_38 - ICNTL(38): sets the estimated compression rate of LU factors with BLR
2831: .  -mat_mumps_cntl_1  - CNTL(1): relative pivoting threshold
2832: .  -mat_mumps_cntl_2  -  CNTL(2): stopping criterion of refinement
2833: .  -mat_mumps_cntl_3 - CNTL(3): absolute pivoting threshold
2834: .  -mat_mumps_cntl_4 - CNTL(4): value for static pivoting
2835: .  -mat_mumps_cntl_5 - CNTL(5): fixation for null pivots
2836: .  -mat_mumps_cntl_7 - CNTL(7): precision of the dropping parameter used during BLR factorization
2837: -  -mat_mumps_use_omp_threads [m] - run MUMPS in MPI+OpenMP hybrid mode as if omp_set_num_threads(m) is called before calling MUMPS.
2838:                                    Default might be the number of cores per CPU package (socket) as reported by hwloc and suggested by the MUMPS manual.

2840:   Level: beginner

2842:     Notes:
2843:     MUMPS Cholesky does not handle (complex) Hermitian matrices http://mumps.enseeiht.fr/doc/userguide_5.2.1.pdf so using it will error if the matrix is Hermitian.

2845:     When a MUMPS factorization fails inside a KSP solve, for example with a KSP_DIVERGED_PC_FAILED, one can find the MUMPS information about the failure by calling
2846: $          KSPGetPC(ksp,&pc);
2847: $          PCFactorGetMatrix(pc,&mat);
2848: $          MatMumpsGetInfo(mat,....);
2849: $          MatMumpsGetInfog(mat,....); etc.
2850:            Or you can run with -ksp_error_if_not_converged and the program will be stopped and the information printed in the error message.

2852:   Using MUMPS with 64-bit integers
2853:     MUMPS provides 64-bit integer support in two build modes:
2854:       full 64-bit: here MUMPS is built with C preprocessing flag -DINTSIZE64 and Fortran compiler option -i8, -fdefault-integer-8 or equivalent, and
2855:       requires all dependent libraries MPI, ScaLAPACK, LAPACK and BLAS built the same way with 64-bit integers (for example ILP64 Intel MKL and MPI).

2857:       selective 64-bit: with the default MUMPS build, 64-bit integers have been introduced where needed. In compressed sparse row (CSR) storage of matrices,
2858:       MUMPS stores column indices in 32-bit, but row offsets in 64-bit, so you can have a huge number of non-zeros, but must have less than 2^31 rows and
2859:       columns. This can lead to significant memory and performance gains with respect to a full 64-bit integer MUMPS version. This requires a regular (32-bit
2860:       integer) build of all dependent libraries MPI, ScaLAPACK, LAPACK and BLAS.

2862:     With --download-mumps=1, PETSc always build MUMPS in selective 64-bit mode, which can be used by both --with-64-bit-indices=0/1 variants of PETSc.

2864:   Two modes to run MUMPS/PETSc with OpenMP
2865: $     Set OMP_NUM_THREADS and run with fewer MPI ranks than cores. For example, if you want to have 16 OpenMP
2866: $     threads per rank, then you may use "export OMP_NUM_THREADS=16 && mpirun -n 4 ./test".

2868: $     -mat_mumps_use_omp_threads [m] and run your code with as many MPI ranks as the number of cores. For example,
2869: $     if a compute node has 32 cores and you run on two nodes, you may use "mpirun -n 64 ./test -mat_mumps_use_omp_threads 16"

2871:    To run MUMPS in MPI+OpenMP hybrid mode (i.e., enable multithreading in MUMPS), but still run the non-MUMPS part
2872:    (i.e., PETSc part) of your code in the so-called flat-MPI (aka pure-MPI) mode, you need to configure PETSc with --with-openmp --download-hwloc
2873:    (or --with-hwloc), and have an MPI that supports MPI-3.0's process shared memory (which is usually available). Since MUMPS calls BLAS
2874:    libraries, to really get performance, you should have multithreaded BLAS libraries such as Intel MKL, AMD ACML, Cray libSci or OpenBLAS
2875:    (PETSc will automatically try to utilized a threaded BLAS if --with-openmp is provided).

2877:    If you run your code through a job submission system, there are caveats in MPI rank mapping. We use MPI_Comm_split_type() to obtain MPI
2878:    processes on each compute node. Listing the processes in rank ascending order, we split processes on a node into consecutive groups of
2879:    size m and create a communicator called omp_comm for each group. Rank 0 in an omp_comm is called the master rank, and others in the omp_comm
2880:    are called slave ranks (or slaves). Only master ranks are seen to MUMPS and slaves are not. We will free CPUs assigned to slaves (might be set
2881:    by CPU binding policies in job scripts) and make the CPUs available to the master so that OMP threads spawned by MUMPS can run on the CPUs.
2882:    In a multi-socket compute node, MPI rank mapping is an issue. Still use the above example and suppose your compute node has two sockets,
2883:    if you interleave MPI ranks on the two sockets, in other words, even ranks are placed on socket 0, and odd ranks are on socket 1, and bind
2884:    MPI ranks to cores, then with -mat_mumps_use_omp_threads 16, a master rank (and threads it spawns) will use half cores in socket 0, and half
2885:    cores in socket 1, that definitely hurts locality. On the other hand, if you map MPI ranks consecutively on the two sockets, then the
2886:    problem will not happen. Therefore, when you use -mat_mumps_use_omp_threads, you need to keep an eye on your MPI rank mapping and CPU binding.
2887:    For example, with the Slurm job scheduler, one can use srun --cpu-bind=verbose -m block:block to map consecutive MPI ranks to sockets and
2888:    examine the mapping result.

2890:    PETSc does not control thread binding in MUMPS. So to get best performance, one still has to set OMP_PROC_BIND and OMP_PLACES in job scripts,
2891:    for example, export OMP_PLACES=threads and export OMP_PROC_BIND=spread. One does not need to export OMP_NUM_THREADS=m in job scripts as PETSc
2892:    calls omp_set_num_threads(m) internally before calling MUMPS.

2894:    References:
2895: +  * - Heroux, Michael A., R. Brightwell, and Michael M. Wolf. "Bi-modal MPI and MPI+ threads computing on scalable multicore systems." IJHPCA (Submitted) (2011).
2896: -  * - Gutierrez, Samuel K., et al. "Accommodating Thread-Level Heterogeneity in Coupled Parallel Applications." Parallel and Distributed Processing Symposium (IPDPS), 2017 IEEE International. IEEE, 2017.

2898: .seealso: PCFactorSetMatSolverType(), MatSolverType, MatMumpsSetIcntl(), MatMumpsGetIcntl(), MatMumpsSetCntl(), MatMumpsGetCntl(), MatMumpsGetInfo(), MatMumpsGetInfog(), MatMumpsGetRinfo(), MatMumpsGetRinfog(), KSPGetPC(), PCFactorGetMatrix()

2900: M*/

2902: static PetscErrorCode MatFactorGetSolverType_mumps(Mat A,MatSolverType *type)
2903: {
2904:   *type = MATSOLVERMUMPS;
2905:   return 0;
2906: }

2908: /* MatGetFactor for Seq and MPI AIJ matrices */
2909: static PetscErrorCode MatGetFactor_aij_mumps(Mat A,MatFactorType ftype,Mat *F)
2910: {
2911:   Mat            B;
2912:   Mat_MUMPS      *mumps;
2913:   PetscBool      isSeqAIJ;
2914:   PetscMPIInt    size;

2916:  #if defined(PETSC_USE_COMPLEX)
2918:  #endif
2919:   /* Create the factorization matrix */
2920:   PetscObjectBaseTypeCompare((PetscObject)A,MATSEQAIJ,&isSeqAIJ);
2921:   MatCreate(PetscObjectComm((PetscObject)A),&B);
2922:   MatSetSizes(B,A->rmap->n,A->cmap->n,A->rmap->N,A->cmap->N);
2923:   PetscStrallocpy("mumps",&((PetscObject)B)->type_name);
2924:   MatSetUp(B);

2926:   PetscNewLog(B,&mumps);

2928:   B->ops->view    = MatView_MUMPS;
2929:   B->ops->getinfo = MatGetInfo_MUMPS;

2931:   PetscObjectComposeFunction((PetscObject)B,"MatFactorGetSolverType_C",MatFactorGetSolverType_mumps);
2932:   PetscObjectComposeFunction((PetscObject)B,"MatFactorSetSchurIS_C",MatFactorSetSchurIS_MUMPS);
2933:   PetscObjectComposeFunction((PetscObject)B,"MatFactorCreateSchurComplement_C",MatFactorCreateSchurComplement_MUMPS);
2934:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsSetIcntl_C",MatMumpsSetIcntl_MUMPS);
2935:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetIcntl_C",MatMumpsGetIcntl_MUMPS);
2936:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsSetCntl_C",MatMumpsSetCntl_MUMPS);
2937:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetCntl_C",MatMumpsGetCntl_MUMPS);
2938:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetInfo_C",MatMumpsGetInfo_MUMPS);
2939:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetInfog_C",MatMumpsGetInfog_MUMPS);
2940:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetRinfo_C",MatMumpsGetRinfo_MUMPS);
2941:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetRinfog_C",MatMumpsGetRinfog_MUMPS);
2942:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetInverse_C",MatMumpsGetInverse_MUMPS);
2943:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetInverseTranspose_C",MatMumpsGetInverseTranspose_MUMPS);

2945:   if (ftype == MAT_FACTOR_LU) {
2946:     B->ops->lufactorsymbolic = MatLUFactorSymbolic_AIJMUMPS;
2947:     B->factortype            = MAT_FACTOR_LU;
2948:     if (isSeqAIJ) mumps->ConvertToTriples = MatConvertToTriples_seqaij_seqaij;
2949:     else mumps->ConvertToTriples = MatConvertToTriples_mpiaij_mpiaij;
2950:     PetscStrallocpy(MATORDERINGEXTERNAL,(char**)&B->preferredordering[MAT_FACTOR_LU]);
2951:     mumps->sym = 0;
2952:   } else {
2953:     B->ops->choleskyfactorsymbolic = MatCholeskyFactorSymbolic_MUMPS;
2954:     B->factortype                  = MAT_FACTOR_CHOLESKY;
2955:     if (isSeqAIJ) mumps->ConvertToTriples = MatConvertToTriples_seqaij_seqsbaij;
2956:     else mumps->ConvertToTriples = MatConvertToTriples_mpiaij_mpisbaij;
2957:     PetscStrallocpy(MATORDERINGEXTERNAL,(char**)&B->preferredordering[MAT_FACTOR_CHOLESKY]);
2958: #if defined(PETSC_USE_COMPLEX)
2959:     mumps->sym = 2;
2960: #else
2961:     if (A->spd_set && A->spd) mumps->sym = 1;
2962:     else                      mumps->sym = 2;
2963: #endif
2964:   }

2966:   /* set solvertype */
2967:   PetscFree(B->solvertype);
2968:   PetscStrallocpy(MATSOLVERMUMPS,&B->solvertype);
2969:   MPI_Comm_size(PetscObjectComm((PetscObject)A),&size);
2970:   if (size == 1) {
2971:     /* MUMPS option -mat_mumps_icntl_7 1 is automatically set if PETSc ordering is passed into symbolic factorization */
2972:     B->canuseordering = PETSC_TRUE;
2973:   }
2974:   B->ops->destroy = MatDestroy_MUMPS;
2975:   B->data         = (void*)mumps;

2977:   PetscInitializeMUMPS(A,mumps);

2979:   *F = B;
2980:   mumps->matstruc = DIFFERENT_NONZERO_PATTERN;
2981:   return 0;
2982: }

2984: /* MatGetFactor for Seq and MPI SBAIJ matrices */
2985: static PetscErrorCode MatGetFactor_sbaij_mumps(Mat A,MatFactorType ftype,Mat *F)
2986: {
2987:   Mat            B;
2988:   Mat_MUMPS      *mumps;
2989:   PetscBool      isSeqSBAIJ;
2990:   PetscMPIInt    size;

2992:  #if defined(PETSC_USE_COMPLEX)
2994:  #endif
2995:   MatCreate(PetscObjectComm((PetscObject)A),&B);
2996:   MatSetSizes(B,A->rmap->n,A->cmap->n,A->rmap->N,A->cmap->N);
2997:   PetscStrallocpy("mumps",&((PetscObject)B)->type_name);
2998:   MatSetUp(B);

3000:   PetscNewLog(B,&mumps);
3001:   PetscObjectTypeCompare((PetscObject)A,MATSEQSBAIJ,&isSeqSBAIJ);
3002:   if (isSeqSBAIJ) {
3003:     mumps->ConvertToTriples = MatConvertToTriples_seqsbaij_seqsbaij;
3004:   } else {
3005:     mumps->ConvertToTriples = MatConvertToTriples_mpisbaij_mpisbaij;
3006:   }

3008:   B->ops->choleskyfactorsymbolic = MatCholeskyFactorSymbolic_MUMPS;
3009:   B->ops->view                   = MatView_MUMPS;
3010:   B->ops->getinfo                = MatGetInfo_MUMPS;

3012:   PetscObjectComposeFunction((PetscObject)B,"MatFactorGetSolverType_C",MatFactorGetSolverType_mumps);
3013:   PetscObjectComposeFunction((PetscObject)B,"MatFactorSetSchurIS_C",MatFactorSetSchurIS_MUMPS);
3014:   PetscObjectComposeFunction((PetscObject)B,"MatFactorCreateSchurComplement_C",MatFactorCreateSchurComplement_MUMPS);
3015:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsSetIcntl_C",MatMumpsSetIcntl_MUMPS);
3016:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetIcntl_C",MatMumpsGetIcntl_MUMPS);
3017:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsSetCntl_C",MatMumpsSetCntl_MUMPS);
3018:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetCntl_C",MatMumpsGetCntl_MUMPS);
3019:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetInfo_C",MatMumpsGetInfo_MUMPS);
3020:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetInfog_C",MatMumpsGetInfog_MUMPS);
3021:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetRinfo_C",MatMumpsGetRinfo_MUMPS);
3022:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetRinfog_C",MatMumpsGetRinfog_MUMPS);
3023:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetInverse_C",MatMumpsGetInverse_MUMPS);
3024:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetInverseTranspose_C",MatMumpsGetInverseTranspose_MUMPS);

3026:   B->factortype = MAT_FACTOR_CHOLESKY;
3027: #if defined(PETSC_USE_COMPLEX)
3028:   mumps->sym = 2;
3029: #else
3030:   if (A->spd_set && A->spd) mumps->sym = 1;
3031:   else                      mumps->sym = 2;
3032: #endif

3034:   /* set solvertype */
3035:   PetscFree(B->solvertype);
3036:   PetscStrallocpy(MATSOLVERMUMPS,&B->solvertype);
3037:   MPI_Comm_size(PetscObjectComm((PetscObject)A),&size);
3038:   if (size == 1) {
3039:     /* MUMPS option -mat_mumps_icntl_7 1 is automatically set if PETSc ordering is passed into symbolic factorization */
3040:     B->canuseordering = PETSC_TRUE;
3041:   }
3042:   PetscStrallocpy(MATORDERINGEXTERNAL,(char**)&B->preferredordering[MAT_FACTOR_CHOLESKY]);
3043:   B->ops->destroy = MatDestroy_MUMPS;
3044:   B->data         = (void*)mumps;

3046:   PetscInitializeMUMPS(A,mumps);

3048:   *F = B;
3049:   mumps->matstruc = DIFFERENT_NONZERO_PATTERN;
3050:   return 0;
3051: }

3053: static PetscErrorCode MatGetFactor_baij_mumps(Mat A,MatFactorType ftype,Mat *F)
3054: {
3055:   Mat            B;
3056:   Mat_MUMPS      *mumps;
3057:   PetscBool      isSeqBAIJ;
3058:   PetscMPIInt    size;

3060:   /* Create the factorization matrix */
3061:   PetscObjectTypeCompare((PetscObject)A,MATSEQBAIJ,&isSeqBAIJ);
3062:   MatCreate(PetscObjectComm((PetscObject)A),&B);
3063:   MatSetSizes(B,A->rmap->n,A->cmap->n,A->rmap->N,A->cmap->N);
3064:   PetscStrallocpy("mumps",&((PetscObject)B)->type_name);
3065:   MatSetUp(B);

3067:   PetscNewLog(B,&mumps);
3068:   if (ftype == MAT_FACTOR_LU) {
3069:     B->ops->lufactorsymbolic = MatLUFactorSymbolic_BAIJMUMPS;
3070:     B->factortype            = MAT_FACTOR_LU;
3071:     if (isSeqBAIJ) mumps->ConvertToTriples = MatConvertToTriples_seqbaij_seqaij;
3072:     else mumps->ConvertToTriples = MatConvertToTriples_mpibaij_mpiaij;
3073:     mumps->sym = 0;
3074:     PetscStrallocpy(MATORDERINGEXTERNAL,(char**)&B->preferredordering[MAT_FACTOR_LU]);
3075:   } else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Cannot use PETSc BAIJ matrices with MUMPS Cholesky, use SBAIJ or AIJ matrix instead");

3077:   B->ops->view        = MatView_MUMPS;
3078:   B->ops->getinfo     = MatGetInfo_MUMPS;

3080:   PetscObjectComposeFunction((PetscObject)B,"MatFactorGetSolverType_C",MatFactorGetSolverType_mumps);
3081:   PetscObjectComposeFunction((PetscObject)B,"MatFactorSetSchurIS_C",MatFactorSetSchurIS_MUMPS);
3082:   PetscObjectComposeFunction((PetscObject)B,"MatFactorCreateSchurComplement_C",MatFactorCreateSchurComplement_MUMPS);
3083:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsSetIcntl_C",MatMumpsSetIcntl_MUMPS);
3084:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetIcntl_C",MatMumpsGetIcntl_MUMPS);
3085:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsSetCntl_C",MatMumpsSetCntl_MUMPS);
3086:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetCntl_C",MatMumpsGetCntl_MUMPS);
3087:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetInfo_C",MatMumpsGetInfo_MUMPS);
3088:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetInfog_C",MatMumpsGetInfog_MUMPS);
3089:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetRinfo_C",MatMumpsGetRinfo_MUMPS);
3090:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetRinfog_C",MatMumpsGetRinfog_MUMPS);
3091:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetInverse_C",MatMumpsGetInverse_MUMPS);
3092:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetInverseTranspose_C",MatMumpsGetInverseTranspose_MUMPS);

3094:   /* set solvertype */
3095:   PetscFree(B->solvertype);
3096:   PetscStrallocpy(MATSOLVERMUMPS,&B->solvertype);
3097:   MPI_Comm_size(PetscObjectComm((PetscObject)A),&size);
3098:   if (size == 1) {
3099:     /* MUMPS option -mat_mumps_icntl_7 1 is automatically set if PETSc ordering is passed into symbolic factorization */
3100:     B->canuseordering = PETSC_TRUE;
3101:   }
3102:   B->ops->destroy = MatDestroy_MUMPS;
3103:   B->data         = (void*)mumps;

3105:   PetscInitializeMUMPS(A,mumps);

3107:   *F = B;
3108:   mumps->matstruc = DIFFERENT_NONZERO_PATTERN;
3109:   return 0;
3110: }

3112: /* MatGetFactor for Seq and MPI SELL matrices */
3113: static PetscErrorCode MatGetFactor_sell_mumps(Mat A,MatFactorType ftype,Mat *F)
3114: {
3115:   Mat            B;
3116:   Mat_MUMPS      *mumps;
3117:   PetscBool      isSeqSELL;
3118:   PetscMPIInt    size;

3120:   /* Create the factorization matrix */
3121:   PetscObjectTypeCompare((PetscObject)A,MATSEQSELL,&isSeqSELL);
3122:   MatCreate(PetscObjectComm((PetscObject)A),&B);
3123:   MatSetSizes(B,A->rmap->n,A->cmap->n,A->rmap->N,A->cmap->N);
3124:   PetscStrallocpy("mumps",&((PetscObject)B)->type_name);
3125:   MatSetUp(B);

3127:   PetscNewLog(B,&mumps);

3129:   B->ops->view        = MatView_MUMPS;
3130:   B->ops->getinfo     = MatGetInfo_MUMPS;

3132:   PetscObjectComposeFunction((PetscObject)B,"MatFactorGetSolverType_C",MatFactorGetSolverType_mumps);
3133:   PetscObjectComposeFunction((PetscObject)B,"MatFactorSetSchurIS_C",MatFactorSetSchurIS_MUMPS);
3134:   PetscObjectComposeFunction((PetscObject)B,"MatFactorCreateSchurComplement_C",MatFactorCreateSchurComplement_MUMPS);
3135:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsSetIcntl_C",MatMumpsSetIcntl_MUMPS);
3136:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetIcntl_C",MatMumpsGetIcntl_MUMPS);
3137:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsSetCntl_C",MatMumpsSetCntl_MUMPS);
3138:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetCntl_C",MatMumpsGetCntl_MUMPS);
3139:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetInfo_C",MatMumpsGetInfo_MUMPS);
3140:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetInfog_C",MatMumpsGetInfog_MUMPS);
3141:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetRinfo_C",MatMumpsGetRinfo_MUMPS);
3142:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsGetRinfog_C",MatMumpsGetRinfog_MUMPS);

3144:   if (ftype == MAT_FACTOR_LU) {
3145:     B->ops->lufactorsymbolic = MatLUFactorSymbolic_AIJMUMPS;
3146:     B->factortype            = MAT_FACTOR_LU;
3147:     if (isSeqSELL) mumps->ConvertToTriples = MatConvertToTriples_seqsell_seqaij;
3148:     else SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"To be implemented");
3149:     mumps->sym = 0;
3150:     PetscStrallocpy(MATORDERINGEXTERNAL,(char**)&B->preferredordering[MAT_FACTOR_LU]);
3151:   } else SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"To be implemented");

3153:   /* set solvertype */
3154:   PetscFree(B->solvertype);
3155:   PetscStrallocpy(MATSOLVERMUMPS,&B->solvertype);
3156:   MPI_Comm_size(PetscObjectComm((PetscObject)A),&size);
3157:   if (size == 1) {
3158:     /* MUMPS option -mat_mumps_icntl_7 1 is automatically set if PETSc ordering is passed into symbolic factorization  */
3159:     B->canuseordering = PETSC_TRUE;
3160:   }
3161:   B->ops->destroy = MatDestroy_MUMPS;
3162:   B->data         = (void*)mumps;

3164:   PetscInitializeMUMPS(A,mumps);

3166:   *F = B;
3167:   mumps->matstruc = DIFFERENT_NONZERO_PATTERN;
3168:   return 0;
3169: }

3171: PETSC_EXTERN PetscErrorCode MatSolverTypeRegister_MUMPS(void)
3172: {
3173:   MatSolverTypeRegister(MATSOLVERMUMPS,MATMPIAIJ,MAT_FACTOR_LU,MatGetFactor_aij_mumps);
3174:   MatSolverTypeRegister(MATSOLVERMUMPS,MATMPIAIJ,MAT_FACTOR_CHOLESKY,MatGetFactor_aij_mumps);
3175:   MatSolverTypeRegister(MATSOLVERMUMPS,MATMPIBAIJ,MAT_FACTOR_LU,MatGetFactor_baij_mumps);
3176:   MatSolverTypeRegister(MATSOLVERMUMPS,MATMPIBAIJ,MAT_FACTOR_CHOLESKY,MatGetFactor_baij_mumps);
3177:   MatSolverTypeRegister(MATSOLVERMUMPS,MATMPISBAIJ,MAT_FACTOR_CHOLESKY,MatGetFactor_sbaij_mumps);
3178:   MatSolverTypeRegister(MATSOLVERMUMPS,MATSEQAIJ,MAT_FACTOR_LU,MatGetFactor_aij_mumps);
3179:   MatSolverTypeRegister(MATSOLVERMUMPS,MATSEQAIJ,MAT_FACTOR_CHOLESKY,MatGetFactor_aij_mumps);
3180:   MatSolverTypeRegister(MATSOLVERMUMPS,MATSEQBAIJ,MAT_FACTOR_LU,MatGetFactor_baij_mumps);
3181:   MatSolverTypeRegister(MATSOLVERMUMPS,MATSEQBAIJ,MAT_FACTOR_CHOLESKY,MatGetFactor_baij_mumps);
3182:   MatSolverTypeRegister(MATSOLVERMUMPS,MATSEQSBAIJ,MAT_FACTOR_CHOLESKY,MatGetFactor_sbaij_mumps);
3183:   MatSolverTypeRegister(MATSOLVERMUMPS,MATSEQSELL,MAT_FACTOR_LU,MatGetFactor_sell_mumps);
3184:   return 0;
3185: }