Actual source code: aijperm.c


  2: /*
  3:   Defines basic operations for the MATSEQAIJPERM matrix class.
  4:   This class is derived from the MATSEQAIJ class and retains the
  5:   compressed row storage (aka Yale sparse matrix format) but augments
  6:   it with some permutation information that enables some operations
  7:   to be more vectorizable.  A physically rearranged copy of the matrix
  8:   may be stored if the user desires.

 10:   Eventually a variety of permutations may be supported.
 11: */

 13: #include <../src/mat/impls/aij/seq/aij.h>

 15: #if defined(PETSC_USE_AVX512_KERNELS) && defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX512F__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
 16: #include <immintrin.h>

 18: #if !defined(_MM_SCALE_8)
 19: #define _MM_SCALE_8    8
 20: #endif
 21: #if !defined(_MM_SCALE_4)
 22: #define _MM_SCALE_4    4
 23: #endif
 24: #endif

 26: #define NDIM 512
 27: /* NDIM specifies how many rows at a time we should work with when
 28:  * performing the vectorized mat-vec.  This depends on various factors
 29:  * such as vector register length, etc., and I really need to add a
 30:  * way for the user (or the library) to tune this.  I'm setting it to
 31:  * 512 for now since that is what Ed D'Azevedo was using in his Fortran
 32:  * routines. */

 34: typedef struct {
 35:   PetscObjectState nonzerostate; /* used to determine if the nonzero structure has changed and hence the permutations need updating */

 37:   PetscInt         ngroup;
 38:   PetscInt         *xgroup;
 39:   /* Denotes where groups of rows with same number of nonzeros
 40:    * begin and end, i.e., xgroup[i] gives us the position in iperm[]
 41:    * where the ith group begins. */

 43:   PetscInt         *nzgroup; /*  how many nonzeros each row that is a member of group i has. */
 44:   PetscInt         *iperm;  /* The permutation vector. */

 46:   /* Some of this stuff is for Ed's recursive triangular solve.
 47:    * I'm not sure what I need yet. */
 48:   PetscInt         blocksize;
 49:   PetscInt         nstep;
 50:   PetscInt         *jstart_list;
 51:   PetscInt         *jend_list;
 52:   PetscInt         *action_list;
 53:   PetscInt         *ngroup_list;
 54:   PetscInt         **ipointer_list;
 55:   PetscInt         **xgroup_list;
 56:   PetscInt         **nzgroup_list;
 57:   PetscInt         **iperm_list;
 58: } Mat_SeqAIJPERM;

 60: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJPERM_SeqAIJ(Mat A,MatType type,MatReuse reuse,Mat *newmat)
 61: {
 62:   /* This routine is only called to convert a MATAIJPERM to its base PETSc type, */
 63:   /* so we will ignore 'MatType type'. */
 64:   Mat            B       = *newmat;
 65:   Mat_SeqAIJPERM *aijperm=(Mat_SeqAIJPERM*)A->spptr;

 67:   if (reuse == MAT_INITIAL_MATRIX) {
 68:     MatDuplicate(A,MAT_COPY_VALUES,&B);
 69:     aijperm=(Mat_SeqAIJPERM*)B->spptr;
 70:   }

 72:   /* Reset the original function pointers. */
 73:   B->ops->assemblyend = MatAssemblyEnd_SeqAIJ;
 74:   B->ops->destroy     = MatDestroy_SeqAIJ;
 75:   B->ops->duplicate   = MatDuplicate_SeqAIJ;
 76:   B->ops->mult        = MatMult_SeqAIJ;
 77:   B->ops->multadd     = MatMultAdd_SeqAIJ;

 79:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_seqaijperm_seqaij_C",NULL);

 81:   /* Free everything in the Mat_SeqAIJPERM data structure.*/
 82:   PetscFree(aijperm->xgroup);
 83:   PetscFree(aijperm->nzgroup);
 84:   PetscFree(aijperm->iperm);
 85:   PetscFree(B->spptr);

 87:   /* Change the type of B to MATSEQAIJ. */
 88:   PetscObjectChangeTypeName((PetscObject)B, MATSEQAIJ);

 90:   *newmat = B;
 91:   return 0;
 92: }

 94: PetscErrorCode MatDestroy_SeqAIJPERM(Mat A)
 95: {
 96:   Mat_SeqAIJPERM *aijperm = (Mat_SeqAIJPERM*) A->spptr;

 98:   if (aijperm) {
 99:     /* If MatHeaderMerge() was used then this SeqAIJPERM matrix will not have a spprt. */
100:     PetscFree(aijperm->xgroup);
101:     PetscFree(aijperm->nzgroup);
102:     PetscFree(aijperm->iperm);
103:     PetscFree(A->spptr);
104:   }
105:   /* Change the type of A back to SEQAIJ and use MatDestroy_SeqAIJ()
106:    * to destroy everything that remains. */
107:   PetscObjectChangeTypeName((PetscObject)A, MATSEQAIJ);
108:   /* Note that I don't call MatSetType().  I believe this is because that
109:    * is only to be called when *building* a matrix.  I could be wrong, but
110:    * that is how things work for the SuperLU matrix class. */
111:   MatDestroy_SeqAIJ(A);
112:   return 0;
113: }

115: PetscErrorCode MatDuplicate_SeqAIJPERM(Mat A, MatDuplicateOption op, Mat *M)
116: {
117:   Mat_SeqAIJPERM *aijperm      = (Mat_SeqAIJPERM*) A->spptr;
118:   Mat_SeqAIJPERM *aijperm_dest;
119:   PetscBool      perm;

121:   MatDuplicate_SeqAIJ(A,op,M);
122:   PetscObjectTypeCompare((PetscObject)*M,MATSEQAIJPERM,&perm);
123:   if (perm) {
124:     aijperm_dest = (Mat_SeqAIJPERM *) (*M)->spptr;
125:     PetscFree(aijperm_dest->xgroup);
126:     PetscFree(aijperm_dest->nzgroup);
127:     PetscFree(aijperm_dest->iperm);
128:   } else {
129:     PetscNewLog(*M,&aijperm_dest);
130:     (*M)->spptr = (void*) aijperm_dest;
131:     PetscObjectChangeTypeName((PetscObject)*M,MATSEQAIJPERM);
132:     PetscObjectComposeFunction((PetscObject)*M,"MatConvert_seqaijperm_seqaij_C",MatConvert_SeqAIJPERM_SeqAIJ);
133:   }
134:   PetscArraycpy(aijperm_dest,aijperm,1);
135:   /* Allocate space for, and copy the grouping and permutation info.
136:    * I note that when the groups are initially determined in
137:    * MatSeqAIJPERM_create_perm, xgroup and nzgroup may be sized larger than
138:    * necessary.  But at this point, we know how large they need to be, and
139:    * allocate only the necessary amount of memory.  So the duplicated matrix
140:    * may actually use slightly less storage than the original! */
141:   PetscMalloc1(A->rmap->n, &aijperm_dest->iperm);
142:   PetscMalloc1(aijperm->ngroup+1, &aijperm_dest->xgroup);
143:   PetscMalloc1(aijperm->ngroup, &aijperm_dest->nzgroup);
144:   PetscArraycpy(aijperm_dest->iperm,aijperm->iperm,A->rmap->n);
145:   PetscArraycpy(aijperm_dest->xgroup,aijperm->xgroup,aijperm->ngroup+1);
146:   PetscArraycpy(aijperm_dest->nzgroup,aijperm->nzgroup,aijperm->ngroup);
147:   return 0;
148: }

150: PetscErrorCode MatSeqAIJPERM_create_perm(Mat A)
151: {
152:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)(A)->data;
153:   Mat_SeqAIJPERM *aijperm = (Mat_SeqAIJPERM*) A->spptr;
154:   PetscInt       m;       /* Number of rows in the matrix. */
155:   PetscInt       *ia;       /* From the CSR representation; points to the beginning  of each row. */
156:   PetscInt       maxnz;      /* Maximum number of nonzeros in any row. */
157:   PetscInt       *rows_in_bucket;
158:   /* To construct the permutation, we sort each row into one of maxnz
159:    * buckets based on how many nonzeros are in the row. */
160:   PetscInt       nz;
161:   PetscInt       *nz_in_row;         /* the number of nonzero elements in row k. */
162:   PetscInt       *ipnz;
163:   /* When constructing the iperm permutation vector,
164:    * ipnz[nz] is used to point to the next place in the permutation vector
165:    * that a row with nz nonzero elements should be placed.*/
166:   PetscInt       i, ngroup, istart, ipos;

168:   if (aijperm->nonzerostate == A->nonzerostate) return 0; /* permutation exists and matches current nonzero structure */
169:   aijperm->nonzerostate = A->nonzerostate;
170:  /* Free anything previously put in the Mat_SeqAIJPERM data structure. */
171:   PetscFree(aijperm->xgroup);
172:   PetscFree(aijperm->nzgroup);
173:   PetscFree(aijperm->iperm);

175:   m  = A->rmap->n;
176:   ia = a->i;

178:   /* Allocate the arrays that will hold the permutation vector. */
179:   PetscMalloc1(m, &aijperm->iperm);

181:   /* Allocate some temporary work arrays that will be used in
182:    * calculating the permutation vector and groupings. */
183:   PetscMalloc1(m, &nz_in_row);

185:   /* Now actually figure out the permutation and grouping. */

187:   /* First pass: Determine number of nonzeros in each row, maximum
188:    * number of nonzeros in any row, and how many rows fall into each
189:    * "bucket" of rows with same number of nonzeros. */
190:   maxnz = 0;
191:   for (i=0; i<m; i++) {
192:     nz_in_row[i] = ia[i+1]-ia[i];
193:     if (nz_in_row[i] > maxnz) maxnz = nz_in_row[i];
194:   }
195:   PetscMalloc1(PetscMax(maxnz,m)+1, &rows_in_bucket);
196:   PetscMalloc1(PetscMax(maxnz,m)+1, &ipnz);

198:   for (i=0; i<=maxnz; i++) {
199:     rows_in_bucket[i] = 0;
200:   }
201:   for (i=0; i<m; i++) {
202:     nz = nz_in_row[i];
203:     rows_in_bucket[nz]++;
204:   }

206:   /* Allocate space for the grouping info.  There will be at most (maxnz + 1)
207:    * groups.  (It is maxnz + 1 instead of simply maxnz because there may be
208:    * rows with no nonzero elements.)  If there are (maxnz + 1) groups,
209:    * then xgroup[] must consist of (maxnz + 2) elements, since the last
210:    * element of xgroup will tell us where the (maxnz + 1)th group ends.
211:    * We allocate space for the maximum number of groups;
212:    * that is potentially a little wasteful, but not too much so.
213:    * Perhaps I should fix it later. */
214:   PetscMalloc1(maxnz+2, &aijperm->xgroup);
215:   PetscMalloc1(maxnz+1, &aijperm->nzgroup);

217:   /* Second pass.  Look at what is in the buckets and create the groupings.
218:    * Note that it is OK to have a group of rows with no non-zero values. */
219:   ngroup = 0;
220:   istart = 0;
221:   for (i=0; i<=maxnz; i++) {
222:     if (rows_in_bucket[i] > 0) {
223:       aijperm->nzgroup[ngroup] = i;
224:       aijperm->xgroup[ngroup]  = istart;
225:       ngroup++;
226:       istart += rows_in_bucket[i];
227:     }
228:   }

230:   aijperm->xgroup[ngroup] = istart;
231:   aijperm->ngroup         = ngroup;

233:   /* Now fill in the permutation vector iperm. */
234:   ipnz[0] = 0;
235:   for (i=0; i<maxnz; i++) {
236:     ipnz[i+1] = ipnz[i] + rows_in_bucket[i];
237:   }

239:   for (i=0; i<m; i++) {
240:     nz                   = nz_in_row[i];
241:     ipos                 = ipnz[nz];
242:     aijperm->iperm[ipos] = i;
243:     ipnz[nz]++;
244:   }

246:   /* Clean up temporary work arrays. */
247:   PetscFree(rows_in_bucket);
248:   PetscFree(ipnz);
249:   PetscFree(nz_in_row);
250:   return 0;
251: }

253: PetscErrorCode MatAssemblyEnd_SeqAIJPERM(Mat A, MatAssemblyType mode)
254: {
255:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)A->data;

257:   if (mode == MAT_FLUSH_ASSEMBLY) return 0;

259:   /* Since a MATSEQAIJPERM matrix is really just a MATSEQAIJ with some
260:    * extra information, call the AssemblyEnd routine for a MATSEQAIJ.
261:    * I'm not sure if this is the best way to do this, but it avoids
262:    * a lot of code duplication.
263:    * I also note that currently MATSEQAIJPERM doesn't know anything about
264:    * the Mat_CompressedRow data structure that SeqAIJ now uses when there
265:    * are many zero rows.  If the SeqAIJ assembly end routine decides to use
266:    * this, this may break things.  (Don't know... haven't looked at it.) */
267:   a->inode.use = PETSC_FALSE;
268:   MatAssemblyEnd_SeqAIJ(A, mode);

270:   /* Now calculate the permutation and grouping information. */
271:   MatSeqAIJPERM_create_perm(A);
272:   return 0;
273: }

275: PetscErrorCode MatMult_SeqAIJPERM(Mat A,Vec xx,Vec yy)
276: {
277:   Mat_SeqAIJ        *a = (Mat_SeqAIJ*)A->data;
278:   const PetscScalar *x;
279:   PetscScalar       *y;
280:   const MatScalar   *aa;
281:   const PetscInt    *aj,*ai;
282: #if !(defined(PETSC_USE_FORTRAN_KERNEL_MULTAIJPERM) && defined(notworking))
283:   PetscInt          i,j;
284: #endif
285: #if defined(PETSC_USE_AVX512_KERNELS) && defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX512F__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
286:   __m512d           vec_x,vec_y,vec_vals;
287:   __m256i           vec_idx,vec_ipos,vec_j;
288:   __mmask8           mask;
289: #endif

291:   /* Variables that don't appear in MatMult_SeqAIJ. */
292:   Mat_SeqAIJPERM    *aijperm = (Mat_SeqAIJPERM*) A->spptr;
293:   PetscInt          *iperm;  /* Points to the permutation vector. */
294:   PetscInt          *xgroup;
295:   /* Denotes where groups of rows with same number of nonzeros
296:    * begin and end in iperm. */
297:   PetscInt          *nzgroup;
298:   PetscInt          ngroup;
299:   PetscInt          igroup;
300:   PetscInt          jstart,jend;
301:   /* jstart is used in loops to denote the position in iperm where a
302:    * group starts; jend denotes the position where it ends.
303:    * (jend + 1 is where the next group starts.) */
304:   PetscInt          iold,nz;
305:   PetscInt          istart,iend,isize;
306:   PetscInt          ipos;
307:   PetscScalar       yp[NDIM];
308:   PetscInt          ip[NDIM];    /* yp[] and ip[] are treated as vector "registers" for performing the mat-vec. */

310: #if defined(PETSC_HAVE_PRAGMA_DISJOINT)
311: #pragma disjoint(*x,*y,*aa)
312: #endif

314:   VecGetArrayRead(xx,&x);
315:   VecGetArray(yy,&y);
316:   aj   = a->j;   /* aj[k] gives column index for element aa[k]. */
317:   aa   = a->a; /* Nonzero elements stored row-by-row. */
318:   ai   = a->i;  /* ai[k] is the position in aa and aj where row k starts. */

320:   /* Get the info we need about the permutations and groupings. */
321:   iperm   = aijperm->iperm;
322:   ngroup  = aijperm->ngroup;
323:   xgroup  = aijperm->xgroup;
324:   nzgroup = aijperm->nzgroup;

326: #if defined(PETSC_USE_FORTRAN_KERNEL_MULTAIJPERM) && defined(notworking)
327:   fortranmultaijperm_(&m,x,ii,aj,aa,y);
328: #else

330:   for (igroup=0; igroup<ngroup; igroup++) {
331:     jstart = xgroup[igroup];
332:     jend   = xgroup[igroup+1] - 1;
333:     nz     = nzgroup[igroup];

335:     /* Handle the special cases where the number of nonzeros per row
336:      * in the group is either 0 or 1. */
337:     if (nz == 0) {
338:       for (i=jstart; i<=jend; i++) {
339:         y[iperm[i]] = 0.0;
340:       }
341:     } else if (nz == 1) {
342:       for (i=jstart; i<=jend; i++) {
343:         iold    = iperm[i];
344:         ipos    = ai[iold];
345:         y[iold] = aa[ipos] * x[aj[ipos]];
346:       }
347:     } else {

349:       /* We work our way through the current group in chunks of NDIM rows
350:        * at a time. */

352:       for (istart=jstart; istart<=jend; istart+=NDIM) {
353:         /* Figure out where the chunk of 'isize' rows ends in iperm.
354:          * 'isize may of course be less than NDIM for the last chunk. */
355:         iend = istart + (NDIM - 1);

357:         if (iend > jend) iend = jend;

359:         isize = iend - istart + 1;

361:         /* Initialize the yp[] array that will be used to hold part of
362:          * the permuted results vector, and figure out where in aa each
363:          * row of the chunk will begin. */
364:         for (i=0; i<isize; i++) {
365:           iold = iperm[istart + i];
366:           /* iold is a row number from the matrix A *before* reordering. */
367:           ip[i] = ai[iold];
368:           /* ip[i] tells us where the ith row of the chunk begins in aa. */
369:           yp[i] = (PetscScalar) 0.0;
370:         }

372:         /* If the number of zeros per row exceeds the number of rows in
373:          * the chunk, we should vectorize along nz, that is, perform the
374:          * mat-vec one row at a time as in the usual CSR case. */
375:         if (nz > isize) {
376: #if defined(PETSC_HAVE_CRAY_VECTOR)
377: #pragma _CRI preferstream
378: #endif
379:           for (i=0; i<isize; i++) {
380: #if defined(PETSC_HAVE_CRAY_VECTOR)
381: #pragma _CRI prefervector
382: #endif

384: #if defined(PETSC_USE_AVX512_KERNELS) && defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX512F__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
385:             vec_y = _mm512_setzero_pd();
386:             ipos = ip[i];
387:             for (j=0; j<(nz>>3); j++) {
388:               vec_idx  = _mm256_loadu_si256((__m256i const*)&aj[ipos]);
389:               vec_vals = _mm512_loadu_pd(&aa[ipos]);
390:               vec_x    = _mm512_i32gather_pd(vec_idx,x,_MM_SCALE_8);
391:               vec_y    = _mm512_fmadd_pd(vec_x,vec_vals,vec_y);
392:               ipos += 8;
393:             }
394:             if ((nz&0x07)>2) {
395:               mask     = (__mmask8)(0xff >> (8-(nz&0x07)));
396:               vec_idx  = _mm256_loadu_si256((__m256i const*)&aj[ipos]);
397:               vec_vals = _mm512_loadu_pd(&aa[ipos]);
398:               vec_x    = _mm512_mask_i32gather_pd(vec_x,mask,vec_idx,x,_MM_SCALE_8);
399:               vec_y    = _mm512_mask3_fmadd_pd(vec_x,vec_vals,vec_y,mask);
400:             } else if ((nz&0x07)==2) {
401:               yp[i] += aa[ipos]*x[aj[ipos]];
402:               yp[i] += aa[ipos+1]*x[aj[ipos+1]];
403:             } else if ((nz&0x07)==1) {
404:               yp[i] += aa[ipos]*x[aj[ipos]];
405:             }
406:             yp[i] += _mm512_reduce_add_pd(vec_y);
407: #else
408:             for (j=0; j<nz; j++) {
409:               ipos   = ip[i] + j;
410:               yp[i] += aa[ipos] * x[aj[ipos]];
411:             }
412: #endif
413:           }
414:         } else {
415:           /* Otherwise, there are enough rows in the chunk to make it
416:            * worthwhile to vectorize across the rows, that is, to do the
417:            * matvec by operating with "columns" of the chunk. */
418:           for (j=0; j<nz; j++) {
419: #if defined(PETSC_USE_AVX512_KERNELS) && defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX512F__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
420:             vec_j = _mm256_set1_epi32(j);
421:             for (i=0; i<((isize>>3)<<3); i+=8) {
422:               vec_y    = _mm512_loadu_pd(&yp[i]);
423:               vec_ipos = _mm256_loadu_si256((__m256i const*)&ip[i]);
424:               vec_ipos = _mm256_add_epi32(vec_ipos,vec_j);
425:               vec_idx  = _mm256_i32gather_epi32(aj,vec_ipos,_MM_SCALE_4);
426:               vec_vals = _mm512_i32gather_pd(vec_ipos,aa,_MM_SCALE_8);
427:               vec_x    = _mm512_i32gather_pd(vec_idx,x,_MM_SCALE_8);
428:               vec_y    = _mm512_fmadd_pd(vec_x,vec_vals,vec_y);
429:               _mm512_storeu_pd(&yp[i],vec_y);
430:             }
431:             for (i=isize-(isize&0x07); i<isize; i++) {
432:               ipos = ip[i]+j;
433:               yp[i] += aa[ipos]*x[aj[ipos]];
434:             }
435: #else
436:             for (i=0; i<isize; i++) {
437:               ipos   = ip[i] + j;
438:               yp[i] += aa[ipos] * x[aj[ipos]];
439:             }
440: #endif
441:           }
442:         }

444: #if defined(PETSC_HAVE_CRAY_VECTOR)
445: #pragma _CRI ivdep
446: #endif
447:         /* Put results from yp[] into non-permuted result vector y. */
448:         for (i=0; i<isize; i++) {
449:           y[iperm[istart+i]] = yp[i];
450:         }
451:       } /* End processing chunk of isize rows of a group. */
452:     } /* End handling matvec for chunk with nz > 1. */
453:   } /* End loop over igroup. */
454: #endif
455:   PetscLogFlops(PetscMax(2.0*a->nz - A->rmap->n,0));
456:   VecRestoreArrayRead(xx,&x);
457:   VecRestoreArray(yy,&y);
458:   return 0;
459: }

461: /* MatMultAdd_SeqAIJPERM() calculates yy = ww + A * xx.
462:  * Note that the names I used to designate the vectors differs from that
463:  * used in MatMultAdd_SeqAIJ().  I did this to keep my notation consistent
464:  * with the MatMult_SeqAIJPERM() routine, which is very similar to this one. */
465: /*
466:     I hate having virtually identical code for the mult and the multadd!!!
467: */
468: PetscErrorCode MatMultAdd_SeqAIJPERM(Mat A,Vec xx,Vec ww,Vec yy)
469: {
470:   Mat_SeqAIJ        *a = (Mat_SeqAIJ*)A->data;
471:   const PetscScalar *x;
472:   PetscScalar       *y,*w;
473:   const MatScalar   *aa;
474:   const PetscInt    *aj,*ai;
475: #if !defined(PETSC_USE_FORTRAN_KERNEL_MULTADDAIJPERM)
476:   PetscInt i,j;
477: #endif

479:   /* Variables that don't appear in MatMultAdd_SeqAIJ. */
480:   Mat_SeqAIJPERM * aijperm;
481:   PetscInt       *iperm;    /* Points to the permutation vector. */
482:   PetscInt       *xgroup;
483:   /* Denotes where groups of rows with same number of nonzeros
484:    * begin and end in iperm. */
485:   PetscInt *nzgroup;
486:   PetscInt ngroup;
487:   PetscInt igroup;
488:   PetscInt jstart,jend;
489:   /* jstart is used in loops to denote the position in iperm where a
490:    * group starts; jend denotes the position where it ends.
491:    * (jend + 1 is where the next group starts.) */
492:   PetscInt    iold,nz;
493:   PetscInt    istart,iend,isize;
494:   PetscInt    ipos;
495:   PetscScalar yp[NDIM];
496:   PetscInt    ip[NDIM];
497:   /* yp[] and ip[] are treated as vector "registers" for performing
498:    * the mat-vec. */

500: #if defined(PETSC_HAVE_PRAGMA_DISJOINT)
501: #pragma disjoint(*x,*y,*aa)
502: #endif

504:   VecGetArrayRead(xx,&x);
505:   VecGetArrayPair(yy,ww,&y,&w);

507:   aj = a->j;   /* aj[k] gives column index for element aa[k]. */
508:   aa = a->a;   /* Nonzero elements stored row-by-row. */
509:   ai = a->i;   /* ai[k] is the position in aa and aj where row k starts. */

511:   /* Get the info we need about the permutations and groupings. */
512:   aijperm = (Mat_SeqAIJPERM*) A->spptr;
513:   iperm   = aijperm->iperm;
514:   ngroup  = aijperm->ngroup;
515:   xgroup  = aijperm->xgroup;
516:   nzgroup = aijperm->nzgroup;

518: #if defined(PETSC_USE_FORTRAN_KERNEL_MULTADDAIJPERM)
519:   fortranmultaddaijperm_(&m,x,ii,aj,aa,y,w);
520: #else

522:   for (igroup=0; igroup<ngroup; igroup++) {
523:     jstart = xgroup[igroup];
524:     jend   = xgroup[igroup+1] - 1;

526:     nz = nzgroup[igroup];

528:     /* Handle the special cases where the number of nonzeros per row
529:      * in the group is either 0 or 1. */
530:     if (nz == 0) {
531:       for (i=jstart; i<=jend; i++) {
532:         iold    = iperm[i];
533:         y[iold] = w[iold];
534:       }
535:     }
536:     else if (nz == 1) {
537:       for (i=jstart; i<=jend; i++) {
538:         iold    = iperm[i];
539:         ipos    = ai[iold];
540:         y[iold] = w[iold] + aa[ipos] * x[aj[ipos]];
541:       }
542:     }
543:     /* For the general case: */
544:     else {

546:       /* We work our way through the current group in chunks of NDIM rows
547:        * at a time. */

549:       for (istart=jstart; istart<=jend; istart+=NDIM) {
550:         /* Figure out where the chunk of 'isize' rows ends in iperm.
551:          * 'isize may of course be less than NDIM for the last chunk. */
552:         iend = istart + (NDIM - 1);
553:         if (iend > jend) iend = jend;
554:         isize = iend - istart + 1;

556:         /* Initialize the yp[] array that will be used to hold part of
557:          * the permuted results vector, and figure out where in aa each
558:          * row of the chunk will begin. */
559:         for (i=0; i<isize; i++) {
560:           iold = iperm[istart + i];
561:           /* iold is a row number from the matrix A *before* reordering. */
562:           ip[i] = ai[iold];
563:           /* ip[i] tells us where the ith row of the chunk begins in aa. */
564:           yp[i] = w[iold];
565:         }

567:         /* If the number of zeros per row exceeds the number of rows in
568:          * the chunk, we should vectorize along nz, that is, perform the
569:          * mat-vec one row at a time as in the usual CSR case. */
570:         if (nz > isize) {
571: #if defined(PETSC_HAVE_CRAY_VECTOR)
572: #pragma _CRI preferstream
573: #endif
574:           for (i=0; i<isize; i++) {
575: #if defined(PETSC_HAVE_CRAY_VECTOR)
576: #pragma _CRI prefervector
577: #endif
578:             for (j=0; j<nz; j++) {
579:               ipos   = ip[i] + j;
580:               yp[i] += aa[ipos] * x[aj[ipos]];
581:             }
582:           }
583:         }
584:         /* Otherwise, there are enough rows in the chunk to make it
585:          * worthwhile to vectorize across the rows, that is, to do the
586:          * matvec by operating with "columns" of the chunk. */
587:         else {
588:           for (j=0; j<nz; j++) {
589:             for (i=0; i<isize; i++) {
590:               ipos   = ip[i] + j;
591:               yp[i] += aa[ipos] * x[aj[ipos]];
592:             }
593:           }
594:         }

596: #if defined(PETSC_HAVE_CRAY_VECTOR)
597: #pragma _CRI ivdep
598: #endif
599:         /* Put results from yp[] into non-permuted result vector y. */
600:         for (i=0; i<isize; i++) {
601:           y[iperm[istart+i]] = yp[i];
602:         }
603:       } /* End processing chunk of isize rows of a group. */

605:     } /* End handling matvec for chunk with nz > 1. */
606:   } /* End loop over igroup. */

608: #endif
609:   PetscLogFlops(2.0*a->nz);
610:   VecRestoreArrayRead(xx,&x);
611:   VecRestoreArrayPair(yy,ww,&y,&w);
612:   return 0;
613: }

615: /* MatConvert_SeqAIJ_SeqAIJPERM converts a SeqAIJ matrix into a
616:  * SeqAIJPERM matrix.  This routine is called by the MatCreate_SeqAIJPERM()
617:  * routine, but can also be used to convert an assembled SeqAIJ matrix
618:  * into a SeqAIJPERM one. */
619: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJPERM(Mat A,MatType type,MatReuse reuse,Mat *newmat)
620: {
621:   Mat            B = *newmat;
622:   Mat_SeqAIJPERM *aijperm;
623:   PetscBool      sametype;

625:   if (reuse == MAT_INITIAL_MATRIX) {
626:     MatDuplicate(A,MAT_COPY_VALUES,&B);
627:   }
628:   PetscObjectTypeCompare((PetscObject)A,type,&sametype);
629:   if (sametype) return 0;

631:   PetscNewLog(B,&aijperm);
632:   B->spptr = (void*) aijperm;

634:   /* Set function pointers for methods that we inherit from AIJ but override. */
635:   B->ops->duplicate   = MatDuplicate_SeqAIJPERM;
636:   B->ops->assemblyend = MatAssemblyEnd_SeqAIJPERM;
637:   B->ops->destroy     = MatDestroy_SeqAIJPERM;
638:   B->ops->mult        = MatMult_SeqAIJPERM;
639:   B->ops->multadd     = MatMultAdd_SeqAIJPERM;

641:   aijperm->nonzerostate = -1;  /* this will trigger the generation of the permutation information the first time through MatAssembly()*/
642:   /* If A has already been assembled, compute the permutation. */
643:   if (A->assembled) {
644:     MatSeqAIJPERM_create_perm(B);
645:   }

647:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_seqaijperm_seqaij_C",MatConvert_SeqAIJPERM_SeqAIJ);

649:   PetscObjectChangeTypeName((PetscObject)B,MATSEQAIJPERM);
650:   *newmat = B;
651:   return 0;
652: }

654: /*@C
655:    MatCreateSeqAIJPERM - Creates a sparse matrix of type SEQAIJPERM.
656:    This type inherits from AIJ, but calculates some additional permutation
657:    information that is used to allow better vectorization of some
658:    operations.  At the cost of increased storage, the AIJ formatted
659:    matrix can be copied to a format in which pieces of the matrix are
660:    stored in ELLPACK format, allowing the vectorized matrix multiply
661:    routine to use stride-1 memory accesses.  As with the AIJ type, it is
662:    important to preallocate matrix storage in order to get good assembly
663:    performance.

665:    Collective

667:    Input Parameters:
668: +  comm - MPI communicator, set to PETSC_COMM_SELF
669: .  m - number of rows
670: .  n - number of columns
671: .  nz - number of nonzeros per row (same for all rows)
672: -  nnz - array containing the number of nonzeros in the various rows
673:          (possibly different for each row) or NULL

675:    Output Parameter:
676: .  A - the matrix

678:    Notes:
679:    If nnz is given then nz is ignored

681:    Level: intermediate

683: .seealso: MatCreate(), MatCreateMPIAIJPERM(), MatSetValues()
684: @*/
685: PetscErrorCode  MatCreateSeqAIJPERM(MPI_Comm comm,PetscInt m,PetscInt n,PetscInt nz,const PetscInt nnz[],Mat *A)
686: {
687:   MatCreate(comm,A);
688:   MatSetSizes(*A,m,n,m,n);
689:   MatSetType(*A,MATSEQAIJPERM);
690:   MatSeqAIJSetPreallocation_SeqAIJ(*A,nz,nnz);
691:   return 0;
692: }

694: PETSC_EXTERN PetscErrorCode MatCreate_SeqAIJPERM(Mat A)
695: {
696:   MatSetType(A,MATSEQAIJ);
697:   MatConvert_SeqAIJ_SeqAIJPERM(A,MATSEQAIJPERM,MAT_INPLACE_MATRIX,&A);
698:   return 0;
699: }