Actual source code: ex1.c
1: static char help[] = "Test file for the PCFactorSetShiftType()\n";
2: /*
3: * Test file for the PCFactorSetShiftType() routine or -pc_factor_shift_type POSITIVE_DEFINITE option.
4: * The test matrix is the example from Kershaw's paper [J.Comp.Phys 1978]
5: * of a positive definite matrix for which ILU(0) will give a negative pivot.
6: * This means that the CG method will break down; the Manteuffel shift
7: * [Math. Comp. 1980] repairs this.
8: *
9: * Run the executable twice:
10: * 1/ without options: the iterative method diverges because of an
11: * indefinite preconditioner
12: * 2/ with -pc_factor_shift_type POSITIVE_DEFINITE option (or comment in the PCFactorSetShiftType() line below):
13: * the method will now successfully converge.
14: *
15: * Contributed by Victor Eijkhout 2003.
16: */
18: #include <petscksp.h>
20: int main(int argc,char **argv)
21: {
22: KSP solver;
23: PC prec;
24: Mat A,M;
25: Vec X,B,D;
26: MPI_Comm comm;
27: PetscScalar v;
28: KSPConvergedReason reason;
29: PetscInt i,j,its;
31: PetscInitialize(&argc,&argv,0,help);
32: comm = MPI_COMM_SELF;
34: /*
35: * Construct the Kershaw matrix
36: * and a suitable rhs / initial guess
37: */
38: MatCreateSeqAIJ(comm,4,4,4,0,&A);
39: VecCreateSeq(comm,4,&B);
40: VecDuplicate(B,&X);
41: for (i=0; i<4; i++) {
42: v = 3;
43: MatSetValues(A,1,&i,1,&i,&v,INSERT_VALUES);
44: v = 1;
45: VecSetValues(B,1,&i,&v,INSERT_VALUES);
46: VecSetValues(X,1,&i,&v,INSERT_VALUES);
47: }
49: i=0; v=0;
50: VecSetValues(X,1,&i,&v,INSERT_VALUES);
52: for (i=0; i<3; i++) {
53: v = -2; j=i+1;
54: MatSetValues(A,1,&i,1,&j,&v,INSERT_VALUES);
55: MatSetValues(A,1,&j,1,&i,&v,INSERT_VALUES);
56: }
57: i=0; j=3; v=2;
59: MatSetValues(A,1,&i,1,&j,&v,INSERT_VALUES);
60: MatSetValues(A,1,&j,1,&i,&v,INSERT_VALUES);
61: MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
62: MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
63: VecAssemblyBegin(B);
64: VecAssemblyEnd(B);
66: /*
67: * A Conjugate Gradient method
68: * with ILU(0) preconditioning
69: */
70: KSPCreate(comm,&solver);
71: KSPSetOperators(solver,A,A);
73: KSPSetType(solver,KSPCG);
74: KSPSetInitialGuessNonzero(solver,PETSC_TRUE);
76: /*
77: * ILU preconditioner;
78: * this will break down unless you add the Shift line,
79: * or use the -pc_factor_shift_positive_definite option */
80: KSPGetPC(solver,&prec);
81: PCSetType(prec,PCILU);
82: /* PCFactorSetShiftType(prec,MAT_SHIFT_POSITIVE_DEFINITE); */
84: KSPSetFromOptions(solver);
85: KSPSetUp(solver);
87: /*
88: * Now that the factorisation is done, show the pivots;
89: * note that the last one is negative. This in itself is not an error,
90: * but it will make the iterative method diverge.
91: */
92: PCFactorGetMatrix(prec,&M);
93: VecDuplicate(B,&D);
94: MatGetDiagonal(M,D);
96: /*
97: * Solve the system;
98: * without the shift this will diverge with
99: * an indefinite preconditioner
100: */
101: KSPSolve(solver,B,X);
102: KSPGetConvergedReason(solver,&reason);
103: if (reason==KSP_DIVERGED_INDEFINITE_PC) {
104: PetscPrintf(PETSC_COMM_WORLD,"\nDivergence because of indefinite preconditioner;\n");
105: PetscPrintf(PETSC_COMM_WORLD,"Run the executable again but with '-pc_factor_shift_type POSITIVE_DEFINITE' option.\n");
106: } else if (reason<0) {
107: PetscPrintf(PETSC_COMM_WORLD,"\nOther kind of divergence: this should not happen.\n");
108: } else {
109: KSPGetIterationNumber(solver,&its);
110: }
112: VecDestroy(&X);
113: VecDestroy(&B);
114: VecDestroy(&D);
115: MatDestroy(&A);
116: KSPDestroy(&solver);
117: PetscFinalize();
118: return 0;
119: }
121: /*TEST
123: test:
124: args: -pc_factor_shift_type positive_definite
126: TEST*/