Actual source code: ex1.c

  1: static char help[] = "Solve a toy 1D problem on a staggered grid.\n\
  2:                       Accepts command line options -a, -b, and -c\n\
  3:                       and approximately solves\n\
  4:                       u''(x) = c, u(0) = 1, u(1) = b\n\n";
  5: /*

  7:    To demonstrate the basic functionality of DMStag, solves a second-order ODE,

  9:        u''(x) = f(x),  0 < x < 1
 10:        u(0) = a
 11:        u(1) = b

 13:    in mixed form, that is by introducing an auxiliary variable p

 15:       p'(x) = f(x), p - u'(x) = 0, 0 < x < 1
 16:       u(0) = a
 17:       u(1) = b

 19:    For f == c, the solution is

 21:      u(x) = a + (b - a - (c/2)) x + (c/2) x^2
 22:      p(x) = (b - a - (c/2)) + c x

 24:    To find an approximate solution, discretize by storing values of p in
 25:    elements and values of u on their boundaries, and using first-order finite
 26:    differences.

 28:    This should in fact produce a (nodal) solution with no discretization error,
 29:    so differences from the reference solution will be restricted to those induced
 30:    by floating point operations (in particular, the finite differences) and the
 31:    accuracy of the linear solve.

 33:    Parameters for the main grid can be controlled with command line options, e.g.

 35:      -stag_grid_x 10

 37:   In particular to notice in this example are the two methods of indexing. The
 38:   first is analogous to the use of MatStencil with DMDA, and the second is
 39:   analogous to the use of DMDAVecGetArrayDOF().

 41:   The first, recommended for ease of use, is based on naming an element in the
 42:   global grid, a location in its support, and a component. For example,
 43:   one might consider element e, the left side (a vertex in 1d), and the first
 44:   component (index 0). This is accomplished by populating a DMStagStencil struct,
 45:   e.g.

 47:       DMStagStencil stencil;
 48:       stencil.i   = i
 49:       stencil.loc = DMSTAG_LEFT;
 50:       stencil.c   = 0

 52:   Note that below, for convenenience, we #define an alias LEFT for DMSTAG_LEFT.

 54:   The second, which ensures maximum efficiency, makes use of the underlying
 55:   block structure of local DMStag-derived vectors, and requires the user to
 56:   obtain the correct local offset for the degrees of freedom they would like to
 57:   use. This is made simple with the helper function DMStagGetLocationSlot().

 59:   Note that the linear system being solved is indefinite, so is not entirely
 60:   trivial to invert. The default solver here (GMRES/Jacobi) is a poor choice,
 61:   made to avoid depending on an external package. To solve a larger system,
 62:   the usual method for a 1-d problem such as this is to choose a sophisticated
 63:   direct solver, e.g. configure --download-suitesparse and run

 65:     $PETSC_DIR/$PETSC_ARCH/bin/mpiexec -n 3 ./stag_ex2 -stag_grid_x 100 -pc_type lu -pc_factor_mat_solver_package umfpack

 67:   You can also impose a periodic boundary condition, in which case -b and -c are
 68:   ignored; b = a and c = 0.0 are used, giving a constant u == a , p == 0.

 70:       -stag_boundary_type_x periodic

 72: */
 73: #include <petscdm.h>
 74: #include <petscksp.h>
 75: #include <petscdmstag.h>

 77: /* Shorter, more convenient names for DMStagStencilLocation entries */
 78: #define LEFT    DMSTAG_LEFT
 79: #define RIGHT   DMSTAG_RIGHT
 80: #define ELEMENT DMSTAG_ELEMENT

 82: int main(int argc,char **argv)
 83: {
 84:   DM                dmSol,dmForcing;
 85:   DM                dmCoordSol;
 86:   Vec               sol,solRef,solRefLocal,f,fLocal,rhs,coordSolLocal;
 87:   Mat               A;
 88:   PetscScalar       a,b,c,h;
 89:   KSP               ksp;
 90:   PC                pc;
 91:   PetscInt          start,n,e,nExtra;
 92:   PetscInt          iu,ip,ixu,ixp;
 93:   PetscBool         isLastRank,isFirstRank;
 94:   PetscScalar       **arrSol,**arrCoordSol;
 95:   DMBoundaryType    boundary;

 97:   const PetscReal domainSize = 1.0;

 99:   /* Initialize PETSc */
100:   PetscInitialize(&argc,&argv,(char*)0,help);

102:   /* Create 1D DMStag for the solution, and set up. Note that you can supply many
103:      command line options (see the man page for DMStagCreate1d)
104:   */
105:   DMStagCreate1d(PETSC_COMM_WORLD,DM_BOUNDARY_NONE,3,1,1,DMSTAG_STENCIL_BOX,1,NULL,&dmSol);
106:   DMSetFromOptions(dmSol);
107:   DMSetUp(dmSol);

109:   /* Create uniform coordinates. Note that in higher-dimensional examples,
110:       coordinates are created differently.*/
111:   DMStagSetUniformCoordinatesExplicit(dmSol,0.0,domainSize,0.0,0.0,0.0,0.0);

113:   /* Determine boundary type */
114:   DMStagGetBoundaryTypes(dmSol,&boundary,NULL,NULL);

116:   /* Process command line options (depends on DMStag setup) */
117:   a = 1.0; b = 2.0; c = 1.0;
118:   PetscOptionsGetScalar(NULL,NULL,"-a",&a,NULL);
119:   if (boundary == DM_BOUNDARY_PERIODIC) {
120:     b = a;
121:     c = 0.0;
122:   } else {
123:     PetscOptionsGetScalar(NULL,NULL,"-b",&b,NULL);
124:     PetscOptionsGetScalar(NULL,NULL,"-c",&c,NULL);
125:   }

127:   /* Compute reference solution on the grid, using direct array access */
128:   DMCreateGlobalVector(dmSol,&solRef);
129:   DMGetLocalVector(dmSol,&solRefLocal);
130:   DMStagVecGetArray(dmSol,solRefLocal,&arrSol);
131:   DMGetCoordinateDM(dmSol,&dmCoordSol);
132:   DMGetCoordinatesLocal(dmSol,&coordSolLocal);
133:   DMStagVecGetArrayRead(dmCoordSol,coordSolLocal,&arrCoordSol);
134:   DMStagGetCorners(dmSol,&start,NULL,NULL,&n,NULL,NULL,&nExtra,NULL,NULL);

136:   /* Get the correct entries for each of our variables in local element-wise storage */
137:   DMStagGetLocationSlot(dmSol,LEFT,   0,&iu);
138:   DMStagGetLocationSlot(dmSol,ELEMENT,0,&ip);
139:   DMStagGetLocationSlot(dmCoordSol,LEFT,   0,&ixu);
140:   DMStagGetLocationSlot(dmCoordSol,ELEMENT,0,&ixp);
141:   for (e=start; e<start + n + nExtra; ++e) {
142:     {
143:       const PetscScalar coordu = arrCoordSol[e][ixu];
144:       arrSol[e][iu] = a  + (b - a - (c/2.0)) * coordu + (c/2.0)*coordu*coordu;
145:     }
146:     if (e < start+n) {
147:       const PetscScalar coordp = arrCoordSol[e][ixp];
148:       arrSol[e][ip] = b - a - (c/2.0) + c * coordp;
149:     }
150:   }
151:   DMStagVecRestoreArrayRead(dmCoordSol,coordSolLocal,&arrCoordSol);
152:   DMStagVecRestoreArray(dmSol,solRefLocal,&arrSol);
153:   DMLocalToGlobal(dmSol,solRefLocal,INSERT_VALUES,solRef);
154:   DMRestoreLocalVector(dmSol,&solRefLocal);

156:   /* Create another 1D DMStag for the forcing term, and populate a field on it.
157:      Here this is not really necessary, but in other contexts we may have auxiliary
158:      fields which we use to construct the linear system.

160:      This second DM represents the same physical domain, but has a different
161:      "default section" (though the current implementation does NOT actually use
162:      PetscSection). Since it is created as a derivative of the original DMStag,
163:      we can be confident that it is compatible. One could check with DMGetCompatiblity() */
164:   DMStagCreateCompatibleDMStag(dmSol,1,0,0,0,&dmForcing);
165:   DMCreateGlobalVector(dmForcing,&f);
166:   VecSet(f,c); /* Dummy for logic which depends on auxiliary data */

168:   /* Assemble System */
169:   DMCreateMatrix(dmSol,&A);
170:   DMCreateGlobalVector(dmSol,&rhs);
171:   DMGetLocalVector(dmForcing,&fLocal);
172:   DMGlobalToLocal(dmForcing,f,INSERT_VALUES,fLocal);

174:   /* Note: if iterating over all the elements, you will usually need to do something
175:      special at one of the boundaries. You can either make use of the existence
176:      of a "extra" partial dummy element on the right/top/front, or you can use a different stencil.
177:      The construction of the reference solution above uses the first method,
178:      so here we will use the second */

180:   DMStagGetIsLastRank(dmSol,&isLastRank,NULL,NULL);
181:   DMStagGetIsFirstRank(dmSol,&isFirstRank,NULL,NULL);
182:   for (e = start; e<start+n; ++e) {
183:     DMStagStencil pos[3];
184:     PetscScalar   val[3];
185:     PetscInt      idxLoc;

187:     idxLoc = 0;
188:     pos[idxLoc].i   = e;       /* This element in the 1d ordering */
189:     pos[idxLoc].loc = ELEMENT; /* Element-centered dofs (p) */
190:     pos[idxLoc].c   = 0;       /* Component 0 : first (and only) p dof */
191:     val[idxLoc]     = 0.0;     /* p - u'(x) = 0 */
192:     ++idxLoc;

194:     if (isFirstRank && e == start) {
195:       /* Special case on left boundary */
196:       pos[idxLoc].i   = e;     /* This element in the 1d ordering */
197:       pos[idxLoc].loc = LEFT;  /* Left vertex */
198:       pos[idxLoc].c   = 0;
199:       val[idxLoc]     = a;     /* u(0) = a */
200:       ++idxLoc;
201:     } else {
202:       PetscScalar fVal;
203:       /* Usual case - deal with velocity on left side of cell
204:          Here, we obtain a value of f (even though it's constant here,
205:          this demonstrates the more-realistic case of a pre-computed coefficient) */
206:       pos[idxLoc].i   = e;     /* This element in the 1d ordering */
207:       pos[idxLoc].loc = LEFT;  /* vertex-centered dof (u) */
208:       pos[idxLoc].c   = 0;

210:       DMStagVecGetValuesStencil(dmForcing,fLocal,1,&pos[idxLoc],&fVal);

212:       val[idxLoc]     = fVal;     /* p'(x) = f, in interior */
213:       ++idxLoc;
214:     }
215:     if (boundary != DM_BOUNDARY_PERIODIC && isLastRank && e == start+n-1) {
216:       /* Special case on right boundary (in addition to usual case) */
217:       pos[idxLoc].i   = e;     /* This element in the 1d ordering */
218:       pos[idxLoc].loc = RIGHT;
219:       pos[idxLoc].c   = 0;
220:       val[idxLoc]     = b;     /* u(1) = b */
221:       ++idxLoc;
222:     }
223:     DMStagVecSetValuesStencil(dmSol,rhs,idxLoc,pos,val,INSERT_VALUES);
224:   }
225:   DMRestoreLocalVector(dmForcing,&fLocal);
226:   VecAssemblyBegin(rhs);
227:   VecAssemblyEnd(rhs);

229:   /* Note: normally it would be more efficient to assemble the RHS and the matrix
230:      in the same loop over elements, but we separate them for clarity here */
231:   DMGetCoordinatesLocal(dmSol,&coordSolLocal);
232:   for (e = start; e<start+n; ++e) {

234:     /* Velocity is either a BC or an interior point */
235:     if (isFirstRank && e == start) {
236:       DMStagStencil row;
237:       PetscScalar   val;

239:       row.i   = e;
240:       row.loc = LEFT;
241:       row.c   = 0;
242:       val     = 1.0;
243:       DMStagMatSetValuesStencil(dmSol,A,1,&row,1,&row,&val,INSERT_VALUES);
244:     } else {
245:       DMStagStencil row,col[3];
246:       PetscScalar   val[3],xp[2];

248:       row.i      = e;
249:       row.loc    = LEFT; /* In general, opt for LEFT/DOWN/BACK  and iterate over elements */
250:       row.c      = 0;

252:       col[0].i   = e;
253:       col[0].loc = ELEMENT;
254:       col[0].c   = 0;

256:       col[1].i   = e-1;
257:       col[1].loc = ELEMENT;
258:       col[1].c   = 0;

260:       DMStagVecGetValuesStencil(dmCoordSol,coordSolLocal,2,col,xp);
261:       h = xp[0]- xp[1];
262:       if (boundary == DM_BOUNDARY_PERIODIC && PetscRealPart(h) < 0.0) h += domainSize;

264:       val[0]     = 1.0/h;
265:       val[1]     = -1.0/h;

267:       /* For convenience, we add an explicit 0 on the diagonal. This is a waste,
268:          but it allows for easier use of a direct solver, if desired */
269:       col[2].i   = e;
270:       col[2].loc = LEFT;
271:       col[2].c   = 0;
272:       val[2]     = 0.0;

274:       DMStagMatSetValuesStencil(dmSol,A,1,&row,3,col,val,INSERT_VALUES);
275:     }

277:     /* Additional velocity point (BC) on the right */
278:     if (boundary != DM_BOUNDARY_PERIODIC && isLastRank && e == start+n-1) {
279:       DMStagStencil row;
280:       PetscScalar   val;

282:       row.i = e;
283:       row.loc = RIGHT;
284:       row.c = 0;
285:       val = 1.0;
286:       DMStagMatSetValuesStencil(dmSol,A,1,&row,1,&row,&val,INSERT_VALUES);
287:     }

289:     /* Equation on pressure (element) variables */
290:     {
291:       DMStagStencil row,col[3];
292:       PetscScalar   val[3],xu[2];

294:       row.i      = e;
295:       row.loc    = ELEMENT;
296:       row.c      = 0;

298:       col[0].i = e;
299:       col[0].loc = RIGHT;
300:       col[0].c   = 0;

302:       col[1].i = e;
303:       col[1].loc = LEFT;
304:       col[1].c   = 0;

306:       DMStagVecGetValuesStencil(dmCoordSol,coordSolLocal,2,col,xu);
307:       h = xu[0]- xu[1];
308:       if (boundary == DM_BOUNDARY_PERIODIC && PetscRealPart(h) < 0.0) h += domainSize;

310:       val[0]     = -1.0/h;
311:       val[1]     = 1.0/h;

313:       col[2].i   = e;
314:       col[2].loc = ELEMENT;
315:       col[2].c   = 0;
316:       val[2]     = 1.0;

318:       DMStagMatSetValuesStencil(dmSol,A,1,&row,3,col,val,INSERT_VALUES);
319:     }
320:   }
321:   MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
322:   MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

324:   /* Solve */
325:   DMCreateGlobalVector(dmSol,&sol);
326:   KSPCreate(PETSC_COMM_WORLD,&ksp);
327:   KSPSetOperators(ksp,A,A);
328:   KSPGetPC(ksp,&pc);
329:   PCSetType(pc,PCJACOBI); /* A simple, but non-scalable, solver choice */
330:   KSPSetFromOptions(ksp);
331:   KSPSolve(ksp,rhs,sol);

333:   /* View the components of the solution, demonstrating DMStagMigrateVec() */
334:   {
335:     DM  dmVertsOnly,dmElementsOnly;
336:     Vec u,p;

338:     DMStagCreateCompatibleDMStag(dmSol,1,0,0,0,&dmVertsOnly);
339:     DMStagCreateCompatibleDMStag(dmSol,0,1,0,0,&dmElementsOnly);
340:     DMGetGlobalVector(dmVertsOnly,&u);
341:     DMGetGlobalVector(dmElementsOnly,&p);

343:     DMStagMigrateVec(dmSol,sol,dmVertsOnly,u);
344:     DMStagMigrateVec(dmSol,sol,dmElementsOnly,p);

346:     PetscObjectSetName((PetscObject)u,"Sol_u");
347:     VecView(u,PETSC_VIEWER_STDOUT_WORLD);
348:     PetscObjectSetName((PetscObject)p,"Sol_p");
349:     VecView(p,PETSC_VIEWER_STDOUT_WORLD);

351:     DMRestoreGlobalVector(dmVertsOnly,&u);
352:     DMRestoreGlobalVector(dmElementsOnly,&p);
353:     DMDestroy(&dmVertsOnly);
354:     DMDestroy(&dmElementsOnly);
355:   }

357:   /* Check Solution */
358:   {
359:     Vec       diff;
360:     PetscReal normsolRef,errAbs,errRel;

362:     VecDuplicate(sol,&diff);
363:     VecCopy(sol,diff);
364:     VecAXPY(diff,-1.0,solRef);
365:     VecNorm(diff,NORM_2,&errAbs);
366:     VecNorm(solRef,NORM_2,&normsolRef);
367:     errRel = errAbs/normsolRef;
368:     PetscPrintf(PETSC_COMM_WORLD,"Error (abs): %g\nError (rel): %g\n",(double)errAbs,(double)errRel);
369:     VecDestroy(&diff);
370:   }

372:   /* Clean up and finalize PETSc */
373:   KSPDestroy(&ksp);
374:   VecDestroy(&sol);
375:   VecDestroy(&solRef);
376:   VecDestroy(&rhs);
377:   VecDestroy(&f);
378:   MatDestroy(&A);
379:   DMDestroy(&dmSol);
380:   DMDestroy(&dmForcing);
381:   PetscFinalize();
382:   return 0;
383: }

385: /*TEST

387:    test:
388:       suffix: 1
389:       nsize: 7
390:       args: -dm_view -stag_grid_x 11 -stag_stencil_type star -a 1.33 -b 7.22 -c 347.2 -ksp_monitor_short

392:    test:
393:       suffix: periodic
394:       nsize: 3
395:       args: -dm_view -stag_grid_x 13 -stag_boundary_type_x periodic -a 1.1234

397:    test:
398:       suffix: periodic_seq
399:       nsize: 1
400:       args: -dm_view -stag_grid_x 13 -stag_boundary_type_x periodic -a 1.1234

402:    test:
403:       suffix: ghosted_vacuous
404:       nsize: 3
405:       args: -dm_view -stag_grid_x 13 -stag_boundary_type_x ghosted -a 1.1234

407: TEST*/