Actual source code: ex2.c

  1: static char help[] = "Runaway electron model with Landau collision operator\n\n";

  3: #include <petscdmplex.h>
  4: #include <petsclandau.h>
  5: #include <petscts.h>
  6: #include <petscds.h>
  7: #include <petscdmcomposite.h>

  9: /* data for runaway electron model */
 10: typedef struct REctx_struct {
 11:   PetscErrorCode (*test)(TS, Vec, PetscInt, PetscReal, PetscBool,  LandauCtx *, struct REctx_struct *);
 12:   PetscErrorCode (*impuritySrcRate)(PetscReal, PetscReal *, LandauCtx*);
 13:   PetscErrorCode (*E)(Vec, Vec, PetscInt, PetscReal, LandauCtx*, PetscReal *);
 14:   PetscReal     T_cold;        /* temperature of newly ionized electrons and impurity ions */
 15:   PetscReal     ion_potential; /* ionization potential of impurity */
 16:   PetscReal     Ne_ion;        /* effective number of electrons shed in ioization of impurity */
 17:   PetscReal     Ez_initial;
 18:   PetscReal     L;             /* inductance */
 19:   Vec           X_0;
 20:   PetscInt      imp_idx;       /* index for impurity ionizing sink */
 21:   PetscReal     pulse_start;
 22:   PetscReal     pulse_width;
 23:   PetscReal     pulse_rate;
 24:   PetscReal     current_rate;
 25:   PetscInt      plotIdx;
 26:   PetscInt      plotStep;
 27:   PetscInt      idx; /* cache */
 28:   PetscReal     j; /* cache */
 29:   PetscReal     plotDt;
 30:   PetscBool     plotting;
 31:   PetscBool     use_spitzer_eta;
 32:   PetscInt      print_period;
 33: } REctx;

 35: static const PetscReal kev_joul = 6.241506479963235e+15; /* 1/1000e */

 37: #define RE_CUT 3.
 38: /* < v, u_re * v * q > */
 39: static void f0_j_re(PetscInt dim, PetscInt Nf, PetscInt NfAux,
 40:                     const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
 41:                     const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
 42:                     PetscReal t, const PetscReal x[],  PetscInt numConstants, const PetscScalar constants[], PetscScalar *f0)
 43: {
 44:   PetscReal n_e = PetscRealPart(u[0]);
 45:   if (dim==2) {
 46:     if (x[1] > RE_CUT || x[1] < -RE_CUT) { /* simply a cutoff for REs. v_|| > 3 v(T_e) */
 47:       *f0 = n_e * 2.*PETSC_PI*x[0] * x[1] * constants[0]; /* n * r * v_|| * q */
 48:     } else {
 49:       *f0 = 0;
 50:     }
 51:   } else {
 52:     if (x[2] > RE_CUT || x[2] < -RE_CUT) { /* simply a cutoff for REs. v_|| > 3 v(T_e) */
 53:       *f0 = n_e                * x[2] * constants[0];
 54:     } else {
 55:       *f0 = 0;
 56:     }
 57:   }
 58: }

 60: /* sum < v, u*v*q > */
 61: static void f0_jz_sum(PetscInt dim, PetscInt Nf, PetscInt NfAux,
 62:                       const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
 63:                       const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
 64:                       PetscReal t, const PetscReal x[],  PetscInt numConstants, const PetscScalar q[], PetscScalar *f0)
 65: {
 66:   PetscInt ii;
 67:   f0[0] = 0;
 68:   if (dim==2) {
 69:     for (ii=0;ii<Nf;ii++) f0[0] += u[ii] * 2.*PETSC_PI*x[0] * x[1] * q[ii]; /* n * r * v_|| * q * v_0 */
 70:   } else {
 71:     for (ii=0;ii<Nf;ii++) f0[0] += u[ii]                * x[2] * q[ii]; /* n * v_|| * q  * v_0 */
 72:   }
 73: }

 75: /* < v, n_e > */
 76: static void f0_n(PetscInt dim, PetscInt Nf, PetscInt NfAux,
 77:                   const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
 78:                   const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
 79:                   PetscReal t, const PetscReal x[],  PetscInt numConstants, const PetscScalar constants[], PetscScalar *f0)
 80: {
 81:   PetscInt ii = (PetscInt)PetscRealPart(constants[0]);
 82:   if (dim==2) f0[0] = 2.*PETSC_PI*x[0]*u[ii];
 83:   else {
 84:     f0[0] =                        u[ii];
 85:   }
 86: }

 88: /* < v, n_e v_|| > */
 89: static void f0_vz(PetscInt dim, PetscInt Nf, PetscInt NfAux,
 90:                    const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
 91:                    const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
 92:                    PetscReal t, const PetscReal x[],  PetscInt numConstants, const PetscScalar constants[], PetscScalar *f0)
 93: {
 94:   PetscInt ii = (PetscInt)PetscRealPart(constants[0]);
 95:   if (dim==2) f0[0] = u[ii] * 2.*PETSC_PI*x[0] * x[1]; /* n r v_|| */
 96:   else {
 97:     f0[0] =           u[ii] *                x[2]; /* n v_|| */
 98:   }
 99: }

101: /* < v, n_e (v-shift) > */
102: static void f0_ve_shift(PetscInt dim, PetscInt Nf, PetscInt NfAux,
103:                          const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
104:                          const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
105:                          PetscReal t, const PetscReal x[],  PetscInt numConstants, const PetscScalar constants[], PetscScalar *f0)
106: {
107:   PetscReal vz = numConstants>0 ? PetscRealPart(constants[0]) : 0;
108:   if (dim==2) *f0 = u[0] * 2.*PETSC_PI*x[0] * PetscSqrtReal(x[0]*x[0] + (x[1]-vz)*(x[1]-vz));         /* n r v */
109:   else {
110:     *f0 =           u[0] *                PetscSqrtReal(x[0]*x[0] + x[1]*x[1] + (x[2]-vz)*(x[2]-vz)); /* n v */
111:   }
112: }

114:  /* CalculateE - Calculate the electric field  */
115:  /*  T        -- Electron temperature  */
116:  /*  n        -- Electron density  */
117:  /*  lnLambda --   */
118:  /*  eps0     --  */
119:  /*  E        -- output E, input \hat E */
120: static PetscReal CalculateE(PetscReal Tev, PetscReal n, PetscReal lnLambda, PetscReal eps0, PetscReal *E)
121: {
122:   PetscReal c,e,m;

125:   c = 299792458.0;
126:   e = 1.602176e-19;
127:   m = 9.10938e-31;
128:   if (1) {
129:     double Ec, Ehat = *E, betath = PetscSqrtReal(2*Tev*e/(m*c*c)), j0 = Ehat * 7/(PetscSqrtReal(2)*2) * PetscPowReal(betath,3) * n * e * c;
130:     Ec = n*lnLambda*PetscPowReal(e,3) / (4*PETSC_PI*PetscPowReal(eps0,2)*m*c*c);
131:     *E = Ec;
132:     PetscPrintf(PETSC_COMM_WORLD, "CalculateE j0=%g Ec = %g\n",j0,Ec);
133:   } else {
134:     PetscReal Ed, vth;
135:     vth = PetscSqrtReal(8*Tev*e/(m*PETSC_PI));
136:     Ed =  n*lnLambda*PetscPowReal(e,3) / (4*PETSC_PI*PetscPowReal(eps0,2)*m*vth*vth);
137:     *E = Ed;
138:   }
139:   return(0);
140: }

142: static PetscReal Spitzer(PetscReal m_e, PetscReal e, PetscReal Z, PetscReal epsilon0,  PetscReal lnLam, PetscReal kTe_joules)
143: {
144:   PetscReal Fz = (1+1.198*Z+0.222*Z*Z)/(1+2.966*Z+0.753*Z*Z), eta;
145:   eta = Fz*4./3.*PetscSqrtReal(2.*PETSC_PI)*Z*PetscSqrtReal(m_e)*PetscSqr(e)*lnLam*PetscPowReal(4*PETSC_PI*epsilon0,-2.)*PetscPowReal(kTe_joules,-1.5);
146:   return eta;
147: }

149: /*  */
150: static PetscErrorCode testNone(TS ts, Vec X, PetscInt stepi, PetscReal time, PetscBool islast, LandauCtx *ctx, REctx *rectx)
151: {
153:   return(0);
154: }

156: /*  */
157: static PetscErrorCode testSpitzer(TS ts, Vec X, PetscInt stepi, PetscReal time, PetscBool islast, LandauCtx *ctx, REctx *rectx)
158: {
159:   PetscErrorCode    ierr;
160:   PetscInt          ii;
161:   PetscDS           prob;
162:   static PetscReal  old_ratio = 1e10;
163:   TSConvergedReason reason;
164:   PetscReal         J,J_re,spit_eta,Te_kev=0,E,ratio,Z,n_e,v,v2;
165:   PetscScalar       user[2] = {0.,ctx->charges[0]}, q[LANDAU_MAX_SPECIES],tt[LANDAU_MAX_SPECIES],vz;
166:   PetscReal         dt;
167:   DM                pack, plexe = ctx->plex[0], plexi = (ctx->num_grids==1) ? NULL : ctx->plex[1];
168:   Vec               XsubArray[LANDAU_MAX_GRIDS];

171:   if (ctx->num_species!=2) SETERRQ1(PETSC_COMM_SELF, PETSC_ERR_PLIB, "ctx->num_species %D != 2",ctx->num_species);
172:   VecGetDM(X, &pack);
173:   if (!pack) SETERRQ(PETSC_COMM_SELF, PETSC_ERR_PLIB, "no DM");
174:   DMCompositeGetAccessArray(pack, X, ctx->num_grids, NULL, XsubArray); // read only
175:   TSGetTimeStep(ts,&dt);
176:   /* get current for each grid */
177:   for (ii=0;ii<ctx->num_species;ii++) q[ii] = ctx->charges[ii];
178:   DMGetDS(plexe, &prob);
179:   PetscDSSetConstants(prob, 2, &q[0]);
180:   PetscDSSetObjective(prob, 0, &f0_jz_sum);
181:   DMPlexComputeIntegralFEM(plexe,XsubArray[0],tt,NULL);
182:   J = -ctx->n_0*ctx->v_0*PetscRealPart(tt[0]);
183:   if (plexi) { // add ions
184:     DMGetDS(plexi, &prob);
185:     PetscDSSetConstants(prob, 1, &q[1]);
186:     PetscDSSetObjective(prob, 0, &f0_jz_sum);
187:     DMPlexComputeIntegralFEM(plexi,XsubArray[1],tt,NULL);
188:     J += -ctx->n_0*ctx->v_0*PetscRealPart(tt[0]);
189:   }
190: PetscPrintf(ctx->comm, "testSpitzer J = %10.3e\n",J);
191:   /* get N_e */
192:   DMGetDS(plexe, &prob);
193:   PetscDSSetConstants(prob, 1, user);
194:   PetscDSSetObjective(prob, 0, &f0_n);
195:   DMPlexComputeIntegralFEM(plexe,XsubArray[0],tt,NULL);
196:   n_e = PetscRealPart(tt[0])*ctx->n_0;
197:   /* Z */
198:   Z = -ctx->charges[1]/ctx->charges[0];
199:   /* remove drift */
200:   if (0) {
201:     user[0] = 0; // electrons
202:     DMGetDS(plexe, &prob);
203:     PetscDSSetConstants(prob, 1, user);
204:     PetscDSSetObjective(prob, 0, &f0_vz);
205:     DMPlexComputeIntegralFEM(plexe,XsubArray[0],tt,NULL);
206:     vz = ctx->n_0*PetscRealPart(tt[0])/n_e; /* non-dimensional */
207:   } else vz = 0;
208:   /* thermal velocity */
209:   DMGetDS(plexe, &prob);
210:   PetscDSSetConstants(prob, 1, &vz);
211:   PetscDSSetObjective(prob, 0, &f0_ve_shift);
212:   DMPlexComputeIntegralFEM(plexe,XsubArray[0],tt,NULL);
213:   v = ctx->n_0*ctx->v_0*PetscRealPart(tt[0])/n_e;   /* remove number density to get velocity */
214:   v2 = PetscSqr(v);                                    /* use real space: m^2 / s^2 */
215:   Te_kev = (v2*ctx->masses[0]*PETSC_PI/8)*kev_joul;    /* temperature in kev */
216:   spit_eta = Spitzer(ctx->masses[0],-ctx->charges[0],Z,ctx->epsilon0,ctx->lnLam,Te_kev/kev_joul); /* kev --> J (kT) */
217:   if (0) {
218:     DMGetDS(plexe, &prob);
219:     PetscDSSetConstants(prob, 1, q);
220:     PetscDSSetObjective(prob, 0, &f0_j_re);
221:     DMPlexComputeIntegralFEM(plexe,XsubArray[0],tt,NULL);
222:   } else tt[0] = 0;
223:   J_re = -ctx->n_0*ctx->v_0*PetscRealPart(tt[0]);
224:   DMCompositeRestoreAccessArray(pack, X, ctx->num_grids, NULL, XsubArray); // read only

226:   if (rectx->use_spitzer_eta) {
227:     E = ctx->Ez = spit_eta*(rectx->j-J_re);
228:   } else {
229:     E = ctx->Ez; /* keep real E */
230:     rectx->j = J; /* cache */
231:   }

233:   ratio = E/J/spit_eta;
234:   if (stepi>10 && !rectx->use_spitzer_eta && (
235:         //(old_ratio-ratio < 1.e-3 && ratio > 0.99 && ratio < 1.01) ||
236:         //(old_ratio-ratio < 1.e-4 && ratio > 0.98 && ratio < 1.02) ||
237:         (old_ratio-ratio < 1.e-6))) {
238:     rectx->pulse_start = time + 0.98*dt;
239:     rectx->use_spitzer_eta = PETSC_TRUE;
240:   }
241:   TSGetConvergedReason(ts,&reason);
242:   TSGetConvergedReason(ts,&reason);
243:   if ((rectx->plotting) || stepi == 0 || reason || rectx->pulse_start == time + 0.98*dt) {
244:     PetscPrintf(ctx->comm, "testSpitzer: %4D) time=%11.4e n_e= %10.3e E= %10.3e J= %10.3e J_re= %10.3e %.3g%% Te_kev= %10.3e Z_eff=%g E/J to eta ratio= %g (diff=%g) %s %s\n",stepi,time,n_e/ctx->n_0,ctx->Ez,J,J_re,100*J_re/J, Te_kev,Z,ratio,old_ratio-ratio, rectx->use_spitzer_eta ? "using Spitzer eta*J E" : "constant E",rectx->pulse_start != time + 0.98*dt ? "normal" : "transition");
245:     if (rectx->pulse_start == time + 0.98*dt) SETERRQ1(PETSC_COMM_WORLD,PETSC_ERR_ARG_WRONG,"Spitzer complet ratio=%g",ratio);
246:   }
247:   old_ratio = ratio;
248:   return(0);
249: }

251: static const double ppp = 2;
252: static void f0_0_diff_lp(PetscInt dim, PetscInt Nf, PetscInt NfAux,
253:                           const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
254:                           const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
255:                           PetscReal t, const PetscReal x[],  PetscInt numConstants, const PetscScalar constants[], PetscScalar *f0)
256: {
257:   LandauCtx       *ctx = (LandauCtx *)constants;
258:   REctx           *rectx = (REctx*)ctx->data;
259:   PetscInt        ii = rectx->idx, i;
260:   const PetscReal kT_m = ctx->k*ctx->thermal_temps[ii]/ctx->masses[ii]; /* kT/m */
261:   const PetscReal n = ctx->n[ii];
262:   PetscReal       diff, f_maxwell, v2 = 0, theta = 2*kT_m/(ctx->v_0*ctx->v_0); /* theta = 2kT/mc^2 */
263:   for (i = 0; i < dim; ++i) v2 += x[i]*x[i];
264:   f_maxwell = n*PetscPowReal(PETSC_PI*theta,-1.5)*(PetscExpReal(-v2/theta));
265:   diff = 2.*PETSC_PI*x[0]*(PetscRealPart(u[ii]) - f_maxwell);
266:   f0[0] = PetscPowReal(diff,ppp);
267: }
268: static void f0_0_maxwellian_lp(PetscInt dim, PetscInt Nf, PetscInt NfAux,
269:                           const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
270:                           const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
271:                           PetscReal t, const PetscReal x[],  PetscInt numConstants, const PetscScalar constants[], PetscScalar *f0)
272: {
273:   LandauCtx       *ctx = (LandauCtx *)constants;
274:   REctx           *rectx = (REctx*)ctx->data;
275:   PetscInt        ii = rectx->idx, i;
276:   const PetscReal kT_m = ctx->k*ctx->thermal_temps[ii]/ctx->masses[ii]; /* kT/m */
277:   const PetscReal n = ctx->n[ii];
278:   PetscReal       f_maxwell, v2 = 0, theta = 2*kT_m/(ctx->v_0*ctx->v_0); /* theta = 2kT/mc^2 */
279:   for (i = 0; i < dim; ++i) v2 += x[i]*x[i];
280:   f_maxwell = 2.*PETSC_PI*x[0] * n*PetscPowReal(PETSC_PI*theta,-1.5)*(PetscExpReal(-v2/theta));
281:   f0[0] = PetscPowReal(f_maxwell,ppp);
282: }

284: /*  */
285: static PetscErrorCode testStable(TS ts, Vec X, PetscInt stepi, PetscReal time, PetscBool islast, LandauCtx *ctx, REctx *rectx)
286: {
287:   PetscErrorCode    ierr;
288:   PetscDS           prob;
289:   Vec               X2;
290:   PetscReal         ediff,idiff=0,lpm0,lpm1=1;
291:   PetscScalar       tt[LANDAU_MAX_SPECIES];
292:   DM                dm, plex = ctx->plex[0];

295:   VecGetDM(X, &dm);
296:   DMGetDS(plex, &prob);
297:   VecDuplicate(X,&X2);
298:   VecCopy(X,X2);
299:   if (!rectx->X_0) {
300:     VecDuplicate(X,&rectx->X_0);
301:     VecCopy(X,rectx->X_0);
302:   }
303:   VecAXPY(X,-1.0,rectx->X_0);
304:   PetscDSSetConstants(prob, sizeof(LandauCtx)/sizeof(PetscScalar), (PetscScalar*)ctx);
305:   rectx->idx = 0;
306:   PetscDSSetObjective(prob, 0, &f0_0_diff_lp);
307:   DMPlexComputeIntegralFEM(plex,X2,tt,NULL);
308:   ediff = PetscPowReal(PetscRealPart(tt[0]),1./ppp);
309:   PetscDSSetObjective(prob, 0, &f0_0_maxwellian_lp);
310:   DMPlexComputeIntegralFEM(plex,X2,tt,NULL);
311:   lpm0 = PetscPowReal(PetscRealPart(tt[0]),1./ppp);
312:   if (ctx->num_species>1) {
313:     rectx->idx = 1;
314:     PetscDSSetObjective(prob, 0, &f0_0_diff_lp);
315:     DMPlexComputeIntegralFEM(plex,X2,tt,NULL);
316:     idiff = PetscPowReal(PetscRealPart(tt[0]),1./ppp);
317:     PetscDSSetObjective(prob, 0, &f0_0_maxwellian_lp);
318:     DMPlexComputeIntegralFEM(plex,X2,tt,NULL);
319:     lpm1 = PetscPowReal(PetscRealPart(tt[0]),1./ppp);
320:   }
321:   PetscPrintf(PETSC_COMM_WORLD, "%s %D) time=%10.3e n-%d norm electrons/max=%20.13e ions/max=%20.13e\n", "----",stepi,time,(int)ppp,ediff/lpm0,idiff/lpm1);
322:   /* view */
323:   VecCopy(X2,X);
324:   VecDestroy(&X2);
325:   if (islast) {
326:     VecDestroy(&rectx->X_0);
327:     rectx->X_0 = NULL;
328:   }
329:   return(0);
330: }

332: static PetscErrorCode EInduction(Vec X, Vec X_t, PetscInt step, PetscReal time, LandauCtx *ctx, PetscReal *a_E)
333: {
334:   REctx             *rectx = (REctx*)ctx->data;
335:   PetscErrorCode    ierr;
336:   PetscInt          ii;
337:   DM                dm,plex;
338:   PetscScalar       tt[LANDAU_MAX_SPECIES], qv0[LANDAU_MAX_SPECIES];
339:   PetscReal         dJ_dt;
340:   PetscDS           prob;

343:   for (ii=0;ii<ctx->num_species;ii++) qv0[ii] = ctx->charges[ii]*ctx->v_0;
344:   VecGetDM(X, &dm);
345:   DMGetDS(dm, &prob);
346:   DMConvert(dm, DMPLEX, &plex);
347:   /* get d current / dt */
348:   PetscDSSetConstants(prob, ctx->num_species, qv0);
349:   PetscDSSetObjective(prob, 0, &f0_jz_sum);
350:   if (!X_t) SETERRQ(PETSC_COMM_SELF, PETSC_ERR_PLIB, "X_t");
351:   DMPlexComputeIntegralFEM(plex,X_t,tt,NULL);
352:   dJ_dt = -ctx->n_0*PetscRealPart(tt[0])/ctx->t_0;
353:   /* E induction */
354:   *a_E = -rectx->L*dJ_dt + rectx->Ez_initial;
355:   DMDestroy(&plex);
356:   return(0);
357: }

359: static PetscErrorCode EConstant(Vec X,  Vec X_t, PetscInt step, PetscReal time, LandauCtx *ctx, PetscReal *a_E)
360: {
362:   *a_E = ctx->Ez;
363:   return(0);
364: }

366: static PetscErrorCode ENone(Vec X,  Vec X_t, PetscInt step, PetscReal time, LandauCtx *ctx, PetscReal *a_E)
367: {
369:   *a_E = 0;
370:   return(0);
371: }

373: /* ------------------------------------------------------------------- */
374: /*
375:    FormSource - Evaluates source terms F(t).

377:    Input Parameters:
378: .  ts - the TS context
379: .  time -
380: .  X_dummmy - input vector
381: .  dummy - optional user-defined context, as set by SNESSetFunction()

383:    Output Parameter:
384: .  F - function vector
385:  */
386: static PetscErrorCode FormSource(TS ts, PetscReal ftime, Vec X_dummmy, Vec F, void *dummy)
387: {
388:   PetscReal      new_imp_rate;
389:   LandauCtx      *ctx;
390:   DM             pack;
392:   REctx          *rectx;

395:   TSGetDM(ts,&pack);
396:   DMGetApplicationContext(pack, &ctx);
397:   rectx = (REctx*)ctx->data;
398:   /* check for impurities */
399:   rectx->impuritySrcRate(ftime,&new_imp_rate,ctx);
400:   if (new_imp_rate != 0) {
401:     if (new_imp_rate != rectx->current_rate) {
402:       PetscInt       ii;
403:       PetscReal      dne_dt,dni_dt,tilda_ns[LANDAU_MAX_SPECIES],temps[LANDAU_MAX_SPECIES];
404:       Vec            globFarray[LANDAU_MAX_GRIDS];
405:       rectx->current_rate = new_imp_rate;
406:       for (ii=1;ii<LANDAU_MAX_SPECIES;ii++) tilda_ns[ii] = 0;
407:       for (ii=1;ii<LANDAU_MAX_SPECIES;ii++)    temps[ii] = 1;
408:       dni_dt = new_imp_rate               /* *ctx->t_0 */; /* fully ionized immediately, no normalize, stay in non-dim */
409:       dne_dt = new_imp_rate*rectx->Ne_ion /* *ctx->t_0 */;
410:       tilda_ns[0] = dne_dt;        tilda_ns[rectx->imp_idx] = dni_dt;
411:       temps[0]    = rectx->T_cold;    temps[rectx->imp_idx] = rectx->T_cold;
412:       PetscInfo4(ctx->plex[0], "\tHave new_imp_rate= %10.3e time= %10.3e de/dt= %10.3e di/dt= %10.3e ***\n",new_imp_rate,ftime,dne_dt,dni_dt);
413:       DMCompositeGetAccessArray(pack, F, ctx->num_grids, NULL, globFarray);
414:       for (PetscInt grid=0 ; grid<ctx->num_grids ; grid++) {
415:         /* add it */
416:         LandauAddMaxwellians(ctx->plex[grid],globFarray[grid],ftime,temps,tilda_ns,grid,ctx);
417:         VecViewFromOptions(globFarray[grid],NULL,"-vec_view_sources");
418:       }
419:       DMCompositeRestoreAccessArray(pack, F, ctx->num_grids, NULL, globFarray);
420:     }
421:   } else {
422:     VecZeroEntries(F);
423:     rectx->current_rate = 0;
424:   }
425:   return(0);
426: }
427: PetscErrorCode Monitor(TS ts, PetscInt stepi, PetscReal time, Vec X, void *actx)
428: {
429:   LandauCtx         *ctx = (LandauCtx*) actx;   /* user-defined application context */
430:   REctx             *rectx = (REctx*)ctx->data;
431:   DM                pack;
432:   Vec               globXArray[LANDAU_MAX_GRIDS];
433:   TSConvergedReason reason;
434:   PetscErrorCode    ierr;
436:   VecGetDM(X, &pack);
437:   DMCompositeGetAccessArray(pack, X, ctx->num_grids, NULL, globXArray);
438:   if (stepi > rectx->plotStep && rectx->plotting) {
439:     rectx->plotting = PETSC_FALSE; /* was doing diagnostics, now done */
440:     rectx->plotIdx++;
441:   }
442:   /* view */
443:   TSGetConvergedReason(ts,&reason);
444:   if (time/rectx->plotDt >= (PetscReal)rectx->plotIdx || reason) {
445:     if ((reason || stepi==0 || rectx->plotIdx%rectx->print_period==0) && ctx->verbose > 0) {
446:       /* print norms */
447:       LandauPrintNorms(X, stepi);
448:     }
449:     if (!rectx->plotting) { /* first step of possible backtracks */
450:       rectx->plotting = PETSC_TRUE;
451:       /* diagnostics + change E field with Sptizer (not just a monitor) */
452:       rectx->test(ts,X,stepi,time,reason ? PETSC_TRUE : PETSC_FALSE, ctx, rectx);
453:     } else {
454:       PetscPrintf(PETSC_COMM_WORLD, "\t\t ERROR SKIP test spit ------\n");
455:       rectx->plotting = PETSC_TRUE;
456:     }
457:     PetscObjectSetName((PetscObject) globXArray[0], ctx->plex[1] ? "ue" : "ux");
458:     if (ctx->plex[1]) {
459:       PetscObjectSetName((PetscObject) globXArray[1], "ui");
460:     }
461:     /* view, overwrite step when back tracked */
462:     DMSetOutputSequenceNumber(pack, rectx->plotIdx, time*ctx->t_0);
463:     VecViewFromOptions(globXArray[0],NULL,"-vec_view_e");
464:     if (ctx->plex[1]) {
465:       VecViewFromOptions(globXArray[1],NULL,"-vec_view_i");
466:     }
467:     rectx->plotStep = stepi;
468:   } else {
469:     if (rectx->plotting) PetscPrintf(PETSC_COMM_WORLD," ERROR rectx->plotting=%D step %D\n",rectx->plotting,stepi);
470:     /* diagnostics + change E field with Sptizer (not just a monitor) - can we lag this? */
471:     rectx->test(ts,X,stepi,time,reason ? PETSC_TRUE : PETSC_FALSE, ctx, rectx);
472:   }
473:   DMCompositeRestoreAccessArray(pack, X, ctx->num_grids, NULL, globXArray);
474:   /* parallel check */
475:   if (reason && ctx->verbose > 0) {
476:     PetscReal    val,rval;
477:     PetscMPIInt  rank;
478:     MPI_Comm_rank(PETSC_COMM_WORLD, &rank);
479:     TSGetSolution(ts, &X);
480:     VecNorm(X,NORM_2,&val);
481:     MPIU_Allreduce(&val,&rval,1,MPIU_REAL,MPIU_MAX,PETSC_COMM_WORLD);
482:     if (rval != val) {
483:       PetscPrintf(PETSC_COMM_SELF, " ***** [%D] ERROR max |x| = %22.15e, my |x| = %22.15e diff=%e\n",rank,rval,val,rval-val);
484:     } else {
485:       PetscPrintf(PETSC_COMM_WORLD, "[%D] parallel consistency check OK\n",rank);
486:     }
487:   }
488:   rectx->idx = 0;
489:   return(0);
490: }

492: PetscErrorCode PreStep(TS ts)
493: {
495:   LandauCtx      *ctx;
496:   REctx          *rectx;
497:   DM             dm;
498:   PetscInt       stepi;
499:   PetscReal      time;
500:   Vec            X;

503:   /* not used */
504:   TSGetDM(ts,&dm);
505:   TSGetTime(ts,&time);
506:   TSGetSolution(ts,&X);
507:   DMGetApplicationContext(dm, &ctx);
508:   rectx = (REctx*)ctx->data;
509:   TSGetStepNumber(ts, &stepi);
510:   /* update E */
511:   rectx->E(X, NULL, stepi, time, ctx, &ctx->Ez);
512:   return(0);
513: }

515: /* model for source of non-ionized impurities, profile provided by model, in du/dt form in normalized units (tricky because n_0 is normalized with electrons) */
516: static PetscErrorCode stepSrc(PetscReal time, PetscReal *rho, LandauCtx *ctx)
517: {
518:   REctx         *rectx = (REctx*)ctx->data;

521:   if (time >= rectx->pulse_start) *rho = rectx->pulse_rate;
522:   else *rho = 0.;
523:   return(0);
524: }
525: static PetscErrorCode zeroSrc(PetscReal time, PetscReal *rho, LandauCtx *ctx)
526: {
528:   *rho = 0.;
529:   return(0);
530: }
531: static PetscErrorCode pulseSrc(PetscReal time, PetscReal *rho, LandauCtx *ctx)
532: {
533:   REctx *rectx = (REctx*)ctx->data;

536:   if (rectx->pulse_start == PETSC_MAX_REAL) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_ARG_WRONG,"'-ex2_pulse_start_time X' must be used with '-ex2_impurity_source_type pulse'");
537:   if (time < rectx->pulse_start || time > rectx->pulse_start + 3*rectx->pulse_width) *rho = 0;
538:   /* else if (0) { */
539:   /*   double t = time - rectx->pulse_start, start = rectx->pulse_width, stop = 2*rectx->pulse_width, cycle = 3*rectx->pulse_width, steep = 5, xi = 0.75 - (stop - start)/(2* cycle); */
540:   /*   *rho = rectx->pulse_rate * (cycle / (stop - start)) / (1 + PetscExpReal(steep*(PetscSinReal(2*PETSC_PI*((t - start)/cycle + xi)) - PetscSinReal(2*PETSC_PI*xi)))); */
541:   /* } else if (0) { */
542:   /*   double x = 2*(time - rectx->pulse_start)/(3*rectx->pulse_width) - 1; */
543:   /*   if (x==1 || x==-1) *rho = 0; */
544:   /*   else *rho = rectx->pulse_rate * PetscExpReal(-1/(1-x*x)); */
545:   /* } */
546:   else {
547:     double x = PetscSinReal((time-rectx->pulse_start)/(3*rectx->pulse_width)*2*PETSC_PI - PETSC_PI/2) + 1; /* 0:2, integrates to 1.0 */
548:     *rho = rectx->pulse_rate * x / (3*rectx->pulse_width);
549:     if (!rectx->use_spitzer_eta) rectx->use_spitzer_eta = PETSC_TRUE; /* use it next time */
550:   }
551:   return(0);
552: }

556: static PetscErrorCode ProcessREOptions(REctx *rectx, const LandauCtx *ctx, DM dm, const char prefix[])
557: {
558:   PetscErrorCode    ierr;
559:   PetscFunctionList plist = NULL, testlist = NULL, elist = NULL;
560:   char              pname[256],testname[256],ename[256];
561:   DM                dm_dummy;
562:   PetscBool         Connor_E = PETSC_FALSE;

565:   DMCreate(PETSC_COMM_WORLD,&dm_dummy);
566:   rectx->Ne_ion = 1;                 /* number of electrons given up by impurity ion */
567:   rectx->T_cold = .005;              /* kev */
568:   rectx->ion_potential = 15;         /* ev */
569:   rectx->L = 2;
570:   rectx->X_0 = NULL;
571:   rectx->imp_idx = ctx->num_species - 1; /* default ionized impurity as last one */
572:   rectx->pulse_start = PETSC_MAX_REAL;
573:   rectx->pulse_width = 1;
574:   rectx->plotStep = PETSC_MAX_INT;
575:   rectx->pulse_rate = 1.e-1;
576:   rectx->current_rate = 0;
577:   rectx->plotIdx = 0;
578:   rectx->j = 0;
579:   rectx->plotDt = 1.0;
580:   rectx->plotting = PETSC_FALSE;
581:   rectx->use_spitzer_eta = PETSC_FALSE;
582:   rectx->idx = 0;
583:   rectx->print_period = 10;
584:   /* Register the available impurity sources */
585:   PetscFunctionListAdd(&plist,"step",&stepSrc);
586:   PetscFunctionListAdd(&plist,"none",&zeroSrc);
587:   PetscFunctionListAdd(&plist,"pulse",&pulseSrc);
588:   PetscStrcpy(pname,"none");
589:   PetscFunctionListAdd(&testlist,"none",&testNone);
590:   PetscFunctionListAdd(&testlist,"spitzer",&testSpitzer);
591:   PetscFunctionListAdd(&testlist,"stable",&testStable);
592:   PetscStrcpy(testname,"none");
593:   PetscFunctionListAdd(&elist,"none",&ENone);
594:   PetscFunctionListAdd(&elist,"induction",&EInduction);
595:   PetscFunctionListAdd(&elist,"constant",&EConstant);
596:   PetscStrcpy(ename,"constant");

598:   PetscOptionsBegin(PETSC_COMM_SELF, prefix, "Options for Runaway/seed electron model", "none");
599:   PetscOptionsReal("-ex2_plot_dt", "Plotting interval", "xgc_dmplex.c", rectx->plotDt, &rectx->plotDt, NULL);
600:   if (rectx->plotDt < 0) rectx->plotDt = 1e30;
601:   if (rectx->plotDt == 0) rectx->plotDt = 1e-30;
602:   PetscOptionsInt("-ex2_print_period", "Plotting interval", "xgc_dmplex.c", rectx->print_period, &rectx->print_period, NULL);
603:   PetscOptionsFList("-ex2_impurity_source_type","Name of impurity source to run","",plist,pname,pname,sizeof(pname),NULL);
604:   PetscOptionsFList("-ex2_test_type","Name of test to run","",testlist,testname,testname,sizeof(testname),NULL);
605:   PetscOptionsInt("-ex2_impurity_index", "index of sink for impurities", "none", rectx->imp_idx, &rectx->imp_idx, NULL);
606:   if ((rectx->imp_idx >= ctx->num_species || rectx->imp_idx < 1) && ctx->num_species > 1) SETERRQ1(PETSC_COMM_WORLD,PETSC_ERR_ARG_WRONG,"index of sink for impurities ions is out of range (%D), must be > 0 && < NS",rectx->imp_idx);
607:   PetscOptionsFList("-ex2_e_field_type","Electric field type","",elist,ename,ename,sizeof(ename),NULL);
608:   rectx->Ne_ion = -ctx->charges[rectx->imp_idx]/ctx->charges[0];
609:   PetscOptionsReal("-ex2_t_cold","Temperature of cold electron and ions after ionization in keV","none",rectx->T_cold,&rectx->T_cold, NULL);
610:   PetscOptionsReal("-ex2_pulse_start_time","Time at which pulse happens for 'pulse' source","none",rectx->pulse_start,&rectx->pulse_start, NULL);
611:   PetscOptionsReal("-ex2_pulse_width_time","Width of pulse 'pulse' source","none",rectx->pulse_width,&rectx->pulse_width, NULL);
612:   PetscOptionsReal("-ex2_pulse_rate","Number density of pulse for 'pulse' source","none",rectx->pulse_rate,&rectx->pulse_rate, NULL);
613:   rectx->T_cold *= 1.16e7; /* convert to Kelvin */
614:   PetscOptionsReal("-ex2_ion_potential","Potential to ionize impurity (should be array) in ev","none",rectx->ion_potential,&rectx->ion_potential, NULL);
615:   PetscOptionsReal("-ex2_inductance","Inductance E feild","none",rectx->L,&rectx->L, NULL);
616:   PetscOptionsBool("-ex2_connor_e_field_units","Scale Ex but Connor-Hastie E_c","none",Connor_E,&Connor_E, NULL);
617:   PetscInfo5(dm_dummy, "Num electrons from ions=%g, T_cold=%10.3e, ion potential=%10.3e, E_z=%10.3e v_0=%10.3e\n",rectx->Ne_ion,rectx->T_cold,rectx->ion_potential,ctx->Ez,ctx->v_0);
618:   PetscOptionsEnd();
619:   /* get impurity source rate function */
620:   PetscFunctionListFind(plist,pname,&rectx->impuritySrcRate);
621:   if (!rectx->impuritySrcRate) SETERRQ1(PETSC_COMM_WORLD,PETSC_ERR_ARG_WRONG,"No impurity source function found '%s'",pname);
622:   PetscFunctionListFind(testlist,testname,&rectx->test);
623:   if (!rectx->test) SETERRQ1(PETSC_COMM_WORLD,PETSC_ERR_ARG_WRONG,"No test found '%s'",testname);
624:   PetscFunctionListFind(elist,ename,&rectx->E);
625:   if (!rectx->E) SETERRQ1(PETSC_COMM_WORLD,PETSC_ERR_ARG_WRONG,"No E field function found '%s'",ename);
626:   PetscFunctionListDestroy(&plist);
627:   PetscFunctionListDestroy(&testlist);
628:   PetscFunctionListDestroy(&elist);

630:   /* convert E from Connor-Hastie E_c units to real if doing Spitzer E */
631:   if (Connor_E) {
632:     PetscReal E = ctx->Ez, Tev = ctx->thermal_temps[0]*8.621738e-5, n = ctx->n_0*ctx->n[0];
633:     CalculateE(Tev, n, ctx->lnLam, ctx->epsilon0, &E);
634:     ((LandauCtx*)ctx)->Ez *= E;
635:   }
636:   DMDestroy(&dm_dummy);
637:   return(0);
638: }

640: int main(int argc, char **argv)
641: {
642:   DM             pack;
643:   Vec            X,XsubArray[LANDAU_MAX_GRIDS];
645:   PetscInt       dim = 2;
646:   TS             ts;
647:   Mat            J;
648:   PetscDS        prob;
649:   LandauCtx      *ctx;
650:   REctx          *rectx;
651: #if defined PETSC_USE_LOG
652:   PetscLogStage stage;
653: #endif
654:   PetscMPIInt    rank;
655:   PetscInitialize(&argc, &argv, NULL,help);if (ierr) return ierr;
656:   MPI_Comm_rank(PETSC_COMM_WORLD, &rank);
657:   if (rank) { /* turn off output stuff for duplicate runs */
658:     PetscOptionsClearValue(NULL,"-dm_view_e");
659:     PetscOptionsClearValue(NULL,"-vec_view_e");
660:     PetscOptionsClearValue(NULL,"-dm_view_diff_e");
661:     PetscOptionsClearValue(NULL,"-vec_view_diff_e");
662:     PetscOptionsClearValue(NULL,"-dm_view_sources_e");
663:     PetscOptionsClearValue(NULL,"-vec_view_0_e");
664:     PetscOptionsClearValue(NULL,"-dm_view_0_e");
665:     PetscOptionsClearValue(NULL,"-vec_view_sources_e");
666:     PetscOptionsClearValue(NULL,"-info"); /* this does not work */
667:     PetscOptionsClearValue(NULL,"-dm_view_i");
668:     PetscOptionsClearValue(NULL,"-vec_view_i");
669:     PetscOptionsClearValue(NULL,"-dm_view_diff_i");
670:     PetscOptionsClearValue(NULL,"-vec_view_diff_i");
671:     PetscOptionsClearValue(NULL,"-dm_view_sources_i");
672:     PetscOptionsClearValue(NULL,"-vec_view_sources_i");
673:     PetscOptionsClearValue(NULL,"-dm_view_0_i");
674:     PetscOptionsClearValue(NULL,"-vec_view_0_i");
675:   }
676:   PetscOptionsGetInt(NULL,NULL, "-dim", &dim, NULL);
677:   /* Create a mesh */
678:   LandauCreateVelocitySpace(PETSC_COMM_WORLD, dim, "", &X, &J, &pack);
679:   PetscObjectSetName((PetscObject)J, "Jacobian");
680:   PetscObjectSetName((PetscObject)X, "f");
681:   LandauCreateMassMatrix(pack, NULL);
682:   DMGetApplicationContext(pack, &ctx);
683:   DMSetUp(pack);
684:   DMGetDS(pack, &prob);
685:   DMCompositeGetAccessArray(pack, X, ctx->num_grids, NULL, XsubArray); // read only
686:   PetscObjectSetName((PetscObject) XsubArray[0], ctx->plex[1] ? "ue" : "ux");
687:   if (ctx->plex[1]) {
688:     PetscObjectSetName((PetscObject) XsubArray[1], "ui");
689:   }
690:   DMViewFromOptions(ctx->plex[0],NULL,"-dm_view_e");
691:   DMViewFromOptions(ctx->plex[0],NULL,"-dm_view_0_e");
692:   VecViewFromOptions(XsubArray[0],NULL,"-vec_view_0_e"); // inital condition (monitor plots after step)
693:   if (ctx->plex[1]) {
694:     DMViewFromOptions(ctx->plex[1],NULL,"-dm_view_i");
695:     DMViewFromOptions(ctx->plex[1],NULL,"-dm_view_0_i");
696:     VecViewFromOptions(XsubArray[1],NULL,"-vec_view_0_i"); // inital condition (monitor plots after step)
697:   }
698:   DMCompositeRestoreAccessArray(pack, X, ctx->num_grids, NULL, XsubArray); // read only
699:   /* context */
700:   PetscNew(&rectx);
701:   ctx->data = rectx;
702:   ProcessREOptions(rectx,ctx,pack,"");
703:   DMSetOutputSequenceNumber(pack, 0, 0.0);
704:   /* Create timestepping solver context */
705:   TSCreate(PETSC_COMM_SELF,&ts);
706:   TSSetDM(ts,pack);
707:   TSSetIFunction(ts,NULL,LandauIFunction,NULL);
708:   TSSetIJacobian(ts,J,J,LandauIJacobian,NULL);
709:   TSSetRHSFunction(ts,NULL,FormSource,NULL);
710:   TSSetFromOptions(ts);
711:   TSSetSolution(ts,X);
712:   TSSetApplicationContext(ts, ctx);
713:   TSMonitorSet(ts,Monitor,ctx,NULL);
714:   TSSetPreStep(ts,PreStep);
715:   rectx->Ez_initial = ctx->Ez;       /* cache for induction caclulation - applied E field */
716:   if (1) { /* warm up an test just LandauIJacobian */
717:     Vec           vec;
718:     PetscInt      nsteps;
719:     PetscReal     dt;
720:     PetscLogStageRegister("Warmup", &stage);
721:     PetscLogStagePush(stage);
722:     VecDuplicate(X,&vec);
723:     VecCopy(X,vec);
724:     TSGetMaxSteps(ts,&nsteps);
725:     TSGetTimeStep(ts,&dt);
726:     TSSetMaxSteps(ts,1);
727:     TSSolve(ts,X);
728:     TSSetMaxSteps(ts,nsteps);
729:     TSSetStepNumber(ts,0);
730:     TSSetTime(ts,0);
731:     TSSetTimeStep(ts,dt);
732:     rectx->plotIdx = 0;
733:     rectx->plotting = PETSC_FALSE;
734:     PetscLogStagePop();
735:     VecCopy(vec,X);
736:     VecDestroy(&vec);
737:     ctx->aux_bool = PETSC_FALSE; // flag for not a clean Jacobian
738:   }
739:   /* go */
740:   PetscLogStageRegister("Solve", &stage);
741:   //TSSetSolution(ts,X);
742:   MPI_Barrier(MPI_COMM_WORLD);
743:   PetscLogStagePush(stage);
744:   TSSolve(ts,X);
745:   PetscLogStagePop();
746:   /* clean up */
747:   LandauDestroyVelocitySpace(&pack);
748:   TSDestroy(&ts);
749:   VecDestroy(&X);
750:   PetscFree(rectx);
751:   PetscFinalize();
752:   return ierr;
753: }

755: /*TEST
756:   test:
757:     suffix: 0
758:     requires: p4est !complex double
759:     args: -dm_landau_num_species_grid 1,1 -dm_landau_Ez 0 -petscspace_degree 3 -petscspace_poly_tensor 1 -dm_landau_type p4est -info :dm,tsadapt -dm_landau_ion_masses 2 -dm_landau_ion_charges 1 -dm_landau_thermal_temps 5,5 -dm_landau_n 2,2 -dm_landau_n_0 5e19 -ts_monitor -snes_rtol 1.e-10 -snes_stol 1.e-14 -snes_monitor -snes_converged_reason -snes_max_it 10 -ts_type arkimex -ts_arkimex_type 1bee -ts_max_snes_failures -1 -ts_rtol 1e-3 -ts_dt 1.e-1 -ts_max_time 1 -ts_adapt_clip .5,1.25 -ts_max_steps 2 -ts_adapt_scale_solve_failed 0.75 -ts_adapt_time_step_increase_delay 5 -pc_type lu -ksp_type preonly -dm_landau_amr_levels_max 2,2 -ex2_impurity_source_type pulse -ex2_pulse_start_time 1e-1 -ex2_pulse_width_time 10 -ex2_pulse_rate 1e-2 -ex2_t_cold .05 -ex2_plot_dt 1e-1 -dm_refine 1 -dm_landau_gpu_assembly true -dm_landau_device_type cpu

761:   test:
762:     suffix: kokkos
763:     requires: p4est !complex double kokkos_kernels
764:     args: -dm_landau_num_species_grid 1,1 -dm_landau_Ez 0 -petscspace_degree 3 -petscspace_poly_tensor 1 -dm_landau_type p4est -info :tsadapt -dm_landau_ion_masses 2 -dm_landau_ion_charges 1 -dm_landau_thermal_temps 5,5 -dm_landau_n 2,2 -dm_landau_n_0 5e19 -ts_monitor -snes_rtol 1.e-10 -snes_stol 1.e-14 -snes_monitor -snes_converged_reason -snes_max_it 10 -ts_type arkimex -ts_arkimex_type 1bee -ts_max_snes_failures -1 -ts_rtol 1e-3 -ts_dt 1.e-1 -ts_max_time 1 -ts_adapt_clip .5,1.25 -ts_max_steps 2 -ts_adapt_scale_solve_failed 0.75 -ts_adapt_time_step_increase_delay 5 -pc_type lu -ksp_type preonly -dm_landau_amr_levels_max 3,2 -ex2_impurity_source_type pulse -ex2_pulse_start_time 1e-1 -ex2_pulse_width_time 10 -ex2_pulse_rate 1e-2 -ex2_t_cold .05 -ex2_plot_dt 1e-1 -dm_refine 1 -dm_landau_device_type kokkos -dm_landau_gpu_assembly true -dm_mat_type aijkokkos -dm_vec_type kokkos

766:   test:
767:     suffix: cuda
768:     requires: p4est !complex double cuda
769:     args: -dm_landau_num_species_grid 1,1 -dm_landau_Ez 0 -petscspace_degree 3 -petscspace_poly_tensor 1 -dm_landau_type p4est -info :tsadapt -dm_landau_ion_masses 2 -dm_landau_ion_charges 1 -dm_landau_thermal_temps 5,5 -dm_landau_n 2,2 -dm_landau_n_0 5e19 -ts_monitor -snes_rtol 1.e-10 -snes_stol 1.e-14 -snes_monitor -snes_converged_reason -snes_max_it 10 -ts_type arkimex -ts_arkimex_type 1bee -ts_max_snes_failures -1 -ts_rtol 1e-3 -ts_dt 1.e-1 -ts_max_time 1 -ts_adapt_clip .5,1.25 -ts_max_steps 2 -ts_adapt_scale_solve_failed 0.75 -ts_adapt_time_step_increase_delay 5 -pc_type lu -ksp_type preonly -dm_landau_amr_levels_max 3,2 -ex2_impurity_source_type pulse -ex2_pulse_start_time 1e-1 -ex2_pulse_width_time 10 -ex2_pulse_rate 1e-2 -ex2_t_cold .05 -ex2_plot_dt 1e-1 -dm_refine 1 -dm_landau_device_type cuda -dm_landau_gpu_assembly true -dm_mat_type aijcusparse -dm_vec_type cuda

771: TEST*/