Actual source code: ex16fwd.c

  1: static char help[] = "Performs adjoint sensitivity analysis for the van der Pol equation.\n\
  2: Input parameters include:\n\
  3:       -mu : stiffness parameter\n\n";

  5: /*
  6:    Concepts: TS^time-dependent nonlinear problems
  7:    Concepts: TS^van der Pol equation
  8:    Concepts: TS^adjoint sensitivity analysis
  9:    Processors: 1
 10: */
 11: /* ------------------------------------------------------------------------

 13:    This program solves the van der Pol equation
 14:        y'' - \mu (1-y^2)*y' + y = 0        (1)
 15:    on the domain 0 <= x <= 1, with the boundary conditions
 16:        y(0) = 2, y'(0) = 0,
 17:    and computes the sensitivities of the final solution w.r.t. initial conditions and parameter \mu with an explicit Runge-Kutta method and its discrete tangent linear model.

 19:    Notes:
 20:    This code demonstrates the TSForward interface to a system of ordinary differential equations (ODEs) in the form of u_t = f(u,t).

 22:    (1) can be turned into a system of first order ODEs
 23:    [ y' ] = [          z          ]
 24:    [ z' ]   [ \mu (1 - y^2) z - y ]

 26:    which then we can write as a vector equation

 28:    [ u_1' ] = [             u_2           ]  (2)
 29:    [ u_2' ]   [ \mu (1 - u_1^2) u_2 - u_1 ]

 31:    which is now in the form of u_t = F(u,t).

 33:    The user provides the right-hand-side function

 35:    [ f(u,t) ] = [ u_2                       ]
 36:                 [ \mu (1 - u_1^2) u_2 - u_1 ]

 38:    the Jacobian function

 40:    df   [       0           ;         1        ]
 41:    -- = [                                      ]
 42:    du   [ -2 \mu u_1*u_2 - 1;  \mu (1 - u_1^2) ]

 44:    and the JacobainP (the Jacobian w.r.t. parameter) function

 46:    df      [  0;   0;     0             ]
 47:    ---   = [                            ]
 48:    d\mu    [  0;   0;  (1 - u_1^2) u_2  ]

 50:   ------------------------------------------------------------------------- */

 52: #include <petscts.h>
 53: #include <petscmat.h>
 54: typedef struct _n_User *User;
 55: struct _n_User {
 56:   PetscReal mu;
 57:   PetscReal next_output;
 58:   PetscReal tprev;
 59: };

 61: /*
 62:    User-defined routines
 63: */
 64: static PetscErrorCode RHSFunction(TS ts,PetscReal t,Vec X,Vec F,void *ctx)
 65: {
 66:   PetscErrorCode    ierr;
 67:   User              user = (User)ctx;
 68:   PetscScalar       *f;
 69:   const PetscScalar *x;

 72:   VecGetArrayRead(X,&x);
 73:   VecGetArray(F,&f);
 74:   f[0] = x[1];
 75:   f[1] = user->mu*(1.-x[0]*x[0])*x[1]-x[0];
 76:   VecRestoreArrayRead(X,&x);
 77:   VecRestoreArray(F,&f);
 78:   return(0);
 79: }

 81: static PetscErrorCode RHSJacobian(TS ts,PetscReal t,Vec X,Mat A,Mat B,void *ctx)
 82: {
 83:   PetscErrorCode    ierr;
 84:   User              user = (User)ctx;
 85:   PetscReal         mu   = user->mu;
 86:   PetscInt          rowcol[] = {0,1};
 87:   PetscScalar       J[2][2];
 88:   const PetscScalar *x;

 91:   VecGetArrayRead(X,&x);
 92:   J[0][0] = 0;
 93:   J[1][0] = -2.*mu*x[1]*x[0]-1.;
 94:   J[0][1] = 1.0;
 95:   J[1][1] = mu*(1.0-x[0]*x[0]);
 96:   MatSetValues(A,2,rowcol,2,rowcol,&J[0][0],INSERT_VALUES);
 97:   MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
 98:   MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
 99:   if (A != B) {
100:     MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
101:     MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
102:   }
103:   VecRestoreArrayRead(X,&x);
104:   return(0);
105: }

107: static PetscErrorCode RHSJacobianP(TS ts,PetscReal t,Vec X,Mat A,void *ctx)
108: {
109:   PetscErrorCode    ierr;
110:   PetscInt          row[] = {0,1},col[]={2};
111:   PetscScalar       J[2][1];
112:   const PetscScalar *x;

115:   VecGetArrayRead(X,&x);
116:   J[0][0] = 0;
117:   J[1][0] = (1.-x[0]*x[0])*x[1];
118:   VecRestoreArrayRead(X,&x);
119:   MatSetValues(A,2,row,1,col,&J[0][0],INSERT_VALUES);

121:   MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
122:   MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
123:   return(0);
124: }

126: /* Monitor timesteps and use interpolation to output at integer multiples of 0.1 */
127: static PetscErrorCode Monitor(TS ts,PetscInt step,PetscReal t,Vec X,void *ctx)
128: {
129:   PetscErrorCode    ierr;
130:   const PetscScalar *x;
131:   PetscReal         tfinal, dt, tprev;
132:   User              user = (User)ctx;

135:   TSGetTimeStep(ts,&dt);
136:   TSGetMaxTime(ts,&tfinal);
137:   TSGetPrevTime(ts,&tprev);
138:   VecGetArrayRead(X,&x);
139:   PetscPrintf(PETSC_COMM_WORLD,"[%.1f] %D TS %.6f (dt = %.6f) X % 12.6e % 12.6e\n",(double)user->next_output,step,(double)t,(double)dt,(double)PetscRealPart(x[0]),(double)PetscRealPart(x[1]));
140:   PetscPrintf(PETSC_COMM_WORLD,"t %.6f (tprev = %.6f) \n",(double)t,(double)tprev);
141:   VecRestoreArrayRead(X,&x);
142:   return(0);
143: }

145: int main(int argc,char **argv)
146: {
147:   TS             ts;            /* nonlinear solver */
148:   Vec            x;             /* solution, residual vectors */
149:   Mat            A;             /* Jacobian matrix */
150:   Mat            Jacp;          /* JacobianP matrix */
151:   PetscInt       steps;
152:   PetscReal      ftime   =0.5;
153:   PetscBool      monitor = PETSC_FALSE;
154:   PetscScalar    *x_ptr;
155:   PetscMPIInt    size;
156:   struct _n_User user;
158:   Mat            sp;

160:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
161:      Initialize program
162:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
163:   PetscInitialize(&argc,&argv,NULL,help);if (ierr) return ierr;
164:   MPI_Comm_size(PETSC_COMM_WORLD,&size);
165:   if (size != 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_WRONG_MPI_SIZE,"This is a uniprocessor example only!");

167:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
168:     Set runtime options
169:     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
170:   user.mu          = 1;
171:   user.next_output = 0.0;

173:   PetscOptionsGetReal(NULL,NULL,"-mu",&user.mu,NULL);
174:   PetscOptionsGetBool(NULL,NULL,"-monitor",&monitor,NULL);

176:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
177:     Create necessary matrix and vectors, solve same ODE on every process
178:     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
179:   MatCreate(PETSC_COMM_WORLD,&A);
180:   MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,2,2);
181:   MatSetFromOptions(A);
182:   MatSetUp(A);
183:   MatCreateVecs(A,&x,NULL);

185:   MatCreate(PETSC_COMM_WORLD,&Jacp);
186:   MatSetSizes(Jacp,PETSC_DECIDE,PETSC_DECIDE,2,3);
187:   MatSetFromOptions(Jacp);
188:   MatSetUp(Jacp);

190:   MatCreateDense(PETSC_COMM_WORLD,PETSC_DECIDE,PETSC_DECIDE,2,3,NULL,&sp);
191:   MatZeroEntries(sp);
192:   MatShift(sp,1.0);

194:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
195:      Create timestepping solver context
196:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
197:   TSCreate(PETSC_COMM_WORLD,&ts);
198:   TSSetType(ts,TSRK);
199:   TSSetRHSFunction(ts,NULL,RHSFunction,&user);
200:   /*   Set RHS Jacobian for the adjoint integration */
201:   TSSetRHSJacobian(ts,A,A,RHSJacobian,&user);
202:   TSSetMaxTime(ts,ftime);
203:   TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP);
204:   if (monitor) {
205:     TSMonitorSet(ts,Monitor,&user,NULL);
206:   }
207:   TSForwardSetSensitivities(ts,3,sp);
208:   TSSetRHSJacobianP(ts,Jacp,RHSJacobianP,&user);

210:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
211:      Set initial conditions
212:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
213:   VecGetArray(x,&x_ptr);

215:   x_ptr[0] = 2;   x_ptr[1] = 0.66666654321;
216:   VecRestoreArray(x,&x_ptr);
217:   TSSetTimeStep(ts,.001);

219:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
220:      Set runtime options
221:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
222:   TSSetFromOptions(ts);

224:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
225:      Solve nonlinear system
226:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
227:   TSSolve(ts,x);
228:   TSGetSolveTime(ts,&ftime);
229:   TSGetStepNumber(ts,&steps);
230:   PetscPrintf(PETSC_COMM_WORLD,"mu %g, steps %D, ftime %g\n",(double)user.mu,steps,(double)ftime);
231:   VecView(x,PETSC_VIEWER_STDOUT_WORLD);

233:   PetscPrintf(PETSC_COMM_WORLD,"\n forward sensitivity: d[y(tf) z(tf)]/d[y0 z0 mu]\n");
234:   MatView(sp,PETSC_VIEWER_STDOUT_WORLD);

236:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
237:      Free work space.  All PETSc objects should be destroyed when they
238:      are no longer needed.
239:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
240:   MatDestroy(&A);
241:   MatDestroy(&Jacp);
242:   VecDestroy(&x);
243:   MatDestroy(&sp);
244:   TSDestroy(&ts);
245:   PetscFinalize();
246:   return ierr;
247: }

249: /*TEST

251:     test:
252:       args: -monitor 0 -ts_adapt_type none

254: TEST*/