Actual source code: glle.c


  2: #include <../src/ts/impls/implicit/glle/glle.h>
  3: #include <petscdm.h>
  4: #include <petscblaslapack.h>

  6: static const char        *TSGLLEErrorDirections[] = {"FORWARD","BACKWARD","TSGLLEErrorDirection","TSGLLEERROR_",NULL};
  7: static PetscFunctionList TSGLLEList;
  8: static PetscFunctionList TSGLLEAcceptList;
  9: static PetscBool         TSGLLEPackageInitialized;
 10: static PetscBool         TSGLLERegisterAllCalled;

 12: /* This function is pure */
 13: static PetscScalar Factorial(PetscInt n)
 14: {
 15:   PetscInt i;
 16:   if (n < 12) {                 /* Can compute with 32-bit integers */
 17:     PetscInt f = 1;
 18:     for (i=2; i<=n; i++) f *= i;
 19:     return (PetscScalar)f;
 20:   } else {
 21:     PetscScalar f = 1.;
 22:     for (i=2; i<=n; i++) f *= (PetscScalar)i;
 23:     return f;
 24:   }
 25: }

 27: /* This function is pure */
 28: static PetscScalar CPowF(PetscScalar c,PetscInt p)
 29: {
 30:   return PetscPowRealInt(PetscRealPart(c),p)/Factorial(p);
 31: }

 33: static PetscErrorCode TSGLLEGetVecs(TS ts,DM dm,Vec *Z,Vec *Ydotstage)
 34: {
 35:   TS_GLLE        *gl = (TS_GLLE*)ts->data;

 39:   if (Z) {
 40:     if (dm && dm != ts->dm) {
 41:       DMGetNamedGlobalVector(dm,"TSGLLE_Z",Z);
 42:     } else *Z = gl->Z;
 43:   }
 44:   if (Ydotstage) {
 45:     if (dm && dm != ts->dm) {
 46:       DMGetNamedGlobalVector(dm,"TSGLLE_Ydot",Ydotstage);
 47:     } else *Ydotstage = gl->Ydot[gl->stage];
 48:   }
 49:   return(0);
 50: }

 52: static PetscErrorCode TSGLLERestoreVecs(TS ts,DM dm,Vec *Z,Vec *Ydotstage)
 53: {

 57:   if (Z) {
 58:     if (dm && dm != ts->dm) {
 59:       DMRestoreNamedGlobalVector(dm,"TSGLLE_Z",Z);
 60:     }
 61:   }
 62:   if (Ydotstage) {

 64:     if (dm && dm != ts->dm) {
 65:       DMRestoreNamedGlobalVector(dm,"TSGLLE_Ydot",Ydotstage);
 66:     }
 67:   }
 68:   return(0);
 69: }

 71: static PetscErrorCode DMCoarsenHook_TSGLLE(DM fine,DM coarse,void *ctx)
 72: {
 74:   return(0);
 75: }

 77: static PetscErrorCode DMRestrictHook_TSGLLE(DM fine,Mat restrct,Vec rscale,Mat inject,DM coarse,void *ctx)
 78: {
 79:   TS             ts = (TS)ctx;
 81:   Vec            Ydot,Ydot_c;

 84:   TSGLLEGetVecs(ts,fine,NULL,&Ydot);
 85:   TSGLLEGetVecs(ts,coarse,NULL,&Ydot_c);
 86:   MatRestrict(restrct,Ydot,Ydot_c);
 87:   VecPointwiseMult(Ydot_c,rscale,Ydot_c);
 88:   TSGLLERestoreVecs(ts,fine,NULL,&Ydot);
 89:   TSGLLERestoreVecs(ts,coarse,NULL,&Ydot_c);
 90:   return(0);
 91: }

 93: static PetscErrorCode DMSubDomainHook_TSGLLE(DM dm,DM subdm,void *ctx)
 94: {
 96:   return(0);
 97: }

 99: static PetscErrorCode DMSubDomainRestrictHook_TSGLLE(DM dm,VecScatter gscat, VecScatter lscat,DM subdm,void *ctx)
100: {
101:   TS             ts = (TS)ctx;
103:   Vec            Ydot,Ydot_s;

106:   TSGLLEGetVecs(ts,dm,NULL,&Ydot);
107:   TSGLLEGetVecs(ts,subdm,NULL,&Ydot_s);

109:   VecScatterBegin(gscat,Ydot,Ydot_s,INSERT_VALUES,SCATTER_FORWARD);
110:   VecScatterEnd(gscat,Ydot,Ydot_s,INSERT_VALUES,SCATTER_FORWARD);

112:   TSGLLERestoreVecs(ts,dm,NULL,&Ydot);
113:   TSGLLERestoreVecs(ts,subdm,NULL,&Ydot_s);
114:   return(0);
115: }

117: static PetscErrorCode TSGLLESchemeCreate(PetscInt p,PetscInt q,PetscInt r,PetscInt s,const PetscScalar *c,
118:                                        const PetscScalar *a,const PetscScalar *b,const PetscScalar *u,const PetscScalar *v,TSGLLEScheme *inscheme)
119: {
120:   TSGLLEScheme     scheme;
121:   PetscInt       j;

125:   if (p < 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Scheme order must be positive");
126:   if (r < 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"At least one item must be carried between steps");
127:   if (s < 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"At least one stage is required");
129:   *inscheme = NULL;
130:   PetscNew(&scheme);
131:   scheme->p = p;
132:   scheme->q = q;
133:   scheme->r = r;
134:   scheme->s = s;

136:   PetscMalloc5(s,&scheme->c,s*s,&scheme->a,r*s,&scheme->b,r*s,&scheme->u,r*r,&scheme->v);
137:   PetscArraycpy(scheme->c,c,s);
138:   for (j=0; j<s*s; j++) scheme->a[j] = (PetscAbsScalar(a[j]) < 1e-12) ? 0 : a[j];
139:   for (j=0; j<r*s; j++) scheme->b[j] = (PetscAbsScalar(b[j]) < 1e-12) ? 0 : b[j];
140:   for (j=0; j<s*r; j++) scheme->u[j] = (PetscAbsScalar(u[j]) < 1e-12) ? 0 : u[j];
141:   for (j=0; j<r*r; j++) scheme->v[j] = (PetscAbsScalar(v[j]) < 1e-12) ? 0 : v[j];

143:   PetscMalloc6(r,&scheme->alpha,r,&scheme->beta,r,&scheme->gamma,3*s,&scheme->phi,3*r,&scheme->psi,r,&scheme->stage_error);
144:   {
145:     PetscInt     i,j,k,ss=s+2;
146:     PetscBLASInt m,n,one=1,*ipiv,lwork=4*((s+3)*3+3),info,ldb;
147:     PetscReal    rcond,*sing,*workreal;
148:     PetscScalar  *ImV,*H,*bmat,*workscalar,*c=scheme->c,*a=scheme->a,*b=scheme->b,*u=scheme->u,*v=scheme->v;
149:     PetscBLASInt rank;
150:     PetscMalloc7(PetscSqr(r),&ImV,3*s,&H,3*ss,&bmat,lwork,&workscalar,5*(3+r),&workreal,r+s,&sing,r+s,&ipiv);

152:     /* column-major input */
153:     for (i=0; i<r-1; i++) {
154:       for (j=0; j<r-1; j++) ImV[i+j*r] = 1.0*(i==j) - v[(i+1)*r+j+1];
155:     }
156:     /* Build right hand side for alpha (tp - glm.B(2:end,:)*(glm.c.^(p)./factorial(p))) */
157:     for (i=1; i<r; i++) {
158:       scheme->alpha[i] = 1./Factorial(p+1-i);
159:       for (j=0; j<s; j++) scheme->alpha[i] -= b[i*s+j]*CPowF(c[j],p);
160:     }
161:     PetscBLASIntCast(r-1,&m);
162:     PetscBLASIntCast(r,&n);
163:     PetscStackCallBLAS("LAPACKgesv",LAPACKgesv_(&m,&one,ImV,&n,ipiv,scheme->alpha+1,&n,&info));
164:     if (info < 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"Bad argument to GESV");
165:     if (info > 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_MAT_LU_ZRPVT,"Bad LU factorization");

167:     /* Build right hand side for beta (tp1 - glm.B(2:end,:)*(glm.c.^(p+1)./factorial(p+1)) - e.alpha) */
168:     for (i=1; i<r; i++) {
169:       scheme->beta[i] = 1./Factorial(p+2-i) - scheme->alpha[i];
170:       for (j=0; j<s; j++) scheme->beta[i] -= b[i*s+j]*CPowF(c[j],p+1);
171:     }
172:     PetscStackCallBLAS("LAPACKgetrs",LAPACKgetrs_("No transpose",&m,&one,ImV,&n,ipiv,scheme->beta+1,&n,&info));
173:     if (info < 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"Bad argument to GETRS");
174:     if (info > 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"Should not happen");

176:     /* Build stage_error vector
177:            xi = glm.c.^(p+1)/factorial(p+1) - glm.A*glm.c.^p/factorial(p) + glm.U(:,2:end)*e.alpha;
178:     */
179:     for (i=0; i<s; i++) {
180:       scheme->stage_error[i] = CPowF(c[i],p+1);
181:       for (j=0; j<s; j++) scheme->stage_error[i] -= a[i*s+j]*CPowF(c[j],p);
182:       for (j=1; j<r; j++) scheme->stage_error[i] += u[i*r+j]*scheme->alpha[j];
183:     }

185:     /* alpha[0] (epsilon in B,J,W 2007)
186:            epsilon = 1/factorial(p+1) - B(1,:)*c.^p/factorial(p) + V(1,2:end)*e.alpha;
187:     */
188:     scheme->alpha[0] = 1./Factorial(p+1);
189:     for (j=0; j<s; j++) scheme->alpha[0] -= b[0*s+j]*CPowF(c[j],p);
190:     for (j=1; j<r; j++) scheme->alpha[0] += v[0*r+j]*scheme->alpha[j];

192:     /* right hand side for gamma (glm.B(2:end,:)*e.xi - e.epsilon*eye(s-1,1)) */
193:     for (i=1; i<r; i++) {
194:       scheme->gamma[i] = (i==1 ? -1. : 0)*scheme->alpha[0];
195:       for (j=0; j<s; j++) scheme->gamma[i] += b[i*s+j]*scheme->stage_error[j];
196:     }
197:     PetscStackCallBLAS("LAPACKgetrs",LAPACKgetrs_("No transpose",&m,&one,ImV,&n,ipiv,scheme->gamma+1,&n,&info));
198:     if (info < 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"Bad argument to GETRS");
199:     if (info > 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"Should not happen");

201:     /* beta[0] (rho in B,J,W 2007)
202:         e.rho = 1/factorial(p+2) - glm.B(1,:)*glm.c.^(p+1)/factorial(p+1) ...
203:             + glm.V(1,2:end)*e.beta;% - e.epsilon;
204:     % Note: The paper (B,J,W 2007) includes the last term in their definition
205:     * */
206:     scheme->beta[0] = 1./Factorial(p+2);
207:     for (j=0; j<s; j++) scheme->beta[0] -= b[0*s+j]*CPowF(c[j],p+1);
208:     for (j=1; j<r; j++) scheme->beta[0] += v[0*r+j]*scheme->beta[j];

210:     /* gamma[0] (sigma in B,J,W 2007)
211:     *   e.sigma = glm.B(1,:)*e.xi + glm.V(1,2:end)*e.gamma;
212:     * */
213:     scheme->gamma[0] = 0.0;
214:     for (j=0; j<s; j++) scheme->gamma[0] += b[0*s+j]*scheme->stage_error[j];
215:     for (j=1; j<r; j++) scheme->gamma[0] += v[0*s+j]*scheme->gamma[j];

217:     /* Assemble H
218:     *    % Determine the error estimators phi
219:        H = [[cpow(glm.c,p) + C*e.alpha] [cpow(glm.c,p+1) + C*e.beta] ...
220:                [e.xi - C*(e.gamma + 0*e.epsilon*eye(s-1,1))]]';
221:     % Paper has formula above without the 0, but that term must be left
222:     % out to satisfy the conditions they propose and to make the
223:     % example schemes work
224:     e.H = H;
225:     e.phi = (H \ [1 0 0;1 1 0;0 0 -1])';
226:     e.psi = -e.phi*C;
227:     * */
228:     for (j=0; j<s; j++) {
229:       H[0+j*3] = CPowF(c[j],p);
230:       H[1+j*3] = CPowF(c[j],p+1);
231:       H[2+j*3] = scheme->stage_error[j];
232:       for (k=1; k<r; k++) {
233:         H[0+j*3] += CPowF(c[j],k-1)*scheme->alpha[k];
234:         H[1+j*3] += CPowF(c[j],k-1)*scheme->beta[k];
235:         H[2+j*3] -= CPowF(c[j],k-1)*scheme->gamma[k];
236:       }
237:     }
238:     bmat[0+0*ss] = 1.;  bmat[0+1*ss] = 0.;  bmat[0+2*ss] = 0.;
239:     bmat[1+0*ss] = 1.;  bmat[1+1*ss] = 1.;  bmat[1+2*ss] = 0.;
240:     bmat[2+0*ss] = 0.;  bmat[2+1*ss] = 0.;  bmat[2+2*ss] = -1.;
241:     m     = 3;
242:     PetscBLASIntCast(s,&n);
243:     PetscBLASIntCast(ss,&ldb);
244:     rcond = 1e-12;
245: #if defined(PETSC_USE_COMPLEX)
246:     /* ZGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK, LWORK, RWORK, INFO) */
247:     PetscStackCallBLAS("LAPACKgelss",LAPACKgelss_(&m,&n,&m,H,&m,bmat,&ldb,sing,&rcond,&rank,workscalar,&lwork,workreal,&info));
248: #else
249:     /* DGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK, LWORK, INFO) */
250:     PetscStackCallBLAS("LAPACKgelss",LAPACKgelss_(&m,&n,&m,H,&m,bmat,&ldb,sing,&rcond,&rank,workscalar,&lwork,&info));
251: #endif
252:     if (info < 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"Bad argument to GELSS");
253:     if (info > 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"SVD failed to converge");

255:     for (j=0; j<3; j++) {
256:       for (k=0; k<s; k++) scheme->phi[k+j*s] = bmat[k+j*ss];
257:     }

259:     /* the other part of the error estimator, psi in B,J,W 2007 */
260:     scheme->psi[0*r+0] = 0.;
261:     scheme->psi[1*r+0] = 0.;
262:     scheme->psi[2*r+0] = 0.;
263:     for (j=1; j<r; j++) {
264:       scheme->psi[0*r+j] = 0.;
265:       scheme->psi[1*r+j] = 0.;
266:       scheme->psi[2*r+j] = 0.;
267:       for (k=0; k<s; k++) {
268:         scheme->psi[0*r+j] -= CPowF(c[k],j-1)*scheme->phi[0*s+k];
269:         scheme->psi[1*r+j] -= CPowF(c[k],j-1)*scheme->phi[1*s+k];
270:         scheme->psi[2*r+j] -= CPowF(c[k],j-1)*scheme->phi[2*s+k];
271:       }
272:     }
273:     PetscFree7(ImV,H,bmat,workscalar,workreal,sing,ipiv);
274:   }
275:   /* Check which properties are satisfied */
276:   scheme->stiffly_accurate = PETSC_TRUE;
277:   if (scheme->c[s-1] != 1.) scheme->stiffly_accurate = PETSC_FALSE;
278:   for (j=0; j<s; j++) if (a[(s-1)*s+j] != b[j]) scheme->stiffly_accurate = PETSC_FALSE;
279:   for (j=0; j<r; j++) if (u[(s-1)*r+j] != v[j]) scheme->stiffly_accurate = PETSC_FALSE;
280:   scheme->fsal = scheme->stiffly_accurate; /* FSAL is stronger */
281:   for (j=0; j<s-1; j++) if (r>1 && b[1*s+j] != 0.) scheme->fsal = PETSC_FALSE;
282:   if (b[1*s+r-1] != 1.) scheme->fsal = PETSC_FALSE;
283:   for (j=0; j<r; j++) if (r>1 && v[1*r+j] != 0.) scheme->fsal = PETSC_FALSE;

285:   *inscheme = scheme;
286:   return(0);
287: }

289: static PetscErrorCode TSGLLESchemeDestroy(TSGLLEScheme sc)
290: {

294:   PetscFree5(sc->c,sc->a,sc->b,sc->u,sc->v);
295:   PetscFree6(sc->alpha,sc->beta,sc->gamma,sc->phi,sc->psi,sc->stage_error);
296:   PetscFree(sc);
297:   return(0);
298: }

300: static PetscErrorCode TSGLLEDestroy_Default(TS_GLLE *gl)
301: {
303:   PetscInt       i;

306:   for (i=0; i<gl->nschemes; i++) {
307:     if (gl->schemes[i]) {TSGLLESchemeDestroy(gl->schemes[i]);}
308:   }
309:   PetscFree(gl->schemes);
310:   gl->nschemes = 0;
311:   PetscMemzero(gl->type_name,sizeof(gl->type_name));
312:   return(0);
313: }

315: static PetscErrorCode TSGLLEViewTable_Private(PetscViewer viewer,PetscInt m,PetscInt n,const PetscScalar a[],const char name[])
316: {
318:   PetscBool      iascii;
319:   PetscInt       i,j;

322:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
323:   if (iascii) {
324:     PetscViewerASCIIPrintf(viewer,"%30s = [",name);
325:     for (i=0; i<m; i++) {
326:       if (i) {PetscViewerASCIIPrintf(viewer,"%30s   [","");}
327:       PetscViewerASCIIUseTabs(viewer,PETSC_FALSE);
328:       for (j=0; j<n; j++) {
329:         PetscViewerASCIIPrintf(viewer," %12.8g",PetscRealPart(a[i*n+j]));
330:       }
331:       PetscViewerASCIIPrintf(viewer,"]\n");
332:       PetscViewerASCIIUseTabs(viewer,PETSC_TRUE);
333:     }
334:   }
335:   return(0);
336: }

338: static PetscErrorCode TSGLLESchemeView(TSGLLEScheme sc,PetscBool view_details,PetscViewer viewer)
339: {
341:   PetscBool      iascii;

344:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
345:   if (iascii) {
346:     PetscViewerASCIIPrintf(viewer,"GL scheme p,q,r,s = %d,%d,%d,%d\n",sc->p,sc->q,sc->r,sc->s);
347:     PetscViewerASCIIPushTab(viewer);
348:     PetscViewerASCIIPrintf(viewer,"Stiffly accurate: %s,  FSAL: %s\n",sc->stiffly_accurate ? "yes" : "no",sc->fsal ? "yes" : "no");
349:     PetscViewerASCIIPrintf(viewer,"Leading error constants: %10.3e  %10.3e  %10.3e\n",
350:                                   PetscRealPart(sc->alpha[0]),PetscRealPart(sc->beta[0]),PetscRealPart(sc->gamma[0]));
351:     TSGLLEViewTable_Private(viewer,1,sc->s,sc->c,"Abscissas c");
352:     if (view_details) {
353:       TSGLLEViewTable_Private(viewer,sc->s,sc->s,sc->a,"A");
354:       TSGLLEViewTable_Private(viewer,sc->r,sc->s,sc->b,"B");
355:       TSGLLEViewTable_Private(viewer,sc->s,sc->r,sc->u,"U");
356:       TSGLLEViewTable_Private(viewer,sc->r,sc->r,sc->v,"V");

358:       TSGLLEViewTable_Private(viewer,3,sc->s,sc->phi,"Error estimate phi");
359:       TSGLLEViewTable_Private(viewer,3,sc->r,sc->psi,"Error estimate psi");
360:       TSGLLEViewTable_Private(viewer,1,sc->r,sc->alpha,"Modify alpha");
361:       TSGLLEViewTable_Private(viewer,1,sc->r,sc->beta,"Modify beta");
362:       TSGLLEViewTable_Private(viewer,1,sc->r,sc->gamma,"Modify gamma");
363:       TSGLLEViewTable_Private(viewer,1,sc->s,sc->stage_error,"Stage error xi");
364:     }
365:     PetscViewerASCIIPopTab(viewer);
366:   } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Viewer type %s not supported",((PetscObject)viewer)->type_name);
367:   return(0);
368: }

370: static PetscErrorCode TSGLLEEstimateHigherMoments_Default(TSGLLEScheme sc,PetscReal h,Vec Ydot[],Vec Xold[],Vec hm[])
371: {
373:   PetscInt       i;

376:   if (sc->r > 64 || sc->s > 64) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Ridiculous number of stages or items passed between stages");
377:   /* build error vectors*/
378:   for (i=0; i<3; i++) {
379:     PetscScalar phih[64];
380:     PetscInt    j;
381:     for (j=0; j<sc->s; j++) phih[j] = sc->phi[i*sc->s+j]*h;
382:     VecZeroEntries(hm[i]);
383:     VecMAXPY(hm[i],sc->s,phih,Ydot);
384:     VecMAXPY(hm[i],sc->r,&sc->psi[i*sc->r],Xold);
385:   }
386:   return(0);
387: }

389: static PetscErrorCode TSGLLECompleteStep_Rescale(TSGLLEScheme sc,PetscReal h,TSGLLEScheme next_sc,PetscReal next_h,Vec Ydot[],Vec Xold[],Vec X[])
390: {
392:   PetscScalar    brow[32],vrow[32];
393:   PetscInt       i,j,r,s;

396:   /* Build the new solution from (X,Ydot) */
397:   r = sc->r;
398:   s = sc->s;
399:   for (i=0; i<r; i++) {
400:     VecZeroEntries(X[i]);
401:     for (j=0; j<s; j++) brow[j] = h*sc->b[i*s+j];
402:     VecMAXPY(X[i],s,brow,Ydot);
403:     for (j=0; j<r; j++) vrow[j] = sc->v[i*r+j];
404:     VecMAXPY(X[i],r,vrow,Xold);
405:   }
406:   return(0);
407: }

409: static PetscErrorCode TSGLLECompleteStep_RescaleAndModify(TSGLLEScheme sc,PetscReal h,TSGLLEScheme next_sc,PetscReal next_h,Vec Ydot[],Vec Xold[],Vec X[])
410: {
412:   PetscScalar    brow[32],vrow[32];
413:   PetscReal      ratio;
414:   PetscInt       i,j,p,r,s;

417:   /* Build the new solution from (X,Ydot) */
418:   p     = sc->p;
419:   r     = sc->r;
420:   s     = sc->s;
421:   ratio = next_h/h;
422:   for (i=0; i<r; i++) {
423:     VecZeroEntries(X[i]);
424:     for (j=0; j<s; j++) {
425:       brow[j] = h*(PetscPowRealInt(ratio,i)*sc->b[i*s+j]
426:                    + (PetscPowRealInt(ratio,i) - PetscPowRealInt(ratio,p+1))*(+ sc->alpha[i]*sc->phi[0*s+j])
427:                    + (PetscPowRealInt(ratio,i) - PetscPowRealInt(ratio,p+2))*(+ sc->beta [i]*sc->phi[1*s+j]
428:                                                                               + sc->gamma[i]*sc->phi[2*s+j]));
429:     }
430:     VecMAXPY(X[i],s,brow,Ydot);
431:     for (j=0; j<r; j++) {
432:       vrow[j] = (PetscPowRealInt(ratio,i)*sc->v[i*r+j]
433:                  + (PetscPowRealInt(ratio,i) - PetscPowRealInt(ratio,p+1))*(+ sc->alpha[i]*sc->psi[0*r+j])
434:                  + (PetscPowRealInt(ratio,i) - PetscPowRealInt(ratio,p+2))*(+ sc->beta [i]*sc->psi[1*r+j]
435:                                                                             + sc->gamma[i]*sc->psi[2*r+j]));
436:     }
437:     VecMAXPY(X[i],r,vrow,Xold);
438:   }
439:   if (r < next_sc->r) {
440:     if (r+1 != next_sc->r) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Cannot accommodate jump in r greater than 1");
441:     VecZeroEntries(X[r]);
442:     for (j=0; j<s; j++) brow[j] = h*PetscPowRealInt(ratio,p+1)*sc->phi[0*s+j];
443:     VecMAXPY(X[r],s,brow,Ydot);
444:     for (j=0; j<r; j++) vrow[j] = PetscPowRealInt(ratio,p+1)*sc->psi[0*r+j];
445:     VecMAXPY(X[r],r,vrow,Xold);
446:   }
447:   return(0);
448: }

450: static PetscErrorCode TSGLLECreate_IRKS(TS ts)
451: {
452:   TS_GLLE        *gl = (TS_GLLE*)ts->data;

456:   gl->Destroy               = TSGLLEDestroy_Default;
457:   gl->EstimateHigherMoments = TSGLLEEstimateHigherMoments_Default;
458:   gl->CompleteStep          = TSGLLECompleteStep_RescaleAndModify;
459:   PetscMalloc1(10,&gl->schemes);
460:   gl->nschemes = 0;

462:   {
463:     /* p=1,q=1, r=s=2, A- and L-stable with error estimates of order 2 and 3
464:     * Listed in Butcher & Podhaisky 2006. On error estimation in general linear methods for stiff ODE.
465:     * irks(0.3,0,[.3,1],[1],1)
466:     * Note: can be made to have classical order (not stage order) 2 by replacing 0.3 with 1-sqrt(1/2)
467:     * but doing so would sacrifice the error estimator.
468:     */
469:     const PetscScalar c[2]    = {3./10., 1.};
470:     const PetscScalar a[2][2] = {{3./10., 0}, {7./10., 3./10.}};
471:     const PetscScalar b[2][2] = {{7./10., 3./10.}, {0,1}};
472:     const PetscScalar u[2][2] = {{1,0},{1,0}};
473:     const PetscScalar v[2][2] = {{1,0},{0,0}};
474:     TSGLLESchemeCreate(1,1,2,2,c,*a,*b,*u,*v,&gl->schemes[gl->nschemes++]);
475:   }

477:   {
478:     /* p=q=2, r=s=3: irks(4/9,0,[1:3]/3,[0.33852],1) */
479:     /* http://www.math.auckland.ac.nz/~hpod/atlas/i2a.html */
480:     const PetscScalar c[3] = {1./3., 2./3., 1}
481:     ,a[3][3] = {{4./9.                ,0                      ,       0},
482:                 {1.03750643704090e+00 ,                  4./9.,       0},
483:                 {7.67024779410304e-01 ,  -3.81140216918943e-01,   4./9.}}
484:     ,b[3][3] = {{0.767024779410304,  -0.381140216918943,   4./9.},
485:                 {0.000000000000000,  0.000000000000000,   1.000000000000000},
486:                 {-2.075048385225385,   0.621728385225383,   1.277197204924873}}
487:     ,u[3][3] = {{1.0000000000000000,  -0.1111111111111109,  -0.0925925925925922},
488:                 {1.0000000000000000,  -0.8152842148186744,  -0.4199095530877056},
489:                 {1.0000000000000000,   0.1696709930641948,   0.0539741070314165}}
490:     ,v[3][3] = {{1.0000000000000000,  0.1696709930641948,   0.0539741070314165},
491:                 {0.000000000000000,   0.000000000000000,   0.000000000000000},
492:                 {0.000000000000000,   0.176122795075129,   0.000000000000000}};
493:     TSGLLESchemeCreate(2,2,3,3,c,*a,*b,*u,*v,&gl->schemes[gl->nschemes++]);
494:   }
495:   {
496:     /* p=q=3, r=s=4: irks(9/40,0,[1:4]/4,[0.3312 1.0050],[0.49541 1;1 0]) */
497:     const PetscScalar c[4] = {0.25,0.5,0.75,1.0}
498:     ,a[4][4] = {{9./40.               ,                      0,                      0,                      0},
499:                 {2.11286958887701e-01 ,    9./40.             ,                      0,                      0},
500:                 {9.46338294287584e-01 ,  -3.42942861246094e-01,   9./40.              ,                      0},
501:                 {0.521490453970721    ,  -0.662474225622980,   0.490476425459734,   9./40.           }}
502:     ,b[4][4] = {{0.521490453970721    ,  -0.662474225622980,   0.490476425459734,   9./40.           },
503:                 {0.000000000000000    ,   0.000000000000000,   0.000000000000000,   1.000000000000000},
504:                 {-0.084677029310348   ,   1.390757514776085,  -1.568157386206001,   2.023192696767826},
505:                 {0.465383797936408    ,   1.478273530625148,  -1.930836081010182,   1.644872111193354}}
506:     ,u[4][4] = {{1.00000000000000000  ,   0.02500000000001035,  -0.02499999999999053,  -0.00442708333332865},
507:                 {1.00000000000000000  ,   0.06371304111232945,  -0.04032173972189845,  -0.01389438413189452},
508:                 {1.00000000000000000  ,  -0.07839543304147778,   0.04738685705116663,   0.02032603595928376},
509:                 {1.00000000000000000  ,   0.42550734619251651,   0.10800718022400080,  -0.01726712647760034}}
510:     ,v[4][4] = {{1.00000000000000000  ,   0.42550734619251651,   0.10800718022400080,  -0.01726712647760034},
511:                 {0.000000000000000    ,   0.000000000000000,   0.000000000000000,   0.000000000000000},
512:                 {0.000000000000000    ,  -1.761115796027561,  -0.521284157173780,   0.258249384305463},
513:                 {0.000000000000000    ,  -1.657693358744728,  -1.052227765232394,   0.521284157173780}};
514:     TSGLLESchemeCreate(3,3,4,4,c,*a,*b,*u,*v,&gl->schemes[gl->nschemes++]);
515:   }
516:   {
517:     /* p=q=4, r=s=5:
518:           irks(3/11,0,[1:5]/5, [0.1715   -0.1238    0.6617],...
519:           [ -0.0812    0.4079    1.0000
520:              1.0000         0         0
521:              0.8270    1.0000         0])
522:     */
523:     const PetscScalar c[5] = {0.2,0.4,0.6,0.8,1.0}
524:     ,a[5][5] = {{2.72727272727352e-01 ,   0.00000000000000e+00,  0.00000000000000e+00 ,  0.00000000000000e+00  ,  0.00000000000000e+00},
525:                 {-1.03980153733431e-01,   2.72727272727405e-01,   0.00000000000000e+00,  0.00000000000000e+00  ,  0.00000000000000e+00},
526:                 {-1.58615400341492e+00,   7.44168951881122e-01,   2.72727272727309e-01,  0.00000000000000e+00  ,  0.00000000000000e+00},
527:                 {-8.73658042865628e-01,   5.37884671894595e-01,  -1.63298538799523e-01,   2.72727272726996e-01 ,  0.00000000000000e+00},
528:                 {2.95489397443992e-01 , -1.18481693910097e+00 , -6.68029812659953e-01 ,  1.00716687860943e+00  , 2.72727272727288e-01}}
529:     ,b[5][5] = {{2.95489397443992e-01 , -1.18481693910097e+00 , -6.68029812659953e-01 ,  1.00716687860943e+00  , 2.72727272727288e-01},
530:                 {0.00000000000000e+00 ,  1.11022302462516e-16 , -2.22044604925031e-16 ,  0.00000000000000e+00  , 1.00000000000000e+00},
531:                 {-4.05882503986005e+00,  -4.00924006567769e+00,  -1.38930610972481e+00,   4.45223930308488e+00 ,  6.32331093108427e-01},
532:                 {8.35690179937017e+00 , -2.26640927349732e+00 ,  6.86647884973826e+00 , -5.22595158025740e+00  , 4.50893068837431e+00},
533:                 {1.27656267027479e+01 ,  2.80882153840821e+00 ,  8.91173096522890e+00 , -1.07936444078906e+01  , 4.82534148988854e+00}}
534:     ,u[5][5] = {{1.00000000000000e+00 , -7.27272727273551e-02 , -3.45454545454419e-02 , -4.12121212119565e-03  ,-2.96969696964014e-04},
535:                 {1.00000000000000e+00 ,  2.31252881006154e-01 , -8.29487834416481e-03 , -9.07191207681020e-03  ,-1.70378403743473e-03},
536:                 {1.00000000000000e+00 ,  1.16925777880663e+00 ,  3.59268562942635e-02 , -4.09013451730615e-02  ,-1.02411119670164e-02},
537:                 {1.00000000000000e+00 ,  1.02634463704356e+00 ,  1.59375044913405e-01 ,  1.89673015035370e-03  ,-4.89987231897569e-03},
538:                 {1.00000000000000e+00 ,  1.27746320298021e+00 ,  2.37186008132728e-01 , -8.28694373940065e-02  ,-5.34396510196430e-02}}
539:     ,v[5][5] = {{1.00000000000000e+00 ,  1.27746320298021e+00 ,  2.37186008132728e-01 , -8.28694373940065e-02  ,-5.34396510196430e-02},
540:                 {0.00000000000000e+00 , -1.77635683940025e-15 , -1.99840144432528e-15 , -9.99200722162641e-16  ,-3.33066907387547e-16},
541:                 {0.00000000000000e+00 ,  4.37280081906924e+00 ,  5.49221645016377e-02 , -8.88913177394943e-02  , 1.12879077989154e-01},
542:                 {0.00000000000000e+00 , -1.22399504837280e+01 , -5.21287338448645e+00 , -8.03952325565291e-01  , 4.60298678047147e-01},
543:                 {0.00000000000000e+00 , -1.85178762883829e+01 , -5.21411849862624e+00 , -1.04283436528809e+00  , 7.49030161063651e-01}};
544:     TSGLLESchemeCreate(4,4,5,5,c,*a,*b,*u,*v,&gl->schemes[gl->nschemes++]);
545:   }
546:   {
547:     /* p=q=5, r=s=6;
548:        irks(1/3,0,[1:6]/6,...
549:           [-0.0489    0.4228   -0.8814    0.9021],...
550:           [-0.3474   -0.6617    0.6294    0.2129
551:             0.0044   -0.4256   -0.1427   -0.8936
552:            -0.8267    0.4821    0.1371   -0.2557
553:            -0.4426   -0.3855   -0.7514    0.3014])
554:     */
555:     const PetscScalar c[6] = {1./6, 2./6, 3./6, 4./6, 5./6, 1.}
556:     ,a[6][6] = {{  3.33333333333940e-01,  0                   ,  0                   ,  0                   ,  0                   ,  0                   },
557:                 { -8.64423857333350e-02,  3.33333333332888e-01,  0                   ,  0                   ,  0                   ,  0                   },
558:                 { -2.16850174258252e+00, -2.23619072028839e+00,  3.33333333335204e-01,  0                   ,  0                   ,  0                   },
559:                 { -4.73160970138997e+00, -3.89265344629268e+00, -2.76318716520933e-01,  3.33333333335759e-01,  0                   ,  0                   },
560:                 { -6.75187540297338e+00, -7.90756533769377e+00,  7.90245051802259e-01, -4.48352364517632e-01,  3.33333333328483e-01,  0                   },
561:                 { -4.26488287921548e+00, -1.19320395589302e+01,  3.38924509887755e+00, -2.23969848002481e+00,  6.62807710124007e-01,  3.33333333335440e-01}}
562:     ,b[6][6] = {{ -4.26488287921548e+00, -1.19320395589302e+01,  3.38924509887755e+00, -2.23969848002481e+00,  6.62807710124007e-01,  3.33333333335440e-01},
563:                 { -8.88178419700125e-16,  4.44089209850063e-16, -1.54737334057131e-15, -8.88178419700125e-16,  0.00000000000000e+00,  1.00000000000001e+00},
564:                 { -2.87780425770651e+01, -1.13520448264971e+01,  2.62002318943161e+01,  2.56943874812797e+01, -3.06702268304488e+01,  6.68067773510103e+00},
565:                 {  5.47971245256474e+01,  6.80366875868284e+01, -6.50952588861999e+01, -8.28643975339097e+01,  8.17416943896414e+01, -1.17819043489036e+01},
566:                 { -2.33332114788869e+02,  6.12942539462634e+01, -4.91850135865944e+01,  1.82716844135480e+02, -1.29788173979395e+02,  3.09968095651099e+01},
567:                 { -1.72049132343751e+02,  8.60194713593999e+00,  7.98154219170200e-01,  1.50371386053218e+02, -1.18515423962066e+02,  2.50898277784663e+01}}
568:     ,u[6][6] = {{  1.00000000000000e+00, -1.66666666666870e-01, -4.16666666664335e-02, -3.85802469124815e-03, -2.25051440302250e-04, -9.64506172339142e-06},
569:                 {  1.00000000000000e+00,  8.64423857327162e-02, -4.11484912671353e-02, -1.11450903217645e-02, -1.47651050487126e-03, -1.34395070766826e-04},
570:                 {  1.00000000000000e+00,  4.57135912953434e+00,  1.06514719719137e+00,  1.33517564218007e-01,  1.11365952968659e-02,  6.12382756769504e-04},
571:                 {  1.00000000000000e+00,  9.23391519753404e+00,  2.22431212392095e+00,  2.91823807741891e-01,  2.52058456411084e-02,  1.22800542949647e-03},
572:                 {  1.00000000000000e+00,  1.48175480533865e+01,  3.73439117461835e+00,  5.14648336541804e-01,  4.76430038853402e-02,  2.56798515502156e-03},
573:                 {  1.00000000000000e+00,  1.50512347758335e+01,  4.10099701165164e+00,  5.66039141003603e-01,  3.91213893800891e-02, -2.99136269067853e-03}}
574:     ,v[6][6] = {{  1.00000000000000e+00,  1.50512347758335e+01,  4.10099701165164e+00,  5.66039141003603e-01,  3.91213893800891e-02, -2.99136269067853e-03},
575:                 {  0.00000000000000e+00, -4.88498130835069e-15, -6.43929354282591e-15, -3.55271367880050e-15, -1.22124532708767e-15, -3.12250225675825e-16},
576:                 {  0.00000000000000e+00,  1.22250171233141e+01, -1.77150760606169e+00,  3.54516769879390e-01,  6.22298845883398e-01,  2.31647447450276e-01},
577:                 {  0.00000000000000e+00, -4.48339457331040e+01, -3.57363126641880e-01,  5.18750173123425e-01,  6.55727990241799e-02,  1.63175368287079e-01},
578:                 {  0.00000000000000e+00,  1.37297394708005e+02, -1.60145272991317e+00, -5.05319555199441e+00,  1.55328940390990e-01,  9.16629423682464e-01},
579:                 {  0.00000000000000e+00,  1.05703241119022e+02, -1.16610260983038e+00, -2.99767252773859e+00, -1.13472315553890e-01,  1.09742849254729e+00}};
580:     TSGLLESchemeCreate(5,5,6,6,c,*a,*b,*u,*v,&gl->schemes[gl->nschemes++]);
581:   }
582:   return(0);
583: }

585: /*@C
586:    TSGLLESetType - sets the class of general linear method to use for time-stepping

588:    Collective on TS

590:    Input Parameters:
591: +  ts - the TS context
592: -  type - a method

594:    Options Database Key:
595: .  -ts_gl_type <type> - sets the method, use -help for a list of available method (e.g. irks)

597:    Notes:
598:    See "petsc/include/petscts.h" for available methods (for instance)
599: .    TSGLLE_IRKS - Diagonally implicit methods with inherent Runge-Kutta stability (for stiff problems)

601:    Normally, it is best to use the TSSetFromOptions() command and
602:    then set the TSGLLE type from the options database rather than by using
603:    this routine.  Using the options database provides the user with
604:    maximum flexibility in evaluating the many different solvers.
605:    The TSGLLESetType() routine is provided for those situations where it
606:    is necessary to set the timestepping solver independently of the
607:    command line or options database.  This might be the case, for example,
608:    when the choice of solver changes during the execution of the
609:    program, and the user's application is taking responsibility for
610:    choosing the appropriate method.

612:    Level: intermediate

614: @*/
615: PetscErrorCode  TSGLLESetType(TS ts,TSGLLEType type)
616: {

622:   PetscTryMethod(ts,"TSGLLESetType_C",(TS,TSGLLEType),(ts,type));
623:   return(0);
624: }

626: /*@C
627:    TSGLLESetAcceptType - sets the acceptance test

629:    Time integrators that need to control error must have the option to reject a time step based on local error
630:    estimates.  This function allows different schemes to be set.

632:    Logically Collective on TS

634:    Input Parameters:
635: +  ts - the TS context
636: -  type - the type

638:    Options Database Key:
639: .  -ts_gl_accept_type <type> - sets the method used to determine whether to accept or reject a step

641:    Level: intermediate

643: .seealso: TS, TSGLLE, TSGLLEAcceptRegister(), TSGLLEAdapt, set type
644: @*/
645: PetscErrorCode  TSGLLESetAcceptType(TS ts,TSGLLEAcceptType type)
646: {

652:   PetscTryMethod(ts,"TSGLLESetAcceptType_C",(TS,TSGLLEAcceptType),(ts,type));
653:   return(0);
654: }

656: /*@C
657:    TSGLLEGetAdapt - gets the TSGLLEAdapt object from the TS

659:    Not Collective

661:    Input Parameter:
662: .  ts - the TS context

664:    Output Parameter:
665: .  adapt - the TSGLLEAdapt context

667:    Notes:
668:    This allows the user set options on the TSGLLEAdapt object.  Usually it is better to do this using the options
669:    database, so this function is rarely needed.

671:    Level: advanced

673: .seealso: TSGLLEAdapt, TSGLLEAdaptRegister()
674: @*/
675: PetscErrorCode  TSGLLEGetAdapt(TS ts,TSGLLEAdapt *adapt)
676: {

682:   PetscUseMethod(ts,"TSGLLEGetAdapt_C",(TS,TSGLLEAdapt*),(ts,adapt));
683:   return(0);
684: }

686: static PetscErrorCode TSGLLEAccept_Always(TS ts,PetscReal tleft,PetscReal h,const PetscReal enorms[],PetscBool  *accept)
687: {
689:   *accept = PETSC_TRUE;
690:   return(0);
691: }

693: static PetscErrorCode TSGLLEUpdateWRMS(TS ts)
694: {
695:   TS_GLLE        *gl = (TS_GLLE*)ts->data;
697:   PetscScalar    *x,*w;
698:   PetscInt       n,i;

701:   VecGetArray(gl->X[0],&x);
702:   VecGetArray(gl->W,&w);
703:   VecGetLocalSize(gl->W,&n);
704:   for (i=0; i<n; i++) w[i] = 1./(gl->wrms_atol + gl->wrms_rtol*PetscAbsScalar(x[i]));
705:   VecRestoreArray(gl->X[0],&x);
706:   VecRestoreArray(gl->W,&w);
707:   return(0);
708: }

710: static PetscErrorCode TSGLLEVecNormWRMS(TS ts,Vec X,PetscReal *nrm)
711: {
712:   TS_GLLE        *gl = (TS_GLLE*)ts->data;
714:   PetscScalar    *x,*w;
715:   PetscReal      sum = 0.0,gsum;
716:   PetscInt       n,N,i;

719:   VecGetArray(X,&x);
720:   VecGetArray(gl->W,&w);
721:   VecGetLocalSize(gl->W,&n);
722:   for (i=0; i<n; i++) sum += PetscAbsScalar(PetscSqr(x[i]*w[i]));
723:   VecRestoreArray(X,&x);
724:   VecRestoreArray(gl->W,&w);
725:   MPIU_Allreduce(&sum,&gsum,1,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));
726:   VecGetSize(gl->W,&N);
727:   *nrm = PetscSqrtReal(gsum/(1.*N));
728:   return(0);
729: }

731: static PetscErrorCode TSGLLESetType_GLLE(TS ts,TSGLLEType type)
732: {
733:   PetscErrorCode ierr,(*r)(TS);
734:   PetscBool      same;
735:   TS_GLLE        *gl = (TS_GLLE*)ts->data;

738:   if (gl->type_name[0]) {
739:     PetscStrcmp(gl->type_name,type,&same);
740:     if (same) return(0);
741:     (*gl->Destroy)(gl);
742:   }

744:   PetscFunctionListFind(TSGLLEList,type,&r);
745:   if (!r) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_UNKNOWN_TYPE,"Unknown TSGLLE type \"%s\" given",type);
746:   (*r)(ts);
747:   PetscStrcpy(gl->type_name,type);
748:   return(0);
749: }

751: static PetscErrorCode TSGLLESetAcceptType_GLLE(TS ts,TSGLLEAcceptType type)
752: {
753:   PetscErrorCode       ierr;
754:   TSGLLEAcceptFunction r;
755:   TS_GLLE              *gl = (TS_GLLE*)ts->data;

758:   PetscFunctionListFind(TSGLLEAcceptList,type,&r);
759:   if (!r) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_UNKNOWN_TYPE,"Unknown TSGLLEAccept type \"%s\" given",type);
760:   gl->Accept = r;
761:   PetscStrncpy(gl->accept_name,type,sizeof(gl->accept_name));
762:   return(0);
763: }

765: static PetscErrorCode TSGLLEGetAdapt_GLLE(TS ts,TSGLLEAdapt *adapt)
766: {
768:   TS_GLLE        *gl = (TS_GLLE*)ts->data;

771:   if (!gl->adapt) {
772:     TSGLLEAdaptCreate(PetscObjectComm((PetscObject)ts),&gl->adapt);
773:     PetscObjectIncrementTabLevel((PetscObject)gl->adapt,(PetscObject)ts,1);
774:     PetscLogObjectParent((PetscObject)ts,(PetscObject)gl->adapt);
775:   }
776:   *adapt = gl->adapt;
777:   return(0);
778: }

780: static PetscErrorCode TSGLLEChooseNextScheme(TS ts,PetscReal h,const PetscReal hmnorm[],PetscInt *next_scheme,PetscReal *next_h,PetscBool  *finish)
781: {
783:   TS_GLLE        *gl = (TS_GLLE*)ts->data;
784:   PetscInt       i,n,cur_p,cur,next_sc,candidates[64],orders[64];
785:   PetscReal      errors[64],costs[64],tleft;

788:   cur   = -1;
789:   cur_p = gl->schemes[gl->current_scheme]->p;
790:   tleft = ts->max_time - (ts->ptime + ts->time_step);
791:   for (i=0,n=0; i<gl->nschemes; i++) {
792:     TSGLLEScheme sc = gl->schemes[i];
793:     if (sc->p < gl->min_order || gl->max_order < sc->p) continue;
794:     if (sc->p == cur_p - 1)    errors[n] = PetscAbsScalar(sc->alpha[0])*hmnorm[0];
795:     else if (sc->p == cur_p)   errors[n] = PetscAbsScalar(sc->alpha[0])*hmnorm[1];
796:     else if (sc->p == cur_p+1) errors[n] = PetscAbsScalar(sc->alpha[0])*(hmnorm[2]+hmnorm[3]);
797:     else continue;
798:     candidates[n] = i;
799:     orders[n]     = PetscMin(sc->p,sc->q); /* order of global truncation error */
800:     costs[n]      = sc->s;                 /* estimate the cost as the number of stages */
801:     if (i == gl->current_scheme) cur = n;
802:     n++;
803:   }
804:   if (cur < 0 || gl->nschemes <= cur) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Current scheme not found in scheme list");
805:   TSGLLEAdaptChoose(gl->adapt,n,orders,errors,costs,cur,h,tleft,&next_sc,next_h,finish);
806:   *next_scheme = candidates[next_sc];
807:   PetscInfo7(ts,"Adapt chose scheme %d (%d,%d,%d,%d) with step size %6.2e, finish=%d\n",*next_scheme,gl->schemes[*next_scheme]->p,gl->schemes[*next_scheme]->q,gl->schemes[*next_scheme]->r,gl->schemes[*next_scheme]->s,*next_h,*finish);
808:   return(0);
809: }

811: static PetscErrorCode TSGLLEGetMaxSizes(TS ts,PetscInt *max_r,PetscInt *max_s)
812: {
813:   TS_GLLE *gl = (TS_GLLE*)ts->data;

816:   *max_r = gl->schemes[gl->nschemes-1]->r;
817:   *max_s = gl->schemes[gl->nschemes-1]->s;
818:   return(0);
819: }

821: static PetscErrorCode TSSolve_GLLE(TS ts)
822: {
823:   TS_GLLE             *gl = (TS_GLLE*)ts->data;
824:   PetscInt            i,k,its,lits,max_r,max_s;
825:   PetscBool           final_step,finish;
826:   SNESConvergedReason snesreason;
827:   PetscErrorCode      ierr;

830:   TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);

832:   TSGLLEGetMaxSizes(ts,&max_r,&max_s);
833:   VecCopy(ts->vec_sol,gl->X[0]);
834:   for (i=1; i<max_r; i++) {
835:     VecZeroEntries(gl->X[i]);
836:   }
837:   TSGLLEUpdateWRMS(ts);

839:   if (0) {
840:     /* Find consistent initial data for DAE */
841:     gl->stage_time = ts->ptime + ts->time_step;
842:     gl->scoeff = 1.;
843:     gl->stage  = 0;

845:     VecCopy(ts->vec_sol,gl->Z);
846:     VecCopy(ts->vec_sol,gl->Y);
847:     SNESSolve(ts->snes,NULL,gl->Y);
848:     SNESGetIterationNumber(ts->snes,&its);
849:     SNESGetLinearSolveIterations(ts->snes,&lits);
850:     SNESGetConvergedReason(ts->snes,&snesreason);

852:     ts->snes_its += its; ts->ksp_its += lits;
853:     if (snesreason < 0 && ts->max_snes_failures > 0 && ++ts->num_snes_failures >= ts->max_snes_failures) {
854:       ts->reason = TS_DIVERGED_NONLINEAR_SOLVE;
855:       PetscInfo2(ts,"Step=%D, nonlinear solve solve failures %D greater than current TS allowed, stopping solve\n",ts->steps,ts->num_snes_failures);
856:       return(0);
857:     }
858:   }

860:   if (gl->current_scheme < 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ORDER,"A starting scheme has not been provided");

862:   for (k=0,final_step=PETSC_FALSE,finish=PETSC_FALSE; k<ts->max_steps && !finish; k++) {
863:     PetscInt          j,r,s,next_scheme = 0,rejections;
864:     PetscReal         h,hmnorm[4],enorm[3],next_h;
865:     PetscBool         accept;
866:     const PetscScalar *c,*a,*u;
867:     Vec               *X,*Ydot,Y;
868:     TSGLLEScheme        scheme = gl->schemes[gl->current_scheme];

870:     r = scheme->r; s = scheme->s;
871:     c = scheme->c;
872:     a = scheme->a; u = scheme->u;
873:     h = ts->time_step;
874:     X = gl->X; Ydot = gl->Ydot; Y = gl->Y;

876:     if (ts->ptime > ts->max_time) break;

878:     /*
879:       We only call PreStep at the start of each STEP, not each STAGE.  This is because it is
880:       possible to fail (have to restart a step) after multiple stages.
881:     */
882:     TSPreStep(ts);

884:     rejections = 0;
885:     while (1) {
886:       for (i=0; i<s; i++) {
887:         PetscScalar shift;
888:         gl->scoeff     = 1./PetscRealPart(a[i*s+i]);
889:         shift          = gl->scoeff/ts->time_step;
890:         gl->stage      = i;
891:         gl->stage_time = ts->ptime + PetscRealPart(c[i])*h;

893:         /*
894:         * Stage equation: Y = h A Y' + U X
895:         * We assume that A is lower-triangular so that we can solve the stages (Y,Y') sequentially
896:         * Build the affine vector z_i = -[1/(h a_ii)](h sum_j a_ij y'_j + sum_j u_ij x_j)
897:         * Then y'_i = z + 1/(h a_ii) y_i
898:         */
899:         VecZeroEntries(gl->Z);
900:         for (j=0; j<r; j++) {
901:           VecAXPY(gl->Z,-shift*u[i*r+j],X[j]);
902:         }
903:         for (j=0; j<i; j++) {
904:           VecAXPY(gl->Z,-shift*h*a[i*s+j],Ydot[j]);
905:         }
906:         /* Note: Z is used within function evaluation, Ydot = Z + shift*Y */

908:         /* Compute an estimate of Y to start Newton iteration */
909:         if (gl->extrapolate) {
910:           if (i==0) {
911:             /* Linear extrapolation on the first stage */
912:             VecWAXPY(Y,c[i]*h,X[1],X[0]);
913:           } else {
914:             /* Linear extrapolation from the last stage */
915:             VecAXPY(Y,(c[i]-c[i-1])*h,Ydot[i-1]);
916:           }
917:         } else if (i==0) {        /* Directly use solution from the last step, otherwise reuse the last stage (do nothing) */
918:           VecCopy(X[0],Y);
919:         }

921:         /* Solve this stage (Ydot[i] is computed during function evaluation) */
922:         SNESSolve(ts->snes,NULL,Y);
923:         SNESGetIterationNumber(ts->snes,&its);
924:         SNESGetLinearSolveIterations(ts->snes,&lits);
925:         SNESGetConvergedReason(ts->snes,&snesreason);
926:         ts->snes_its += its; ts->ksp_its += lits;
927:         if (snesreason < 0 && ts->max_snes_failures > 0 && ++ts->num_snes_failures >= ts->max_snes_failures) {
928:           ts->reason = TS_DIVERGED_NONLINEAR_SOLVE;
929:           PetscInfo2(ts,"Step=%D, nonlinear solve solve failures %D greater than current TS allowed, stopping solve\n",ts->steps,ts->num_snes_failures);
930:           return(0);
931:         }
932:       }

934:       gl->stage_time = ts->ptime + ts->time_step;

936:       (*gl->EstimateHigherMoments)(scheme,h,Ydot,gl->X,gl->himom);
937:       /* hmnorm[i] = h^{p+i}x^{(p+i)} with i=0,1,2; hmnorm[3] = h^{p+2}(dx'/dx) x^{(p+1)} */
938:       for (i=0; i<3; i++) {
939:         TSGLLEVecNormWRMS(ts,gl->himom[i],&hmnorm[i+1]);
940:       }
941:       enorm[0] = PetscRealPart(scheme->alpha[0])*hmnorm[1];
942:       enorm[1] = PetscRealPart(scheme->beta[0]) *hmnorm[2];
943:       enorm[2] = PetscRealPart(scheme->gamma[0])*hmnorm[3];
944:       (*gl->Accept)(ts,ts->max_time-gl->stage_time,h,enorm,&accept);
945:       if (accept) goto accepted;
946:       rejections++;
947:       PetscInfo3(ts,"Step %D (t=%g) not accepted, rejections=%D\n",k,gl->stage_time,rejections);
948:       if (rejections > gl->max_step_rejections) break;
949:       /*
950:         There are lots of reasons why a step might be rejected, including solvers not converging and other factors that
951:         TSGLLEChooseNextScheme does not support.  Additionally, the error estimates may be very screwed up, so I'm not
952:         convinced that it's safe to just compute a new error estimate using the same interface as the current adaptor
953:         (the adaptor interface probably has to change).  Here we make an arbitrary and naive choice.  This assumes that
954:         steps were written in Nordsieck form.  The "correct" method would be to re-complete the previous time step with
955:         the correct "next" step size.  It is unclear to me whether the present ad-hoc method of rescaling X is stable.
956:       */
957:       h *= 0.5;
958:       for (i=1; i<scheme->r; i++) {
959:         VecScale(X[i],PetscPowRealInt(0.5,i));
960:       }
961:     }
962:     SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_CONV_FAILED,"Time step %D (t=%g) not accepted after %D failures\n",k,gl->stage_time,rejections);

964: accepted:
965:     /* This term is not error, but it *would* be the leading term for a lower order method */
966:     TSGLLEVecNormWRMS(ts,gl->X[scheme->r-1],&hmnorm[0]);
967:     /* Correct scaling so that these are equivalent to norms of the Nordsieck vectors */

969:     PetscInfo4(ts,"Last moment norm %10.2e, estimated error norms %10.2e %10.2e %10.2e\n",hmnorm[0],enorm[0],enorm[1],enorm[2]);
970:     if (!final_step) {
971:       TSGLLEChooseNextScheme(ts,h,hmnorm,&next_scheme,&next_h,&final_step);
972:     } else {
973:       /* Dummy values to complete the current step in a consistent manner */
974:       next_scheme = gl->current_scheme;
975:       next_h      = h;
976:       finish      = PETSC_TRUE;
977:     }

979:     X        = gl->Xold;
980:     gl->Xold = gl->X;
981:     gl->X    = X;
982:     (*gl->CompleteStep)(scheme,h,gl->schemes[next_scheme],next_h,Ydot,gl->Xold,gl->X);

984:     TSGLLEUpdateWRMS(ts);

986:     /* Post the solution for the user, we could avoid this copy with a small bit of cleverness */
987:     VecCopy(gl->X[0],ts->vec_sol);
988:     ts->ptime += h;
989:     ts->steps++;

991:     TSPostEvaluate(ts);
992:     TSPostStep(ts);
993:     TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);

995:     gl->current_scheme = next_scheme;
996:     ts->time_step      = next_h;
997:   }
998:   return(0);
999: }

1001: /*------------------------------------------------------------*/

1003: static PetscErrorCode TSReset_GLLE(TS ts)
1004: {
1005:   TS_GLLE        *gl = (TS_GLLE*)ts->data;
1006:   PetscInt       max_r,max_s;

1010:   if (gl->setupcalled) {
1011:     TSGLLEGetMaxSizes(ts,&max_r,&max_s);
1012:     VecDestroyVecs(max_r,&gl->Xold);
1013:     VecDestroyVecs(max_r,&gl->X);
1014:     VecDestroyVecs(max_s,&gl->Ydot);
1015:     VecDestroyVecs(3,&gl->himom);
1016:     VecDestroy(&gl->W);
1017:     VecDestroy(&gl->Y);
1018:     VecDestroy(&gl->Z);
1019:   }
1020:   gl->setupcalled = PETSC_FALSE;
1021:   return(0);
1022: }

1024: static PetscErrorCode TSDestroy_GLLE(TS ts)
1025: {
1026:   TS_GLLE        *gl = (TS_GLLE*)ts->data;

1030:   TSReset_GLLE(ts);
1031:   if (ts->dm) {
1032:     DMCoarsenHookRemove(ts->dm,DMCoarsenHook_TSGLLE,DMRestrictHook_TSGLLE,ts);
1033:     DMSubDomainHookRemove(ts->dm,DMSubDomainHook_TSGLLE,DMSubDomainRestrictHook_TSGLLE,ts);
1034:   }
1035:   if (gl->adapt) {TSGLLEAdaptDestroy(&gl->adapt);}
1036:   if (gl->Destroy) {(*gl->Destroy)(gl);}
1037:   PetscFree(ts->data);
1038:   PetscObjectComposeFunction((PetscObject)ts,"TSGLLESetType_C",NULL);
1039:   PetscObjectComposeFunction((PetscObject)ts,"TSGLLESetAcceptType_C",NULL);
1040:   PetscObjectComposeFunction((PetscObject)ts,"TSGLLEGetAdapt_C",NULL);
1041:   return(0);
1042: }

1044: /*
1045:     This defines the nonlinear equation that is to be solved with SNES
1046:     g(x) = f(t,x,z+shift*x) = 0
1047: */
1048: static PetscErrorCode SNESTSFormFunction_GLLE(SNES snes,Vec x,Vec f,TS ts)
1049: {
1050:   TS_GLLE        *gl = (TS_GLLE*)ts->data;
1052:   Vec            Z,Ydot;
1053:   DM             dm,dmsave;

1056:   SNESGetDM(snes,&dm);
1057:   TSGLLEGetVecs(ts,dm,&Z,&Ydot);
1058:   VecWAXPY(Ydot,gl->scoeff/ts->time_step,x,Z);
1059:   dmsave = ts->dm;
1060:   ts->dm = dm;
1061:   TSComputeIFunction(ts,gl->stage_time,x,Ydot,f,PETSC_FALSE);
1062:   ts->dm = dmsave;
1063:   TSGLLERestoreVecs(ts,dm,&Z,&Ydot);
1064:   return(0);
1065: }

1067: static PetscErrorCode SNESTSFormJacobian_GLLE(SNES snes,Vec x,Mat A,Mat B,TS ts)
1068: {
1069:   TS_GLLE        *gl = (TS_GLLE*)ts->data;
1071:   Vec            Z,Ydot;
1072:   DM             dm,dmsave;

1075:   SNESGetDM(snes,&dm);
1076:   TSGLLEGetVecs(ts,dm,&Z,&Ydot);
1077:   dmsave = ts->dm;
1078:   ts->dm = dm;
1079:   /* gl->Xdot will have already been computed in SNESTSFormFunction_GLLE */
1080:   TSComputeIJacobian(ts,gl->stage_time,x,gl->Ydot[gl->stage],gl->scoeff/ts->time_step,A,B,PETSC_FALSE);
1081:   ts->dm = dmsave;
1082:   TSGLLERestoreVecs(ts,dm,&Z,&Ydot);
1083:   return(0);
1084: }

1086: static PetscErrorCode TSSetUp_GLLE(TS ts)
1087: {
1088:   TS_GLLE        *gl = (TS_GLLE*)ts->data;
1089:   PetscInt       max_r,max_s;
1091:   DM             dm;

1094:   gl->setupcalled = PETSC_TRUE;
1095:   TSGLLEGetMaxSizes(ts,&max_r,&max_s);
1096:   VecDuplicateVecs(ts->vec_sol,max_r,&gl->X);
1097:   VecDuplicateVecs(ts->vec_sol,max_r,&gl->Xold);
1098:   VecDuplicateVecs(ts->vec_sol,max_s,&gl->Ydot);
1099:   VecDuplicateVecs(ts->vec_sol,3,&gl->himom);
1100:   VecDuplicate(ts->vec_sol,&gl->W);
1101:   VecDuplicate(ts->vec_sol,&gl->Y);
1102:   VecDuplicate(ts->vec_sol,&gl->Z);

1104:   /* Default acceptance tests and adaptivity */
1105:   if (!gl->Accept) {TSGLLESetAcceptType(ts,TSGLLEACCEPT_ALWAYS);}
1106:   if (!gl->adapt)  {TSGLLEGetAdapt(ts,&gl->adapt);}

1108:   if (gl->current_scheme < 0) {
1109:     PetscInt i;
1110:     for (i=0;; i++) {
1111:       if (gl->schemes[i]->p == gl->start_order) break;
1112:       if (i+1 == gl->nschemes) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"No schemes available with requested start order %d",i);
1113:     }
1114:     gl->current_scheme = i;
1115:   }
1116:   TSGetDM(ts,&dm);
1117:   DMCoarsenHookAdd(dm,DMCoarsenHook_TSGLLE,DMRestrictHook_TSGLLE,ts);
1118:   DMSubDomainHookAdd(dm,DMSubDomainHook_TSGLLE,DMSubDomainRestrictHook_TSGLLE,ts);
1119:   return(0);
1120: }
1121: /*------------------------------------------------------------*/

1123: static PetscErrorCode TSSetFromOptions_GLLE(PetscOptionItems *PetscOptionsObject,TS ts)
1124: {
1125:   TS_GLLE        *gl        = (TS_GLLE*)ts->data;
1126:   char           tname[256] = TSGLLE_IRKS,completef[256] = "rescale-and-modify";

1130:   PetscOptionsHead(PetscOptionsObject,"General Linear ODE solver options");
1131:   {
1132:     PetscBool flg;
1133:     PetscOptionsFList("-ts_gl_type","Type of GL method","TSGLLESetType",TSGLLEList,gl->type_name[0] ? gl->type_name : tname,tname,sizeof(tname),&flg);
1134:     if (flg || !gl->type_name[0]) {
1135:       TSGLLESetType(ts,tname);
1136:     }
1137:     PetscOptionsInt("-ts_gl_max_step_rejections","Maximum number of times to attempt a step","None",gl->max_step_rejections,&gl->max_step_rejections,NULL);
1138:     PetscOptionsInt("-ts_gl_max_order","Maximum order to try","TSGLLESetMaxOrder",gl->max_order,&gl->max_order,NULL);
1139:     PetscOptionsInt("-ts_gl_min_order","Minimum order to try","TSGLLESetMinOrder",gl->min_order,&gl->min_order,NULL);
1140:     PetscOptionsInt("-ts_gl_start_order","Initial order to try","TSGLLESetMinOrder",gl->start_order,&gl->start_order,NULL);
1141:     PetscOptionsEnum("-ts_gl_error_direction","Which direction to look when estimating error","TSGLLESetErrorDirection",TSGLLEErrorDirections,(PetscEnum)gl->error_direction,(PetscEnum*)&gl->error_direction,NULL);
1142:     PetscOptionsBool("-ts_gl_extrapolate","Extrapolate stage solution from previous solution (sometimes unstable)","TSGLLESetExtrapolate",gl->extrapolate,&gl->extrapolate,NULL);
1143:     PetscOptionsReal("-ts_gl_atol","Absolute tolerance","TSGLLESetTolerances",gl->wrms_atol,&gl->wrms_atol,NULL);
1144:     PetscOptionsReal("-ts_gl_rtol","Relative tolerance","TSGLLESetTolerances",gl->wrms_rtol,&gl->wrms_rtol,NULL);
1145:     PetscOptionsString("-ts_gl_complete","Method to use for completing the step","none",completef,completef,sizeof(completef),&flg);
1146:     if (flg) {
1147:       PetscBool match1,match2;
1148:       PetscStrcmp(completef,"rescale",&match1);
1149:       PetscStrcmp(completef,"rescale-and-modify",&match2);
1150:       if (match1)      gl->CompleteStep = TSGLLECompleteStep_Rescale;
1151:       else if (match2) gl->CompleteStep = TSGLLECompleteStep_RescaleAndModify;
1152:       else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_UNKNOWN_TYPE,"%s",completef);
1153:     }
1154:     {
1155:       char type[256] = TSGLLEACCEPT_ALWAYS;
1156:       PetscOptionsFList("-ts_gl_accept_type","Method to use for determining whether to accept a step","TSGLLESetAcceptType",TSGLLEAcceptList,gl->accept_name[0] ? gl->accept_name : type,type,sizeof(type),&flg);
1157:       if (flg || !gl->accept_name[0]) {
1158:         TSGLLESetAcceptType(ts,type);
1159:       }
1160:     }
1161:     {
1162:       TSGLLEAdapt adapt;
1163:       TSGLLEGetAdapt(ts,&adapt);
1164:       TSGLLEAdaptSetFromOptions(PetscOptionsObject,adapt);
1165:     }
1166:   }
1167:   PetscOptionsTail();
1168:   return(0);
1169: }

1171: static PetscErrorCode TSView_GLLE(TS ts,PetscViewer viewer)
1172: {
1173:   TS_GLLE        *gl = (TS_GLLE*)ts->data;
1174:   PetscInt       i;
1175:   PetscBool      iascii,details;

1179:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
1180:   if (iascii) {
1181:     PetscViewerASCIIPrintf(viewer,"  min order %D, max order %D, current order %D\n",gl->min_order,gl->max_order,gl->schemes[gl->current_scheme]->p);
1182:     PetscViewerASCIIPrintf(viewer,"  Error estimation: %s\n",TSGLLEErrorDirections[gl->error_direction]);
1183:     PetscViewerASCIIPrintf(viewer,"  Extrapolation: %s\n",gl->extrapolate ? "yes" : "no");
1184:     PetscViewerASCIIPrintf(viewer,"  Acceptance test: %s\n",gl->accept_name[0] ? gl->accept_name : "(not yet set)");
1185:     PetscViewerASCIIPushTab(viewer);
1186:     TSGLLEAdaptView(gl->adapt,viewer);
1187:     PetscViewerASCIIPopTab(viewer);
1188:     PetscViewerASCIIPrintf(viewer,"  type: %s\n",gl->type_name[0] ? gl->type_name : "(not yet set)");
1189:     PetscViewerASCIIPrintf(viewer,"Schemes within family (%d):\n",gl->nschemes);
1190:     details = PETSC_FALSE;
1191:     PetscOptionsGetBool(((PetscObject)ts)->options,((PetscObject)ts)->prefix,"-ts_gl_view_detailed",&details,NULL);
1192:     PetscViewerASCIIPushTab(viewer);
1193:     for (i=0; i<gl->nschemes; i++) {
1194:       TSGLLESchemeView(gl->schemes[i],details,viewer);
1195:     }
1196:     if (gl->View) {
1197:       (*gl->View)(gl,viewer);
1198:     }
1199:     PetscViewerASCIIPopTab(viewer);
1200:   }
1201:   return(0);
1202: }

1204: /*@C
1205:    TSGLLERegister -  adds a TSGLLE implementation

1207:    Not Collective

1209:    Input Parameters:
1210: +  name_scheme - name of user-defined general linear scheme
1211: -  routine_create - routine to create method context

1213:    Notes:
1214:    TSGLLERegister() may be called multiple times to add several user-defined families.

1216:    Sample usage:
1217: .vb
1218:    TSGLLERegister("my_scheme",MySchemeCreate);
1219: .ve

1221:    Then, your scheme can be chosen with the procedural interface via
1222: $     TSGLLESetType(ts,"my_scheme")
1223:    or at runtime via the option
1224: $     -ts_gl_type my_scheme

1226:    Level: advanced

1228: .seealso: TSGLLERegisterAll()
1229: @*/
1230: PetscErrorCode  TSGLLERegister(const char sname[],PetscErrorCode (*function)(TS))
1231: {

1235:   TSGLLEInitializePackage();
1236:   PetscFunctionListAdd(&TSGLLEList,sname,function);
1237:   return(0);
1238: }

1240: /*@C
1241:    TSGLLEAcceptRegister -  adds a TSGLLE acceptance scheme

1243:    Not Collective

1245:    Input Parameters:
1246: +  name_scheme - name of user-defined acceptance scheme
1247: -  routine_create - routine to create method context

1249:    Notes:
1250:    TSGLLEAcceptRegister() may be called multiple times to add several user-defined families.

1252:    Sample usage:
1253: .vb
1254:    TSGLLEAcceptRegister("my_scheme",MySchemeCreate);
1255: .ve

1257:    Then, your scheme can be chosen with the procedural interface via
1258: $     TSGLLESetAcceptType(ts,"my_scheme")
1259:    or at runtime via the option
1260: $     -ts_gl_accept_type my_scheme

1262:    Level: advanced

1264: .seealso: TSGLLERegisterAll()
1265: @*/
1266: PetscErrorCode  TSGLLEAcceptRegister(const char sname[],TSGLLEAcceptFunction function)
1267: {

1271:   PetscFunctionListAdd(&TSGLLEAcceptList,sname,function);
1272:   return(0);
1273: }

1275: /*@C
1276:   TSGLLERegisterAll - Registers all of the general linear methods in TSGLLE

1278:   Not Collective

1280:   Level: advanced

1282: .seealso:  TSGLLERegisterDestroy()
1283: @*/
1284: PetscErrorCode  TSGLLERegisterAll(void)
1285: {

1289:   if (TSGLLERegisterAllCalled) return(0);
1290:   TSGLLERegisterAllCalled = PETSC_TRUE;

1292:   TSGLLERegister(TSGLLE_IRKS,              TSGLLECreate_IRKS);
1293:   TSGLLEAcceptRegister(TSGLLEACCEPT_ALWAYS,TSGLLEAccept_Always);
1294:   return(0);
1295: }

1297: /*@C
1298:   TSGLLEInitializePackage - This function initializes everything in the TSGLLE package. It is called
1299:   from TSInitializePackage().

1301:   Level: developer

1303: .seealso: PetscInitialize()
1304: @*/
1305: PetscErrorCode  TSGLLEInitializePackage(void)
1306: {

1310:   if (TSGLLEPackageInitialized) return(0);
1311:   TSGLLEPackageInitialized = PETSC_TRUE;
1312:   TSGLLERegisterAll();
1313:   PetscRegisterFinalize(TSGLLEFinalizePackage);
1314:   return(0);
1315: }

1317: /*@C
1318:   TSGLLEFinalizePackage - This function destroys everything in the TSGLLE package. It is
1319:   called from PetscFinalize().

1321:   Level: developer

1323: .seealso: PetscFinalize()
1324: @*/
1325: PetscErrorCode  TSGLLEFinalizePackage(void)
1326: {

1330:   PetscFunctionListDestroy(&TSGLLEList);
1331:   PetscFunctionListDestroy(&TSGLLEAcceptList);
1332:   TSGLLEPackageInitialized = PETSC_FALSE;
1333:   TSGLLERegisterAllCalled  = PETSC_FALSE;
1334:   return(0);
1335: }

1337: /* ------------------------------------------------------------ */
1338: /*MC
1339:       TSGLLE - DAE solver using implicit General Linear methods

1341:   These methods contain Runge-Kutta and multistep schemes as special cases.  These special cases have some fundamental
1342:   limitations.  For example, diagonally implicit Runge-Kutta cannot have stage order greater than 1 which limits their
1343:   applicability to very stiff systems.  Meanwhile, multistep methods cannot be A-stable for order greater than 2 and BDF
1344:   are not 0-stable for order greater than 6.  GL methods can be A- and L-stable with arbitrarily high stage order and
1345:   reliable error estimates for both 1 and 2 orders higher to facilitate adaptive step sizes and adaptive order schemes.
1346:   All this is possible while preserving a singly diagonally implicit structure.

1348:   Options database keys:
1349: +  -ts_gl_type <type> - the class of general linear method (irks)
1350: .  -ts_gl_rtol <tol>  - relative error
1351: .  -ts_gl_atol <tol>  - absolute error
1352: .  -ts_gl_min_order <p> - minimum order method to consider (default=1)
1353: .  -ts_gl_max_order <p> - maximum order method to consider (default=3)
1354: .  -ts_gl_start_order <p> - order of starting method (default=1)
1355: .  -ts_gl_complete <method> - method to use for completing the step (rescale-and-modify or rescale)
1356: -  -ts_adapt_type <method> - adaptive controller to use (none step both)

1358:   Notes:
1359:   This integrator can be applied to DAE.

1361:   Diagonally implicit general linear (DIGL) methods are a generalization of diagonally implicit Runge-Kutta (DIRK).
1362:   They are represented by the tableau

1364: .vb
1365:   A  |  U
1366:   -------
1367:   B  |  V
1368: .ve

1370:   combined with a vector c of abscissa.  "Diagonally implicit" means that A is lower triangular.
1371:   A step of the general method reads

1373: .vb
1374:   [ Y ] = [A  U] [  Y'   ]
1375:   [X^k] = [B  V] [X^{k-1}]
1376: .ve

1378:   where Y is the multivector of stage values, Y' is the multivector of stage derivatives, X^k is the Nordsieck vector of
1379:   the solution at step k.  The Nordsieck vector consists of the first r moments of the solution, given by

1381: .vb
1382:   X = [x_0,x_1,...,x_{r-1}] = [x, h x', h^2 x'', ..., h^{r-1} x^{(r-1)} ]
1383: .ve

1385:   If A is lower triangular, we can solve the stages (Y,Y') sequentially

1387: .vb
1388:   y_i = h sum_{j=0}^{s-1} (a_ij y'_j) + sum_{j=0}^{r-1} u_ij x_j,    i=0,...,{s-1}
1389: .ve

1391:   and then construct the pieces to carry to the next step

1393: .vb
1394:   xx_i = h sum_{j=0}^{s-1} b_ij y'_j  + sum_{j=0}^{r-1} v_ij x_j,    i=0,...,{r-1}
1395: .ve

1397:   Note that when the equations are cast in implicit form, we are using the stage equation to define y'_i
1398:   in terms of y_i and known stuff (y_j for j<i and x_j for all j).

1400:   Error estimation

1402:   At present, the most attractive GL methods for stiff problems are singly diagonally implicit schemes which posses
1403:   Inherent Runge-Kutta Stability (IRKS).  These methods have r=s, the number of items passed between steps is equal to
1404:   the number of stages.  The order and stage-order are one less than the number of stages.  We use the error estimates
1405:   in the 2007 paper which provide the following estimates

1407: .vb
1408:   h^{p+1} X^{(p+1)}          = phi_0^T Y' + [0 psi_0^T] Xold
1409:   h^{p+2} X^{(p+2)}          = phi_1^T Y' + [0 psi_1^T] Xold
1410:   h^{p+2} (dx'/dx) X^{(p+1)} = phi_2^T Y' + [0 psi_2^T] Xold
1411: .ve

1413:   These estimates are accurate to O(h^{p+3}).

1415:   Changing the step size

1417:   We use the generalized "rescale and modify" scheme, see equation (4.5) of the 2007 paper.

1419:   Level: beginner

1421:   References:
1422: +  1. - John Butcher and Z. Jackieweicz and W. Wright, On error propagation in general linear methods for
1423:   ordinary differential equations, Journal of Complexity, Vol 23, 2007.
1424: -  2. - John Butcher, Numerical methods for ordinary differential equations, second edition, Wiley, 2009.

1426: .seealso:  TSCreate(), TS, TSSetType()

1428: M*/
1429: PETSC_EXTERN PetscErrorCode TSCreate_GLLE(TS ts)
1430: {
1431:   TS_GLLE        *gl;

1435:   TSGLLEInitializePackage();

1437:   PetscNewLog(ts,&gl);
1438:   ts->data = (void*)gl;

1440:   ts->ops->reset          = TSReset_GLLE;
1441:   ts->ops->destroy        = TSDestroy_GLLE;
1442:   ts->ops->view           = TSView_GLLE;
1443:   ts->ops->setup          = TSSetUp_GLLE;
1444:   ts->ops->solve          = TSSolve_GLLE;
1445:   ts->ops->setfromoptions = TSSetFromOptions_GLLE;
1446:   ts->ops->snesfunction   = SNESTSFormFunction_GLLE;
1447:   ts->ops->snesjacobian   = SNESTSFormJacobian_GLLE;

1449:   ts->usessnes = PETSC_TRUE;

1451:   gl->max_step_rejections = 1;
1452:   gl->min_order           = 1;
1453:   gl->max_order           = 3;
1454:   gl->start_order         = 1;
1455:   gl->current_scheme      = -1;
1456:   gl->extrapolate         = PETSC_FALSE;

1458:   gl->wrms_atol = 1e-8;
1459:   gl->wrms_rtol = 1e-5;

1461:   PetscObjectComposeFunction((PetscObject)ts,"TSGLLESetType_C",      &TSGLLESetType_GLLE);
1462:   PetscObjectComposeFunction((PetscObject)ts,"TSGLLESetAcceptType_C",&TSGLLESetAcceptType_GLLE);
1463:   PetscObjectComposeFunction((PetscObject)ts,"TSGLLEGetAdapt_C",     &TSGLLEGetAdapt_GLLE);
1464:   return(0);
1465: }