Actual source code: ex25.c

  1: static const char help[] ="Minimum surface problem in 2D.\n\
  2: Uses 2-dimensional distributed arrays.\n\
  3: \n\
  4:   Solves the linear systems via multilevel methods \n\
  5: \n\n";

  7: /*T
  8:    Concepts: SNES^solving a system of nonlinear equations
  9:    Concepts: DMDA^using distributed arrays
 10:    Concepts: multigrid;
 11:    Processors: n
 12: T*/

 14: /*

 16:     This example models the partial differential equation

 18:          - Div((1 + ||GRAD T||^2)^(1/2) (GRAD T)) = 0.

 20:     in the unit square, which is uniformly discretized in each of x and
 21:     y in this simple encoding.  The degrees of freedom are vertex centered

 23:     A finite difference approximation with the usual 5-point stencil
 24:     is used to discretize the boundary value problem to obtain a
 25:     nonlinear system of equations.

 27: */

 29: #include <petscsnes.h>
 30: #include <petscdm.h>
 31: #include <petscdmda.h>

 33: extern PetscErrorCode FormFunctionLocal(DMDALocalInfo*,PetscScalar**,PetscScalar**,void*);

 35: int main(int argc,char **argv)
 36: {
 37:   SNES           snes;
 39:   PetscInt       its,lits;
 40:   PetscReal      litspit;
 41:   DM             da;

 43:   PetscInitialize(&argc,&argv,NULL,help);if (ierr) return ierr;
 44:   /*
 45:       Set the DMDA (grid structure) for the grids.
 46:   */
 47:   DMDACreate2d(PETSC_COMM_WORLD, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE,DMDA_STENCIL_STAR,5,5,PETSC_DECIDE,PETSC_DECIDE,1,1,0,0,&da);
 48:   DMSetFromOptions(da);
 49:   DMSetUp(da);
 50:   DMDASNESSetFunctionLocal(da,INSERT_VALUES,(PetscErrorCode (*)(DMDALocalInfo*,void*,void*,void*))FormFunctionLocal,NULL);
 51:   SNESCreate(PETSC_COMM_WORLD,&snes);
 52:   SNESSetDM(snes,da);
 53:   DMDestroy(&da);

 55:   SNESSetFromOptions(snes);

 57:   SNESSolve(snes,0,0);
 58:   SNESGetIterationNumber(snes,&its);
 59:   SNESGetLinearSolveIterations(snes,&lits);
 60:   litspit = ((PetscReal)lits)/((PetscReal)its);
 61:   PetscPrintf(PETSC_COMM_WORLD,"Number of SNES iterations = %D\n",its);
 62:   PetscPrintf(PETSC_COMM_WORLD,"Number of Linear iterations = %D\n",lits);
 63:   PetscPrintf(PETSC_COMM_WORLD,"Average Linear its / SNES = %e\n",(double)litspit);

 65:   SNESDestroy(&snes);
 66:   PetscFinalize();
 67:   return ierr;
 68: }

 70: PetscErrorCode FormFunctionLocal(DMDALocalInfo *info,PetscScalar **t,PetscScalar **f,void *ptr)
 71: {
 72:   PetscInt    i,j;
 73:   PetscScalar hx,hy;
 74:   PetscScalar gradup,graddown,gradleft,gradright,gradx,grady;
 75:   PetscScalar coeffup,coeffdown,coeffleft,coeffright;

 78:   hx = 1.0/(PetscReal)(info->mx-1);  hy    = 1.0/(PetscReal)(info->my-1);

 80:   /* Evaluate function */
 81:   for (j=info->ys; j<info->ys+info->ym; j++) {
 82:     for (i=info->xs; i<info->xs+info->xm; i++) {

 84:       if (i == 0 || i == info->mx-1 || j == 0 || j == info->my-1) {
 85:         f[j][i] = t[j][i] - (1.0 - (2.0*hx*(PetscReal)i - 1.0)*(2.0*hx*(PetscReal)i - 1.0));
 86:       } else {

 88:         gradup    = (t[j+1][i] - t[j][i])/hy;
 89:         graddown  = (t[j][i] - t[j-1][i])/hy;
 90:         gradright = (t[j][i+1] - t[j][i])/hx;
 91:         gradleft  = (t[j][i] - t[j][i-1])/hx;

 93:         gradx = .5*(t[j][i+1] - t[j][i-1])/hx;
 94:         grady = .5*(t[j+1][i] - t[j-1][i])/hy;

 96:         coeffup   = 1.0/PetscSqrtScalar(1.0 + gradup*gradup + gradx*gradx);
 97:         coeffdown = 1.0/PetscSqrtScalar(1.0 + graddown*graddown + gradx*gradx);

 99:         coeffleft  = 1.0/PetscSqrtScalar(1.0 + gradleft*gradleft + grady*grady);
100:         coeffright = 1.0/PetscSqrtScalar(1.0 + gradright*gradright + grady*grady);

102:         f[j][i] = (coeffup*gradup - coeffdown*graddown)*hx + (coeffright*gradright - coeffleft*gradleft)*hy;
103:       }

105:     }
106:   }
107:   return(0);
108: }

110: /*TEST

112:    test:
113:       args: -pc_type mg -da_refine 1 -ksp_type fgmres

115:    test:
116:       suffix: 2
117:       nsize: 2
118:       args: -pc_type mg -da_refine 1 -ksp_type fgmres

120: TEST*/