Actual source code: mpibaij.c

  1: #include <../src/mat/impls/baij/mpi/mpibaij.h>

  3: #include <petsc/private/hashseti.h>
  4: #include <petscblaslapack.h>
  5: #include <petscsf.h>

  7: #if defined(PETSC_HAVE_HYPRE)
  8: PETSC_INTERN PetscErrorCode MatConvert_AIJ_HYPRE(Mat,MatType,MatReuse,Mat*);
  9: #endif

 11: PetscErrorCode MatGetRowMaxAbs_MPIBAIJ(Mat A,Vec v,PetscInt idx[])
 12: {
 13:   Mat_MPIBAIJ       *a = (Mat_MPIBAIJ*)A->data;
 14:   PetscErrorCode    ierr;
 15:   PetscInt          i,*idxb = NULL,m = A->rmap->n,bs = A->cmap->bs;
 16:   PetscScalar       *va,*vv;
 17:   Vec               vB,vA;
 18:   const PetscScalar *vb;

 21:   VecCreateSeq(PETSC_COMM_SELF,m,&vA);
 22:   MatGetRowMaxAbs(a->A,vA,idx);

 24:   VecGetArrayWrite(vA,&va);
 25:   if (idx) {
 26:     for (i=0; i<m; i++) {
 27:       if (PetscAbsScalar(va[i])) idx[i] += A->cmap->rstart;
 28:     }
 29:   }

 31:   VecCreateSeq(PETSC_COMM_SELF,m,&vB);
 32:   PetscMalloc1(m,&idxb);
 33:   MatGetRowMaxAbs(a->B,vB,idxb);

 35:   VecGetArrayWrite(v,&vv);
 36:   VecGetArrayRead(vB,&vb);
 37:   for (i=0; i<m; i++) {
 38:     if (PetscAbsScalar(va[i]) < PetscAbsScalar(vb[i])) {
 39:       vv[i] = vb[i];
 40:       if (idx) idx[i] = bs*a->garray[idxb[i]/bs] + (idxb[i] % bs);
 41:     } else {
 42:       vv[i] = va[i];
 43:       if (idx && PetscAbsScalar(va[i]) == PetscAbsScalar(vb[i]) && idxb[i] != -1 && idx[i] > bs*a->garray[idxb[i]/bs] + (idxb[i] % bs))
 44:         idx[i] = bs*a->garray[idxb[i]/bs] + (idxb[i] % bs);
 45:     }
 46:   }
 47:   VecRestoreArrayWrite(vA,&vv);
 48:   VecRestoreArrayWrite(vA,&va);
 49:   VecRestoreArrayRead(vB,&vb);
 50:   PetscFree(idxb);
 51:   VecDestroy(&vA);
 52:   VecDestroy(&vB);
 53:   return(0);
 54: }

 56: PetscErrorCode  MatStoreValues_MPIBAIJ(Mat mat)
 57: {
 58:   Mat_MPIBAIJ    *aij = (Mat_MPIBAIJ*)mat->data;

 62:   MatStoreValues(aij->A);
 63:   MatStoreValues(aij->B);
 64:   return(0);
 65: }

 67: PetscErrorCode  MatRetrieveValues_MPIBAIJ(Mat mat)
 68: {
 69:   Mat_MPIBAIJ    *aij = (Mat_MPIBAIJ*)mat->data;

 73:   MatRetrieveValues(aij->A);
 74:   MatRetrieveValues(aij->B);
 75:   return(0);
 76: }

 78: /*
 79:      Local utility routine that creates a mapping from the global column
 80:    number to the local number in the off-diagonal part of the local
 81:    storage of the matrix.  This is done in a non scalable way since the
 82:    length of colmap equals the global matrix length.
 83: */
 84: PetscErrorCode MatCreateColmap_MPIBAIJ_Private(Mat mat)
 85: {
 86:   Mat_MPIBAIJ    *baij = (Mat_MPIBAIJ*)mat->data;
 87:   Mat_SeqBAIJ    *B    = (Mat_SeqBAIJ*)baij->B->data;
 89:   PetscInt       nbs = B->nbs,i,bs=mat->rmap->bs;

 92: #if defined(PETSC_USE_CTABLE)
 93:   PetscTableCreate(baij->nbs,baij->Nbs+1,&baij->colmap);
 94:   for (i=0; i<nbs; i++) {
 95:     PetscTableAdd(baij->colmap,baij->garray[i]+1,i*bs+1,INSERT_VALUES);
 96:   }
 97: #else
 98:   PetscCalloc1(baij->Nbs+1,&baij->colmap);
 99:   PetscLogObjectMemory((PetscObject)mat,baij->Nbs*sizeof(PetscInt));
100:   for (i=0; i<nbs; i++) baij->colmap[baij->garray[i]] = i*bs+1;
101: #endif
102:   return(0);
103: }

105: #define  MatSetValues_SeqBAIJ_A_Private(row,col,value,addv,orow,ocol)       \
106:   { \
107:     brow = row/bs;  \
108:     rp   = aj + ai[brow]; ap = aa + bs2*ai[brow]; \
109:     rmax = aimax[brow]; nrow = ailen[brow]; \
110:     bcol = col/bs; \
111:     ridx = row % bs; cidx = col % bs; \
112:     low  = 0; high = nrow; \
113:     while (high-low > 3) { \
114:       t = (low+high)/2; \
115:       if (rp[t] > bcol) high = t; \
116:       else              low  = t; \
117:     } \
118:     for (_i=low; _i<high; _i++) { \
119:       if (rp[_i] > bcol) break; \
120:       if (rp[_i] == bcol) { \
121:         bap = ap +  bs2*_i + bs*cidx + ridx; \
122:         if (addv == ADD_VALUES) *bap += value;  \
123:         else                    *bap  = value;  \
124:         goto a_noinsert; \
125:       } \
126:     } \
127:     if (a->nonew == 1) goto a_noinsert; \
128:     if (a->nonew == -1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Inserting a new nonzero at global row/column (%D, %D) into matrix", orow, ocol); \
129:     MatSeqXAIJReallocateAIJ(A,a->mbs,bs2,nrow,brow,bcol,rmax,aa,ai,aj,rp,ap,aimax,a->nonew,MatScalar); \
130:     N = nrow++ - 1;  \
131:     /* shift up all the later entries in this row */ \
132:     PetscArraymove(rp+_i+1,rp+_i,N-_i+1);\
133:     PetscArraymove(ap+bs2*(_i+1),ap+bs2*_i,bs2*(N-_i+1)); \
134:     PetscArrayzero(ap+bs2*_i,bs2);  \
135:     rp[_i]                      = bcol;  \
136:     ap[bs2*_i + bs*cidx + ridx] = value;  \
137: a_noinsert:; \
138:     ailen[brow] = nrow; \
139:   }

141: #define  MatSetValues_SeqBAIJ_B_Private(row,col,value,addv,orow,ocol)       \
142:   { \
143:     brow = row/bs;  \
144:     rp   = bj + bi[brow]; ap = ba + bs2*bi[brow]; \
145:     rmax = bimax[brow]; nrow = bilen[brow]; \
146:     bcol = col/bs; \
147:     ridx = row % bs; cidx = col % bs; \
148:     low  = 0; high = nrow; \
149:     while (high-low > 3) { \
150:       t = (low+high)/2; \
151:       if (rp[t] > bcol) high = t; \
152:       else              low  = t; \
153:     } \
154:     for (_i=low; _i<high; _i++) { \
155:       if (rp[_i] > bcol) break; \
156:       if (rp[_i] == bcol) { \
157:         bap = ap +  bs2*_i + bs*cidx + ridx; \
158:         if (addv == ADD_VALUES) *bap += value;  \
159:         else                    *bap  = value;  \
160:         goto b_noinsert; \
161:       } \
162:     } \
163:     if (b->nonew == 1) goto b_noinsert; \
164:     if (b->nonew == -1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Inserting a new nonzero at global row/column  (%D, %D) into matrix", orow, ocol); \
165:     MatSeqXAIJReallocateAIJ(B,b->mbs,bs2,nrow,brow,bcol,rmax,ba,bi,bj,rp,ap,bimax,b->nonew,MatScalar); \
166:     N = nrow++ - 1;  \
167:     /* shift up all the later entries in this row */ \
168:     PetscArraymove(rp+_i+1,rp+_i,N-_i+1);\
169:     PetscArraymove(ap+bs2*(_i+1),ap+bs2*_i,bs2*(N-_i+1));\
170:     PetscArrayzero(ap+bs2*_i,bs2);  \
171:     rp[_i]                      = bcol;  \
172:     ap[bs2*_i + bs*cidx + ridx] = value;  \
173: b_noinsert:; \
174:     bilen[brow] = nrow; \
175:   }

177: PetscErrorCode MatSetValues_MPIBAIJ(Mat mat,PetscInt m,const PetscInt im[],PetscInt n,const PetscInt in[],const PetscScalar v[],InsertMode addv)
178: {
179:   Mat_MPIBAIJ    *baij = (Mat_MPIBAIJ*)mat->data;
180:   MatScalar      value;
181:   PetscBool      roworiented = baij->roworiented;
183:   PetscInt       i,j,row,col;
184:   PetscInt       rstart_orig=mat->rmap->rstart;
185:   PetscInt       rend_orig  =mat->rmap->rend,cstart_orig=mat->cmap->rstart;
186:   PetscInt       cend_orig  =mat->cmap->rend,bs=mat->rmap->bs;

188:   /* Some Variables required in the macro */
189:   Mat         A     = baij->A;
190:   Mat_SeqBAIJ *a    = (Mat_SeqBAIJ*)(A)->data;
191:   PetscInt    *aimax=a->imax,*ai=a->i,*ailen=a->ilen,*aj=a->j;
192:   MatScalar   *aa   =a->a;

194:   Mat         B     = baij->B;
195:   Mat_SeqBAIJ *b    = (Mat_SeqBAIJ*)(B)->data;
196:   PetscInt    *bimax=b->imax,*bi=b->i,*bilen=b->ilen,*bj=b->j;
197:   MatScalar   *ba   =b->a;

199:   PetscInt  *rp,ii,nrow,_i,rmax,N,brow,bcol;
200:   PetscInt  low,high,t,ridx,cidx,bs2=a->bs2;
201:   MatScalar *ap,*bap;

204:   for (i=0; i<m; i++) {
205:     if (im[i] < 0) continue;
206:     if (im[i] >= mat->rmap->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Row too large: row %D max %D",im[i],mat->rmap->N-1);
207:     if (im[i] >= rstart_orig && im[i] < rend_orig) {
208:       row = im[i] - rstart_orig;
209:       for (j=0; j<n; j++) {
210:         if (in[j] >= cstart_orig && in[j] < cend_orig) {
211:           col = in[j] - cstart_orig;
212:           if (roworiented) value = v[i*n+j];
213:           else             value = v[i+j*m];
214:           MatSetValues_SeqBAIJ_A_Private(row,col,value,addv,im[i],in[j]);
215:         } else if (in[j] < 0) continue;
216:         else if (PetscUnlikely(in[j] >= mat->cmap->N)) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Column too large: col %D max %D",in[j],mat->cmap->N-1);
217:         else {
218:           if (mat->was_assembled) {
219:             if (!baij->colmap) {
220:               MatCreateColmap_MPIBAIJ_Private(mat);
221:             }
222: #if defined(PETSC_USE_CTABLE)
223:             PetscTableFind(baij->colmap,in[j]/bs + 1,&col);
224:             col  = col - 1;
225: #else
226:             col = baij->colmap[in[j]/bs] - 1;
227: #endif
228:             if (col < 0 && !((Mat_SeqBAIJ*)(baij->B->data))->nonew) {
229:               MatDisAssemble_MPIBAIJ(mat);
230:               col  =  in[j];
231:               /* Reinitialize the variables required by MatSetValues_SeqBAIJ_B_Private() */
232:               B    = baij->B;
233:               b    = (Mat_SeqBAIJ*)(B)->data;
234:               bimax=b->imax;bi=b->i;bilen=b->ilen;bj=b->j;
235:               ba   =b->a;
236:             } else if (col < 0) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Inserting a new nonzero (%D, %D) into matrix", im[i], in[j]);
237:             else col += in[j]%bs;
238:           } else col = in[j];
239:           if (roworiented) value = v[i*n+j];
240:           else             value = v[i+j*m];
241:           MatSetValues_SeqBAIJ_B_Private(row,col,value,addv,im[i],in[j]);
242:           /* MatSetValues_SeqBAIJ(baij->B,1,&row,1,&col,&value,addv); */
243:         }
244:       }
245:     } else {
246:       if (mat->nooffprocentries) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Setting off process row %D even though MatSetOption(,MAT_NO_OFF_PROC_ENTRIES,PETSC_TRUE) was set",im[i]);
247:       if (!baij->donotstash) {
248:         mat->assembled = PETSC_FALSE;
249:         if (roworiented) {
250:           MatStashValuesRow_Private(&mat->stash,im[i],n,in,v+i*n,PETSC_FALSE);
251:         } else {
252:           MatStashValuesCol_Private(&mat->stash,im[i],n,in,v+i,m,PETSC_FALSE);
253:         }
254:       }
255:     }
256:   }
257:   return(0);
258: }

260: PETSC_STATIC_INLINE PetscErrorCode MatSetValuesBlocked_SeqBAIJ_Inlined(Mat A,PetscInt row,PetscInt col,const PetscScalar v[],InsertMode is,PetscInt orow,PetscInt ocol)
261: {
262:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
263:   PetscInt          *rp,low,high,t,ii,jj,nrow,i,rmax,N;
264:   PetscInt          *imax=a->imax,*ai=a->i,*ailen=a->ilen;
265:   PetscErrorCode    ierr;
266:   PetscInt          *aj        =a->j,nonew=a->nonew,bs2=a->bs2,bs=A->rmap->bs;
267:   PetscBool         roworiented=a->roworiented;
268:   const PetscScalar *value     = v;
269:   MatScalar         *ap,*aa = a->a,*bap;

272:   rp   = aj + ai[row];
273:   ap   = aa + bs2*ai[row];
274:   rmax = imax[row];
275:   nrow = ailen[row];
276:   value = v;
277:   low = 0;
278:   high = nrow;
279:   while (high-low > 7) {
280:     t = (low+high)/2;
281:     if (rp[t] > col) high = t;
282:     else             low  = t;
283:   }
284:   for (i=low; i<high; i++) {
285:     if (rp[i] > col) break;
286:     if (rp[i] == col) {
287:       bap = ap +  bs2*i;
288:       if (roworiented) {
289:         if (is == ADD_VALUES) {
290:           for (ii=0; ii<bs; ii++) {
291:             for (jj=ii; jj<bs2; jj+=bs) {
292:               bap[jj] += *value++;
293:             }
294:           }
295:         } else {
296:           for (ii=0; ii<bs; ii++) {
297:             for (jj=ii; jj<bs2; jj+=bs) {
298:               bap[jj] = *value++;
299:             }
300:           }
301:         }
302:       } else {
303:         if (is == ADD_VALUES) {
304:           for (ii=0; ii<bs; ii++,value+=bs) {
305:             for (jj=0; jj<bs; jj++) {
306:               bap[jj] += value[jj];
307:             }
308:             bap += bs;
309:           }
310:         } else {
311:           for (ii=0; ii<bs; ii++,value+=bs) {
312:             for (jj=0; jj<bs; jj++) {
313:               bap[jj]  = value[jj];
314:             }
315:             bap += bs;
316:           }
317:         }
318:       }
319:       goto noinsert2;
320:     }
321:   }
322:   if (nonew == 1) goto noinsert2;
323:   if (nonew == -1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Inserting a new global block indexed nonzero block (%D, %D) in the matrix", orow, ocol);
324:   MatSeqXAIJReallocateAIJ(A,a->mbs,bs2,nrow,row,col,rmax,aa,ai,aj,rp,ap,imax,nonew,MatScalar);
325:   N = nrow++ - 1; high++;
326:   /* shift up all the later entries in this row */
327:   PetscArraymove(rp+i+1,rp+i,N-i+1);
328:   PetscArraymove(ap+bs2*(i+1),ap+bs2*i,bs2*(N-i+1));
329:   rp[i] = col;
330:   bap   = ap +  bs2*i;
331:   if (roworiented) {
332:     for (ii=0; ii<bs; ii++) {
333:       for (jj=ii; jj<bs2; jj+=bs) {
334:         bap[jj] = *value++;
335:       }
336:     }
337:   } else {
338:     for (ii=0; ii<bs; ii++) {
339:       for (jj=0; jj<bs; jj++) {
340:         *bap++ = *value++;
341:       }
342:     }
343:   }
344:   noinsert2:;
345:   ailen[row] = nrow;
346:   return(0);
347: }

349: /*
350:     This routine should be optimized so that the block copy at ** Here a copy is required ** below is not needed
351:     by passing additional stride information into the MatSetValuesBlocked_SeqBAIJ_Inlined() routine
352: */
353: PetscErrorCode MatSetValuesBlocked_MPIBAIJ(Mat mat,PetscInt m,const PetscInt im[],PetscInt n,const PetscInt in[],const PetscScalar v[],InsertMode addv)
354: {
355:   Mat_MPIBAIJ       *baij = (Mat_MPIBAIJ*)mat->data;
356:   const PetscScalar *value;
357:   MatScalar         *barray     = baij->barray;
358:   PetscBool         roworiented = baij->roworiented;
359:   PetscErrorCode    ierr;
360:   PetscInt          i,j,ii,jj,row,col,rstart=baij->rstartbs;
361:   PetscInt          rend=baij->rendbs,cstart=baij->cstartbs,stepval;
362:   PetscInt          cend=baij->cendbs,bs=mat->rmap->bs,bs2=baij->bs2;

365:   if (!barray) {
366:     PetscMalloc1(bs2,&barray);
367:     baij->barray = barray;
368:   }

370:   if (roworiented) stepval = (n-1)*bs;
371:   else stepval = (m-1)*bs;

373:   for (i=0; i<m; i++) {
374:     if (im[i] < 0) continue;
375:     if (PetscUnlikelyDebug(im[i] >= baij->Mbs)) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Block indexed row too large %D max %D",im[i],baij->Mbs-1);
376:     if (im[i] >= rstart && im[i] < rend) {
377:       row = im[i] - rstart;
378:       for (j=0; j<n; j++) {
379:         /* If NumCol = 1 then a copy is not required */
380:         if ((roworiented) && (n == 1)) {
381:           barray = (MatScalar*)v + i*bs2;
382:         } else if ((!roworiented) && (m == 1)) {
383:           barray = (MatScalar*)v + j*bs2;
384:         } else { /* Here a copy is required */
385:           if (roworiented) {
386:             value = v + (i*(stepval+bs) + j)*bs;
387:           } else {
388:             value = v + (j*(stepval+bs) + i)*bs;
389:           }
390:           for (ii=0; ii<bs; ii++,value+=bs+stepval) {
391:             for (jj=0; jj<bs; jj++) barray[jj] = value[jj];
392:             barray += bs;
393:           }
394:           barray -= bs2;
395:         }

397:         if (in[j] >= cstart && in[j] < cend) {
398:           col  = in[j] - cstart;
399:           MatSetValuesBlocked_SeqBAIJ_Inlined(baij->A,row,col,barray,addv,im[i],in[j]);
400:         } else if (in[j] < 0) continue;
401:         else if (PetscUnlikelyDebug(in[j] >= baij->Nbs)) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Block indexed column too large %D max %D",in[j],baij->Nbs-1);
402:         else {
403:           if (mat->was_assembled) {
404:             if (!baij->colmap) {
405:               MatCreateColmap_MPIBAIJ_Private(mat);
406:             }

408: #if defined(PETSC_USE_DEBUG)
409: #if defined(PETSC_USE_CTABLE)
410:             { PetscInt data;
411:               PetscTableFind(baij->colmap,in[j]+1,&data);
412:               if ((data - 1) % bs) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Incorrect colmap");
413:             }
414: #else
415:             if ((baij->colmap[in[j]] - 1) % bs) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Incorrect colmap");
416: #endif
417: #endif
418: #if defined(PETSC_USE_CTABLE)
419:             PetscTableFind(baij->colmap,in[j]+1,&col);
420:             col  = (col - 1)/bs;
421: #else
422:             col = (baij->colmap[in[j]] - 1)/bs;
423: #endif
424:             if (col < 0 && !((Mat_SeqBAIJ*)(baij->B->data))->nonew) {
425:               MatDisAssemble_MPIBAIJ(mat);
426:               col  =  in[j];
427:             } else if (col < 0) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Inserting a new blocked indexed nonzero block (%D, %D) into matrix",im[i],in[j]);
428:           } else col = in[j];
429:           MatSetValuesBlocked_SeqBAIJ_Inlined(baij->B,row,col,barray,addv,im[i],in[j]);
430:         }
431:       }
432:     } else {
433:       if (mat->nooffprocentries) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Setting off process block indexed row %D even though MatSetOption(,MAT_NO_OFF_PROC_ENTRIES,PETSC_TRUE) was set",im[i]);
434:       if (!baij->donotstash) {
435:         if (roworiented) {
436:           MatStashValuesRowBlocked_Private(&mat->bstash,im[i],n,in,v,m,n,i);
437:         } else {
438:           MatStashValuesColBlocked_Private(&mat->bstash,im[i],n,in,v,m,n,i);
439:         }
440:       }
441:     }
442:   }
443:   return(0);
444: }

446: #define HASH_KEY 0.6180339887
447: #define HASH(size,key,tmp) (tmp = (key)*HASH_KEY,(PetscInt)((size)*(tmp-(PetscInt)tmp)))
448: /* #define HASH(size,key) ((PetscInt)((size)*fmod(((key)*HASH_KEY),1))) */
449: /* #define HASH(size,key,tmp) ((PetscInt)((size)*fmod(((key)*HASH_KEY),1))) */
450: PetscErrorCode MatSetValues_MPIBAIJ_HT(Mat mat,PetscInt m,const PetscInt im[],PetscInt n,const PetscInt in[],const PetscScalar v[],InsertMode addv)
451: {
452:   Mat_MPIBAIJ    *baij       = (Mat_MPIBAIJ*)mat->data;
453:   PetscBool      roworiented = baij->roworiented;
455:   PetscInt       i,j,row,col;
456:   PetscInt       rstart_orig=mat->rmap->rstart;
457:   PetscInt       rend_orig  =mat->rmap->rend,Nbs=baij->Nbs;
458:   PetscInt       h1,key,size=baij->ht_size,bs=mat->rmap->bs,*HT=baij->ht,idx;
459:   PetscReal      tmp;
460:   MatScalar      **HD = baij->hd,value;
461:   PetscInt       total_ct=baij->ht_total_ct,insert_ct=baij->ht_insert_ct;

464:   for (i=0; i<m; i++) {
465:     if (PetscDefined(USE_DEBUG)) {
466:       if (im[i] < 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Negative row");
467:       if (im[i] >= mat->rmap->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Row too large: row %D max %D",im[i],mat->rmap->N-1);
468:     }
469:     row = im[i];
470:     if (row >= rstart_orig && row < rend_orig) {
471:       for (j=0; j<n; j++) {
472:         col = in[j];
473:         if (roworiented) value = v[i*n+j];
474:         else             value = v[i+j*m];
475:         /* Look up PetscInto the Hash Table */
476:         key = (row/bs)*Nbs+(col/bs)+1;
477:         h1  = HASH(size,key,tmp);

479:         idx = h1;
480:         if (PetscDefined(USE_DEBUG)) {
481:           insert_ct++;
482:           total_ct++;
483:           if (HT[idx] != key) {
484:             for (idx=h1; (idx<size) && (HT[idx]!=key); idx++,total_ct++) ;
485:             if (idx == size) {
486:               for (idx=0; (idx<h1) && (HT[idx]!=key); idx++,total_ct++) ;
487:               if (idx == h1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"(%D,%D) has no entry in the hash table", row, col);
488:             }
489:           }
490:         } else if (HT[idx] != key) {
491:           for (idx=h1; (idx<size) && (HT[idx]!=key); idx++) ;
492:           if (idx == size) {
493:             for (idx=0; (idx<h1) && (HT[idx]!=key); idx++) ;
494:             if (idx == h1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"(%D,%D) has no entry in the hash table", row, col);
495:           }
496:         }
497:         /* A HASH table entry is found, so insert the values at the correct address */
498:         if (addv == ADD_VALUES) *(HD[idx]+ (col % bs)*bs + (row % bs)) += value;
499:         else                    *(HD[idx]+ (col % bs)*bs + (row % bs))  = value;
500:       }
501:     } else if (!baij->donotstash) {
502:       if (roworiented) {
503:         MatStashValuesRow_Private(&mat->stash,im[i],n,in,v+i*n,PETSC_FALSE);
504:       } else {
505:         MatStashValuesCol_Private(&mat->stash,im[i],n,in,v+i,m,PETSC_FALSE);
506:       }
507:     }
508:   }
509:   if (PetscDefined(USE_DEBUG)) {
510:     baij->ht_total_ct  += total_ct;
511:     baij->ht_insert_ct += insert_ct;
512:   }
513:   return(0);
514: }

516: PetscErrorCode MatSetValuesBlocked_MPIBAIJ_HT(Mat mat,PetscInt m,const PetscInt im[],PetscInt n,const PetscInt in[],const PetscScalar v[],InsertMode addv)
517: {
518:   Mat_MPIBAIJ       *baij       = (Mat_MPIBAIJ*)mat->data;
519:   PetscBool         roworiented = baij->roworiented;
520:   PetscErrorCode    ierr;
521:   PetscInt          i,j,ii,jj,row,col;
522:   PetscInt          rstart=baij->rstartbs;
523:   PetscInt          rend  =mat->rmap->rend,stepval,bs=mat->rmap->bs,bs2=baij->bs2,nbs2=n*bs2;
524:   PetscInt          h1,key,size=baij->ht_size,idx,*HT=baij->ht,Nbs=baij->Nbs;
525:   PetscReal         tmp;
526:   MatScalar         **HD = baij->hd,*baij_a;
527:   const PetscScalar *v_t,*value;
528:   PetscInt          total_ct=baij->ht_total_ct,insert_ct=baij->ht_insert_ct;

531:   if (roworiented) stepval = (n-1)*bs;
532:   else stepval = (m-1)*bs;

534:   for (i=0; i<m; i++) {
535:     if (PetscDefined(USE_DEBUG)) {
536:       if (im[i] < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Negative row: %D",im[i]);
537:       if (im[i] >= baij->Mbs) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Row too large: row %D max %D",im[i],baij->Mbs-1);
538:     }
539:     row = im[i];
540:     v_t = v + i*nbs2;
541:     if (row >= rstart && row < rend) {
542:       for (j=0; j<n; j++) {
543:         col = in[j];

545:         /* Look up into the Hash Table */
546:         key = row*Nbs+col+1;
547:         h1  = HASH(size,key,tmp);

549:         idx = h1;
550:         if (PetscDefined(USE_DEBUG)) {
551:           total_ct++;
552:           insert_ct++;
553:           if (HT[idx] != key) {
554:             for (idx=h1; (idx<size) && (HT[idx]!=key); idx++,total_ct++) ;
555:             if (idx == size) {
556:               for (idx=0; (idx<h1) && (HT[idx]!=key); idx++,total_ct++) ;
557:               if (idx == h1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"(%D,%D) has no entry in the hash table", row, col);
558:             }
559:           }
560:         } else if (HT[idx] != key) {
561:           for (idx=h1; (idx<size) && (HT[idx]!=key); idx++) ;
562:           if (idx == size) {
563:             for (idx=0; (idx<h1) && (HT[idx]!=key); idx++) ;
564:             if (idx == h1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"(%D,%D) has no entry in the hash table", row, col);
565:           }
566:         }
567:         baij_a = HD[idx];
568:         if (roworiented) {
569:           /*value = v + i*(stepval+bs)*bs + j*bs;*/
570:           /* value = v + (i*(stepval+bs)+j)*bs; */
571:           value = v_t;
572:           v_t  += bs;
573:           if (addv == ADD_VALUES) {
574:             for (ii=0; ii<bs; ii++,value+=stepval) {
575:               for (jj=ii; jj<bs2; jj+=bs) {
576:                 baij_a[jj] += *value++;
577:               }
578:             }
579:           } else {
580:             for (ii=0; ii<bs; ii++,value+=stepval) {
581:               for (jj=ii; jj<bs2; jj+=bs) {
582:                 baij_a[jj] = *value++;
583:               }
584:             }
585:           }
586:         } else {
587:           value = v + j*(stepval+bs)*bs + i*bs;
588:           if (addv == ADD_VALUES) {
589:             for (ii=0; ii<bs; ii++,value+=stepval,baij_a+=bs) {
590:               for (jj=0; jj<bs; jj++) {
591:                 baij_a[jj] += *value++;
592:               }
593:             }
594:           } else {
595:             for (ii=0; ii<bs; ii++,value+=stepval,baij_a+=bs) {
596:               for (jj=0; jj<bs; jj++) {
597:                 baij_a[jj] = *value++;
598:               }
599:             }
600:           }
601:         }
602:       }
603:     } else {
604:       if (!baij->donotstash) {
605:         if (roworiented) {
606:           MatStashValuesRowBlocked_Private(&mat->bstash,im[i],n,in,v,m,n,i);
607:         } else {
608:           MatStashValuesColBlocked_Private(&mat->bstash,im[i],n,in,v,m,n,i);
609:         }
610:       }
611:     }
612:   }
613:   if (PetscDefined(USE_DEBUG)) {
614:     baij->ht_total_ct  += total_ct;
615:     baij->ht_insert_ct += insert_ct;
616:   }
617:   return(0);
618: }

620: PetscErrorCode MatGetValues_MPIBAIJ(Mat mat,PetscInt m,const PetscInt idxm[],PetscInt n,const PetscInt idxn[],PetscScalar v[])
621: {
622:   Mat_MPIBAIJ    *baij = (Mat_MPIBAIJ*)mat->data;
624:   PetscInt       bs       = mat->rmap->bs,i,j,bsrstart = mat->rmap->rstart,bsrend = mat->rmap->rend;
625:   PetscInt       bscstart = mat->cmap->rstart,bscend = mat->cmap->rend,row,col,data;

628:   for (i=0; i<m; i++) {
629:     if (idxm[i] < 0) continue; /* SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Negative row: %D",idxm[i]);*/
630:     if (idxm[i] >= mat->rmap->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Row too large: row %D max %D",idxm[i],mat->rmap->N-1);
631:     if (idxm[i] >= bsrstart && idxm[i] < bsrend) {
632:       row = idxm[i] - bsrstart;
633:       for (j=0; j<n; j++) {
634:         if (idxn[j] < 0) continue; /* SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Negative column: %D",idxn[j]); */
635:         if (idxn[j] >= mat->cmap->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Column too large: col %D max %D",idxn[j],mat->cmap->N-1);
636:         if (idxn[j] >= bscstart && idxn[j] < bscend) {
637:           col  = idxn[j] - bscstart;
638:           MatGetValues_SeqBAIJ(baij->A,1,&row,1,&col,v+i*n+j);
639:         } else {
640:           if (!baij->colmap) {
641:             MatCreateColmap_MPIBAIJ_Private(mat);
642:           }
643: #if defined(PETSC_USE_CTABLE)
644:           PetscTableFind(baij->colmap,idxn[j]/bs+1,&data);
645:           data--;
646: #else
647:           data = baij->colmap[idxn[j]/bs]-1;
648: #endif
649:           if ((data < 0) || (baij->garray[data/bs] != idxn[j]/bs)) *(v+i*n+j) = 0.0;
650:           else {
651:             col  = data + idxn[j]%bs;
652:             MatGetValues_SeqBAIJ(baij->B,1,&row,1,&col,v+i*n+j);
653:           }
654:         }
655:       }
656:     } else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Only local values currently supported");
657:   }
658:   return(0);
659: }

661: PetscErrorCode MatNorm_MPIBAIJ(Mat mat,NormType type,PetscReal *nrm)
662: {
663:   Mat_MPIBAIJ    *baij = (Mat_MPIBAIJ*)mat->data;
664:   Mat_SeqBAIJ    *amat = (Mat_SeqBAIJ*)baij->A->data,*bmat = (Mat_SeqBAIJ*)baij->B->data;
666:   PetscInt       i,j,bs2=baij->bs2,bs=baij->A->rmap->bs,nz,row,col;
667:   PetscReal      sum = 0.0;
668:   MatScalar      *v;

671:   if (baij->size == 1) {
672:      MatNorm(baij->A,type,nrm);
673:   } else {
674:     if (type == NORM_FROBENIUS) {
675:       v  = amat->a;
676:       nz = amat->nz*bs2;
677:       for (i=0; i<nz; i++) {
678:         sum += PetscRealPart(PetscConj(*v)*(*v)); v++;
679:       }
680:       v  = bmat->a;
681:       nz = bmat->nz*bs2;
682:       for (i=0; i<nz; i++) {
683:         sum += PetscRealPart(PetscConj(*v)*(*v)); v++;
684:       }
685:       MPIU_Allreduce(&sum,nrm,1,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)mat));
686:       *nrm = PetscSqrtReal(*nrm);
687:     } else if (type == NORM_1) { /* max column sum */
688:       PetscReal *tmp,*tmp2;
689:       PetscInt  *jj,*garray=baij->garray,cstart=baij->rstartbs;
690:       PetscCalloc1(mat->cmap->N,&tmp);
691:       PetscMalloc1(mat->cmap->N,&tmp2);
692:       v    = amat->a; jj = amat->j;
693:       for (i=0; i<amat->nz; i++) {
694:         for (j=0; j<bs; j++) {
695:           col = bs*(cstart + *jj) + j; /* column index */
696:           for (row=0; row<bs; row++) {
697:             tmp[col] += PetscAbsScalar(*v);  v++;
698:           }
699:         }
700:         jj++;
701:       }
702:       v = bmat->a; jj = bmat->j;
703:       for (i=0; i<bmat->nz; i++) {
704:         for (j=0; j<bs; j++) {
705:           col = bs*garray[*jj] + j;
706:           for (row=0; row<bs; row++) {
707:             tmp[col] += PetscAbsScalar(*v); v++;
708:           }
709:         }
710:         jj++;
711:       }
712:       MPIU_Allreduce(tmp,tmp2,mat->cmap->N,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)mat));
713:       *nrm = 0.0;
714:       for (j=0; j<mat->cmap->N; j++) {
715:         if (tmp2[j] > *nrm) *nrm = tmp2[j];
716:       }
717:       PetscFree(tmp);
718:       PetscFree(tmp2);
719:     } else if (type == NORM_INFINITY) { /* max row sum */
720:       PetscReal *sums;
721:       PetscMalloc1(bs,&sums);
722:       sum  = 0.0;
723:       for (j=0; j<amat->mbs; j++) {
724:         for (row=0; row<bs; row++) sums[row] = 0.0;
725:         v  = amat->a + bs2*amat->i[j];
726:         nz = amat->i[j+1]-amat->i[j];
727:         for (i=0; i<nz; i++) {
728:           for (col=0; col<bs; col++) {
729:             for (row=0; row<bs; row++) {
730:               sums[row] += PetscAbsScalar(*v); v++;
731:             }
732:           }
733:         }
734:         v  = bmat->a + bs2*bmat->i[j];
735:         nz = bmat->i[j+1]-bmat->i[j];
736:         for (i=0; i<nz; i++) {
737:           for (col=0; col<bs; col++) {
738:             for (row=0; row<bs; row++) {
739:               sums[row] += PetscAbsScalar(*v); v++;
740:             }
741:           }
742:         }
743:         for (row=0; row<bs; row++) {
744:           if (sums[row] > sum) sum = sums[row];
745:         }
746:       }
747:       MPIU_Allreduce(&sum,nrm,1,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)mat));
748:       PetscFree(sums);
749:     } else SETERRQ(PetscObjectComm((PetscObject)mat),PETSC_ERR_SUP,"No support for this norm yet");
750:   }
751:   return(0);
752: }

754: /*
755:   Creates the hash table, and sets the table
756:   This table is created only once.
757:   If new entried need to be added to the matrix
758:   then the hash table has to be destroyed and
759:   recreated.
760: */
761: PetscErrorCode MatCreateHashTable_MPIBAIJ_Private(Mat mat,PetscReal factor)
762: {
763:   Mat_MPIBAIJ    *baij = (Mat_MPIBAIJ*)mat->data;
764:   Mat            A     = baij->A,B=baij->B;
765:   Mat_SeqBAIJ    *a    = (Mat_SeqBAIJ*)A->data,*b=(Mat_SeqBAIJ*)B->data;
766:   PetscInt       i,j,k,nz=a->nz+b->nz,h1,*ai=a->i,*aj=a->j,*bi=b->i,*bj=b->j;
768:   PetscInt       ht_size,bs2=baij->bs2,rstart=baij->rstartbs;
769:   PetscInt       cstart=baij->cstartbs,*garray=baij->garray,row,col,Nbs=baij->Nbs;
770:   PetscInt       *HT,key;
771:   MatScalar      **HD;
772:   PetscReal      tmp;
773: #if defined(PETSC_USE_INFO)
774:   PetscInt ct=0,max=0;
775: #endif

778:   if (baij->ht) return(0);

780:   baij->ht_size = (PetscInt)(factor*nz);
781:   ht_size       = baij->ht_size;

783:   /* Allocate Memory for Hash Table */
784:   PetscCalloc2(ht_size,&baij->hd,ht_size,&baij->ht);
785:   HD   = baij->hd;
786:   HT   = baij->ht;

788:   /* Loop Over A */
789:   for (i=0; i<a->mbs; i++) {
790:     for (j=ai[i]; j<ai[i+1]; j++) {
791:       row = i+rstart;
792:       col = aj[j]+cstart;

794:       key = row*Nbs + col + 1;
795:       h1  = HASH(ht_size,key,tmp);
796:       for (k=0; k<ht_size; k++) {
797:         if (!HT[(h1+k)%ht_size]) {
798:           HT[(h1+k)%ht_size] = key;
799:           HD[(h1+k)%ht_size] = a->a + j*bs2;
800:           break;
801: #if defined(PETSC_USE_INFO)
802:         } else {
803:           ct++;
804: #endif
805:         }
806:       }
807: #if defined(PETSC_USE_INFO)
808:       if (k> max) max = k;
809: #endif
810:     }
811:   }
812:   /* Loop Over B */
813:   for (i=0; i<b->mbs; i++) {
814:     for (j=bi[i]; j<bi[i+1]; j++) {
815:       row = i+rstart;
816:       col = garray[bj[j]];
817:       key = row*Nbs + col + 1;
818:       h1  = HASH(ht_size,key,tmp);
819:       for (k=0; k<ht_size; k++) {
820:         if (!HT[(h1+k)%ht_size]) {
821:           HT[(h1+k)%ht_size] = key;
822:           HD[(h1+k)%ht_size] = b->a + j*bs2;
823:           break;
824: #if defined(PETSC_USE_INFO)
825:         } else {
826:           ct++;
827: #endif
828:         }
829:       }
830: #if defined(PETSC_USE_INFO)
831:       if (k> max) max = k;
832: #endif
833:     }
834:   }

836:   /* Print Summary */
837: #if defined(PETSC_USE_INFO)
838:   for (i=0,j=0; i<ht_size; i++) {
839:     if (HT[i]) j++;
840:   }
841:   PetscInfo2(mat,"Average Search = %5.2f,max search = %D\n",(!j)? 0.0:((PetscReal)(ct+j))/j,max);
842: #endif
843:   return(0);
844: }

846: PetscErrorCode MatAssemblyBegin_MPIBAIJ(Mat mat,MatAssemblyType mode)
847: {
848:   Mat_MPIBAIJ    *baij = (Mat_MPIBAIJ*)mat->data;
850:   PetscInt       nstash,reallocs;

853:   if (baij->donotstash || mat->nooffprocentries) return(0);

855:   MatStashScatterBegin_Private(mat,&mat->stash,mat->rmap->range);
856:   MatStashScatterBegin_Private(mat,&mat->bstash,baij->rangebs);
857:   MatStashGetInfo_Private(&mat->stash,&nstash,&reallocs);
858:   PetscInfo2(mat,"Stash has %D entries,uses %D mallocs.\n",nstash,reallocs);
859:   MatStashGetInfo_Private(&mat->bstash,&nstash,&reallocs);
860:   PetscInfo2(mat,"Block-Stash has %D entries, uses %D mallocs.\n",nstash,reallocs);
861:   return(0);
862: }

864: PetscErrorCode MatAssemblyEnd_MPIBAIJ(Mat mat,MatAssemblyType mode)
865: {
866:   Mat_MPIBAIJ    *baij=(Mat_MPIBAIJ*)mat->data;
867:   Mat_SeqBAIJ    *a   =(Mat_SeqBAIJ*)baij->A->data;
869:   PetscInt       i,j,rstart,ncols,flg,bs2=baij->bs2;
870:   PetscInt       *row,*col;
871:   PetscBool      r1,r2,r3,other_disassembled;
872:   MatScalar      *val;
873:   PetscMPIInt    n;

876:   /* do not use 'b=(Mat_SeqBAIJ*)baij->B->data' as B can be reset in disassembly */
877:   if (!baij->donotstash && !mat->nooffprocentries) {
878:     while (1) {
879:       MatStashScatterGetMesg_Private(&mat->stash,&n,&row,&col,&val,&flg);
880:       if (!flg) break;

882:       for (i=0; i<n;) {
883:         /* Now identify the consecutive vals belonging to the same row */
884:         for (j=i,rstart=row[j]; j<n; j++) {
885:           if (row[j] != rstart) break;
886:         }
887:         if (j < n) ncols = j-i;
888:         else       ncols = n-i;
889:         /* Now assemble all these values with a single function call */
890:         MatSetValues_MPIBAIJ(mat,1,row+i,ncols,col+i,val+i,mat->insertmode);
891:         i    = j;
892:       }
893:     }
894:     MatStashScatterEnd_Private(&mat->stash);
895:     /* Now process the block-stash. Since the values are stashed column-oriented,
896:        set the roworiented flag to column oriented, and after MatSetValues()
897:        restore the original flags */
898:     r1 = baij->roworiented;
899:     r2 = a->roworiented;
900:     r3 = ((Mat_SeqBAIJ*)baij->B->data)->roworiented;

902:     baij->roworiented = PETSC_FALSE;
903:     a->roworiented    = PETSC_FALSE;

905:     (((Mat_SeqBAIJ*)baij->B->data))->roworiented = PETSC_FALSE; /* b->roworiented */
906:     while (1) {
907:       MatStashScatterGetMesg_Private(&mat->bstash,&n,&row,&col,&val,&flg);
908:       if (!flg) break;

910:       for (i=0; i<n;) {
911:         /* Now identify the consecutive vals belonging to the same row */
912:         for (j=i,rstart=row[j]; j<n; j++) {
913:           if (row[j] != rstart) break;
914:         }
915:         if (j < n) ncols = j-i;
916:         else       ncols = n-i;
917:         MatSetValuesBlocked_MPIBAIJ(mat,1,row+i,ncols,col+i,val+i*bs2,mat->insertmode);
918:         i    = j;
919:       }
920:     }
921:     MatStashScatterEnd_Private(&mat->bstash);

923:     baij->roworiented = r1;
924:     a->roworiented    = r2;

926:     ((Mat_SeqBAIJ*)baij->B->data)->roworiented = r3; /* b->roworiented */
927:   }

929:   MatAssemblyBegin(baij->A,mode);
930:   MatAssemblyEnd(baij->A,mode);

932:   /* determine if any processor has disassembled, if so we must
933:      also disassemble ourselfs, in order that we may reassemble. */
934:   /*
935:      if nonzero structure of submatrix B cannot change then we know that
936:      no processor disassembled thus we can skip this stuff
937:   */
938:   if (!((Mat_SeqBAIJ*)baij->B->data)->nonew) {
939:     MPIU_Allreduce(&mat->was_assembled,&other_disassembled,1,MPIU_BOOL,MPI_PROD,PetscObjectComm((PetscObject)mat));
940:     if (mat->was_assembled && !other_disassembled) {
941:       MatDisAssemble_MPIBAIJ(mat);
942:     }
943:   }

945:   if (!mat->was_assembled && mode == MAT_FINAL_ASSEMBLY) {
946:     MatSetUpMultiply_MPIBAIJ(mat);
947:   }
948:   MatAssemblyBegin(baij->B,mode);
949:   MatAssemblyEnd(baij->B,mode);

951: #if defined(PETSC_USE_INFO)
952:   if (baij->ht && mode== MAT_FINAL_ASSEMBLY) {
953:     PetscInfo1(mat,"Average Hash Table Search in MatSetValues = %5.2f\n",(double)((PetscReal)baij->ht_total_ct)/baij->ht_insert_ct);

955:     baij->ht_total_ct  = 0;
956:     baij->ht_insert_ct = 0;
957:   }
958: #endif
959:   if (baij->ht_flag && !baij->ht && mode == MAT_FINAL_ASSEMBLY) {
960:     MatCreateHashTable_MPIBAIJ_Private(mat,baij->ht_fact);

962:     mat->ops->setvalues        = MatSetValues_MPIBAIJ_HT;
963:     mat->ops->setvaluesblocked = MatSetValuesBlocked_MPIBAIJ_HT;
964:   }

966:   PetscFree2(baij->rowvalues,baij->rowindices);

968:   baij->rowvalues = NULL;

970:   /* if no new nonzero locations are allowed in matrix then only set the matrix state the first time through */
971:   if ((!mat->was_assembled && mode == MAT_FINAL_ASSEMBLY) || !((Mat_SeqBAIJ*)(baij->A->data))->nonew) {
972:     PetscObjectState state = baij->A->nonzerostate + baij->B->nonzerostate;
973:     MPIU_Allreduce(&state,&mat->nonzerostate,1,MPIU_INT64,MPI_SUM,PetscObjectComm((PetscObject)mat));
974:   }
975:   return(0);
976: }

978: extern PetscErrorCode MatView_SeqBAIJ(Mat,PetscViewer);
979: #include <petscdraw.h>
980: static PetscErrorCode MatView_MPIBAIJ_ASCIIorDraworSocket(Mat mat,PetscViewer viewer)
981: {
982:   Mat_MPIBAIJ       *baij = (Mat_MPIBAIJ*)mat->data;
983:   PetscErrorCode    ierr;
984:   PetscMPIInt       rank = baij->rank;
985:   PetscInt          bs   = mat->rmap->bs;
986:   PetscBool         iascii,isdraw;
987:   PetscViewer       sviewer;
988:   PetscViewerFormat format;

991:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
992:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
993:   if (iascii) {
994:     PetscViewerGetFormat(viewer,&format);
995:     if (format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
996:       MatInfo info;
997:       MPI_Comm_rank(PetscObjectComm((PetscObject)mat),&rank);
998:       MatGetInfo(mat,MAT_LOCAL,&info);
999:       PetscViewerASCIIPushSynchronized(viewer);
1000:       PetscViewerASCIISynchronizedPrintf(viewer,"[%d] Local rows %D nz %D nz alloced %D bs %D mem %g\n",
1001:                                                 rank,mat->rmap->n,(PetscInt)info.nz_used,(PetscInt)info.nz_allocated,mat->rmap->bs,(double)info.memory);
1002:       MatGetInfo(baij->A,MAT_LOCAL,&info);
1003:       PetscViewerASCIISynchronizedPrintf(viewer,"[%d] on-diagonal part: nz %D \n",rank,(PetscInt)info.nz_used);
1004:       MatGetInfo(baij->B,MAT_LOCAL,&info);
1005:       PetscViewerASCIISynchronizedPrintf(viewer,"[%d] off-diagonal part: nz %D \n",rank,(PetscInt)info.nz_used);
1006:       PetscViewerFlush(viewer);
1007:       PetscViewerASCIIPopSynchronized(viewer);
1008:       PetscViewerASCIIPrintf(viewer,"Information on VecScatter used in matrix-vector product: \n");
1009:       VecScatterView(baij->Mvctx,viewer);
1010:       return(0);
1011:     } else if (format == PETSC_VIEWER_ASCII_INFO) {
1012:       PetscViewerASCIIPrintf(viewer,"  block size is %D\n",bs);
1013:       return(0);
1014:     } else if (format == PETSC_VIEWER_ASCII_FACTOR_INFO) {
1015:       return(0);
1016:     }
1017:   }

1019:   if (isdraw) {
1020:     PetscDraw draw;
1021:     PetscBool isnull;
1022:     PetscViewerDrawGetDraw(viewer,0,&draw);
1023:     PetscDrawIsNull(draw,&isnull);
1024:     if (isnull) return(0);
1025:   }

1027:   {
1028:     /* assemble the entire matrix onto first processor. */
1029:     Mat         A;
1030:     Mat_SeqBAIJ *Aloc;
1031:     PetscInt    M = mat->rmap->N,N = mat->cmap->N,*ai,*aj,col,i,j,k,*rvals,mbs = baij->mbs;
1032:     MatScalar   *a;
1033:     const char  *matname;

1035:     /* Here we are creating a temporary matrix, so will assume MPIBAIJ is acceptable */
1036:     /* Perhaps this should be the type of mat? */
1037:     MatCreate(PetscObjectComm((PetscObject)mat),&A);
1038:     if (rank == 0) {
1039:       MatSetSizes(A,M,N,M,N);
1040:     } else {
1041:       MatSetSizes(A,0,0,M,N);
1042:     }
1043:     MatSetType(A,MATMPIBAIJ);
1044:     MatMPIBAIJSetPreallocation(A,mat->rmap->bs,0,NULL,0,NULL);
1045:     MatSetOption(A,MAT_NEW_NONZERO_LOCATION_ERR,PETSC_FALSE);
1046:     PetscLogObjectParent((PetscObject)mat,(PetscObject)A);

1048:     /* copy over the A part */
1049:     Aloc = (Mat_SeqBAIJ*)baij->A->data;
1050:     ai   = Aloc->i; aj = Aloc->j; a = Aloc->a;
1051:     PetscMalloc1(bs,&rvals);

1053:     for (i=0; i<mbs; i++) {
1054:       rvals[0] = bs*(baij->rstartbs + i);
1055:       for (j=1; j<bs; j++) rvals[j] = rvals[j-1] + 1;
1056:       for (j=ai[i]; j<ai[i+1]; j++) {
1057:         col = (baij->cstartbs+aj[j])*bs;
1058:         for (k=0; k<bs; k++) {
1059:           MatSetValues_MPIBAIJ(A,bs,rvals,1,&col,a,INSERT_VALUES);
1060:           col++; a += bs;
1061:         }
1062:       }
1063:     }
1064:     /* copy over the B part */
1065:     Aloc = (Mat_SeqBAIJ*)baij->B->data;
1066:     ai   = Aloc->i; aj = Aloc->j; a = Aloc->a;
1067:     for (i=0; i<mbs; i++) {
1068:       rvals[0] = bs*(baij->rstartbs + i);
1069:       for (j=1; j<bs; j++) rvals[j] = rvals[j-1] + 1;
1070:       for (j=ai[i]; j<ai[i+1]; j++) {
1071:         col = baij->garray[aj[j]]*bs;
1072:         for (k=0; k<bs; k++) {
1073:           MatSetValues_MPIBAIJ(A,bs,rvals,1,&col,a,INSERT_VALUES);
1074:           col++; a += bs;
1075:         }
1076:       }
1077:     }
1078:     PetscFree(rvals);
1079:     MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
1080:     MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
1081:     /*
1082:        Everyone has to call to draw the matrix since the graphics waits are
1083:        synchronized across all processors that share the PetscDraw object
1084:     */
1085:     PetscViewerGetSubViewer(viewer,PETSC_COMM_SELF,&sviewer);
1086:     PetscObjectGetName((PetscObject)mat,&matname);
1087:     if (rank == 0) {
1088:       PetscObjectSetName((PetscObject)((Mat_MPIBAIJ*)(A->data))->A,matname);
1089:       MatView_SeqBAIJ(((Mat_MPIBAIJ*)(A->data))->A,sviewer);
1090:     }
1091:     PetscViewerRestoreSubViewer(viewer,PETSC_COMM_SELF,&sviewer);
1092:     PetscViewerFlush(viewer);
1093:     MatDestroy(&A);
1094:   }
1095:   return(0);
1096: }

1098: /* Used for both MPIBAIJ and MPISBAIJ matrices */
1099: PetscErrorCode MatView_MPIBAIJ_Binary(Mat mat,PetscViewer viewer)
1100: {
1101:   Mat_MPIBAIJ    *aij = (Mat_MPIBAIJ*)mat->data;
1102:   Mat_SeqBAIJ    *A   = (Mat_SeqBAIJ*)aij->A->data;
1103:   Mat_SeqBAIJ    *B   = (Mat_SeqBAIJ*)aij->B->data;
1104:   const PetscInt *garray = aij->garray;
1105:   PetscInt       header[4],M,N,m,rs,cs,bs,nz,cnt,i,j,ja,jb,k,l;
1106:   PetscInt       *rowlens,*colidxs;
1107:   PetscScalar    *matvals;

1111:   PetscViewerSetUp(viewer);

1113:   M  = mat->rmap->N;
1114:   N  = mat->cmap->N;
1115:   m  = mat->rmap->n;
1116:   rs = mat->rmap->rstart;
1117:   cs = mat->cmap->rstart;
1118:   bs = mat->rmap->bs;
1119:   nz = bs*bs*(A->nz + B->nz);

1121:   /* write matrix header */
1122:   header[0] = MAT_FILE_CLASSID;
1123:   header[1] = M; header[2] = N; header[3] = nz;
1124:   MPI_Reduce(&nz,&header[3],1,MPIU_INT,MPI_SUM,0,PetscObjectComm((PetscObject)mat));
1125:   PetscViewerBinaryWrite(viewer,header,4,PETSC_INT);

1127:   /* fill in and store row lengths */
1128:   PetscMalloc1(m,&rowlens);
1129:   for (cnt=0, i=0; i<A->mbs; i++)
1130:     for (j=0; j<bs; j++)
1131:       rowlens[cnt++] = bs*(A->i[i+1] - A->i[i] + B->i[i+1] - B->i[i]);
1132:   PetscViewerBinaryWriteAll(viewer,rowlens,m,rs,M,PETSC_INT);
1133:   PetscFree(rowlens);

1135:   /* fill in and store column indices */
1136:   PetscMalloc1(nz,&colidxs);
1137:   for (cnt=0, i=0; i<A->mbs; i++) {
1138:     for (k=0; k<bs; k++) {
1139:       for (jb=B->i[i]; jb<B->i[i+1]; jb++) {
1140:         if (garray[B->j[jb]] > cs/bs) break;
1141:         for (l=0; l<bs; l++)
1142:           colidxs[cnt++] = bs*garray[B->j[jb]] + l;
1143:       }
1144:       for (ja=A->i[i]; ja<A->i[i+1]; ja++)
1145:         for (l=0; l<bs; l++)
1146:           colidxs[cnt++] = bs*A->j[ja] + l + cs;
1147:       for (; jb<B->i[i+1]; jb++)
1148:         for (l=0; l<bs; l++)
1149:           colidxs[cnt++] = bs*garray[B->j[jb]] + l;
1150:     }
1151:   }
1152:   if (cnt != nz) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_LIB,"Internal PETSc error: cnt = %D nz = %D",cnt,nz);
1153:   PetscViewerBinaryWriteAll(viewer,colidxs,nz,PETSC_DECIDE,PETSC_DECIDE,PETSC_INT);
1154:   PetscFree(colidxs);

1156:   /* fill in and store nonzero values */
1157:   PetscMalloc1(nz,&matvals);
1158:   for (cnt=0, i=0; i<A->mbs; i++) {
1159:     for (k=0; k<bs; k++) {
1160:       for (jb=B->i[i]; jb<B->i[i+1]; jb++) {
1161:         if (garray[B->j[jb]] > cs/bs) break;
1162:         for (l=0; l<bs; l++)
1163:           matvals[cnt++] = B->a[bs*(bs*jb + l) + k];
1164:       }
1165:       for (ja=A->i[i]; ja<A->i[i+1]; ja++)
1166:         for (l=0; l<bs; l++)
1167:           matvals[cnt++] = A->a[bs*(bs*ja + l) + k];
1168:       for (; jb<B->i[i+1]; jb++)
1169:         for (l=0; l<bs; l++)
1170:           matvals[cnt++] = B->a[bs*(bs*jb + l) + k];
1171:     }
1172:   }
1173:   PetscViewerBinaryWriteAll(viewer,matvals,nz,PETSC_DECIDE,PETSC_DECIDE,PETSC_SCALAR);
1174:   PetscFree(matvals);

1176:   /* write block size option to the viewer's .info file */
1177:   MatView_Binary_BlockSizes(mat,viewer);
1178:   return(0);
1179: }

1181: PetscErrorCode MatView_MPIBAIJ(Mat mat,PetscViewer viewer)
1182: {
1184:   PetscBool      iascii,isdraw,issocket,isbinary;

1187:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
1188:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
1189:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSOCKET,&issocket);
1190:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1191:   if (iascii || isdraw || issocket) {
1192:     MatView_MPIBAIJ_ASCIIorDraworSocket(mat,viewer);
1193:   } else if (isbinary) {
1194:     MatView_MPIBAIJ_Binary(mat,viewer);
1195:   }
1196:   return(0);
1197: }

1199: PetscErrorCode MatDestroy_MPIBAIJ(Mat mat)
1200: {
1201:   Mat_MPIBAIJ    *baij = (Mat_MPIBAIJ*)mat->data;

1205: #if defined(PETSC_USE_LOG)
1206:   PetscLogObjectState((PetscObject)mat,"Rows=%D,Cols=%D",mat->rmap->N,mat->cmap->N);
1207: #endif
1208:   MatStashDestroy_Private(&mat->stash);
1209:   MatStashDestroy_Private(&mat->bstash);
1210:   MatDestroy(&baij->A);
1211:   MatDestroy(&baij->B);
1212: #if defined(PETSC_USE_CTABLE)
1213:   PetscTableDestroy(&baij->colmap);
1214: #else
1215:   PetscFree(baij->colmap);
1216: #endif
1217:   PetscFree(baij->garray);
1218:   VecDestroy(&baij->lvec);
1219:   VecScatterDestroy(&baij->Mvctx);
1220:   PetscFree2(baij->rowvalues,baij->rowindices);
1221:   PetscFree(baij->barray);
1222:   PetscFree2(baij->hd,baij->ht);
1223:   PetscFree(baij->rangebs);
1224:   PetscFree(mat->data);

1226:   PetscObjectChangeTypeName((PetscObject)mat,NULL);
1227:   PetscObjectComposeFunction((PetscObject)mat,"MatStoreValues_C",NULL);
1228:   PetscObjectComposeFunction((PetscObject)mat,"MatRetrieveValues_C",NULL);
1229:   PetscObjectComposeFunction((PetscObject)mat,"MatMPIBAIJSetPreallocation_C",NULL);
1230:   PetscObjectComposeFunction((PetscObject)mat,"MatMPIBAIJSetPreallocationCSR_C",NULL);
1231:   PetscObjectComposeFunction((PetscObject)mat,"MatDiagonalScaleLocal_C",NULL);
1232:   PetscObjectComposeFunction((PetscObject)mat,"MatSetHashTableFactor_C",NULL);
1233:   PetscObjectComposeFunction((PetscObject)mat,"MatConvert_mpibaij_mpisbaij_C",NULL);
1234:   PetscObjectComposeFunction((PetscObject)mat,"MatConvert_mpibaij_mpibstrm_C",NULL);
1235: #if defined(PETSC_HAVE_HYPRE)
1236:   PetscObjectComposeFunction((PetscObject)mat,"MatConvert_mpibaij_hypre_C",NULL);
1237: #endif
1238:   PetscObjectComposeFunction((PetscObject)mat,"MatConvert_mpibaij_is_C",NULL);
1239:   return(0);
1240: }

1242: PetscErrorCode MatMult_MPIBAIJ(Mat A,Vec xx,Vec yy)
1243: {
1244:   Mat_MPIBAIJ    *a = (Mat_MPIBAIJ*)A->data;
1246:   PetscInt       nt;

1249:   VecGetLocalSize(xx,&nt);
1250:   if (nt != A->cmap->n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Incompatible partition of A and xx");
1251:   VecGetLocalSize(yy,&nt);
1252:   if (nt != A->rmap->n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Incompatible parition of A and yy");
1253:   VecScatterBegin(a->Mvctx,xx,a->lvec,INSERT_VALUES,SCATTER_FORWARD);
1254:   (*a->A->ops->mult)(a->A,xx,yy);
1255:   VecScatterEnd(a->Mvctx,xx,a->lvec,INSERT_VALUES,SCATTER_FORWARD);
1256:   (*a->B->ops->multadd)(a->B,a->lvec,yy,yy);
1257:   return(0);
1258: }

1260: PetscErrorCode MatMultAdd_MPIBAIJ(Mat A,Vec xx,Vec yy,Vec zz)
1261: {
1262:   Mat_MPIBAIJ    *a = (Mat_MPIBAIJ*)A->data;

1266:   VecScatterBegin(a->Mvctx,xx,a->lvec,INSERT_VALUES,SCATTER_FORWARD);
1267:   (*a->A->ops->multadd)(a->A,xx,yy,zz);
1268:   VecScatterEnd(a->Mvctx,xx,a->lvec,INSERT_VALUES,SCATTER_FORWARD);
1269:   (*a->B->ops->multadd)(a->B,a->lvec,zz,zz);
1270:   return(0);
1271: }

1273: PetscErrorCode MatMultTranspose_MPIBAIJ(Mat A,Vec xx,Vec yy)
1274: {
1275:   Mat_MPIBAIJ    *a = (Mat_MPIBAIJ*)A->data;

1279:   /* do nondiagonal part */
1280:   (*a->B->ops->multtranspose)(a->B,xx,a->lvec);
1281:   /* do local part */
1282:   (*a->A->ops->multtranspose)(a->A,xx,yy);
1283:   /* add partial results together */
1284:   VecScatterBegin(a->Mvctx,a->lvec,yy,ADD_VALUES,SCATTER_REVERSE);
1285:   VecScatterEnd(a->Mvctx,a->lvec,yy,ADD_VALUES,SCATTER_REVERSE);
1286:   return(0);
1287: }

1289: PetscErrorCode MatMultTransposeAdd_MPIBAIJ(Mat A,Vec xx,Vec yy,Vec zz)
1290: {
1291:   Mat_MPIBAIJ    *a = (Mat_MPIBAIJ*)A->data;

1295:   /* do nondiagonal part */
1296:   (*a->B->ops->multtranspose)(a->B,xx,a->lvec);
1297:   /* do local part */
1298:   (*a->A->ops->multtransposeadd)(a->A,xx,yy,zz);
1299:   /* add partial results together */
1300:   VecScatterBegin(a->Mvctx,a->lvec,zz,ADD_VALUES,SCATTER_REVERSE);
1301:   VecScatterEnd(a->Mvctx,a->lvec,zz,ADD_VALUES,SCATTER_REVERSE);
1302:   return(0);
1303: }

1305: /*
1306:   This only works correctly for square matrices where the subblock A->A is the
1307:    diagonal block
1308: */
1309: PetscErrorCode MatGetDiagonal_MPIBAIJ(Mat A,Vec v)
1310: {
1311:   Mat_MPIBAIJ    *a = (Mat_MPIBAIJ*)A->data;

1315:   if (A->rmap->N != A->cmap->N) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Supports only square matrix where A->A is diag block");
1316:   MatGetDiagonal(a->A,v);
1317:   return(0);
1318: }

1320: PetscErrorCode MatScale_MPIBAIJ(Mat A,PetscScalar aa)
1321: {
1322:   Mat_MPIBAIJ    *a = (Mat_MPIBAIJ*)A->data;

1326:   MatScale(a->A,aa);
1327:   MatScale(a->B,aa);
1328:   return(0);
1329: }

1331: PetscErrorCode MatGetRow_MPIBAIJ(Mat matin,PetscInt row,PetscInt *nz,PetscInt **idx,PetscScalar **v)
1332: {
1333:   Mat_MPIBAIJ    *mat = (Mat_MPIBAIJ*)matin->data;
1334:   PetscScalar    *vworkA,*vworkB,**pvA,**pvB,*v_p;
1336:   PetscInt       bs = matin->rmap->bs,bs2 = mat->bs2,i,*cworkA,*cworkB,**pcA,**pcB;
1337:   PetscInt       nztot,nzA,nzB,lrow,brstart = matin->rmap->rstart,brend = matin->rmap->rend;
1338:   PetscInt       *cmap,*idx_p,cstart = mat->cstartbs;

1341:   if (row < brstart || row >= brend) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Only local rows");
1342:   if (mat->getrowactive) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Already active");
1343:   mat->getrowactive = PETSC_TRUE;

1345:   if (!mat->rowvalues && (idx || v)) {
1346:     /*
1347:         allocate enough space to hold information from the longest row.
1348:     */
1349:     Mat_SeqBAIJ *Aa = (Mat_SeqBAIJ*)mat->A->data,*Ba = (Mat_SeqBAIJ*)mat->B->data;
1350:     PetscInt    max = 1,mbs = mat->mbs,tmp;
1351:     for (i=0; i<mbs; i++) {
1352:       tmp = Aa->i[i+1] - Aa->i[i] + Ba->i[i+1] - Ba->i[i];
1353:       if (max < tmp) max = tmp;
1354:     }
1355:     PetscMalloc2(max*bs2,&mat->rowvalues,max*bs2,&mat->rowindices);
1356:   }
1357:   lrow = row - brstart;

1359:   pvA = &vworkA; pcA = &cworkA; pvB = &vworkB; pcB = &cworkB;
1360:   if (!v)   {pvA = NULL; pvB = NULL;}
1361:   if (!idx) {pcA = NULL; if (!v) pcB = NULL;}
1362:   (*mat->A->ops->getrow)(mat->A,lrow,&nzA,pcA,pvA);
1363:   (*mat->B->ops->getrow)(mat->B,lrow,&nzB,pcB,pvB);
1364:   nztot = nzA + nzB;

1366:   cmap = mat->garray;
1367:   if (v  || idx) {
1368:     if (nztot) {
1369:       /* Sort by increasing column numbers, assuming A and B already sorted */
1370:       PetscInt imark = -1;
1371:       if (v) {
1372:         *v = v_p = mat->rowvalues;
1373:         for (i=0; i<nzB; i++) {
1374:           if (cmap[cworkB[i]/bs] < cstart) v_p[i] = vworkB[i];
1375:           else break;
1376:         }
1377:         imark = i;
1378:         for (i=0; i<nzA; i++)     v_p[imark+i] = vworkA[i];
1379:         for (i=imark; i<nzB; i++) v_p[nzA+i]   = vworkB[i];
1380:       }
1381:       if (idx) {
1382:         *idx = idx_p = mat->rowindices;
1383:         if (imark > -1) {
1384:           for (i=0; i<imark; i++) {
1385:             idx_p[i] = cmap[cworkB[i]/bs]*bs + cworkB[i]%bs;
1386:           }
1387:         } else {
1388:           for (i=0; i<nzB; i++) {
1389:             if (cmap[cworkB[i]/bs] < cstart) idx_p[i] = cmap[cworkB[i]/bs]*bs + cworkB[i]%bs;
1390:             else break;
1391:           }
1392:           imark = i;
1393:         }
1394:         for (i=0; i<nzA; i++)     idx_p[imark+i] = cstart*bs + cworkA[i];
1395:         for (i=imark; i<nzB; i++) idx_p[nzA+i]   = cmap[cworkB[i]/bs]*bs + cworkB[i]%bs ;
1396:       }
1397:     } else {
1398:       if (idx) *idx = NULL;
1399:       if (v)   *v   = NULL;
1400:     }
1401:   }
1402:   *nz  = nztot;
1403:   (*mat->A->ops->restorerow)(mat->A,lrow,&nzA,pcA,pvA);
1404:   (*mat->B->ops->restorerow)(mat->B,lrow,&nzB,pcB,pvB);
1405:   return(0);
1406: }

1408: PetscErrorCode MatRestoreRow_MPIBAIJ(Mat mat,PetscInt row,PetscInt *nz,PetscInt **idx,PetscScalar **v)
1409: {
1410:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ*)mat->data;

1413:   if (!baij->getrowactive) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"MatGetRow not called");
1414:   baij->getrowactive = PETSC_FALSE;
1415:   return(0);
1416: }

1418: PetscErrorCode MatZeroEntries_MPIBAIJ(Mat A)
1419: {
1420:   Mat_MPIBAIJ    *l = (Mat_MPIBAIJ*)A->data;

1424:   MatZeroEntries(l->A);
1425:   MatZeroEntries(l->B);
1426:   return(0);
1427: }

1429: PetscErrorCode MatGetInfo_MPIBAIJ(Mat matin,MatInfoType flag,MatInfo *info)
1430: {
1431:   Mat_MPIBAIJ    *a = (Mat_MPIBAIJ*)matin->data;
1432:   Mat            A  = a->A,B = a->B;
1434:   PetscLogDouble isend[5],irecv[5];

1437:   info->block_size = (PetscReal)matin->rmap->bs;

1439:   MatGetInfo(A,MAT_LOCAL,info);

1441:   isend[0] = info->nz_used; isend[1] = info->nz_allocated; isend[2] = info->nz_unneeded;
1442:   isend[3] = info->memory;  isend[4] = info->mallocs;

1444:   MatGetInfo(B,MAT_LOCAL,info);

1446:   isend[0] += info->nz_used; isend[1] += info->nz_allocated; isend[2] += info->nz_unneeded;
1447:   isend[3] += info->memory;  isend[4] += info->mallocs;

1449:   if (flag == MAT_LOCAL) {
1450:     info->nz_used      = isend[0];
1451:     info->nz_allocated = isend[1];
1452:     info->nz_unneeded  = isend[2];
1453:     info->memory       = isend[3];
1454:     info->mallocs      = isend[4];
1455:   } else if (flag == MAT_GLOBAL_MAX) {
1456:     MPIU_Allreduce(isend,irecv,5,MPIU_PETSCLOGDOUBLE,MPI_MAX,PetscObjectComm((PetscObject)matin));

1458:     info->nz_used      = irecv[0];
1459:     info->nz_allocated = irecv[1];
1460:     info->nz_unneeded  = irecv[2];
1461:     info->memory       = irecv[3];
1462:     info->mallocs      = irecv[4];
1463:   } else if (flag == MAT_GLOBAL_SUM) {
1464:     MPIU_Allreduce(isend,irecv,5,MPIU_PETSCLOGDOUBLE,MPI_SUM,PetscObjectComm((PetscObject)matin));

1466:     info->nz_used      = irecv[0];
1467:     info->nz_allocated = irecv[1];
1468:     info->nz_unneeded  = irecv[2];
1469:     info->memory       = irecv[3];
1470:     info->mallocs      = irecv[4];
1471:   } else SETERRQ1(PetscObjectComm((PetscObject)matin),PETSC_ERR_ARG_WRONG,"Unknown MatInfoType argument %d",(int)flag);
1472:   info->fill_ratio_given  = 0; /* no parallel LU/ILU/Cholesky */
1473:   info->fill_ratio_needed = 0;
1474:   info->factor_mallocs    = 0;
1475:   return(0);
1476: }

1478: PetscErrorCode MatSetOption_MPIBAIJ(Mat A,MatOption op,PetscBool flg)
1479: {
1480:   Mat_MPIBAIJ    *a = (Mat_MPIBAIJ*)A->data;

1484:   switch (op) {
1485:   case MAT_NEW_NONZERO_LOCATIONS:
1486:   case MAT_NEW_NONZERO_ALLOCATION_ERR:
1487:   case MAT_UNUSED_NONZERO_LOCATION_ERR:
1488:   case MAT_KEEP_NONZERO_PATTERN:
1489:   case MAT_NEW_NONZERO_LOCATION_ERR:
1490:     MatCheckPreallocated(A,1);
1491:     MatSetOption(a->A,op,flg);
1492:     MatSetOption(a->B,op,flg);
1493:     break;
1494:   case MAT_ROW_ORIENTED:
1495:     MatCheckPreallocated(A,1);
1496:     a->roworiented = flg;

1498:     MatSetOption(a->A,op,flg);
1499:     MatSetOption(a->B,op,flg);
1500:     break;
1501:   case MAT_FORCE_DIAGONAL_ENTRIES:
1502:   case MAT_SORTED_FULL:
1503:     PetscInfo1(A,"Option %s ignored\n",MatOptions[op]);
1504:     break;
1505:   case MAT_IGNORE_OFF_PROC_ENTRIES:
1506:     a->donotstash = flg;
1507:     break;
1508:   case MAT_USE_HASH_TABLE:
1509:     a->ht_flag = flg;
1510:     a->ht_fact = 1.39;
1511:     break;
1512:   case MAT_SYMMETRIC:
1513:   case MAT_STRUCTURALLY_SYMMETRIC:
1514:   case MAT_HERMITIAN:
1515:   case MAT_SUBMAT_SINGLEIS:
1516:   case MAT_SYMMETRY_ETERNAL:
1517:     MatCheckPreallocated(A,1);
1518:     MatSetOption(a->A,op,flg);
1519:     break;
1520:   default:
1521:     SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"unknown option %d",op);
1522:   }
1523:   return(0);
1524: }

1526: PetscErrorCode MatTranspose_MPIBAIJ(Mat A,MatReuse reuse,Mat *matout)
1527: {
1528:   Mat_MPIBAIJ    *baij = (Mat_MPIBAIJ*)A->data;
1529:   Mat_SeqBAIJ    *Aloc;
1530:   Mat            B;
1532:   PetscInt       M =A->rmap->N,N=A->cmap->N,*ai,*aj,i,*rvals,j,k,col;
1533:   PetscInt       bs=A->rmap->bs,mbs=baij->mbs;
1534:   MatScalar      *a;

1537:   if (reuse == MAT_INITIAL_MATRIX || reuse == MAT_INPLACE_MATRIX) {
1538:     MatCreate(PetscObjectComm((PetscObject)A),&B);
1539:     MatSetSizes(B,A->cmap->n,A->rmap->n,N,M);
1540:     MatSetType(B,((PetscObject)A)->type_name);
1541:     /* Do not know preallocation information, but must set block size */
1542:     MatMPIBAIJSetPreallocation(B,A->rmap->bs,PETSC_DECIDE,NULL,PETSC_DECIDE,NULL);
1543:   } else {
1544:     B = *matout;
1545:   }

1547:   /* copy over the A part */
1548:   Aloc = (Mat_SeqBAIJ*)baij->A->data;
1549:   ai   = Aloc->i; aj = Aloc->j; a = Aloc->a;
1550:   PetscMalloc1(bs,&rvals);

1552:   for (i=0; i<mbs; i++) {
1553:     rvals[0] = bs*(baij->rstartbs + i);
1554:     for (j=1; j<bs; j++) rvals[j] = rvals[j-1] + 1;
1555:     for (j=ai[i]; j<ai[i+1]; j++) {
1556:       col = (baij->cstartbs+aj[j])*bs;
1557:       for (k=0; k<bs; k++) {
1558:         MatSetValues_MPIBAIJ(B,1,&col,bs,rvals,a,INSERT_VALUES);

1560:         col++; a += bs;
1561:       }
1562:     }
1563:   }
1564:   /* copy over the B part */
1565:   Aloc = (Mat_SeqBAIJ*)baij->B->data;
1566:   ai   = Aloc->i; aj = Aloc->j; a = Aloc->a;
1567:   for (i=0; i<mbs; i++) {
1568:     rvals[0] = bs*(baij->rstartbs + i);
1569:     for (j=1; j<bs; j++) rvals[j] = rvals[j-1] + 1;
1570:     for (j=ai[i]; j<ai[i+1]; j++) {
1571:       col = baij->garray[aj[j]]*bs;
1572:       for (k=0; k<bs; k++) {
1573:         MatSetValues_MPIBAIJ(B,1,&col,bs,rvals,a,INSERT_VALUES);
1574:         col++;
1575:         a += bs;
1576:       }
1577:     }
1578:   }
1579:   PetscFree(rvals);
1580:   MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
1581:   MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);

1583:   if (reuse == MAT_INITIAL_MATRIX || reuse == MAT_REUSE_MATRIX) *matout = B;
1584:   else {
1585:     MatHeaderMerge(A,&B);
1586:   }
1587:   return(0);
1588: }

1590: PetscErrorCode MatDiagonalScale_MPIBAIJ(Mat mat,Vec ll,Vec rr)
1591: {
1592:   Mat_MPIBAIJ    *baij = (Mat_MPIBAIJ*)mat->data;
1593:   Mat            a     = baij->A,b = baij->B;
1595:   PetscInt       s1,s2,s3;

1598:   MatGetLocalSize(mat,&s2,&s3);
1599:   if (rr) {
1600:     VecGetLocalSize(rr,&s1);
1601:     if (s1!=s3) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"right vector non-conforming local size");
1602:     /* Overlap communication with computation. */
1603:     VecScatterBegin(baij->Mvctx,rr,baij->lvec,INSERT_VALUES,SCATTER_FORWARD);
1604:   }
1605:   if (ll) {
1606:     VecGetLocalSize(ll,&s1);
1607:     if (s1!=s2) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"left vector non-conforming local size");
1608:     (*b->ops->diagonalscale)(b,ll,NULL);
1609:   }
1610:   /* scale  the diagonal block */
1611:   (*a->ops->diagonalscale)(a,ll,rr);

1613:   if (rr) {
1614:     /* Do a scatter end and then right scale the off-diagonal block */
1615:     VecScatterEnd(baij->Mvctx,rr,baij->lvec,INSERT_VALUES,SCATTER_FORWARD);
1616:     (*b->ops->diagonalscale)(b,NULL,baij->lvec);
1617:   }
1618:   return(0);
1619: }

1621: PetscErrorCode MatZeroRows_MPIBAIJ(Mat A,PetscInt N,const PetscInt rows[],PetscScalar diag,Vec x,Vec b)
1622: {
1623:   Mat_MPIBAIJ   *l      = (Mat_MPIBAIJ *) A->data;
1624:   PetscInt      *lrows;
1625:   PetscInt       r, len;
1626:   PetscBool      cong;

1630:   /* get locally owned rows */
1631:   MatZeroRowsMapLocal_Private(A,N,rows,&len,&lrows);
1632:   /* fix right hand side if needed */
1633:   if (x && b) {
1634:     const PetscScalar *xx;
1635:     PetscScalar       *bb;

1637:     VecGetArrayRead(x,&xx);
1638:     VecGetArray(b,&bb);
1639:     for (r = 0; r < len; ++r) bb[lrows[r]] = diag*xx[lrows[r]];
1640:     VecRestoreArrayRead(x,&xx);
1641:     VecRestoreArray(b,&bb);
1642:   }

1644:   /* actually zap the local rows */
1645:   /*
1646:         Zero the required rows. If the "diagonal block" of the matrix
1647:      is square and the user wishes to set the diagonal we use separate
1648:      code so that MatSetValues() is not called for each diagonal allocating
1649:      new memory, thus calling lots of mallocs and slowing things down.

1651:   */
1652:   /* must zero l->B before l->A because the (diag) case below may put values into l->B*/
1653:   MatZeroRows_SeqBAIJ(l->B,len,lrows,0.0,NULL,NULL);
1654:   MatHasCongruentLayouts(A,&cong);
1655:   if ((diag != 0.0) && cong) {
1656:     MatZeroRows_SeqBAIJ(l->A,len,lrows,diag,NULL,NULL);
1657:   } else if (diag != 0.0) {
1658:     MatZeroRows_SeqBAIJ(l->A,len,lrows,0.0,NULL,NULL);
1659:     if (((Mat_SeqBAIJ*)l->A->data)->nonew) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"MatZeroRows() on rectangular matrices cannot be used with the Mat options \n\
1660:        MAT_NEW_NONZERO_LOCATIONS,MAT_NEW_NONZERO_LOCATION_ERR,MAT_NEW_NONZERO_ALLOCATION_ERR");
1661:     for (r = 0; r < len; ++r) {
1662:       const PetscInt row = lrows[r] + A->rmap->rstart;
1663:       MatSetValues(A,1,&row,1,&row,&diag,INSERT_VALUES);
1664:     }
1665:     MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
1666:     MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
1667:   } else {
1668:     MatZeroRows_SeqBAIJ(l->A,len,lrows,0.0,NULL,NULL);
1669:   }
1670:   PetscFree(lrows);

1672:   /* only change matrix nonzero state if pattern was allowed to be changed */
1673:   if (!((Mat_SeqBAIJ*)(l->A->data))->keepnonzeropattern) {
1674:     PetscObjectState state = l->A->nonzerostate + l->B->nonzerostate;
1675:     MPIU_Allreduce(&state,&A->nonzerostate,1,MPIU_INT64,MPI_SUM,PetscObjectComm((PetscObject)A));
1676:   }
1677:   return(0);
1678: }

1680: PetscErrorCode MatZeroRowsColumns_MPIBAIJ(Mat A,PetscInt N,const PetscInt rows[],PetscScalar diag,Vec x,Vec b)
1681: {
1682:   Mat_MPIBAIJ       *l = (Mat_MPIBAIJ*)A->data;
1683:   PetscErrorCode    ierr;
1684:   PetscMPIInt       n = A->rmap->n,p = 0;
1685:   PetscInt          i,j,k,r,len = 0,row,col,count;
1686:   PetscInt          *lrows,*owners = A->rmap->range;
1687:   PetscSFNode       *rrows;
1688:   PetscSF           sf;
1689:   const PetscScalar *xx;
1690:   PetscScalar       *bb,*mask;
1691:   Vec               xmask,lmask;
1692:   Mat_SeqBAIJ       *baij = (Mat_SeqBAIJ*)l->B->data;
1693:   PetscInt           bs = A->rmap->bs, bs2 = baij->bs2;
1694:   PetscScalar       *aa;

1697:   /* Create SF where leaves are input rows and roots are owned rows */
1698:   PetscMalloc1(n, &lrows);
1699:   for (r = 0; r < n; ++r) lrows[r] = -1;
1700:   PetscMalloc1(N, &rrows);
1701:   for (r = 0; r < N; ++r) {
1702:     const PetscInt idx   = rows[r];
1703:     if (idx < 0 || A->rmap->N <= idx) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Row %D out of range [0,%D)",idx,A->rmap->N);
1704:     if (idx < owners[p] || owners[p+1] <= idx) { /* short-circuit the search if the last p owns this row too */
1705:       PetscLayoutFindOwner(A->rmap,idx,&p);
1706:     }
1707:     rrows[r].rank  = p;
1708:     rrows[r].index = rows[r] - owners[p];
1709:   }
1710:   PetscSFCreate(PetscObjectComm((PetscObject) A), &sf);
1711:   PetscSFSetGraph(sf, n, N, NULL, PETSC_OWN_POINTER, rrows, PETSC_OWN_POINTER);
1712:   /* Collect flags for rows to be zeroed */
1713:   PetscSFReduceBegin(sf, MPIU_INT, (PetscInt *) rows, lrows, MPI_LOR);
1714:   PetscSFReduceEnd(sf, MPIU_INT, (PetscInt *) rows, lrows, MPI_LOR);
1715:   PetscSFDestroy(&sf);
1716:   /* Compress and put in row numbers */
1717:   for (r = 0; r < n; ++r) if (lrows[r] >= 0) lrows[len++] = r;
1718:   /* zero diagonal part of matrix */
1719:   MatZeroRowsColumns(l->A,len,lrows,diag,x,b);
1720:   /* handle off diagonal part of matrix */
1721:   MatCreateVecs(A,&xmask,NULL);
1722:   VecDuplicate(l->lvec,&lmask);
1723:   VecGetArray(xmask,&bb);
1724:   for (i=0; i<len; i++) bb[lrows[i]] = 1;
1725:   VecRestoreArray(xmask,&bb);
1726:   VecScatterBegin(l->Mvctx,xmask,lmask,ADD_VALUES,SCATTER_FORWARD);
1727:   VecScatterEnd(l->Mvctx,xmask,lmask,ADD_VALUES,SCATTER_FORWARD);
1728:   VecDestroy(&xmask);
1729:   if (x) {
1730:     VecScatterBegin(l->Mvctx,x,l->lvec,INSERT_VALUES,SCATTER_FORWARD);
1731:     VecScatterEnd(l->Mvctx,x,l->lvec,INSERT_VALUES,SCATTER_FORWARD);
1732:     VecGetArrayRead(l->lvec,&xx);
1733:     VecGetArray(b,&bb);
1734:   }
1735:   VecGetArray(lmask,&mask);
1736:   /* remove zeroed rows of off diagonal matrix */
1737:   for (i = 0; i < len; ++i) {
1738:     row   = lrows[i];
1739:     count = (baij->i[row/bs +1] - baij->i[row/bs])*bs;
1740:     aa    = ((MatScalar*)(baij->a)) + baij->i[row/bs]*bs2 + (row%bs);
1741:     for (k = 0; k < count; ++k) {
1742:       aa[0] = 0.0;
1743:       aa   += bs;
1744:     }
1745:   }
1746:   /* loop over all elements of off process part of matrix zeroing removed columns*/
1747:   for (i = 0; i < l->B->rmap->N; ++i) {
1748:     row = i/bs;
1749:     for (j = baij->i[row]; j < baij->i[row+1]; ++j) {
1750:       for (k = 0; k < bs; ++k) {
1751:         col = bs*baij->j[j] + k;
1752:         if (PetscAbsScalar(mask[col])) {
1753:           aa = ((MatScalar*)(baij->a)) + j*bs2 + (i%bs) + bs*k;
1754:           if (x) bb[i] -= aa[0]*xx[col];
1755:           aa[0] = 0.0;
1756:         }
1757:       }
1758:     }
1759:   }
1760:   if (x) {
1761:     VecRestoreArray(b,&bb);
1762:     VecRestoreArrayRead(l->lvec,&xx);
1763:   }
1764:   VecRestoreArray(lmask,&mask);
1765:   VecDestroy(&lmask);
1766:   PetscFree(lrows);

1768:   /* only change matrix nonzero state if pattern was allowed to be changed */
1769:   if (!((Mat_SeqBAIJ*)(l->A->data))->keepnonzeropattern) {
1770:     PetscObjectState state = l->A->nonzerostate + l->B->nonzerostate;
1771:     MPIU_Allreduce(&state,&A->nonzerostate,1,MPIU_INT64,MPI_SUM,PetscObjectComm((PetscObject)A));
1772:   }
1773:   return(0);
1774: }

1776: PetscErrorCode MatSetUnfactored_MPIBAIJ(Mat A)
1777: {
1778:   Mat_MPIBAIJ    *a = (Mat_MPIBAIJ*)A->data;

1782:   MatSetUnfactored(a->A);
1783:   return(0);
1784: }

1786: static PetscErrorCode MatDuplicate_MPIBAIJ(Mat,MatDuplicateOption,Mat*);

1788: PetscErrorCode MatEqual_MPIBAIJ(Mat A,Mat B,PetscBool  *flag)
1789: {
1790:   Mat_MPIBAIJ    *matB = (Mat_MPIBAIJ*)B->data,*matA = (Mat_MPIBAIJ*)A->data;
1791:   Mat            a,b,c,d;
1792:   PetscBool      flg;

1796:   a = matA->A; b = matA->B;
1797:   c = matB->A; d = matB->B;

1799:   MatEqual(a,c,&flg);
1800:   if (flg) {
1801:     MatEqual(b,d,&flg);
1802:   }
1803:   MPIU_Allreduce(&flg,flag,1,MPIU_BOOL,MPI_LAND,PetscObjectComm((PetscObject)A));
1804:   return(0);
1805: }

1807: PetscErrorCode MatCopy_MPIBAIJ(Mat A,Mat B,MatStructure str)
1808: {
1810:   Mat_MPIBAIJ    *a = (Mat_MPIBAIJ*)A->data;
1811:   Mat_MPIBAIJ    *b = (Mat_MPIBAIJ*)B->data;

1814:   /* If the two matrices don't have the same copy implementation, they aren't compatible for fast copy. */
1815:   if ((str != SAME_NONZERO_PATTERN) || (A->ops->copy != B->ops->copy)) {
1816:     MatCopy_Basic(A,B,str);
1817:   } else {
1818:     MatCopy(a->A,b->A,str);
1819:     MatCopy(a->B,b->B,str);
1820:   }
1821:   PetscObjectStateIncrease((PetscObject)B);
1822:   return(0);
1823: }

1825: PetscErrorCode MatSetUp_MPIBAIJ(Mat A)
1826: {

1830:   MatMPIBAIJSetPreallocation(A,A->rmap->bs,PETSC_DEFAULT,NULL,PETSC_DEFAULT,NULL);
1831:   return(0);
1832: }

1834: PetscErrorCode MatAXPYGetPreallocation_MPIBAIJ(Mat Y,const PetscInt *yltog,Mat X,const PetscInt *xltog,PetscInt *nnz)
1835: {
1837:   PetscInt       bs = Y->rmap->bs,m = Y->rmap->N/bs;
1838:   Mat_SeqBAIJ    *x = (Mat_SeqBAIJ*)X->data;
1839:   Mat_SeqBAIJ    *y = (Mat_SeqBAIJ*)Y->data;

1842:   MatAXPYGetPreallocation_MPIX_private(m,x->i,x->j,xltog,y->i,y->j,yltog,nnz);
1843:   return(0);
1844: }

1846: PetscErrorCode MatAXPY_MPIBAIJ(Mat Y,PetscScalar a,Mat X,MatStructure str)
1847: {
1849:   Mat_MPIBAIJ    *xx=(Mat_MPIBAIJ*)X->data,*yy=(Mat_MPIBAIJ*)Y->data;
1850:   PetscBLASInt   bnz,one=1;
1851:   Mat_SeqBAIJ    *x,*y;
1852:   PetscInt       bs2 = Y->rmap->bs*Y->rmap->bs;

1855:   if (str == SAME_NONZERO_PATTERN) {
1856:     PetscScalar alpha = a;
1857:     x    = (Mat_SeqBAIJ*)xx->A->data;
1858:     y    = (Mat_SeqBAIJ*)yy->A->data;
1859:     PetscBLASIntCast(x->nz*bs2,&bnz);
1860:     PetscStackCallBLAS("BLASaxpy",BLASaxpy_(&bnz,&alpha,x->a,&one,y->a,&one));
1861:     x    = (Mat_SeqBAIJ*)xx->B->data;
1862:     y    = (Mat_SeqBAIJ*)yy->B->data;
1863:     PetscBLASIntCast(x->nz*bs2,&bnz);
1864:     PetscStackCallBLAS("BLASaxpy",BLASaxpy_(&bnz,&alpha,x->a,&one,y->a,&one));
1865:     PetscObjectStateIncrease((PetscObject)Y);
1866:   } else if (str == SUBSET_NONZERO_PATTERN) { /* nonzeros of X is a subset of Y's */
1867:     MatAXPY_Basic(Y,a,X,str);
1868:   } else {
1869:     Mat      B;
1870:     PetscInt *nnz_d,*nnz_o,bs=Y->rmap->bs;
1871:     PetscMalloc1(yy->A->rmap->N,&nnz_d);
1872:     PetscMalloc1(yy->B->rmap->N,&nnz_o);
1873:     MatCreate(PetscObjectComm((PetscObject)Y),&B);
1874:     PetscObjectSetName((PetscObject)B,((PetscObject)Y)->name);
1875:     MatSetSizes(B,Y->rmap->n,Y->cmap->n,Y->rmap->N,Y->cmap->N);
1876:     MatSetBlockSizesFromMats(B,Y,Y);
1877:     MatSetType(B,MATMPIBAIJ);
1878:     MatAXPYGetPreallocation_SeqBAIJ(yy->A,xx->A,nnz_d);
1879:     MatAXPYGetPreallocation_MPIBAIJ(yy->B,yy->garray,xx->B,xx->garray,nnz_o);
1880:     MatMPIBAIJSetPreallocation(B,bs,0,nnz_d,0,nnz_o);
1881:     /* MatAXPY_BasicWithPreallocation() for BAIJ matrix is much slower than AIJ, even for bs=1 ! */
1882:     MatAXPY_BasicWithPreallocation(B,Y,a,X,str);
1883:     MatHeaderReplace(Y,&B);
1884:     PetscFree(nnz_d);
1885:     PetscFree(nnz_o);
1886:   }
1887:   return(0);
1888: }

1890: PetscErrorCode MatConjugate_MPIBAIJ(Mat mat)
1891: {
1892: #if defined(PETSC_USE_COMPLEX)
1894:   Mat_MPIBAIJ    *a = (Mat_MPIBAIJ*)mat->data;

1897:   MatConjugate_SeqBAIJ(a->A);
1898:   MatConjugate_SeqBAIJ(a->B);
1899: #else
1901: #endif
1902:   return(0);
1903: }

1905: PetscErrorCode MatRealPart_MPIBAIJ(Mat A)
1906: {
1907:   Mat_MPIBAIJ    *a = (Mat_MPIBAIJ*)A->data;

1911:   MatRealPart(a->A);
1912:   MatRealPart(a->B);
1913:   return(0);
1914: }

1916: PetscErrorCode MatImaginaryPart_MPIBAIJ(Mat A)
1917: {
1918:   Mat_MPIBAIJ    *a = (Mat_MPIBAIJ*)A->data;

1922:   MatImaginaryPart(a->A);
1923:   MatImaginaryPart(a->B);
1924:   return(0);
1925: }

1927: PetscErrorCode MatCreateSubMatrix_MPIBAIJ(Mat mat,IS isrow,IS iscol,MatReuse call,Mat *newmat)
1928: {
1930:   IS             iscol_local;
1931:   PetscInt       csize;

1934:   ISGetLocalSize(iscol,&csize);
1935:   if (call == MAT_REUSE_MATRIX) {
1936:     PetscObjectQuery((PetscObject)*newmat,"ISAllGather",(PetscObject*)&iscol_local);
1937:     if (!iscol_local) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Submatrix passed in was not used before, cannot reuse");
1938:   } else {
1939:     ISAllGather(iscol,&iscol_local);
1940:   }
1941:   MatCreateSubMatrix_MPIBAIJ_Private(mat,isrow,iscol_local,csize,call,newmat);
1942:   if (call == MAT_INITIAL_MATRIX) {
1943:     PetscObjectCompose((PetscObject)*newmat,"ISAllGather",(PetscObject)iscol_local);
1944:     ISDestroy(&iscol_local);
1945:   }
1946:   return(0);
1947: }

1949: /*
1950:   Not great since it makes two copies of the submatrix, first an SeqBAIJ
1951:   in local and then by concatenating the local matrices the end result.
1952:   Writing it directly would be much like MatCreateSubMatrices_MPIBAIJ().
1953:   This routine is used for BAIJ and SBAIJ matrices (unfortunate dependency).
1954: */
1955: PetscErrorCode MatCreateSubMatrix_MPIBAIJ_Private(Mat mat,IS isrow,IS iscol,PetscInt csize,MatReuse call,Mat *newmat)
1956: {
1958:   PetscMPIInt    rank,size;
1959:   PetscInt       i,m,n,rstart,row,rend,nz,*cwork,j,bs;
1960:   PetscInt       *ii,*jj,nlocal,*dlens,*olens,dlen,olen,jend,mglobal;
1961:   Mat            M,Mreuse;
1962:   MatScalar      *vwork,*aa;
1963:   MPI_Comm       comm;
1964:   IS             isrow_new, iscol_new;
1965:   Mat_SeqBAIJ    *aij;

1968:   PetscObjectGetComm((PetscObject)mat,&comm);
1969:   MPI_Comm_rank(comm,&rank);
1970:   MPI_Comm_size(comm,&size);
1971:   /* The compression and expansion should be avoided. Doesn't point
1972:      out errors, might change the indices, hence buggey */
1973:   ISCompressIndicesGeneral(mat->rmap->N,mat->rmap->n,mat->rmap->bs,1,&isrow,&isrow_new);
1974:   ISCompressIndicesGeneral(mat->cmap->N,mat->cmap->n,mat->cmap->bs,1,&iscol,&iscol_new);

1976:   if (call ==  MAT_REUSE_MATRIX) {
1977:     PetscObjectQuery((PetscObject)*newmat,"SubMatrix",(PetscObject*)&Mreuse);
1978:     if (!Mreuse) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Submatrix passed in was not used before, cannot reuse");
1979:     MatCreateSubMatrices_MPIBAIJ_local(mat,1,&isrow_new,&iscol_new,MAT_REUSE_MATRIX,&Mreuse);
1980:   } else {
1981:     MatCreateSubMatrices_MPIBAIJ_local(mat,1,&isrow_new,&iscol_new,MAT_INITIAL_MATRIX,&Mreuse);
1982:   }
1983:   ISDestroy(&isrow_new);
1984:   ISDestroy(&iscol_new);
1985:   /*
1986:       m - number of local rows
1987:       n - number of columns (same on all processors)
1988:       rstart - first row in new global matrix generated
1989:   */
1990:   MatGetBlockSize(mat,&bs);
1991:   MatGetSize(Mreuse,&m,&n);
1992:   m    = m/bs;
1993:   n    = n/bs;

1995:   if (call == MAT_INITIAL_MATRIX) {
1996:     aij = (Mat_SeqBAIJ*)(Mreuse)->data;
1997:     ii  = aij->i;
1998:     jj  = aij->j;

2000:     /*
2001:         Determine the number of non-zeros in the diagonal and off-diagonal
2002:         portions of the matrix in order to do correct preallocation
2003:     */

2005:     /* first get start and end of "diagonal" columns */
2006:     if (csize == PETSC_DECIDE) {
2007:       ISGetSize(isrow,&mglobal);
2008:       if (mglobal == n*bs) { /* square matrix */
2009:         nlocal = m;
2010:       } else {
2011:         nlocal = n/size + ((n % size) > rank);
2012:       }
2013:     } else {
2014:       nlocal = csize/bs;
2015:     }
2016:     MPI_Scan(&nlocal,&rend,1,MPIU_INT,MPI_SUM,comm);
2017:     rstart = rend - nlocal;
2018:     if (rank == size - 1 && rend != n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Local column sizes %D do not add up to total number of columns %D",rend,n);

2020:     /* next, compute all the lengths */
2021:     PetscMalloc2(m+1,&dlens,m+1,&olens);
2022:     for (i=0; i<m; i++) {
2023:       jend = ii[i+1] - ii[i];
2024:       olen = 0;
2025:       dlen = 0;
2026:       for (j=0; j<jend; j++) {
2027:         if (*jj < rstart || *jj >= rend) olen++;
2028:         else dlen++;
2029:         jj++;
2030:       }
2031:       olens[i] = olen;
2032:       dlens[i] = dlen;
2033:     }
2034:     MatCreate(comm,&M);
2035:     MatSetSizes(M,bs*m,bs*nlocal,PETSC_DECIDE,bs*n);
2036:     MatSetType(M,((PetscObject)mat)->type_name);
2037:     MatMPIBAIJSetPreallocation(M,bs,0,dlens,0,olens);
2038:     MatMPISBAIJSetPreallocation(M,bs,0,dlens,0,olens);
2039:     PetscFree2(dlens,olens);
2040:   } else {
2041:     PetscInt ml,nl;

2043:     M    = *newmat;
2044:     MatGetLocalSize(M,&ml,&nl);
2045:     if (ml != m) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Previous matrix must be same size/layout as request");
2046:     MatZeroEntries(M);
2047:     /*
2048:          The next two lines are needed so we may call MatSetValues_MPIAIJ() below directly,
2049:        rather than the slower MatSetValues().
2050:     */
2051:     M->was_assembled = PETSC_TRUE;
2052:     M->assembled     = PETSC_FALSE;
2053:   }
2054:   MatSetOption(M,MAT_ROW_ORIENTED,PETSC_FALSE);
2055:   MatGetOwnershipRange(M,&rstart,&rend);
2056:   aij  = (Mat_SeqBAIJ*)(Mreuse)->data;
2057:   ii   = aij->i;
2058:   jj   = aij->j;
2059:   aa   = aij->a;
2060:   for (i=0; i<m; i++) {
2061:     row   = rstart/bs + i;
2062:     nz    = ii[i+1] - ii[i];
2063:     cwork = jj;     jj += nz;
2064:     vwork = aa;     aa += nz*bs*bs;
2065:     MatSetValuesBlocked_MPIBAIJ(M,1,&row,nz,cwork,vwork,INSERT_VALUES);
2066:   }

2068:   MatAssemblyBegin(M,MAT_FINAL_ASSEMBLY);
2069:   MatAssemblyEnd(M,MAT_FINAL_ASSEMBLY);
2070:   *newmat = M;

2072:   /* save submatrix used in processor for next request */
2073:   if (call ==  MAT_INITIAL_MATRIX) {
2074:     PetscObjectCompose((PetscObject)M,"SubMatrix",(PetscObject)Mreuse);
2075:     PetscObjectDereference((PetscObject)Mreuse);
2076:   }
2077:   return(0);
2078: }

2080: PetscErrorCode MatPermute_MPIBAIJ(Mat A,IS rowp,IS colp,Mat *B)
2081: {
2082:   MPI_Comm       comm,pcomm;
2083:   PetscInt       clocal_size,nrows;
2084:   const PetscInt *rows;
2085:   PetscMPIInt    size;
2086:   IS             crowp,lcolp;

2090:   PetscObjectGetComm((PetscObject)A,&comm);
2091:   /* make a collective version of 'rowp' */
2092:   PetscObjectGetComm((PetscObject)rowp,&pcomm);
2093:   if (pcomm==comm) {
2094:     crowp = rowp;
2095:   } else {
2096:     ISGetSize(rowp,&nrows);
2097:     ISGetIndices(rowp,&rows);
2098:     ISCreateGeneral(comm,nrows,rows,PETSC_COPY_VALUES,&crowp);
2099:     ISRestoreIndices(rowp,&rows);
2100:   }
2101:   ISSetPermutation(crowp);
2102:   /* make a local version of 'colp' */
2103:   PetscObjectGetComm((PetscObject)colp,&pcomm);
2104:   MPI_Comm_size(pcomm,&size);
2105:   if (size==1) {
2106:     lcolp = colp;
2107:   } else {
2108:     ISAllGather(colp,&lcolp);
2109:   }
2110:   ISSetPermutation(lcolp);
2111:   /* now we just get the submatrix */
2112:   MatGetLocalSize(A,NULL,&clocal_size);
2113:   MatCreateSubMatrix_MPIBAIJ_Private(A,crowp,lcolp,clocal_size,MAT_INITIAL_MATRIX,B);
2114:   /* clean up */
2115:   if (pcomm!=comm) {
2116:     ISDestroy(&crowp);
2117:   }
2118:   if (size>1) {
2119:     ISDestroy(&lcolp);
2120:   }
2121:   return(0);
2122: }

2124: PetscErrorCode  MatGetGhosts_MPIBAIJ(Mat mat,PetscInt *nghosts,const PetscInt *ghosts[])
2125: {
2126:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ*) mat->data;
2127:   Mat_SeqBAIJ *B    = (Mat_SeqBAIJ*)baij->B->data;

2130:   if (nghosts) *nghosts = B->nbs;
2131:   if (ghosts) *ghosts = baij->garray;
2132:   return(0);
2133: }

2135: PetscErrorCode MatGetSeqNonzeroStructure_MPIBAIJ(Mat A,Mat *newmat)
2136: {
2137:   Mat            B;
2138:   Mat_MPIBAIJ    *a  = (Mat_MPIBAIJ*)A->data;
2139:   Mat_SeqBAIJ    *ad = (Mat_SeqBAIJ*)a->A->data,*bd = (Mat_SeqBAIJ*)a->B->data;
2140:   Mat_SeqAIJ     *b;
2142:   PetscMPIInt    size,rank,*recvcounts = NULL,*displs = NULL;
2143:   PetscInt       sendcount,i,*rstarts = A->rmap->range,n,cnt,j,bs = A->rmap->bs;
2144:   PetscInt       m,*garray = a->garray,*lens,*jsendbuf,*a_jsendbuf,*b_jsendbuf;

2147:   MPI_Comm_size(PetscObjectComm((PetscObject)A),&size);
2148:   MPI_Comm_rank(PetscObjectComm((PetscObject)A),&rank);

2150:   /* ----------------------------------------------------------------
2151:      Tell every processor the number of nonzeros per row
2152:   */
2153:   PetscMalloc1(A->rmap->N/bs,&lens);
2154:   for (i=A->rmap->rstart/bs; i<A->rmap->rend/bs; i++) {
2155:     lens[i] = ad->i[i-A->rmap->rstart/bs+1] - ad->i[i-A->rmap->rstart/bs] + bd->i[i-A->rmap->rstart/bs+1] - bd->i[i-A->rmap->rstart/bs];
2156:   }
2157:   PetscMalloc1(2*size,&recvcounts);
2158:   displs    = recvcounts + size;
2159:   for (i=0; i<size; i++) {
2160:     recvcounts[i] = A->rmap->range[i+1]/bs - A->rmap->range[i]/bs;
2161:     displs[i]     = A->rmap->range[i]/bs;
2162:   }
2163: #if defined(PETSC_HAVE_MPI_IN_PLACE)
2164:   MPI_Allgatherv(MPI_IN_PLACE,0,MPI_DATATYPE_NULL,lens,recvcounts,displs,MPIU_INT,PetscObjectComm((PetscObject)A));
2165: #else
2166:   sendcount = A->rmap->rend/bs - A->rmap->rstart/bs;
2167:   MPI_Allgatherv(lens+A->rmap->rstart/bs,sendcount,MPIU_INT,lens,recvcounts,displs,MPIU_INT,PetscObjectComm((PetscObject)A));
2168: #endif
2169:   /* ---------------------------------------------------------------
2170:      Create the sequential matrix of the same type as the local block diagonal
2171:   */
2172:   MatCreate(PETSC_COMM_SELF,&B);
2173:   MatSetSizes(B,A->rmap->N/bs,A->cmap->N/bs,PETSC_DETERMINE,PETSC_DETERMINE);
2174:   MatSetType(B,MATSEQAIJ);
2175:   MatSeqAIJSetPreallocation(B,0,lens);
2176:   b    = (Mat_SeqAIJ*)B->data;

2178:   /*--------------------------------------------------------------------
2179:     Copy my part of matrix column indices over
2180:   */
2181:   sendcount  = ad->nz + bd->nz;
2182:   jsendbuf   = b->j + b->i[rstarts[rank]/bs];
2183:   a_jsendbuf = ad->j;
2184:   b_jsendbuf = bd->j;
2185:   n          = A->rmap->rend/bs - A->rmap->rstart/bs;
2186:   cnt        = 0;
2187:   for (i=0; i<n; i++) {

2189:     /* put in lower diagonal portion */
2190:     m = bd->i[i+1] - bd->i[i];
2191:     while (m > 0) {
2192:       /* is it above diagonal (in bd (compressed) numbering) */
2193:       if (garray[*b_jsendbuf] > A->rmap->rstart/bs + i) break;
2194:       jsendbuf[cnt++] = garray[*b_jsendbuf++];
2195:       m--;
2196:     }

2198:     /* put in diagonal portion */
2199:     for (j=ad->i[i]; j<ad->i[i+1]; j++) {
2200:       jsendbuf[cnt++] = A->rmap->rstart/bs + *a_jsendbuf++;
2201:     }

2203:     /* put in upper diagonal portion */
2204:     while (m-- > 0) {
2205:       jsendbuf[cnt++] = garray[*b_jsendbuf++];
2206:     }
2207:   }
2208:   if (cnt != sendcount) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Corrupted PETSc matrix: nz given %D actual nz %D",sendcount,cnt);

2210:   /*--------------------------------------------------------------------
2211:     Gather all column indices to all processors
2212:   */
2213:   for (i=0; i<size; i++) {
2214:     recvcounts[i] = 0;
2215:     for (j=A->rmap->range[i]/bs; j<A->rmap->range[i+1]/bs; j++) {
2216:       recvcounts[i] += lens[j];
2217:     }
2218:   }
2219:   displs[0] = 0;
2220:   for (i=1; i<size; i++) {
2221:     displs[i] = displs[i-1] + recvcounts[i-1];
2222:   }
2223: #if defined(PETSC_HAVE_MPI_IN_PLACE)
2224:   MPI_Allgatherv(MPI_IN_PLACE,0,MPI_DATATYPE_NULL,b->j,recvcounts,displs,MPIU_INT,PetscObjectComm((PetscObject)A));
2225: #else
2226:   MPI_Allgatherv(jsendbuf,sendcount,MPIU_INT,b->j,recvcounts,displs,MPIU_INT,PetscObjectComm((PetscObject)A));
2227: #endif
2228:   /*--------------------------------------------------------------------
2229:     Assemble the matrix into useable form (note numerical values not yet set)
2230:   */
2231:   /* set the b->ilen (length of each row) values */
2232:   PetscArraycpy(b->ilen,lens,A->rmap->N/bs);
2233:   /* set the b->i indices */
2234:   b->i[0] = 0;
2235:   for (i=1; i<=A->rmap->N/bs; i++) {
2236:     b->i[i] = b->i[i-1] + lens[i-1];
2237:   }
2238:   PetscFree(lens);
2239:   MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
2240:   MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
2241:   PetscFree(recvcounts);

2243:   if (A->symmetric) {
2244:     MatSetOption(B,MAT_SYMMETRIC,PETSC_TRUE);
2245:   } else if (A->hermitian) {
2246:     MatSetOption(B,MAT_HERMITIAN,PETSC_TRUE);
2247:   } else if (A->structurally_symmetric) {
2248:     MatSetOption(B,MAT_STRUCTURALLY_SYMMETRIC,PETSC_TRUE);
2249:   }
2250:   *newmat = B;
2251:   return(0);
2252: }

2254: PetscErrorCode MatSOR_MPIBAIJ(Mat matin,Vec bb,PetscReal omega,MatSORType flag,PetscReal fshift,PetscInt its,PetscInt lits,Vec xx)
2255: {
2256:   Mat_MPIBAIJ    *mat = (Mat_MPIBAIJ*)matin->data;
2258:   Vec            bb1 = NULL;

2261:   if (flag == SOR_APPLY_UPPER) {
2262:     (*mat->A->ops->sor)(mat->A,bb,omega,flag,fshift,lits,1,xx);
2263:     return(0);
2264:   }

2266:   if (its > 1 || ~flag & SOR_ZERO_INITIAL_GUESS) {
2267:     VecDuplicate(bb,&bb1);
2268:   }

2270:   if ((flag & SOR_LOCAL_SYMMETRIC_SWEEP) == SOR_LOCAL_SYMMETRIC_SWEEP) {
2271:     if (flag & SOR_ZERO_INITIAL_GUESS) {
2272:       (*mat->A->ops->sor)(mat->A,bb,omega,flag,fshift,lits,1,xx);
2273:       its--;
2274:     }

2276:     while (its--) {
2277:       VecScatterBegin(mat->Mvctx,xx,mat->lvec,INSERT_VALUES,SCATTER_FORWARD);
2278:       VecScatterEnd(mat->Mvctx,xx,mat->lvec,INSERT_VALUES,SCATTER_FORWARD);

2280:       /* update rhs: bb1 = bb - B*x */
2281:       VecScale(mat->lvec,-1.0);
2282:       (*mat->B->ops->multadd)(mat->B,mat->lvec,bb,bb1);

2284:       /* local sweep */
2285:       (*mat->A->ops->sor)(mat->A,bb1,omega,SOR_SYMMETRIC_SWEEP,fshift,lits,1,xx);
2286:     }
2287:   } else if (flag & SOR_LOCAL_FORWARD_SWEEP) {
2288:     if (flag & SOR_ZERO_INITIAL_GUESS) {
2289:       (*mat->A->ops->sor)(mat->A,bb,omega,flag,fshift,lits,1,xx);
2290:       its--;
2291:     }
2292:     while (its--) {
2293:       VecScatterBegin(mat->Mvctx,xx,mat->lvec,INSERT_VALUES,SCATTER_FORWARD);
2294:       VecScatterEnd(mat->Mvctx,xx,mat->lvec,INSERT_VALUES,SCATTER_FORWARD);

2296:       /* update rhs: bb1 = bb - B*x */
2297:       VecScale(mat->lvec,-1.0);
2298:       (*mat->B->ops->multadd)(mat->B,mat->lvec,bb,bb1);

2300:       /* local sweep */
2301:       (*mat->A->ops->sor)(mat->A,bb1,omega,SOR_FORWARD_SWEEP,fshift,lits,1,xx);
2302:     }
2303:   } else if (flag & SOR_LOCAL_BACKWARD_SWEEP) {
2304:     if (flag & SOR_ZERO_INITIAL_GUESS) {
2305:       (*mat->A->ops->sor)(mat->A,bb,omega,flag,fshift,lits,1,xx);
2306:       its--;
2307:     }
2308:     while (its--) {
2309:       VecScatterBegin(mat->Mvctx,xx,mat->lvec,INSERT_VALUES,SCATTER_FORWARD);
2310:       VecScatterEnd(mat->Mvctx,xx,mat->lvec,INSERT_VALUES,SCATTER_FORWARD);

2312:       /* update rhs: bb1 = bb - B*x */
2313:       VecScale(mat->lvec,-1.0);
2314:       (*mat->B->ops->multadd)(mat->B,mat->lvec,bb,bb1);

2316:       /* local sweep */
2317:       (*mat->A->ops->sor)(mat->A,bb1,omega,SOR_BACKWARD_SWEEP,fshift,lits,1,xx);
2318:     }
2319:   } else SETERRQ(PetscObjectComm((PetscObject)matin),PETSC_ERR_SUP,"Parallel version of SOR requested not supported");

2321:   VecDestroy(&bb1);
2322:   return(0);
2323: }

2325: PetscErrorCode MatGetColumnReductions_MPIBAIJ(Mat A,PetscInt type,PetscReal *reductions)
2326: {
2328:   Mat_MPIBAIJ    *aij = (Mat_MPIBAIJ*)A->data;
2329:   PetscInt       m,N,i,*garray = aij->garray;
2330:   PetscInt       ib,jb,bs = A->rmap->bs;
2331:   Mat_SeqBAIJ    *a_aij = (Mat_SeqBAIJ*) aij->A->data;
2332:   MatScalar      *a_val = a_aij->a;
2333:   Mat_SeqBAIJ    *b_aij = (Mat_SeqBAIJ*) aij->B->data;
2334:   MatScalar      *b_val = b_aij->a;
2335:   PetscReal      *work;

2338:   MatGetSize(A,&m,&N);
2339:   PetscCalloc1(N,&work);
2340:   if (type == NORM_2) {
2341:     for (i=a_aij->i[0]; i<a_aij->i[aij->A->rmap->n/bs]; i++) {
2342:       for (jb=0; jb<bs; jb++) {
2343:         for (ib=0; ib<bs; ib++) {
2344:           work[A->cmap->rstart + a_aij->j[i] * bs + jb] += PetscAbsScalar(*a_val * *a_val);
2345:           a_val++;
2346:         }
2347:       }
2348:     }
2349:     for (i=b_aij->i[0]; i<b_aij->i[aij->B->rmap->n/bs]; i++) {
2350:       for (jb=0; jb<bs; jb++) {
2351:         for (ib=0; ib<bs; ib++) {
2352:           work[garray[b_aij->j[i]] * bs + jb] += PetscAbsScalar(*b_val * *b_val);
2353:           b_val++;
2354:         }
2355:       }
2356:     }
2357:   } else if (type == NORM_1) {
2358:     for (i=a_aij->i[0]; i<a_aij->i[aij->A->rmap->n/bs]; i++) {
2359:       for (jb=0; jb<bs; jb++) {
2360:         for (ib=0; ib<bs; ib++) {
2361:           work[A->cmap->rstart + a_aij->j[i] * bs + jb] += PetscAbsScalar(*a_val);
2362:           a_val++;
2363:         }
2364:       }
2365:     }
2366:     for (i=b_aij->i[0]; i<b_aij->i[aij->B->rmap->n/bs]; i++) {
2367:       for (jb=0; jb<bs; jb++) {
2368:        for (ib=0; ib<bs; ib++) {
2369:           work[garray[b_aij->j[i]] * bs + jb] += PetscAbsScalar(*b_val);
2370:           b_val++;
2371:         }
2372:       }
2373:     }
2374:   } else if (type == NORM_INFINITY) {
2375:     for (i=a_aij->i[0]; i<a_aij->i[aij->A->rmap->n/bs]; i++) {
2376:       for (jb=0; jb<bs; jb++) {
2377:         for (ib=0; ib<bs; ib++) {
2378:           int col = A->cmap->rstart + a_aij->j[i] * bs + jb;
2379:           work[col] = PetscMax(PetscAbsScalar(*a_val), work[col]);
2380:           a_val++;
2381:         }
2382:       }
2383:     }
2384:     for (i=b_aij->i[0]; i<b_aij->i[aij->B->rmap->n/bs]; i++) {
2385:       for (jb=0; jb<bs; jb++) {
2386:         for (ib=0; ib<bs; ib++) {
2387:           int col = garray[b_aij->j[i]] * bs + jb;
2388:           work[col] = PetscMax(PetscAbsScalar(*b_val), work[col]);
2389:           b_val++;
2390:         }
2391:       }
2392:     }
2393:   } else if (type == REDUCTION_SUM_REALPART || type == REDUCTION_MEAN_REALPART) {
2394:     for (i=a_aij->i[0]; i<a_aij->i[aij->A->rmap->n/bs]; i++) {
2395:       for (jb=0; jb<bs; jb++) {
2396:         for (ib=0; ib<bs; ib++) {
2397:           work[A->cmap->rstart + a_aij->j[i] * bs + jb] += PetscRealPart(*a_val);
2398:           a_val++;
2399:         }
2400:       }
2401:     }
2402:     for (i=b_aij->i[0]; i<b_aij->i[aij->B->rmap->n/bs]; i++) {
2403:       for (jb=0; jb<bs; jb++) {
2404:        for (ib=0; ib<bs; ib++) {
2405:           work[garray[b_aij->j[i]] * bs + jb] += PetscRealPart(*b_val);
2406:           b_val++;
2407:         }
2408:       }
2409:     }
2410:   } else if (type == REDUCTION_SUM_IMAGINARYPART || type == REDUCTION_MEAN_IMAGINARYPART) {
2411:     for (i=a_aij->i[0]; i<a_aij->i[aij->A->rmap->n/bs]; i++) {
2412:       for (jb=0; jb<bs; jb++) {
2413:         for (ib=0; ib<bs; ib++) {
2414:           work[A->cmap->rstart + a_aij->j[i] * bs + jb] += PetscImaginaryPart(*a_val);
2415:           a_val++;
2416:         }
2417:       }
2418:     }
2419:     for (i=b_aij->i[0]; i<b_aij->i[aij->B->rmap->n/bs]; i++) {
2420:       for (jb=0; jb<bs; jb++) {
2421:        for (ib=0; ib<bs; ib++) {
2422:           work[garray[b_aij->j[i]] * bs + jb] += PetscImaginaryPart(*b_val);
2423:           b_val++;
2424:         }
2425:       }
2426:     }
2427:   } else SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONG,"Unknown reduction type");
2428:   if (type == NORM_INFINITY) {
2429:     MPIU_Allreduce(work,reductions,N,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)A));
2430:   } else {
2431:     MPIU_Allreduce(work,reductions,N,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)A));
2432:   }
2433:   PetscFree(work);
2434:   if (type == NORM_2) {
2435:     for (i=0; i<N; i++) reductions[i] = PetscSqrtReal(reductions[i]);
2436:   } else if (type == REDUCTION_MEAN_REALPART || type == REDUCTION_MEAN_IMAGINARYPART) {
2437:     for (i=0; i<N; i++) reductions[i] /= m;
2438:   }
2439:   return(0);
2440: }

2442: PetscErrorCode MatInvertBlockDiagonal_MPIBAIJ(Mat A,const PetscScalar **values)
2443: {
2444:   Mat_MPIBAIJ    *a = (Mat_MPIBAIJ*) A->data;

2448:   MatInvertBlockDiagonal(a->A,values);
2449:   A->factorerrortype             = a->A->factorerrortype;
2450:   A->factorerror_zeropivot_value = a->A->factorerror_zeropivot_value;
2451:   A->factorerror_zeropivot_row   = a->A->factorerror_zeropivot_row;
2452:   return(0);
2453: }

2455: PetscErrorCode MatShift_MPIBAIJ(Mat Y,PetscScalar a)
2456: {
2458:   Mat_MPIBAIJ    *maij = (Mat_MPIBAIJ*)Y->data;
2459:   Mat_SeqBAIJ    *aij = (Mat_SeqBAIJ*)maij->A->data;

2462:   if (!Y->preallocated) {
2463:     MatMPIBAIJSetPreallocation(Y,Y->rmap->bs,1,NULL,0,NULL);
2464:   } else if (!aij->nz) {
2465:     PetscInt nonew = aij->nonew;
2466:     MatSeqBAIJSetPreallocation(maij->A,Y->rmap->bs,1,NULL);
2467:     aij->nonew = nonew;
2468:   }
2469:   MatShift_Basic(Y,a);
2470:   return(0);
2471: }

2473: PetscErrorCode MatMissingDiagonal_MPIBAIJ(Mat A,PetscBool  *missing,PetscInt *d)
2474: {
2475:   Mat_MPIBAIJ    *a = (Mat_MPIBAIJ*)A->data;

2479:   if (A->rmap->n != A->cmap->n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Only works for square matrices");
2480:   MatMissingDiagonal(a->A,missing,d);
2481:   if (d) {
2482:     PetscInt rstart;
2483:     MatGetOwnershipRange(A,&rstart,NULL);
2484:     *d += rstart/A->rmap->bs;

2486:   }
2487:   return(0);
2488: }

2490: PetscErrorCode  MatGetDiagonalBlock_MPIBAIJ(Mat A,Mat *a)
2491: {
2493:   *a = ((Mat_MPIBAIJ*)A->data)->A;
2494:   return(0);
2495: }

2497: /* -------------------------------------------------------------------*/
2498: static struct _MatOps MatOps_Values = {MatSetValues_MPIBAIJ,
2499:                                        MatGetRow_MPIBAIJ,
2500:                                        MatRestoreRow_MPIBAIJ,
2501:                                        MatMult_MPIBAIJ,
2502:                                 /* 4*/ MatMultAdd_MPIBAIJ,
2503:                                        MatMultTranspose_MPIBAIJ,
2504:                                        MatMultTransposeAdd_MPIBAIJ,
2505:                                        NULL,
2506:                                        NULL,
2507:                                        NULL,
2508:                                 /*10*/ NULL,
2509:                                        NULL,
2510:                                        NULL,
2511:                                        MatSOR_MPIBAIJ,
2512:                                        MatTranspose_MPIBAIJ,
2513:                                 /*15*/ MatGetInfo_MPIBAIJ,
2514:                                        MatEqual_MPIBAIJ,
2515:                                        MatGetDiagonal_MPIBAIJ,
2516:                                        MatDiagonalScale_MPIBAIJ,
2517:                                        MatNorm_MPIBAIJ,
2518:                                 /*20*/ MatAssemblyBegin_MPIBAIJ,
2519:                                        MatAssemblyEnd_MPIBAIJ,
2520:                                        MatSetOption_MPIBAIJ,
2521:                                        MatZeroEntries_MPIBAIJ,
2522:                                 /*24*/ MatZeroRows_MPIBAIJ,
2523:                                        NULL,
2524:                                        NULL,
2525:                                        NULL,
2526:                                        NULL,
2527:                                 /*29*/ MatSetUp_MPIBAIJ,
2528:                                        NULL,
2529:                                        NULL,
2530:                                        MatGetDiagonalBlock_MPIBAIJ,
2531:                                        NULL,
2532:                                 /*34*/ MatDuplicate_MPIBAIJ,
2533:                                        NULL,
2534:                                        NULL,
2535:                                        NULL,
2536:                                        NULL,
2537:                                 /*39*/ MatAXPY_MPIBAIJ,
2538:                                        MatCreateSubMatrices_MPIBAIJ,
2539:                                        MatIncreaseOverlap_MPIBAIJ,
2540:                                        MatGetValues_MPIBAIJ,
2541:                                        MatCopy_MPIBAIJ,
2542:                                 /*44*/ NULL,
2543:                                        MatScale_MPIBAIJ,
2544:                                        MatShift_MPIBAIJ,
2545:                                        NULL,
2546:                                        MatZeroRowsColumns_MPIBAIJ,
2547:                                 /*49*/ NULL,
2548:                                        NULL,
2549:                                        NULL,
2550:                                        NULL,
2551:                                        NULL,
2552:                                 /*54*/ MatFDColoringCreate_MPIXAIJ,
2553:                                        NULL,
2554:                                        MatSetUnfactored_MPIBAIJ,
2555:                                        MatPermute_MPIBAIJ,
2556:                                        MatSetValuesBlocked_MPIBAIJ,
2557:                                 /*59*/ MatCreateSubMatrix_MPIBAIJ,
2558:                                        MatDestroy_MPIBAIJ,
2559:                                        MatView_MPIBAIJ,
2560:                                        NULL,
2561:                                        NULL,
2562:                                 /*64*/ NULL,
2563:                                        NULL,
2564:                                        NULL,
2565:                                        NULL,
2566:                                        NULL,
2567:                                 /*69*/ MatGetRowMaxAbs_MPIBAIJ,
2568:                                        NULL,
2569:                                        NULL,
2570:                                        NULL,
2571:                                        NULL,
2572:                                 /*74*/ NULL,
2573:                                        MatFDColoringApply_BAIJ,
2574:                                        NULL,
2575:                                        NULL,
2576:                                        NULL,
2577:                                 /*79*/ NULL,
2578:                                        NULL,
2579:                                        NULL,
2580:                                        NULL,
2581:                                        MatLoad_MPIBAIJ,
2582:                                 /*84*/ NULL,
2583:                                        NULL,
2584:                                        NULL,
2585:                                        NULL,
2586:                                        NULL,
2587:                                 /*89*/ NULL,
2588:                                        NULL,
2589:                                        NULL,
2590:                                        NULL,
2591:                                        NULL,
2592:                                 /*94*/ NULL,
2593:                                        NULL,
2594:                                        NULL,
2595:                                        NULL,
2596:                                        NULL,
2597:                                 /*99*/ NULL,
2598:                                        NULL,
2599:                                        NULL,
2600:                                        MatConjugate_MPIBAIJ,
2601:                                        NULL,
2602:                                 /*104*/NULL,
2603:                                        MatRealPart_MPIBAIJ,
2604:                                        MatImaginaryPart_MPIBAIJ,
2605:                                        NULL,
2606:                                        NULL,
2607:                                 /*109*/NULL,
2608:                                        NULL,
2609:                                        NULL,
2610:                                        NULL,
2611:                                        MatMissingDiagonal_MPIBAIJ,
2612:                                 /*114*/MatGetSeqNonzeroStructure_MPIBAIJ,
2613:                                        NULL,
2614:                                        MatGetGhosts_MPIBAIJ,
2615:                                        NULL,
2616:                                        NULL,
2617:                                 /*119*/NULL,
2618:                                        NULL,
2619:                                        NULL,
2620:                                        NULL,
2621:                                        MatGetMultiProcBlock_MPIBAIJ,
2622:                                 /*124*/NULL,
2623:                                        MatGetColumnReductions_MPIBAIJ,
2624:                                        MatInvertBlockDiagonal_MPIBAIJ,
2625:                                        NULL,
2626:                                        NULL,
2627:                                /*129*/ NULL,
2628:                                        NULL,
2629:                                        NULL,
2630:                                        NULL,
2631:                                        NULL,
2632:                                /*134*/ NULL,
2633:                                        NULL,
2634:                                        NULL,
2635:                                        NULL,
2636:                                        NULL,
2637:                                /*139*/ MatSetBlockSizes_Default,
2638:                                        NULL,
2639:                                        NULL,
2640:                                        MatFDColoringSetUp_MPIXAIJ,
2641:                                        NULL,
2642:                                 /*144*/MatCreateMPIMatConcatenateSeqMat_MPIBAIJ
2643: };

2645: PETSC_INTERN PetscErrorCode MatConvert_MPIBAIJ_MPISBAIJ(Mat,MatType,MatReuse,Mat*);
2646: PETSC_INTERN PetscErrorCode MatConvert_XAIJ_IS(Mat,MatType,MatReuse,Mat*);

2648: PetscErrorCode MatMPIBAIJSetPreallocationCSR_MPIBAIJ(Mat B,PetscInt bs,const PetscInt ii[],const PetscInt jj[],const PetscScalar V[])
2649: {
2650:   PetscInt       m,rstart,cstart,cend;
2651:   PetscInt       i,j,dlen,olen,nz,nz_max=0,*d_nnz=NULL,*o_nnz=NULL;
2652:   const PetscInt *JJ    =NULL;
2653:   PetscScalar    *values=NULL;
2654:   PetscBool      roworiented = ((Mat_MPIBAIJ*)B->data)->roworiented;
2656:   PetscBool      nooffprocentries;

2659:   PetscLayoutSetBlockSize(B->rmap,bs);
2660:   PetscLayoutSetBlockSize(B->cmap,bs);
2661:   PetscLayoutSetUp(B->rmap);
2662:   PetscLayoutSetUp(B->cmap);
2663:   PetscLayoutGetBlockSize(B->rmap,&bs);
2664:   m      = B->rmap->n/bs;
2665:   rstart = B->rmap->rstart/bs;
2666:   cstart = B->cmap->rstart/bs;
2667:   cend   = B->cmap->rend/bs;

2669:   if (ii[0]) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"ii[0] must be 0 but it is %D",ii[0]);
2670:   PetscMalloc2(m,&d_nnz,m,&o_nnz);
2671:   for (i=0; i<m; i++) {
2672:     nz = ii[i+1] - ii[i];
2673:     if (nz < 0) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local row %D has a negative number of columns %D",i,nz);
2674:     nz_max = PetscMax(nz_max,nz);
2675:     dlen   = 0;
2676:     olen   = 0;
2677:     JJ     = jj + ii[i];
2678:     for (j=0; j<nz; j++) {
2679:       if (*JJ < cstart || *JJ >= cend) olen++;
2680:       else dlen++;
2681:       JJ++;
2682:     }
2683:     d_nnz[i] = dlen;
2684:     o_nnz[i] = olen;
2685:   }
2686:   MatMPIBAIJSetPreallocation(B,bs,0,d_nnz,0,o_nnz);
2687:   PetscFree2(d_nnz,o_nnz);

2689:   values = (PetscScalar*)V;
2690:   if (!values) {
2691:     PetscCalloc1(bs*bs*nz_max,&values);
2692:   }
2693:   for (i=0; i<m; i++) {
2694:     PetscInt          row    = i + rstart;
2695:     PetscInt          ncols  = ii[i+1] - ii[i];
2696:     const PetscInt    *icols = jj + ii[i];
2697:     if (bs == 1 || !roworiented) {         /* block ordering matches the non-nested layout of MatSetValues so we can insert entire rows */
2698:       const PetscScalar *svals = values + (V ? (bs*bs*ii[i]) : 0);
2699:       MatSetValuesBlocked_MPIBAIJ(B,1,&row,ncols,icols,svals,INSERT_VALUES);
2700:     } else {                    /* block ordering does not match so we can only insert one block at a time. */
2701:       PetscInt j;
2702:       for (j=0; j<ncols; j++) {
2703:         const PetscScalar *svals = values + (V ? (bs*bs*(ii[i]+j)) : 0);
2704:         MatSetValuesBlocked_MPIBAIJ(B,1,&row,1,&icols[j],svals,INSERT_VALUES);
2705:       }
2706:     }
2707:   }

2709:   if (!V) { PetscFree(values); }
2710:   nooffprocentries    = B->nooffprocentries;
2711:   B->nooffprocentries = PETSC_TRUE;
2712:   MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
2713:   MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
2714:   B->nooffprocentries = nooffprocentries;

2716:   MatSetOption(B,MAT_NEW_NONZERO_LOCATION_ERR,PETSC_TRUE);
2717:   return(0);
2718: }

2720: /*@C
2721:    MatMPIBAIJSetPreallocationCSR - Creates a sparse parallel matrix in BAIJ format using the given nonzero structure and (optional) numerical values

2723:    Collective

2725:    Input Parameters:
2726: +  B - the matrix
2727: .  bs - the block size
2728: .  i - the indices into j for the start of each local row (starts with zero)
2729: .  j - the column indices for each local row (starts with zero) these must be sorted for each row
2730: -  v - optional values in the matrix

2732:    Level: advanced

2734:    Notes:
2735:     The order of the entries in values is specified by the MatOption MAT_ROW_ORIENTED.  For example, C programs
2736:    may want to use the default MAT_ROW_ORIENTED=PETSC_TRUE and use an array v[nnz][bs][bs] where the second index is
2737:    over rows within a block and the last index is over columns within a block row.  Fortran programs will likely set
2738:    MAT_ROW_ORIENTED=PETSC_FALSE and use a Fortran array v(bs,bs,nnz) in which the first index is over rows within a
2739:    block column and the second index is over columns within a block.

2741:    Though this routine has Preallocation() in the name it also sets the exact nonzero locations of the matrix entries and usually the numerical values as well

2743: .seealso: MatCreate(), MatCreateSeqAIJ(), MatSetValues(), MatMPIBAIJSetPreallocation(), MatCreateAIJ(), MPIAIJ, MatCreateMPIBAIJWithArrays(), MPIBAIJ
2744: @*/
2745: PetscErrorCode  MatMPIBAIJSetPreallocationCSR(Mat B,PetscInt bs,const PetscInt i[],const PetscInt j[], const PetscScalar v[])
2746: {

2753:   PetscTryMethod(B,"MatMPIBAIJSetPreallocationCSR_C",(Mat,PetscInt,const PetscInt[],const PetscInt[],const PetscScalar[]),(B,bs,i,j,v));
2754:   return(0);
2755: }

2757: PetscErrorCode  MatMPIBAIJSetPreallocation_MPIBAIJ(Mat B,PetscInt bs,PetscInt d_nz,const PetscInt *d_nnz,PetscInt o_nz,const PetscInt *o_nnz)
2758: {
2759:   Mat_MPIBAIJ    *b;
2761:   PetscInt       i;
2762:   PetscMPIInt    size;

2765:   MatSetBlockSize(B,PetscAbs(bs));
2766:   PetscLayoutSetUp(B->rmap);
2767:   PetscLayoutSetUp(B->cmap);
2768:   PetscLayoutGetBlockSize(B->rmap,&bs);

2770:   if (d_nnz) {
2771:     for (i=0; i<B->rmap->n/bs; i++) {
2772:       if (d_nnz[i] < 0) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"d_nnz cannot be less than -1: local row %D value %D",i,d_nnz[i]);
2773:     }
2774:   }
2775:   if (o_nnz) {
2776:     for (i=0; i<B->rmap->n/bs; i++) {
2777:       if (o_nnz[i] < 0) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"o_nnz cannot be less than -1: local row %D value %D",i,o_nnz[i]);
2778:     }
2779:   }

2781:   b      = (Mat_MPIBAIJ*)B->data;
2782:   b->bs2 = bs*bs;
2783:   b->mbs = B->rmap->n/bs;
2784:   b->nbs = B->cmap->n/bs;
2785:   b->Mbs = B->rmap->N/bs;
2786:   b->Nbs = B->cmap->N/bs;

2788:   for (i=0; i<=b->size; i++) {
2789:     b->rangebs[i] = B->rmap->range[i]/bs;
2790:   }
2791:   b->rstartbs = B->rmap->rstart/bs;
2792:   b->rendbs   = B->rmap->rend/bs;
2793:   b->cstartbs = B->cmap->rstart/bs;
2794:   b->cendbs   = B->cmap->rend/bs;

2796: #if defined(PETSC_USE_CTABLE)
2797:   PetscTableDestroy(&b->colmap);
2798: #else
2799:   PetscFree(b->colmap);
2800: #endif
2801:   PetscFree(b->garray);
2802:   VecDestroy(&b->lvec);
2803:   VecScatterDestroy(&b->Mvctx);

2805:   /* Because the B will have been resized we simply destroy it and create a new one each time */
2806:   MPI_Comm_size(PetscObjectComm((PetscObject)B),&size);
2807:   MatDestroy(&b->B);
2808:   MatCreate(PETSC_COMM_SELF,&b->B);
2809:   MatSetSizes(b->B,B->rmap->n,size > 1 ? B->cmap->N : 0,B->rmap->n,size > 1 ? B->cmap->N : 0);
2810:   MatSetType(b->B,MATSEQBAIJ);
2811:   PetscLogObjectParent((PetscObject)B,(PetscObject)b->B);

2813:   if (!B->preallocated) {
2814:     MatCreate(PETSC_COMM_SELF,&b->A);
2815:     MatSetSizes(b->A,B->rmap->n,B->cmap->n,B->rmap->n,B->cmap->n);
2816:     MatSetType(b->A,MATSEQBAIJ);
2817:     PetscLogObjectParent((PetscObject)B,(PetscObject)b->A);
2818:     MatStashCreate_Private(PetscObjectComm((PetscObject)B),bs,&B->bstash);
2819:   }

2821:   MatSeqBAIJSetPreallocation(b->A,bs,d_nz,d_nnz);
2822:   MatSeqBAIJSetPreallocation(b->B,bs,o_nz,o_nnz);
2823:   B->preallocated  = PETSC_TRUE;
2824:   B->was_assembled = PETSC_FALSE;
2825:   B->assembled     = PETSC_FALSE;
2826:   return(0);
2827: }

2829: extern PetscErrorCode  MatDiagonalScaleLocal_MPIBAIJ(Mat,Vec);
2830: extern PetscErrorCode  MatSetHashTableFactor_MPIBAIJ(Mat,PetscReal);

2832: PETSC_INTERN PetscErrorCode MatConvert_MPIBAIJ_MPIAdj(Mat B, MatType newtype,MatReuse reuse,Mat *adj)
2833: {
2834:   Mat_MPIBAIJ    *b = (Mat_MPIBAIJ*)B->data;
2836:   Mat_SeqBAIJ    *d  = (Mat_SeqBAIJ*) b->A->data,*o = (Mat_SeqBAIJ*) b->B->data;
2837:   PetscInt       M   = B->rmap->n/B->rmap->bs,i,*ii,*jj,cnt,j,k,rstart = B->rmap->rstart/B->rmap->bs;
2838:   const PetscInt *id = d->i, *jd = d->j, *io = o->i, *jo = o->j, *garray = b->garray;

2841:   PetscMalloc1(M+1,&ii);
2842:   ii[0] = 0;
2843:   for (i=0; i<M; i++) {
2844:     if ((id[i+1] - id[i]) < 0) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Indices wrong %D %D %D",i,id[i],id[i+1]);
2845:     if ((io[i+1] - io[i]) < 0) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Indices wrong %D %D %D",i,io[i],io[i+1]);
2846:     ii[i+1] = ii[i] + id[i+1] - id[i] + io[i+1] - io[i];
2847:     /* remove one from count of matrix has diagonal */
2848:     for (j=id[i]; j<id[i+1]; j++) {
2849:       if (jd[j] == i) {ii[i+1]--;break;}
2850:     }
2851:   }
2852:   PetscMalloc1(ii[M],&jj);
2853:   cnt  = 0;
2854:   for (i=0; i<M; i++) {
2855:     for (j=io[i]; j<io[i+1]; j++) {
2856:       if (garray[jo[j]] > rstart) break;
2857:       jj[cnt++] = garray[jo[j]];
2858:     }
2859:     for (k=id[i]; k<id[i+1]; k++) {
2860:       if (jd[k] != i) {
2861:         jj[cnt++] = rstart + jd[k];
2862:       }
2863:     }
2864:     for (; j<io[i+1]; j++) {
2865:       jj[cnt++] = garray[jo[j]];
2866:     }
2867:   }
2868:   MatCreateMPIAdj(PetscObjectComm((PetscObject)B),M,B->cmap->N/B->rmap->bs,ii,jj,NULL,adj);
2869:   return(0);
2870: }

2872: #include <../src/mat/impls/aij/mpi/mpiaij.h>

2874: PETSC_INTERN PetscErrorCode MatConvert_SeqBAIJ_SeqAIJ(Mat,MatType,MatReuse,Mat*);

2876: PETSC_INTERN PetscErrorCode MatConvert_MPIBAIJ_MPIAIJ(Mat A,MatType newtype,MatReuse reuse,Mat *newmat)
2877: {
2879:   Mat_MPIBAIJ    *a = (Mat_MPIBAIJ*)A->data;
2880:   Mat            B;
2881:   Mat_MPIAIJ     *b;

2884:   if (!A->assembled) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"Matrix must be assembled");

2886:   if (reuse == MAT_REUSE_MATRIX) {
2887:     B = *newmat;
2888:   } else {
2889:     MatCreate(PetscObjectComm((PetscObject)A),&B);
2890:     MatSetType(B,MATMPIAIJ);
2891:     MatSetSizes(B,A->rmap->n,A->cmap->n,A->rmap->N,A->cmap->N);
2892:     MatSetBlockSizes(B,A->rmap->bs,A->cmap->bs);
2893:     MatSeqAIJSetPreallocation(B,0,NULL);
2894:     MatMPIAIJSetPreallocation(B,0,NULL,0,NULL);
2895:   }
2896:   b = (Mat_MPIAIJ*) B->data;

2898:   if (reuse == MAT_REUSE_MATRIX) {
2899:     MatConvert_SeqBAIJ_SeqAIJ(a->A, MATSEQAIJ, MAT_REUSE_MATRIX, &b->A);
2900:     MatConvert_SeqBAIJ_SeqAIJ(a->B, MATSEQAIJ, MAT_REUSE_MATRIX, &b->B);
2901:   } else {
2902:     MatDestroy(&b->A);
2903:     MatDestroy(&b->B);
2904:     MatDisAssemble_MPIBAIJ(A);
2905:     MatConvert_SeqBAIJ_SeqAIJ(a->A, MATSEQAIJ, MAT_INITIAL_MATRIX, &b->A);
2906:     MatConvert_SeqBAIJ_SeqAIJ(a->B, MATSEQAIJ, MAT_INITIAL_MATRIX, &b->B);
2907:     MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
2908:     MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
2909:   }
2910:   MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
2911:   MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);

2913:   if (reuse == MAT_INPLACE_MATRIX) {
2914:     MatHeaderReplace(A,&B);
2915:   } else {
2916:    *newmat = B;
2917:   }
2918:   return(0);
2919: }

2921: /*MC
2922:    MATMPIBAIJ - MATMPIBAIJ = "mpibaij" - A matrix type to be used for distributed block sparse matrices.

2924:    Options Database Keys:
2925: + -mat_type mpibaij - sets the matrix type to "mpibaij" during a call to MatSetFromOptions()
2926: . -mat_block_size <bs> - set the blocksize used to store the matrix
2927: . -mat_baij_mult_version version - indicate the version of the matrix-vector product to use  (0 often indicates using BLAS)
2928: - -mat_use_hash_table <fact>

2930:    Level: beginner

2932:    Notes:
2933:     MatSetOptions(,MAT_STRUCTURE_ONLY,PETSC_TRUE) may be called for this matrix type. In this no
2934:     space is allocated for the nonzero entries and any entries passed with MatSetValues() are ignored

2936: .seealso: MatCreateBAIJ
2937: M*/

2939: PETSC_INTERN PetscErrorCode MatConvert_MPIBAIJ_MPIBSTRM(Mat,MatType,MatReuse,Mat*);

2941: PETSC_EXTERN PetscErrorCode MatCreate_MPIBAIJ(Mat B)
2942: {
2943:   Mat_MPIBAIJ    *b;
2945:   PetscBool      flg = PETSC_FALSE;

2948:   PetscNewLog(B,&b);
2949:   B->data = (void*)b;

2951:   PetscMemcpy(B->ops,&MatOps_Values,sizeof(struct _MatOps));
2952:   B->assembled = PETSC_FALSE;

2954:   B->insertmode = NOT_SET_VALUES;
2955:   MPI_Comm_rank(PetscObjectComm((PetscObject)B),&b->rank);
2956:   MPI_Comm_size(PetscObjectComm((PetscObject)B),&b->size);

2958:   /* build local table of row and column ownerships */
2959:   PetscMalloc1(b->size+1,&b->rangebs);

2961:   /* build cache for off array entries formed */
2962:   MatStashCreate_Private(PetscObjectComm((PetscObject)B),1,&B->stash);

2964:   b->donotstash  = PETSC_FALSE;
2965:   b->colmap      = NULL;
2966:   b->garray      = NULL;
2967:   b->roworiented = PETSC_TRUE;

2969:   /* stuff used in block assembly */
2970:   b->barray = NULL;

2972:   /* stuff used for matrix vector multiply */
2973:   b->lvec  = NULL;
2974:   b->Mvctx = NULL;

2976:   /* stuff for MatGetRow() */
2977:   b->rowindices   = NULL;
2978:   b->rowvalues    = NULL;
2979:   b->getrowactive = PETSC_FALSE;

2981:   /* hash table stuff */
2982:   b->ht           = NULL;
2983:   b->hd           = NULL;
2984:   b->ht_size      = 0;
2985:   b->ht_flag      = PETSC_FALSE;
2986:   b->ht_fact      = 0;
2987:   b->ht_total_ct  = 0;
2988:   b->ht_insert_ct = 0;

2990:   /* stuff for MatCreateSubMatrices_MPIBAIJ_local() */
2991:   b->ijonly = PETSC_FALSE;

2993:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_mpibaij_mpiadj_C",MatConvert_MPIBAIJ_MPIAdj);
2994:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_mpibaij_mpiaij_C",MatConvert_MPIBAIJ_MPIAIJ);
2995:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_mpibaij_mpisbaij_C",MatConvert_MPIBAIJ_MPISBAIJ);
2996: #if defined(PETSC_HAVE_HYPRE)
2997:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_mpibaij_hypre_C",MatConvert_AIJ_HYPRE);
2998: #endif
2999:   PetscObjectComposeFunction((PetscObject)B,"MatStoreValues_C",MatStoreValues_MPIBAIJ);
3000:   PetscObjectComposeFunction((PetscObject)B,"MatRetrieveValues_C",MatRetrieveValues_MPIBAIJ);
3001:   PetscObjectComposeFunction((PetscObject)B,"MatMPIBAIJSetPreallocation_C",MatMPIBAIJSetPreallocation_MPIBAIJ);
3002:   PetscObjectComposeFunction((PetscObject)B,"MatMPIBAIJSetPreallocationCSR_C",MatMPIBAIJSetPreallocationCSR_MPIBAIJ);
3003:   PetscObjectComposeFunction((PetscObject)B,"MatDiagonalScaleLocal_C",MatDiagonalScaleLocal_MPIBAIJ);
3004:   PetscObjectComposeFunction((PetscObject)B,"MatSetHashTableFactor_C",MatSetHashTableFactor_MPIBAIJ);
3005:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_mpibaij_is_C",MatConvert_XAIJ_IS);
3006:   PetscObjectChangeTypeName((PetscObject)B,MATMPIBAIJ);

3008:   PetscOptionsBegin(PetscObjectComm((PetscObject)B),NULL,"Options for loading MPIBAIJ matrix 1","Mat");
3009:   PetscOptionsName("-mat_use_hash_table","Use hash table to save time in constructing matrix","MatSetOption",&flg);
3010:   if (flg) {
3011:     PetscReal fact = 1.39;
3012:     MatSetOption(B,MAT_USE_HASH_TABLE,PETSC_TRUE);
3013:     PetscOptionsReal("-mat_use_hash_table","Use hash table factor","MatMPIBAIJSetHashTableFactor",fact,&fact,NULL);
3014:     if (fact <= 1.0) fact = 1.39;
3015:     MatMPIBAIJSetHashTableFactor(B,fact);
3016:     PetscInfo1(B,"Hash table Factor used %5.2f\n",fact);
3017:   }
3018:   PetscOptionsEnd();
3019:   return(0);
3020: }

3022: /*MC
3023:    MATBAIJ - MATBAIJ = "baij" - A matrix type to be used for block sparse matrices.

3025:    This matrix type is identical to MATSEQBAIJ when constructed with a single process communicator,
3026:    and MATMPIBAIJ otherwise.

3028:    Options Database Keys:
3029: . -mat_type baij - sets the matrix type to "baij" during a call to MatSetFromOptions()

3031:   Level: beginner

3033: .seealso: MatCreateBAIJ(),MATSEQBAIJ,MATMPIBAIJ, MatMPIBAIJSetPreallocation(), MatMPIBAIJSetPreallocationCSR()
3034: M*/

3036: /*@C
3037:    MatMPIBAIJSetPreallocation - Allocates memory for a sparse parallel matrix in block AIJ format
3038:    (block compressed row).  For good matrix assembly performance
3039:    the user should preallocate the matrix storage by setting the parameters
3040:    d_nz (or d_nnz) and o_nz (or o_nnz).  By setting these parameters accurately,
3041:    performance can be increased by more than a factor of 50.

3043:    Collective on Mat

3045:    Input Parameters:
3046: +  B - the matrix
3047: .  bs   - size of block, the blocks are ALWAYS square. One can use MatSetBlockSizes() to set a different row and column blocksize but the row
3048:           blocksize always defines the size of the blocks. The column blocksize sets the blocksize of the vectors obtained with MatCreateVecs()
3049: .  d_nz  - number of block nonzeros per block row in diagonal portion of local
3050:            submatrix  (same for all local rows)
3051: .  d_nnz - array containing the number of block nonzeros in the various block rows
3052:            of the in diagonal portion of the local (possibly different for each block
3053:            row) or NULL.  If you plan to factor the matrix you must leave room for the diagonal entry and
3054:            set it even if it is zero.
3055: .  o_nz  - number of block nonzeros per block row in the off-diagonal portion of local
3056:            submatrix (same for all local rows).
3057: -  o_nnz - array containing the number of nonzeros in the various block rows of the
3058:            off-diagonal portion of the local submatrix (possibly different for
3059:            each block row) or NULL.

3061:    If the *_nnz parameter is given then the *_nz parameter is ignored

3063:    Options Database Keys:
3064: +   -mat_block_size - size of the blocks to use
3065: -   -mat_use_hash_table <fact>

3067:    Notes:
3068:    If PETSC_DECIDE or  PETSC_DETERMINE is used for a particular argument on one processor
3069:    than it must be used on all processors that share the object for that argument.

3071:    Storage Information:
3072:    For a square global matrix we define each processor's diagonal portion
3073:    to be its local rows and the corresponding columns (a square submatrix);
3074:    each processor's off-diagonal portion encompasses the remainder of the
3075:    local matrix (a rectangular submatrix).

3077:    The user can specify preallocated storage for the diagonal part of
3078:    the local submatrix with either d_nz or d_nnz (not both).  Set
3079:    d_nz=PETSC_DEFAULT and d_nnz=NULL for PETSc to control dynamic
3080:    memory allocation.  Likewise, specify preallocated storage for the
3081:    off-diagonal part of the local submatrix with o_nz or o_nnz (not both).

3083:    Consider a processor that owns rows 3, 4 and 5 of a parallel matrix. In
3084:    the figure below we depict these three local rows and all columns (0-11).

3086: .vb
3087:            0 1 2 3 4 5 6 7 8 9 10 11
3088:           --------------------------
3089:    row 3  |o o o d d d o o o o  o  o
3090:    row 4  |o o o d d d o o o o  o  o
3091:    row 5  |o o o d d d o o o o  o  o
3092:           --------------------------
3093: .ve

3095:    Thus, any entries in the d locations are stored in the d (diagonal)
3096:    submatrix, and any entries in the o locations are stored in the
3097:    o (off-diagonal) submatrix.  Note that the d and the o submatrices are
3098:    stored simply in the MATSEQBAIJ format for compressed row storage.

3100:    Now d_nz should indicate the number of block nonzeros per row in the d matrix,
3101:    and o_nz should indicate the number of block nonzeros per row in the o matrix.
3102:    In general, for PDE problems in which most nonzeros are near the diagonal,
3103:    one expects d_nz >> o_nz.   For large problems you MUST preallocate memory
3104:    or you will get TERRIBLE performance; see the users' manual chapter on
3105:    matrices.

3107:    You can call MatGetInfo() to get information on how effective the preallocation was;
3108:    for example the fields mallocs,nz_allocated,nz_used,nz_unneeded;
3109:    You can also run with the option -info and look for messages with the string
3110:    malloc in them to see if additional memory allocation was needed.

3112:    Level: intermediate

3114: .seealso: MatCreate(), MatCreateSeqBAIJ(), MatSetValues(), MatCreateBAIJ(), MatMPIBAIJSetPreallocationCSR(), PetscSplitOwnership()
3115: @*/
3116: PetscErrorCode  MatMPIBAIJSetPreallocation(Mat B,PetscInt bs,PetscInt d_nz,const PetscInt d_nnz[],PetscInt o_nz,const PetscInt o_nnz[])
3117: {

3124:   PetscTryMethod(B,"MatMPIBAIJSetPreallocation_C",(Mat,PetscInt,PetscInt,const PetscInt[],PetscInt,const PetscInt[]),(B,bs,d_nz,d_nnz,o_nz,o_nnz));
3125:   return(0);
3126: }

3128: /*@C
3129:    MatCreateBAIJ - Creates a sparse parallel matrix in block AIJ format
3130:    (block compressed row).  For good matrix assembly performance
3131:    the user should preallocate the matrix storage by setting the parameters
3132:    d_nz (or d_nnz) and o_nz (or o_nnz).  By setting these parameters accurately,
3133:    performance can be increased by more than a factor of 50.

3135:    Collective

3137:    Input Parameters:
3138: +  comm - MPI communicator
3139: .  bs   - size of block, the blocks are ALWAYS square. One can use MatSetBlockSizes() to set a different row and column blocksize but the row
3140:           blocksize always defines the size of the blocks. The column blocksize sets the blocksize of the vectors obtained with MatCreateVecs()
3141: .  m - number of local rows (or PETSC_DECIDE to have calculated if M is given)
3142:            This value should be the same as the local size used in creating the
3143:            y vector for the matrix-vector product y = Ax.
3144: .  n - number of local columns (or PETSC_DECIDE to have calculated if N is given)
3145:            This value should be the same as the local size used in creating the
3146:            x vector for the matrix-vector product y = Ax.
3147: .  M - number of global rows (or PETSC_DETERMINE to have calculated if m is given)
3148: .  N - number of global columns (or PETSC_DETERMINE to have calculated if n is given)
3149: .  d_nz  - number of nonzero blocks per block row in diagonal portion of local
3150:            submatrix  (same for all local rows)
3151: .  d_nnz - array containing the number of nonzero blocks in the various block rows
3152:            of the in diagonal portion of the local (possibly different for each block
3153:            row) or NULL.  If you plan to factor the matrix you must leave room for the diagonal entry
3154:            and set it even if it is zero.
3155: .  o_nz  - number of nonzero blocks per block row in the off-diagonal portion of local
3156:            submatrix (same for all local rows).
3157: -  o_nnz - array containing the number of nonzero blocks in the various block rows of the
3158:            off-diagonal portion of the local submatrix (possibly different for
3159:            each block row) or NULL.

3161:    Output Parameter:
3162: .  A - the matrix

3164:    Options Database Keys:
3165: +   -mat_block_size - size of the blocks to use
3166: -   -mat_use_hash_table <fact>

3168:    It is recommended that one use the MatCreate(), MatSetType() and/or MatSetFromOptions(),
3169:    MatXXXXSetPreallocation() paradigm instead of this routine directly.
3170:    [MatXXXXSetPreallocation() is, for example, MatSeqAIJSetPreallocation]

3172:    Notes:
3173:    If the *_nnz parameter is given then the *_nz parameter is ignored

3175:    A nonzero block is any block that as 1 or more nonzeros in it

3177:    The user MUST specify either the local or global matrix dimensions
3178:    (possibly both).

3180:    If PETSC_DECIDE or  PETSC_DETERMINE is used for a particular argument on one processor
3181:    than it must be used on all processors that share the object for that argument.

3183:    Storage Information:
3184:    For a square global matrix we define each processor's diagonal portion
3185:    to be its local rows and the corresponding columns (a square submatrix);
3186:    each processor's off-diagonal portion encompasses the remainder of the
3187:    local matrix (a rectangular submatrix).

3189:    The user can specify preallocated storage for the diagonal part of
3190:    the local submatrix with either d_nz or d_nnz (not both).  Set
3191:    d_nz=PETSC_DEFAULT and d_nnz=NULL for PETSc to control dynamic
3192:    memory allocation.  Likewise, specify preallocated storage for the
3193:    off-diagonal part of the local submatrix with o_nz or o_nnz (not both).

3195:    Consider a processor that owns rows 3, 4 and 5 of a parallel matrix. In
3196:    the figure below we depict these three local rows and all columns (0-11).

3198: .vb
3199:            0 1 2 3 4 5 6 7 8 9 10 11
3200:           --------------------------
3201:    row 3  |o o o d d d o o o o  o  o
3202:    row 4  |o o o d d d o o o o  o  o
3203:    row 5  |o o o d d d o o o o  o  o
3204:           --------------------------
3205: .ve

3207:    Thus, any entries in the d locations are stored in the d (diagonal)
3208:    submatrix, and any entries in the o locations are stored in the
3209:    o (off-diagonal) submatrix.  Note that the d and the o submatrices are
3210:    stored simply in the MATSEQBAIJ format for compressed row storage.

3212:    Now d_nz should indicate the number of block nonzeros per row in the d matrix,
3213:    and o_nz should indicate the number of block nonzeros per row in the o matrix.
3214:    In general, for PDE problems in which most nonzeros are near the diagonal,
3215:    one expects d_nz >> o_nz.   For large problems you MUST preallocate memory
3216:    or you will get TERRIBLE performance; see the users' manual chapter on
3217:    matrices.

3219:    Level: intermediate

3221: .seealso: MatCreate(), MatCreateSeqBAIJ(), MatSetValues(), MatCreateBAIJ(), MatMPIBAIJSetPreallocation(), MatMPIBAIJSetPreallocationCSR()
3222: @*/
3223: PetscErrorCode  MatCreateBAIJ(MPI_Comm comm,PetscInt bs,PetscInt m,PetscInt n,PetscInt M,PetscInt N,PetscInt d_nz,const PetscInt d_nnz[],PetscInt o_nz,const PetscInt o_nnz[],Mat *A)
3224: {
3226:   PetscMPIInt    size;

3229:   MatCreate(comm,A);
3230:   MatSetSizes(*A,m,n,M,N);
3231:   MPI_Comm_size(comm,&size);
3232:   if (size > 1) {
3233:     MatSetType(*A,MATMPIBAIJ);
3234:     MatMPIBAIJSetPreallocation(*A,bs,d_nz,d_nnz,o_nz,o_nnz);
3235:   } else {
3236:     MatSetType(*A,MATSEQBAIJ);
3237:     MatSeqBAIJSetPreallocation(*A,bs,d_nz,d_nnz);
3238:   }
3239:   return(0);
3240: }

3242: static PetscErrorCode MatDuplicate_MPIBAIJ(Mat matin,MatDuplicateOption cpvalues,Mat *newmat)
3243: {
3244:   Mat            mat;
3245:   Mat_MPIBAIJ    *a,*oldmat = (Mat_MPIBAIJ*)matin->data;
3247:   PetscInt       len=0;

3250:   *newmat = NULL;
3251:   MatCreate(PetscObjectComm((PetscObject)matin),&mat);
3252:   MatSetSizes(mat,matin->rmap->n,matin->cmap->n,matin->rmap->N,matin->cmap->N);
3253:   MatSetType(mat,((PetscObject)matin)->type_name);

3255:   mat->factortype   = matin->factortype;
3256:   mat->preallocated = PETSC_TRUE;
3257:   mat->assembled    = PETSC_TRUE;
3258:   mat->insertmode   = NOT_SET_VALUES;

3260:   a             = (Mat_MPIBAIJ*)mat->data;
3261:   mat->rmap->bs = matin->rmap->bs;
3262:   a->bs2        = oldmat->bs2;
3263:   a->mbs        = oldmat->mbs;
3264:   a->nbs        = oldmat->nbs;
3265:   a->Mbs        = oldmat->Mbs;
3266:   a->Nbs        = oldmat->Nbs;

3268:   PetscLayoutReference(matin->rmap,&mat->rmap);
3269:   PetscLayoutReference(matin->cmap,&mat->cmap);

3271:   a->size         = oldmat->size;
3272:   a->rank         = oldmat->rank;
3273:   a->donotstash   = oldmat->donotstash;
3274:   a->roworiented  = oldmat->roworiented;
3275:   a->rowindices   = NULL;
3276:   a->rowvalues    = NULL;
3277:   a->getrowactive = PETSC_FALSE;
3278:   a->barray       = NULL;
3279:   a->rstartbs     = oldmat->rstartbs;
3280:   a->rendbs       = oldmat->rendbs;
3281:   a->cstartbs     = oldmat->cstartbs;
3282:   a->cendbs       = oldmat->cendbs;

3284:   /* hash table stuff */
3285:   a->ht           = NULL;
3286:   a->hd           = NULL;
3287:   a->ht_size      = 0;
3288:   a->ht_flag      = oldmat->ht_flag;
3289:   a->ht_fact      = oldmat->ht_fact;
3290:   a->ht_total_ct  = 0;
3291:   a->ht_insert_ct = 0;

3293:   PetscArraycpy(a->rangebs,oldmat->rangebs,a->size+1);
3294:   if (oldmat->colmap) {
3295: #if defined(PETSC_USE_CTABLE)
3296:     PetscTableCreateCopy(oldmat->colmap,&a->colmap);
3297: #else
3298:     PetscMalloc1(a->Nbs,&a->colmap);
3299:     PetscLogObjectMemory((PetscObject)mat,(a->Nbs)*sizeof(PetscInt));
3300:     PetscArraycpy(a->colmap,oldmat->colmap,a->Nbs);
3301: #endif
3302:   } else a->colmap = NULL;

3304:   if (oldmat->garray && (len = ((Mat_SeqBAIJ*)(oldmat->B->data))->nbs)) {
3305:     PetscMalloc1(len,&a->garray);
3306:     PetscLogObjectMemory((PetscObject)mat,len*sizeof(PetscInt));
3307:     PetscArraycpy(a->garray,oldmat->garray,len);
3308:   } else a->garray = NULL;

3310:   MatStashCreate_Private(PetscObjectComm((PetscObject)matin),matin->rmap->bs,&mat->bstash);
3311:   VecDuplicate(oldmat->lvec,&a->lvec);
3312:   PetscLogObjectParent((PetscObject)mat,(PetscObject)a->lvec);
3313:   VecScatterCopy(oldmat->Mvctx,&a->Mvctx);
3314:   PetscLogObjectParent((PetscObject)mat,(PetscObject)a->Mvctx);

3316:   MatDuplicate(oldmat->A,cpvalues,&a->A);
3317:   PetscLogObjectParent((PetscObject)mat,(PetscObject)a->A);
3318:   MatDuplicate(oldmat->B,cpvalues,&a->B);
3319:   PetscLogObjectParent((PetscObject)mat,(PetscObject)a->B);
3320:   PetscFunctionListDuplicate(((PetscObject)matin)->qlist,&((PetscObject)mat)->qlist);
3321:   *newmat = mat;
3322:   return(0);
3323: }

3325: /* Used for both MPIBAIJ and MPISBAIJ matrices */
3326: PetscErrorCode MatLoad_MPIBAIJ_Binary(Mat mat,PetscViewer viewer)
3327: {
3328:   PetscInt       header[4],M,N,nz,bs,m,n,mbs,nbs,rows,cols,sum,i,j,k;
3329:   PetscInt       *rowidxs,*colidxs,rs,cs,ce;
3330:   PetscScalar    *matvals;

3334:   PetscViewerSetUp(viewer);

3336:   /* read in matrix header */
3337:   PetscViewerBinaryRead(viewer,header,4,NULL,PETSC_INT);
3338:   if (header[0] != MAT_FILE_CLASSID) SETERRQ(PetscObjectComm((PetscObject)viewer),PETSC_ERR_FILE_UNEXPECTED,"Not a matrix object in file");
3339:   M  = header[1]; N = header[2]; nz = header[3];
3340:   if (M < 0) SETERRQ1(PetscObjectComm((PetscObject)viewer),PETSC_ERR_FILE_UNEXPECTED,"Matrix row size (%D) in file is negative",M);
3341:   if (N < 0) SETERRQ1(PetscObjectComm((PetscObject)viewer),PETSC_ERR_FILE_UNEXPECTED,"Matrix column size (%D) in file is negative",N);
3342:   if (nz < 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_UNEXPECTED,"Matrix stored in special format on disk, cannot load as MPIBAIJ");

3344:   /* set block sizes from the viewer's .info file */
3345:   MatLoad_Binary_BlockSizes(mat,viewer);
3346:   /* set local sizes if not set already */
3347:   if (mat->rmap->n < 0 && M == N) mat->rmap->n = mat->cmap->n;
3348:   if (mat->cmap->n < 0 && M == N) mat->cmap->n = mat->rmap->n;
3349:   /* set global sizes if not set already */
3350:   if (mat->rmap->N < 0) mat->rmap->N = M;
3351:   if (mat->cmap->N < 0) mat->cmap->N = N;
3352:   PetscLayoutSetUp(mat->rmap);
3353:   PetscLayoutSetUp(mat->cmap);

3355:   /* check if the matrix sizes are correct */
3356:   MatGetSize(mat,&rows,&cols);
3357:   if (M != rows || N != cols) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_FILE_UNEXPECTED, "Matrix in file of different sizes (%D, %D) than the input matrix (%D, %D)",M,N,rows,cols);
3358:   MatGetBlockSize(mat,&bs);
3359:   MatGetLocalSize(mat,&m,&n);
3360:   PetscLayoutGetRange(mat->rmap,&rs,NULL);
3361:   PetscLayoutGetRange(mat->cmap,&cs,&ce);
3362:   mbs = m/bs; nbs = n/bs;

3364:   /* read in row lengths and build row indices */
3365:   PetscMalloc1(m+1,&rowidxs);
3366:   PetscViewerBinaryReadAll(viewer,rowidxs+1,m,PETSC_DECIDE,M,PETSC_INT);
3367:   rowidxs[0] = 0; for (i=0; i<m; i++) rowidxs[i+1] += rowidxs[i];
3368:   MPIU_Allreduce(&rowidxs[m],&sum,1,MPIU_INT,MPI_SUM,PetscObjectComm((PetscObject)viewer));
3369:   if (sum != nz) SETERRQ2(PetscObjectComm((PetscObject)viewer),PETSC_ERR_FILE_UNEXPECTED,"Inconsistent matrix data in file: nonzeros = %D, sum-row-lengths = %D\n",nz,sum);

3371:   /* read in column indices and matrix values */
3372:   PetscMalloc2(rowidxs[m],&colidxs,rowidxs[m],&matvals);
3373:   PetscViewerBinaryReadAll(viewer,colidxs,rowidxs[m],PETSC_DETERMINE,PETSC_DETERMINE,PETSC_INT);
3374:   PetscViewerBinaryReadAll(viewer,matvals,rowidxs[m],PETSC_DETERMINE,PETSC_DETERMINE,PETSC_SCALAR);

3376:   { /* preallocate matrix storage */
3377:     PetscBT    bt; /* helper bit set to count diagonal nonzeros */
3378:     PetscHSetI ht; /* helper hash set to count off-diagonal nonzeros */
3379:     PetscBool  sbaij,done;
3380:     PetscInt   *d_nnz,*o_nnz;

3382:     PetscBTCreate(nbs,&bt);
3383:     PetscHSetICreate(&ht);
3384:     PetscCalloc2(mbs,&d_nnz,mbs,&o_nnz);
3385:     PetscObjectTypeCompare((PetscObject)mat,MATMPISBAIJ,&sbaij);
3386:     for (i=0; i<mbs; i++) {
3387:       PetscBTMemzero(nbs,bt);
3388:       PetscHSetIClear(ht);
3389:       for (k=0; k<bs; k++) {
3390:         PetscInt row = bs*i + k;
3391:         for (j=rowidxs[row]; j<rowidxs[row+1]; j++) {
3392:           PetscInt col = colidxs[j];
3393:           if (!sbaij || col >= row) {
3394:             if (col >= cs && col < ce) {
3395:               if (!PetscBTLookupSet(bt,(col-cs)/bs)) d_nnz[i]++;
3396:             } else {
3397:               PetscHSetIQueryAdd(ht,col/bs,&done);
3398:               if (done) o_nnz[i]++;
3399:             }
3400:           }
3401:         }
3402:       }
3403:     }
3404:     PetscBTDestroy(&bt);
3405:     PetscHSetIDestroy(&ht);
3406:     MatMPIBAIJSetPreallocation(mat,bs,0,d_nnz,0,o_nnz);
3407:     MatMPISBAIJSetPreallocation(mat,bs,0,d_nnz,0,o_nnz);
3408:     PetscFree2(d_nnz,o_nnz);
3409:   }

3411:   /* store matrix values */
3412:   for (i=0; i<m; i++) {
3413:     PetscInt row = rs + i, s = rowidxs[i], e = rowidxs[i+1];
3414:     (*mat->ops->setvalues)(mat,1,&row,e-s,colidxs+s,matvals+s,INSERT_VALUES);
3415:   }

3417:   PetscFree(rowidxs);
3418:   PetscFree2(colidxs,matvals);
3419:   MatAssemblyBegin(mat,MAT_FINAL_ASSEMBLY);
3420:   MatAssemblyEnd(mat,MAT_FINAL_ASSEMBLY);
3421:   return(0);
3422: }

3424: PetscErrorCode MatLoad_MPIBAIJ(Mat mat,PetscViewer viewer)
3425: {
3427:   PetscBool      isbinary;

3430:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
3431:   if (!isbinary) SETERRQ2(PetscObjectComm((PetscObject)viewer),PETSC_ERR_SUP,"Viewer type %s not yet supported for reading %s matrices",((PetscObject)viewer)->type_name,((PetscObject)mat)->type_name);
3432:   MatLoad_MPIBAIJ_Binary(mat,viewer);
3433:   return(0);
3434: }

3436: /*@
3437:    MatMPIBAIJSetHashTableFactor - Sets the factor required to compute the size of the HashTable.

3439:    Input Parameters:
3440: +  mat  - the matrix
3441: -  fact - factor

3443:    Not Collective, each process can use a different factor

3445:    Level: advanced

3447:   Notes:
3448:    This can also be set by the command line option: -mat_use_hash_table <fact>

3450: .seealso: MatSetOption()
3451: @*/
3452: PetscErrorCode  MatMPIBAIJSetHashTableFactor(Mat mat,PetscReal fact)
3453: {

3457:   PetscTryMethod(mat,"MatSetHashTableFactor_C",(Mat,PetscReal),(mat,fact));
3458:   return(0);
3459: }

3461: PetscErrorCode  MatSetHashTableFactor_MPIBAIJ(Mat mat,PetscReal fact)
3462: {
3463:   Mat_MPIBAIJ *baij;

3466:   baij          = (Mat_MPIBAIJ*)mat->data;
3467:   baij->ht_fact = fact;
3468:   return(0);
3469: }

3471: PetscErrorCode  MatMPIBAIJGetSeqBAIJ(Mat A,Mat *Ad,Mat *Ao,const PetscInt *colmap[])
3472: {
3473:   Mat_MPIBAIJ    *a = (Mat_MPIBAIJ*)A->data;
3474:   PetscBool      flg;

3478:   PetscObjectTypeCompare((PetscObject)A,MATMPIBAIJ,&flg);
3479:   if (!flg) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"This function requires a MATMPIBAIJ matrix as input");
3480:   if (Ad)     *Ad     = a->A;
3481:   if (Ao)     *Ao     = a->B;
3482:   if (colmap) *colmap = a->garray;
3483:   return(0);
3484: }

3486: /*
3487:     Special version for direct calls from Fortran (to eliminate two function call overheads
3488: */
3489: #if defined(PETSC_HAVE_FORTRAN_CAPS)
3490: #define matmpibaijsetvaluesblocked_ MATMPIBAIJSETVALUESBLOCKED
3491: #elif !defined(PETSC_HAVE_FORTRAN_UNDERSCORE)
3492: #define matmpibaijsetvaluesblocked_ matmpibaijsetvaluesblocked
3493: #endif

3495: /*@C
3496:   MatMPIBAIJSetValuesBlocked - Direct Fortran call to replace call to MatSetValuesBlocked()

3498:   Collective on Mat

3500:   Input Parameters:
3501: + mat - the matrix
3502: . min - number of input rows
3503: . im - input rows
3504: . nin - number of input columns
3505: . in - input columns
3506: . v - numerical values input
3507: - addvin - INSERT_VALUES or ADD_VALUES

3509:   Notes:
3510:     This has a complete copy of MatSetValuesBlocked_MPIBAIJ() which is terrible code un-reuse.

3512:   Level: advanced

3514: .seealso:   MatSetValuesBlocked()
3515: @*/
3516: PetscErrorCode matmpibaijsetvaluesblocked_(Mat *matin,PetscInt *min,const PetscInt im[],PetscInt *nin,const PetscInt in[],const MatScalar v[],InsertMode *addvin)
3517: {
3518:   /* convert input arguments to C version */
3519:   Mat        mat  = *matin;
3520:   PetscInt   m    = *min, n = *nin;
3521:   InsertMode addv = *addvin;

3523:   Mat_MPIBAIJ     *baij = (Mat_MPIBAIJ*)mat->data;
3524:   const MatScalar *value;
3525:   MatScalar       *barray     = baij->barray;
3526:   PetscBool       roworiented = baij->roworiented;
3527:   PetscErrorCode  ierr;
3528:   PetscInt        i,j,ii,jj,row,col,rstart=baij->rstartbs;
3529:   PetscInt        rend=baij->rendbs,cstart=baij->cstartbs,stepval;
3530:   PetscInt        cend=baij->cendbs,bs=mat->rmap->bs,bs2=baij->bs2;

3533:   /* tasks normally handled by MatSetValuesBlocked() */
3534:   if (mat->insertmode == NOT_SET_VALUES) mat->insertmode = addv;
3535:   else if (PetscUnlikely(mat->insertmode != addv)) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Cannot mix add values and insert values");
3536:   if (PetscUnlikely(mat->factortype)) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
3537:   if (mat->assembled) {
3538:     mat->was_assembled = PETSC_TRUE;
3539:     mat->assembled     = PETSC_FALSE;
3540:   }
3541:   PetscLogEventBegin(MAT_SetValues,mat,0,0,0);

3543:   if (!barray) {
3544:     PetscMalloc1(bs2,&barray);
3545:     baij->barray = barray;
3546:   }

3548:   if (roworiented) stepval = (n-1)*bs;
3549:   else stepval = (m-1)*bs;

3551:   for (i=0; i<m; i++) {
3552:     if (im[i] < 0) continue;
3553:     if (PetscUnlikelyDebug(im[i] >= baij->Mbs)) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Row too large, row %D max %D",im[i],baij->Mbs-1);
3554:     if (im[i] >= rstart && im[i] < rend) {
3555:       row = im[i] - rstart;
3556:       for (j=0; j<n; j++) {
3557:         /* If NumCol = 1 then a copy is not required */
3558:         if ((roworiented) && (n == 1)) {
3559:           barray = (MatScalar*)v + i*bs2;
3560:         } else if ((!roworiented) && (m == 1)) {
3561:           barray = (MatScalar*)v + j*bs2;
3562:         } else { /* Here a copy is required */
3563:           if (roworiented) {
3564:             value = v + i*(stepval+bs)*bs + j*bs;
3565:           } else {
3566:             value = v + j*(stepval+bs)*bs + i*bs;
3567:           }
3568:           for (ii=0; ii<bs; ii++,value+=stepval) {
3569:             for (jj=0; jj<bs; jj++) {
3570:               *barray++ = *value++;
3571:             }
3572:           }
3573:           barray -=bs2;
3574:         }

3576:         if (in[j] >= cstart && in[j] < cend) {
3577:           col  = in[j] - cstart;
3578:           MatSetValuesBlocked_SeqBAIJ_Inlined(baij->A,row,col,barray,addv,im[i],in[j]);
3579:         } else if (in[j] < 0) continue;
3580:         else if (PetscUnlikelyDebug(in[j] >= baij->Nbs)) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Column too large, col %D max %D",in[j],baij->Nbs-1);
3581:         else {
3582:           if (mat->was_assembled) {
3583:             if (!baij->colmap) {
3584:               MatCreateColmap_MPIBAIJ_Private(mat);
3585:             }

3587: #if defined(PETSC_USE_DEBUG)
3588: #if defined(PETSC_USE_CTABLE)
3589:             { PetscInt data;
3590:               PetscTableFind(baij->colmap,in[j]+1,&data);
3591:               if ((data - 1) % bs) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Incorrect colmap");
3592:             }
3593: #else
3594:             if ((baij->colmap[in[j]] - 1) % bs) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Incorrect colmap");
3595: #endif
3596: #endif
3597: #if defined(PETSC_USE_CTABLE)
3598:             PetscTableFind(baij->colmap,in[j]+1,&col);
3599:             col  = (col - 1)/bs;
3600: #else
3601:             col = (baij->colmap[in[j]] - 1)/bs;
3602: #endif
3603:             if (col < 0 && !((Mat_SeqBAIJ*)(baij->A->data))->nonew) {
3604:               MatDisAssemble_MPIBAIJ(mat);
3605:               col  =  in[j];
3606:             }
3607:           } else col = in[j];
3608:           MatSetValuesBlocked_SeqBAIJ_Inlined(baij->B,row,col,barray,addv,im[i],in[j]);
3609:         }
3610:       }
3611:     } else {
3612:       if (!baij->donotstash) {
3613:         if (roworiented) {
3614:           MatStashValuesRowBlocked_Private(&mat->bstash,im[i],n,in,v,m,n,i);
3615:         } else {
3616:           MatStashValuesColBlocked_Private(&mat->bstash,im[i],n,in,v,m,n,i);
3617:         }
3618:       }
3619:     }
3620:   }

3622:   /* task normally handled by MatSetValuesBlocked() */
3623:   PetscLogEventEnd(MAT_SetValues,mat,0,0,0);
3624:   return(0);
3625: }

3627: /*@
3628:      MatCreateMPIBAIJWithArrays - creates a MPI BAIJ matrix using arrays that contain in standard block
3629:          CSR format the local rows.

3631:    Collective

3633:    Input Parameters:
3634: +  comm - MPI communicator
3635: .  bs - the block size, only a block size of 1 is supported
3636: .  m - number of local rows (Cannot be PETSC_DECIDE)
3637: .  n - This value should be the same as the local size used in creating the
3638:        x vector for the matrix-vector product y = Ax. (or PETSC_DECIDE to have
3639:        calculated if N is given) For square matrices n is almost always m.
3640: .  M - number of global rows (or PETSC_DETERMINE to have calculated if m is given)
3641: .  N - number of global columns (or PETSC_DETERMINE to have calculated if n is given)
3642: .   i - row indices; that is i[0] = 0, i[row] = i[row-1] + number of block elements in that rowth block row of the matrix
3643: .   j - column indices
3644: -   a - matrix values

3646:    Output Parameter:
3647: .   mat - the matrix

3649:    Level: intermediate

3651:    Notes:
3652:        The i, j, and a arrays ARE copied by this routine into the internal format used by PETSc;
3653:      thus you CANNOT change the matrix entries by changing the values of a[] after you have
3654:      called this routine. Use MatCreateMPIAIJWithSplitArrays() to avoid needing to copy the arrays.

3656:      The order of the entries in values is the same as the block compressed sparse row storage format; that is, it is
3657:      the same as a three dimensional array in Fortran values(bs,bs,nnz) that contains the first column of the first
3658:      block, followed by the second column of the first block etc etc.  That is, the blocks are contiguous in memory
3659:      with column-major ordering within blocks.

3661:        The i and j indices are 0 based, and i indices are indices corresponding to the local j array.

3663: .seealso: MatCreate(), MatCreateSeqAIJ(), MatSetValues(), MatMPIAIJSetPreallocation(), MatMPIAIJSetPreallocationCSR(),
3664:           MPIAIJ, MatCreateAIJ(), MatCreateMPIAIJWithSplitArrays()
3665: @*/
3666: PetscErrorCode  MatCreateMPIBAIJWithArrays(MPI_Comm comm,PetscInt bs,PetscInt m,PetscInt n,PetscInt M,PetscInt N,const PetscInt i[],const PetscInt j[],const PetscScalar a[],Mat *mat)
3667: {

3671:   if (i[0]) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"i (row indices) must start with 0");
3672:   if (m < 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"local number of rows (m) cannot be PETSC_DECIDE, or negative");
3673:   MatCreate(comm,mat);
3674:   MatSetSizes(*mat,m,n,M,N);
3675:   MatSetType(*mat,MATMPIBAIJ);
3676:   MatSetBlockSize(*mat,bs);
3677:   MatSetUp(*mat);
3678:   MatSetOption(*mat,MAT_ROW_ORIENTED,PETSC_FALSE);
3679:   MatMPIBAIJSetPreallocationCSR(*mat,bs,i,j,a);
3680:   MatSetOption(*mat,MAT_ROW_ORIENTED,PETSC_TRUE);
3681:   return(0);
3682: }

3684: PetscErrorCode MatCreateMPIMatConcatenateSeqMat_MPIBAIJ(MPI_Comm comm,Mat inmat,PetscInt n,MatReuse scall,Mat *outmat)
3685: {
3687:   PetscInt       m,N,i,rstart,nnz,Ii,bs,cbs;
3688:   PetscInt       *indx;
3689:   PetscScalar    *values;

3692:   MatGetSize(inmat,&m,&N);
3693:   if (scall == MAT_INITIAL_MATRIX) { /* symbolic phase */
3694:     Mat_SeqBAIJ    *a = (Mat_SeqBAIJ*)inmat->data;
3695:     PetscInt       *dnz,*onz,mbs,Nbs,nbs;
3696:     PetscInt       *bindx,rmax=a->rmax,j;
3697:     PetscMPIInt    rank,size;

3699:     MatGetBlockSizes(inmat,&bs,&cbs);
3700:     mbs = m/bs; Nbs = N/cbs;
3701:     if (n == PETSC_DECIDE) {
3702:       PetscSplitOwnershipBlock(comm,cbs,&n,&N);
3703:     }
3704:     nbs = n/cbs;

3706:     PetscMalloc1(rmax,&bindx);
3707:     MatPreallocateInitialize(comm,mbs,nbs,dnz,onz); /* inline function, output __end and __rstart are used below */

3709:     MPI_Comm_rank(comm,&rank);
3710:     MPI_Comm_rank(comm,&size);
3711:     if (rank == size-1) {
3712:       /* Check sum(nbs) = Nbs */
3713:       if (__end != Nbs) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Sum of local block columns %D != global block columns %D",__end,Nbs);
3714:     }

3716:     rstart = __rstart; /* block rstart of *outmat; see inline function MatPreallocateInitialize */
3717:     for (i=0; i<mbs; i++) {
3718:       MatGetRow_SeqBAIJ(inmat,i*bs,&nnz,&indx,NULL); /* non-blocked nnz and indx */
3719:       nnz = nnz/bs;
3720:       for (j=0; j<nnz; j++) bindx[j] = indx[j*bs]/bs;
3721:       MatPreallocateSet(i+rstart,nnz,bindx,dnz,onz);
3722:       MatRestoreRow_SeqBAIJ(inmat,i*bs,&nnz,&indx,NULL);
3723:     }
3724:     PetscFree(bindx);

3726:     MatCreate(comm,outmat);
3727:     MatSetSizes(*outmat,m,n,PETSC_DETERMINE,PETSC_DETERMINE);
3728:     MatSetBlockSizes(*outmat,bs,cbs);
3729:     MatSetType(*outmat,MATBAIJ);
3730:     MatSeqBAIJSetPreallocation(*outmat,bs,0,dnz);
3731:     MatMPIBAIJSetPreallocation(*outmat,bs,0,dnz,0,onz);
3732:     MatPreallocateFinalize(dnz,onz);
3733:     MatSetOption(*outmat,MAT_NO_OFF_PROC_ENTRIES,PETSC_TRUE);
3734:   }

3736:   /* numeric phase */
3737:   MatGetBlockSizes(inmat,&bs,&cbs);
3738:   MatGetOwnershipRange(*outmat,&rstart,NULL);

3740:   for (i=0; i<m; i++) {
3741:     MatGetRow_SeqBAIJ(inmat,i,&nnz,&indx,&values);
3742:     Ii   = i + rstart;
3743:     MatSetValues(*outmat,1,&Ii,nnz,indx,values,INSERT_VALUES);
3744:     MatRestoreRow_SeqBAIJ(inmat,i,&nnz,&indx,&values);
3745:   }
3746:   MatAssemblyBegin(*outmat,MAT_FINAL_ASSEMBLY);
3747:   MatAssemblyEnd(*outmat,MAT_FINAL_ASSEMBLY);
3748:   return(0);
3749: }