Actual source code: lsc.c

  1: #include <petsc/private/pcimpl.h>

  3: typedef struct {
  4:   PetscBool allocated;
  5:   PetscBool scalediag;
  6:   KSP       kspL;
  7:   Vec       scale;
  8:   Vec       x0,y0,x1;
  9:   Mat       L;             /* keep a copy to reuse when obtained with L = A10*A01 */
 10: } PC_LSC;

 12: static PetscErrorCode PCLSCAllocate_Private(PC pc)
 13: {
 14:   PC_LSC         *lsc = (PC_LSC*)pc->data;
 15:   Mat            A;

 19:   if (lsc->allocated) return(0);
 20:   KSPCreate(PetscObjectComm((PetscObject)pc),&lsc->kspL);
 21:   KSPSetErrorIfNotConverged(lsc->kspL,pc->erroriffailure);
 22:   PetscObjectIncrementTabLevel((PetscObject)lsc->kspL,(PetscObject)pc,1);
 23:   KSPSetType(lsc->kspL,KSPPREONLY);
 24:   KSPSetOptionsPrefix(lsc->kspL,((PetscObject)pc)->prefix);
 25:   KSPAppendOptionsPrefix(lsc->kspL,"lsc_");
 26:   MatSchurComplementGetSubMatrices(pc->mat,&A,NULL,NULL,NULL,NULL);
 27:   MatCreateVecs(A,&lsc->x0,&lsc->y0);
 28:   MatCreateVecs(pc->pmat,&lsc->x1,NULL);
 29:   if (lsc->scalediag) {
 30:     VecDuplicate(lsc->x0,&lsc->scale);
 31:   }
 32:   lsc->allocated = PETSC_TRUE;
 33:   return(0);
 34: }

 36: static PetscErrorCode PCSetUp_LSC(PC pc)
 37: {
 38:   PC_LSC         *lsc = (PC_LSC*)pc->data;
 39:   Mat            L,Lp,B,C;

 43:   PCLSCAllocate_Private(pc);
 44:   PetscObjectQuery((PetscObject)pc->mat,"LSC_L",(PetscObject*)&L);
 45:   if (!L) {PetscObjectQuery((PetscObject)pc->pmat,"LSC_L",(PetscObject*)&L);}
 46:   PetscObjectQuery((PetscObject)pc->pmat,"LSC_Lp",(PetscObject*)&Lp);
 47:   if (!Lp) {PetscObjectQuery((PetscObject)pc->mat,"LSC_Lp",(PetscObject*)&Lp);}
 48:   if (!L) {
 49:     MatSchurComplementGetSubMatrices(pc->mat,NULL,NULL,&B,&C,NULL);
 50:     if (!lsc->L) {
 51:       MatMatMult(C,B,MAT_INITIAL_MATRIX,PETSC_DEFAULT,&lsc->L);
 52:     } else {
 53:       MatMatMult(C,B,MAT_REUSE_MATRIX,PETSC_DEFAULT,&lsc->L);
 54:     }
 55:     Lp = L = lsc->L;
 56:   }
 57:   if (lsc->scale) {
 58:     Mat Ap;
 59:     MatSchurComplementGetSubMatrices(pc->mat,NULL,&Ap,NULL,NULL,NULL);
 60:     MatGetDiagonal(Ap,lsc->scale); /* Should be the mass matrix, but we don't have plumbing for that yet */
 61:     VecReciprocal(lsc->scale);
 62:   }
 63:   KSPSetOperators(lsc->kspL,L,Lp);
 64:   KSPSetFromOptions(lsc->kspL);
 65:   return(0);
 66: }

 68: static PetscErrorCode PCApply_LSC(PC pc,Vec x,Vec y)
 69: {
 70:   PC_LSC         *lsc = (PC_LSC*)pc->data;
 71:   Mat            A,B,C;

 75:   MatSchurComplementGetSubMatrices(pc->mat,&A,NULL,&B,&C,NULL);
 76:   KSPSolve(lsc->kspL,x,lsc->x1);
 77:   KSPCheckSolve(lsc->kspL,pc,lsc->x1);
 78:   MatMult(B,lsc->x1,lsc->x0);
 79:   if (lsc->scale) {
 80:     VecPointwiseMult(lsc->x0,lsc->x0,lsc->scale);
 81:   }
 82:   MatMult(A,lsc->x0,lsc->y0);
 83:   if (lsc->scale) {
 84:     VecPointwiseMult(lsc->y0,lsc->y0,lsc->scale);
 85:   }
 86:   MatMult(C,lsc->y0,lsc->x1);
 87:   KSPSolve(lsc->kspL,lsc->x1,y);
 88:   KSPCheckSolve(lsc->kspL,pc,y);
 89:   return(0);
 90: }

 92: static PetscErrorCode PCReset_LSC(PC pc)
 93: {
 94:   PC_LSC         *lsc = (PC_LSC*)pc->data;

 98:   VecDestroy(&lsc->x0);
 99:   VecDestroy(&lsc->y0);
100:   VecDestroy(&lsc->x1);
101:   VecDestroy(&lsc->scale);
102:   KSPDestroy(&lsc->kspL);
103:   MatDestroy(&lsc->L);
104:   return(0);
105: }

107: static PetscErrorCode PCDestroy_LSC(PC pc)
108: {

112:   PCReset_LSC(pc);
113:   PetscFree(pc->data);
114:   return(0);
115: }

117: static PetscErrorCode PCSetFromOptions_LSC(PetscOptionItems *PetscOptionsObject,PC pc)
118: {
119:   PC_LSC         *lsc = (PC_LSC*)pc->data;

123:   PetscOptionsHead(PetscOptionsObject,"LSC options");
124:   {
125:     PetscOptionsBool("-pc_lsc_scale_diag","Use diagonal of velocity block (A) for scaling","None",lsc->scalediag,&lsc->scalediag,NULL);
126:   }
127:   PetscOptionsTail();
128:   return(0);
129: }

131: static PetscErrorCode PCView_LSC(PC pc,PetscViewer viewer)
132: {
133:   PC_LSC         *jac = (PC_LSC*)pc->data;
135:   PetscBool      iascii;

138:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
139:   if (iascii) {
140:     PetscViewerASCIIPushTab(viewer);
141:     if (jac->kspL) {
142:       KSPView(jac->kspL,viewer);
143:     } else {
144:       PetscViewerASCIIPrintf(viewer,"PCLSC KSP object not yet created, hence cannot display");
145:     }
146:     PetscViewerASCIIPopTab(viewer);
147:   }
148:   return(0);
149: }

151: /*MC
152:      PCLSC - Preconditioning for Schur complements, based on Least Squares Commutators

154:    Options Database Key:
155: .    -pc_lsc_scale_diag - Use the diagonal of A for scaling

157:    Level: intermediate

159:    Notes:
160:    This preconditioner will normally be used with PCFieldSplit to precondition the Schur complement, but
161:    it can be used for any Schur complement system.  Consider the Schur complement

163: .vb
164:    S = A11 - A10 inv(A00) A01
165: .ve

167:    PCLSC currently doesn't do anything with A11, so let's assume it is 0.  The idea is that a good approximation to
168:    inv(S) is given by

170: .vb
171:    inv(A10 A01) A10 A00 A01 inv(A10 A01)
172: .ve

174:    The product A10 A01 can be computed for you, but you can provide it (this is
175:    usually more efficient anyway).  In the case of incompressible flow, A10 A01 is a Laplacian; call it L.  The current
176:    interface is to hang L and a preconditioning matrix Lp on the preconditioning matrix.

178:    If you had called KSPSetOperators(ksp,S,Sp), S should have type MATSCHURCOMPLEMENT and Sp can be any type you
179:    like (PCLSC doesn't use it directly) but should have matrices composed with it, under the names "LSC_L" and "LSC_Lp".
180:    For example, you might have setup code like this

182: .vb
183:    PetscObjectCompose((PetscObject)Sp,"LSC_L",(PetscObject)L);
184:    PetscObjectCompose((PetscObject)Sp,"LSC_Lp",(PetscObject)Lp);
185: .ve

187:    And then your Jacobian assembly would look like

189: .vb
190:    PetscObjectQuery((PetscObject)Sp,"LSC_L",(PetscObject*)&L);
191:    PetscObjectQuery((PetscObject)Sp,"LSC_Lp",(PetscObject*)&Lp);
192:    if (L) { assembly L }
193:    if (Lp) { assemble Lp }
194: .ve

196:    With this, you should be able to choose LSC preconditioning, using e.g. ML's algebraic multigrid to solve with L

198: .vb
199:    -fieldsplit_1_pc_type lsc -fieldsplit_1_lsc_pc_type ml
200: .ve

202:    Since we do not use the values in Sp, you can still put an assembled matrix there to use normal preconditioners.

204:    References:
205: +  1. - Elman, Howle, Shadid, Shuttleworth, and Tuminaro, Block preconditioners based on approximate commutators, 2006.
206: -  2. - Silvester, Elman, Kay, Wathen, Efficient preconditioning of the linearized Navier Stokes equations for incompressible flow, 2001.

208: .seealso:  PCCreate(), PCSetType(), PCType (for list of available types), PC, Block_Preconditioners, PCFIELDSPLIT,
209:            PCFieldSplitGetSubKSP(), PCFieldSplitSetFields(), PCFieldSplitSetType(), PCFieldSplitSetIS(), PCFieldSplitSetSchurPre(),
210:            MatCreateSchurComplement()
211: M*/

213: PETSC_EXTERN PetscErrorCode PCCreate_LSC(PC pc)
214: {
215:   PC_LSC         *lsc;

219:   PetscNewLog(pc,&lsc);
220:   pc->data = (void*)lsc;

222:   pc->ops->apply           = PCApply_LSC;
223:   pc->ops->applytranspose  = NULL;
224:   pc->ops->setup           = PCSetUp_LSC;
225:   pc->ops->reset           = PCReset_LSC;
226:   pc->ops->destroy         = PCDestroy_LSC;
227:   pc->ops->setfromoptions  = PCSetFromOptions_LSC;
228:   pc->ops->view            = PCView_LSC;
229:   pc->ops->applyrichardson = NULL;
230:   return(0);
231: }