Actual source code: plexgeometry.c

  1: #include <petsc/private/dmpleximpl.h>
  2: #include <petsc/private/petscfeimpl.h>
  3: #include <petscblaslapack.h>
  4: #include <petsctime.h>

  6: /*@
  7:   DMPlexFindVertices - Try to find DAG points based on their coordinates.

  9:   Not Collective (provided DMGetCoordinatesLocalSetUp() has been called already)

 11:   Input Parameters:
 12: + dm - The DMPlex object
 13: . npoints - The number of sought points
 14: . coords - The array of coordinates of the sought points
 15: - eps - The tolerance or PETSC_DEFAULT

 17:   Output Parameters:
 18: . dagPoints - The array of found DAG points, or -1 if not found

 20:   Level: intermediate

 22:   Notes:
 23:   The length of the array coords must be npoints * dim where dim is the spatial dimension returned by DMGetDimension().

 25:   The output array dagPoints is NOT newly allocated; the user must pass an array of length npoints.

 27:   Each rank does the search independently; a nonnegative value is returned only if this rank's local DMPlex portion contains the point.

 29:   The tolerance is interpreted as the maximum Euclidean (L2) distance of the sought point from the specified coordinates.

 31:   Complexity of this function is currently O(mn) with m number of vertices to find and n number of vertices in the local mesh. This could probably be improved.

 33: .seealso: DMPlexCreate(), DMGetCoordinatesLocal()
 34: @*/
 35: PetscErrorCode DMPlexFindVertices(DM dm, PetscInt npoints, const PetscReal coord[], PetscReal eps, PetscInt dagPoints[])
 36: {
 37:   PetscInt          c, cdim, i, j, o, p, vStart, vEnd;
 38:   Vec               allCoordsVec;
 39:   const PetscScalar *allCoords;
 40:   PetscReal         norm;
 41:   PetscErrorCode    ierr;

 44:   if (eps < 0) eps = PETSC_SQRT_MACHINE_EPSILON;
 45:   DMGetCoordinateDim(dm, &cdim);
 46:   DMGetCoordinatesLocal(dm, &allCoordsVec);
 47:   VecGetArrayRead(allCoordsVec, &allCoords);
 48:   DMPlexGetDepthStratum(dm, 0, &vStart, &vEnd);
 49:   if (PetscDefined(USE_DEBUG)) {
 50:     /* check coordinate section is consistent with DM dimension */
 51:     PetscSection      cs;
 52:     PetscInt          ndof;

 54:     DMGetCoordinateSection(dm, &cs);
 55:     for (p = vStart; p < vEnd; p++) {
 56:       PetscSectionGetDof(cs, p, &ndof);
 57:       if (PetscUnlikely(ndof != cdim)) SETERRQ3(PETSC_COMM_SELF, PETSC_ERR_PLIB, "point %D: ndof = %D != %D = cdim", p, ndof, cdim);
 58:     }
 59:   }
 60:   if (eps == 0.0) {
 61:     for (i=0,j=0; i < npoints; i++,j+=cdim) {
 62:       dagPoints[i] = -1;
 63:       for (p = vStart,o=0; p < vEnd; p++,o+=cdim) {
 64:         for (c = 0; c < cdim; c++) {
 65:           if (coord[j+c] != PetscRealPart(allCoords[o+c])) break;
 66:         }
 67:         if (c == cdim) {
 68:           dagPoints[i] = p;
 69:           break;
 70:         }
 71:       }
 72:     }
 73:     VecRestoreArrayRead(allCoordsVec, &allCoords);
 74:     return(0);
 75:   }
 76:   for (i=0,j=0; i < npoints; i++,j+=cdim) {
 77:     dagPoints[i] = -1;
 78:     for (p = vStart,o=0; p < vEnd; p++,o+=cdim) {
 79:       norm = 0.0;
 80:       for (c = 0; c < cdim; c++) {
 81:         norm += PetscSqr(coord[j+c] - PetscRealPart(allCoords[o+c]));
 82:       }
 83:       norm = PetscSqrtReal(norm);
 84:       if (norm <= eps) {
 85:         dagPoints[i] = p;
 86:         break;
 87:       }
 88:     }
 89:   }
 90:   VecRestoreArrayRead(allCoordsVec, &allCoords);
 91:   return(0);
 92: }

 94: static PetscErrorCode DMPlexGetLineIntersection_2D_Internal(const PetscReal segmentA[], const PetscReal segmentB[], PetscReal intersection[], PetscBool *hasIntersection)
 95: {
 96:   const PetscReal p0_x  = segmentA[0*2+0];
 97:   const PetscReal p0_y  = segmentA[0*2+1];
 98:   const PetscReal p1_x  = segmentA[1*2+0];
 99:   const PetscReal p1_y  = segmentA[1*2+1];
100:   const PetscReal p2_x  = segmentB[0*2+0];
101:   const PetscReal p2_y  = segmentB[0*2+1];
102:   const PetscReal p3_x  = segmentB[1*2+0];
103:   const PetscReal p3_y  = segmentB[1*2+1];
104:   const PetscReal s1_x  = p1_x - p0_x;
105:   const PetscReal s1_y  = p1_y - p0_y;
106:   const PetscReal s2_x  = p3_x - p2_x;
107:   const PetscReal s2_y  = p3_y - p2_y;
108:   const PetscReal denom = (-s2_x * s1_y + s1_x * s2_y);

111:   *hasIntersection = PETSC_FALSE;
112:   /* Non-parallel lines */
113:   if (denom != 0.0) {
114:     const PetscReal s = (-s1_y * (p0_x - p2_x) + s1_x * (p0_y - p2_y)) / denom;
115:     const PetscReal t = ( s2_x * (p0_y - p2_y) - s2_y * (p0_x - p2_x)) / denom;

117:     if (s >= 0 && s <= 1 && t >= 0 && t <= 1) {
118:       *hasIntersection = PETSC_TRUE;
119:       if (intersection) {
120:         intersection[0] = p0_x + (t * s1_x);
121:         intersection[1] = p0_y + (t * s1_y);
122:       }
123:     }
124:   }
125:   return(0);
126: }

128: /* The plane is segmentB x segmentC: https://en.wikipedia.org/wiki/Line%E2%80%93plane_intersection */
129: static PetscErrorCode DMPlexGetLinePlaneIntersection_3D_Internal(const PetscReal segmentA[], const PetscReal segmentB[], const PetscReal segmentC[], PetscReal intersection[], PetscBool *hasIntersection)
130: {
131:   const PetscReal p0_x  = segmentA[0*3+0];
132:   const PetscReal p0_y  = segmentA[0*3+1];
133:   const PetscReal p0_z  = segmentA[0*3+2];
134:   const PetscReal p1_x  = segmentA[1*3+0];
135:   const PetscReal p1_y  = segmentA[1*3+1];
136:   const PetscReal p1_z  = segmentA[1*3+2];
137:   const PetscReal q0_x  = segmentB[0*3+0];
138:   const PetscReal q0_y  = segmentB[0*3+1];
139:   const PetscReal q0_z  = segmentB[0*3+2];
140:   const PetscReal q1_x  = segmentB[1*3+0];
141:   const PetscReal q1_y  = segmentB[1*3+1];
142:   const PetscReal q1_z  = segmentB[1*3+2];
143:   const PetscReal r0_x  = segmentC[0*3+0];
144:   const PetscReal r0_y  = segmentC[0*3+1];
145:   const PetscReal r0_z  = segmentC[0*3+2];
146:   const PetscReal r1_x  = segmentC[1*3+0];
147:   const PetscReal r1_y  = segmentC[1*3+1];
148:   const PetscReal r1_z  = segmentC[1*3+2];
149:   const PetscReal s0_x  = p1_x - p0_x;
150:   const PetscReal s0_y  = p1_y - p0_y;
151:   const PetscReal s0_z  = p1_z - p0_z;
152:   const PetscReal s1_x  = q1_x - q0_x;
153:   const PetscReal s1_y  = q1_y - q0_y;
154:   const PetscReal s1_z  = q1_z - q0_z;
155:   const PetscReal s2_x  = r1_x - r0_x;
156:   const PetscReal s2_y  = r1_y - r0_y;
157:   const PetscReal s2_z  = r1_z - r0_z;
158:   const PetscReal s3_x  = s1_y*s2_z - s1_z*s2_y; /* s1 x s2 */
159:   const PetscReal s3_y  = s1_z*s2_x - s1_x*s2_z;
160:   const PetscReal s3_z  = s1_x*s2_y - s1_y*s2_x;
161:   const PetscReal s4_x  = s0_y*s2_z - s0_z*s2_y; /* s0 x s2 */
162:   const PetscReal s4_y  = s0_z*s2_x - s0_x*s2_z;
163:   const PetscReal s4_z  = s0_x*s2_y - s0_y*s2_x;
164:   const PetscReal s5_x  = s1_y*s0_z - s1_z*s0_y; /* s1 x s0 */
165:   const PetscReal s5_y  = s1_z*s0_x - s1_x*s0_z;
166:   const PetscReal s5_z  = s1_x*s0_y - s1_y*s0_x;
167:   const PetscReal denom = -(s0_x*s3_x + s0_y*s3_y + s0_z*s3_z); /* -s0 . (s1 x s2) */

170:   *hasIntersection = PETSC_FALSE;
171:   /* Line not parallel to plane */
172:   if (denom != 0.0) {
173:     const PetscReal t = (s3_x * (p0_x - q0_x) + s3_y * (p0_y - q0_y) + s3_z * (p0_z - q0_z)) / denom;
174:     const PetscReal u = (s4_x * (p0_x - q0_x) + s4_y * (p0_y - q0_y) + s4_z * (p0_z - q0_z)) / denom;
175:     const PetscReal v = (s5_x * (p0_x - q0_x) + s5_y * (p0_y - q0_y) + s5_z * (p0_z - q0_z)) / denom;

177:     if (t >= 0 && t <= 1 && u >= 0 && u <= 1 && v >= 0 && v <= 1) {
178:       *hasIntersection = PETSC_TRUE;
179:       if (intersection) {
180:         intersection[0] = p0_x + (t * s0_x);
181:         intersection[1] = p0_y + (t * s0_y);
182:         intersection[2] = p0_z + (t * s0_z);
183:       }
184:     }
185:   }
186:   return(0);
187: }

189: static PetscErrorCode DMPlexLocatePoint_Simplex_1D_Internal(DM dm, const PetscScalar point[], PetscInt c, PetscInt *cell)
190: {
191:   const PetscReal eps = PETSC_SQRT_MACHINE_EPSILON;
192:   const PetscReal x   = PetscRealPart(point[0]);
193:   PetscReal       v0, J, invJ, detJ;
194:   PetscReal       xi;
195:   PetscErrorCode  ierr;

198:   DMPlexComputeCellGeometryFEM(dm, c, NULL, &v0, &J, &invJ, &detJ);
199:   xi   = invJ*(x - v0);

201:   if ((xi >= -eps) && (xi <= 2.+eps)) *cell = c;
202:   else *cell = DMLOCATEPOINT_POINT_NOT_FOUND;
203:   return(0);
204: }

206: static PetscErrorCode DMPlexLocatePoint_Simplex_2D_Internal(DM dm, const PetscScalar point[], PetscInt c, PetscInt *cell)
207: {
208:   const PetscInt  embedDim = 2;
209:   const PetscReal eps      = PETSC_SQRT_MACHINE_EPSILON;
210:   PetscReal       x        = PetscRealPart(point[0]);
211:   PetscReal       y        = PetscRealPart(point[1]);
212:   PetscReal       v0[2], J[4], invJ[4], detJ;
213:   PetscReal       xi, eta;
214:   PetscErrorCode  ierr;

217:   DMPlexComputeCellGeometryFEM(dm, c, NULL, v0, J, invJ, &detJ);
218:   xi  = invJ[0*embedDim+0]*(x - v0[0]) + invJ[0*embedDim+1]*(y - v0[1]);
219:   eta = invJ[1*embedDim+0]*(x - v0[0]) + invJ[1*embedDim+1]*(y - v0[1]);

221:   if ((xi >= -eps) && (eta >= -eps) && (xi + eta <= 2.0+eps)) *cell = c;
222:   else *cell = DMLOCATEPOINT_POINT_NOT_FOUND;
223:   return(0);
224: }

226: static PetscErrorCode DMPlexClosestPoint_Simplex_2D_Internal(DM dm, const PetscScalar point[], PetscInt c, PetscReal cpoint[])
227: {
228:   const PetscInt  embedDim = 2;
229:   PetscReal       x        = PetscRealPart(point[0]);
230:   PetscReal       y        = PetscRealPart(point[1]);
231:   PetscReal       v0[2], J[4], invJ[4], detJ;
232:   PetscReal       xi, eta, r;
233:   PetscErrorCode  ierr;

236:   DMPlexComputeCellGeometryFEM(dm, c, NULL, v0, J, invJ, &detJ);
237:   xi  = invJ[0*embedDim+0]*(x - v0[0]) + invJ[0*embedDim+1]*(y - v0[1]);
238:   eta = invJ[1*embedDim+0]*(x - v0[0]) + invJ[1*embedDim+1]*(y - v0[1]);

240:   xi  = PetscMax(xi,  0.0);
241:   eta = PetscMax(eta, 0.0);
242:   if (xi + eta > 2.0) {
243:     r    = (xi + eta)/2.0;
244:     xi  /= r;
245:     eta /= r;
246:   }
247:   cpoint[0] = J[0*embedDim+0]*xi + J[0*embedDim+1]*eta + v0[0];
248:   cpoint[1] = J[1*embedDim+0]*xi + J[1*embedDim+1]*eta + v0[1];
249:   return(0);
250: }

252: static PetscErrorCode DMPlexLocatePoint_Quad_2D_Internal(DM dm, const PetscScalar point[], PetscInt c, PetscInt *cell)
253: {
254:   PetscSection       coordSection;
255:   Vec             coordsLocal;
256:   PetscScalar    *coords = NULL;
257:   const PetscInt  faces[8]  = {0, 1, 1, 2, 2, 3, 3, 0};
258:   PetscReal       x         = PetscRealPart(point[0]);
259:   PetscReal       y         = PetscRealPart(point[1]);
260:   PetscInt        crossings = 0, f;
261:   PetscErrorCode  ierr;

264:   DMGetCoordinatesLocal(dm, &coordsLocal);
265:   DMGetCoordinateSection(dm, &coordSection);
266:   DMPlexVecGetClosure(dm, coordSection, coordsLocal, c, NULL, &coords);
267:   for (f = 0; f < 4; ++f) {
268:     PetscReal x_i   = PetscRealPart(coords[faces[2*f+0]*2+0]);
269:     PetscReal y_i   = PetscRealPart(coords[faces[2*f+0]*2+1]);
270:     PetscReal x_j   = PetscRealPart(coords[faces[2*f+1]*2+0]);
271:     PetscReal y_j   = PetscRealPart(coords[faces[2*f+1]*2+1]);
272:     PetscReal slope = (y_j - y_i) / (x_j - x_i);
273:     PetscBool cond1 = (x_i <= x) && (x < x_j) ? PETSC_TRUE : PETSC_FALSE;
274:     PetscBool cond2 = (x_j <= x) && (x < x_i) ? PETSC_TRUE : PETSC_FALSE;
275:     PetscBool above = (y < slope * (x - x_i) + y_i) ? PETSC_TRUE : PETSC_FALSE;
276:     if ((cond1 || cond2)  && above) ++crossings;
277:   }
278:   if (crossings % 2) *cell = c;
279:   else *cell = DMLOCATEPOINT_POINT_NOT_FOUND;
280:   DMPlexVecRestoreClosure(dm, coordSection, coordsLocal, c, NULL, &coords);
281:   return(0);
282: }

284: static PetscErrorCode DMPlexLocatePoint_Simplex_3D_Internal(DM dm, const PetscScalar point[], PetscInt c, PetscInt *cell)
285: {
286:   const PetscInt  embedDim = 3;
287:   const PetscReal eps      = PETSC_SQRT_MACHINE_EPSILON;
288:   PetscReal       v0[3], J[9], invJ[9], detJ;
289:   PetscReal       x = PetscRealPart(point[0]);
290:   PetscReal       y = PetscRealPart(point[1]);
291:   PetscReal       z = PetscRealPart(point[2]);
292:   PetscReal       xi, eta, zeta;
293:   PetscErrorCode  ierr;

296:   DMPlexComputeCellGeometryFEM(dm, c, NULL, v0, J, invJ, &detJ);
297:   xi   = invJ[0*embedDim+0]*(x - v0[0]) + invJ[0*embedDim+1]*(y - v0[1]) + invJ[0*embedDim+2]*(z - v0[2]);
298:   eta  = invJ[1*embedDim+0]*(x - v0[0]) + invJ[1*embedDim+1]*(y - v0[1]) + invJ[1*embedDim+2]*(z - v0[2]);
299:   zeta = invJ[2*embedDim+0]*(x - v0[0]) + invJ[2*embedDim+1]*(y - v0[1]) + invJ[2*embedDim+2]*(z - v0[2]);

301:   if ((xi >= -eps) && (eta >= -eps) && (zeta >= -eps) && (xi + eta + zeta <= 2.0+eps)) *cell = c;
302:   else *cell = DMLOCATEPOINT_POINT_NOT_FOUND;
303:   return(0);
304: }

306: static PetscErrorCode DMPlexLocatePoint_General_3D_Internal(DM dm, const PetscScalar point[], PetscInt c, PetscInt *cell)
307: {
308:   PetscSection   coordSection;
309:   Vec            coordsLocal;
310:   PetscScalar   *coords = NULL;
311:   const PetscInt faces[24] = {0, 3, 2, 1,  5, 4, 7, 6,  3, 0, 4, 5,
312:                               1, 2, 6, 7,  3, 5, 6, 2,  0, 1, 7, 4};
313:   PetscBool      found = PETSC_TRUE;
314:   PetscInt       f;

318:   DMGetCoordinatesLocal(dm, &coordsLocal);
319:   DMGetCoordinateSection(dm, &coordSection);
320:   DMPlexVecGetClosure(dm, coordSection, coordsLocal, c, NULL, &coords);
321:   for (f = 0; f < 6; ++f) {
322:     /* Check the point is under plane */
323:     /*   Get face normal */
324:     PetscReal v_i[3];
325:     PetscReal v_j[3];
326:     PetscReal normal[3];
327:     PetscReal pp[3];
328:     PetscReal dot;

330:     v_i[0]    = PetscRealPart(coords[faces[f*4+3]*3+0]-coords[faces[f*4+0]*3+0]);
331:     v_i[1]    = PetscRealPart(coords[faces[f*4+3]*3+1]-coords[faces[f*4+0]*3+1]);
332:     v_i[2]    = PetscRealPart(coords[faces[f*4+3]*3+2]-coords[faces[f*4+0]*3+2]);
333:     v_j[0]    = PetscRealPart(coords[faces[f*4+1]*3+0]-coords[faces[f*4+0]*3+0]);
334:     v_j[1]    = PetscRealPart(coords[faces[f*4+1]*3+1]-coords[faces[f*4+0]*3+1]);
335:     v_j[2]    = PetscRealPart(coords[faces[f*4+1]*3+2]-coords[faces[f*4+0]*3+2]);
336:     normal[0] = v_i[1]*v_j[2] - v_i[2]*v_j[1];
337:     normal[1] = v_i[2]*v_j[0] - v_i[0]*v_j[2];
338:     normal[2] = v_i[0]*v_j[1] - v_i[1]*v_j[0];
339:     pp[0]     = PetscRealPart(coords[faces[f*4+0]*3+0] - point[0]);
340:     pp[1]     = PetscRealPart(coords[faces[f*4+0]*3+1] - point[1]);
341:     pp[2]     = PetscRealPart(coords[faces[f*4+0]*3+2] - point[2]);
342:     dot       = normal[0]*pp[0] + normal[1]*pp[1] + normal[2]*pp[2];

344:     /* Check that projected point is in face (2D location problem) */
345:     if (dot < 0.0) {
346:       found = PETSC_FALSE;
347:       break;
348:     }
349:   }
350:   if (found) *cell = c;
351:   else *cell = DMLOCATEPOINT_POINT_NOT_FOUND;
352:   DMPlexVecRestoreClosure(dm, coordSection, coordsLocal, c, NULL, &coords);
353:   return(0);
354: }

356: static PetscErrorCode PetscGridHashInitialize_Internal(PetscGridHash box, PetscInt dim, const PetscScalar point[])
357: {
358:   PetscInt d;

361:   box->dim = dim;
362:   for (d = 0; d < dim; ++d) box->lower[d] = box->upper[d] = PetscRealPart(point[d]);
363:   return(0);
364: }

366: PetscErrorCode PetscGridHashCreate(MPI_Comm comm, PetscInt dim, const PetscScalar point[], PetscGridHash *box)
367: {

371:   PetscMalloc1(1, box);
372:   PetscGridHashInitialize_Internal(*box, dim, point);
373:   return(0);
374: }

376: PetscErrorCode PetscGridHashEnlarge(PetscGridHash box, const PetscScalar point[])
377: {
378:   PetscInt d;

381:   for (d = 0; d < box->dim; ++d) {
382:     box->lower[d] = PetscMin(box->lower[d], PetscRealPart(point[d]));
383:     box->upper[d] = PetscMax(box->upper[d], PetscRealPart(point[d]));
384:   }
385:   return(0);
386: }

388: /*
389:   PetscGridHashSetGrid - Divide the grid into boxes

391:   Not collective

393:   Input Parameters:
394: + box - The grid hash object
395: . n   - The number of boxes in each dimension, or PETSC_DETERMINE
396: - h   - The box size in each dimension, only used if n[d] == PETSC_DETERMINE

398:   Level: developer

400: .seealso: PetscGridHashCreate()
401: */
402: PetscErrorCode PetscGridHashSetGrid(PetscGridHash box, const PetscInt n[], const PetscReal h[])
403: {
404:   PetscInt d;

407:   for (d = 0; d < box->dim; ++d) {
408:     box->extent[d] = box->upper[d] - box->lower[d];
409:     if (n[d] == PETSC_DETERMINE) {
410:       box->h[d] = h[d];
411:       box->n[d] = PetscCeilReal(box->extent[d]/h[d]);
412:     } else {
413:       box->n[d] = n[d];
414:       box->h[d] = box->extent[d]/n[d];
415:     }
416:   }
417:   return(0);
418: }

420: /*
421:   PetscGridHashGetEnclosingBox - Find the grid boxes containing each input point

423:   Not collective

425:   Input Parameters:
426: + box       - The grid hash object
427: . numPoints - The number of input points
428: - points    - The input point coordinates

430:   Output Parameters:
431: + dboxes    - An array of numPoints*dim integers expressing the enclosing box as (i_0, i_1, ..., i_dim)
432: - boxes     - An array of numPoints integers expressing the enclosing box as single number, or NULL

434:   Level: developer

436: .seealso: PetscGridHashCreate()
437: */
438: PetscErrorCode PetscGridHashGetEnclosingBox(PetscGridHash box, PetscInt numPoints, const PetscScalar points[], PetscInt dboxes[], PetscInt boxes[])
439: {
440:   const PetscReal *lower = box->lower;
441:   const PetscReal *upper = box->upper;
442:   const PetscReal *h     = box->h;
443:   const PetscInt  *n     = box->n;
444:   const PetscInt   dim   = box->dim;
445:   PetscInt         d, p;

448:   for (p = 0; p < numPoints; ++p) {
449:     for (d = 0; d < dim; ++d) {
450:       PetscInt dbox = PetscFloorReal((PetscRealPart(points[p*dim+d]) - lower[d])/h[d]);

452:       if (dbox == n[d] && PetscAbsReal(PetscRealPart(points[p*dim+d]) - upper[d]) < 1.0e-9) dbox = n[d]-1;
453:       if (dbox == -1   && PetscAbsReal(PetscRealPart(points[p*dim+d]) - lower[d]) < 1.0e-9) dbox = 0;
454:       if (dbox < 0 || dbox >= n[d]) SETERRQ4(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Input point %d (%g, %g, %g) is outside of our bounding box",
455:                                              p, (double) PetscRealPart(points[p*dim+0]), dim > 1 ? (double) PetscRealPart(points[p*dim+1]) : 0.0, dim > 2 ? (double) PetscRealPart(points[p*dim+2]) : 0.0);
456:       dboxes[p*dim+d] = dbox;
457:     }
458:     if (boxes) for (d = dim-2, boxes[p] = dboxes[p*dim+dim-1]; d >= 0; --d) boxes[p] = boxes[p]*n[d] + dboxes[p*dim+d];
459:   }
460:   return(0);
461: }

463: /*
464:  PetscGridHashGetEnclosingBoxQuery - Find the grid boxes containing each input point

466:  Not collective

468:   Input Parameters:
469: + box       - The grid hash object
470: . numPoints - The number of input points
471: - points    - The input point coordinates

473:   Output Parameters:
474: + dboxes    - An array of numPoints*dim integers expressing the enclosing box as (i_0, i_1, ..., i_dim)
475: . boxes     - An array of numPoints integers expressing the enclosing box as single number, or NULL
476: - found     - Flag indicating if point was located within a box

478:   Level: developer

480: .seealso: PetscGridHashGetEnclosingBox()
481: */
482: PetscErrorCode PetscGridHashGetEnclosingBoxQuery(PetscGridHash box, PetscInt numPoints, const PetscScalar points[], PetscInt dboxes[], PetscInt boxes[],PetscBool *found)
483: {
484:   const PetscReal *lower = box->lower;
485:   const PetscReal *upper = box->upper;
486:   const PetscReal *h     = box->h;
487:   const PetscInt  *n     = box->n;
488:   const PetscInt   dim   = box->dim;
489:   PetscInt         d, p;

492:   *found = PETSC_FALSE;
493:   for (p = 0; p < numPoints; ++p) {
494:     for (d = 0; d < dim; ++d) {
495:       PetscInt dbox = PetscFloorReal((PetscRealPart(points[p*dim+d]) - lower[d])/h[d]);

497:       if (dbox == n[d] && PetscAbsReal(PetscRealPart(points[p*dim+d]) - upper[d]) < 1.0e-9) dbox = n[d]-1;
498:       if (dbox < 0 || dbox >= n[d]) {
499:         return(0);
500:       }
501:       dboxes[p*dim+d] = dbox;
502:     }
503:     if (boxes) for (d = dim-2, boxes[p] = dboxes[p*dim+dim-1]; d >= 0; --d) boxes[p] = boxes[p]*n[d] + dboxes[p*dim+d];
504:   }
505:   *found = PETSC_TRUE;
506:   return(0);
507: }

509: PetscErrorCode PetscGridHashDestroy(PetscGridHash *box)
510: {

514:   if (*box) {
515:     PetscSectionDestroy(&(*box)->cellSection);
516:     ISDestroy(&(*box)->cells);
517:     DMLabelDestroy(&(*box)->cellsSparse);
518:   }
519:   PetscFree(*box);
520:   return(0);
521: }

523: PetscErrorCode DMPlexLocatePoint_Internal(DM dm, PetscInt dim, const PetscScalar point[], PetscInt cellStart, PetscInt *cell)
524: {
525:   DMPolytopeType ct;

529:   DMPlexGetCellType(dm, cellStart, &ct);
530:   switch (ct) {
531:     case DM_POLYTOPE_SEGMENT:
532:     DMPlexLocatePoint_Simplex_1D_Internal(dm, point, cellStart, cell);break;
533:     case DM_POLYTOPE_TRIANGLE:
534:     DMPlexLocatePoint_Simplex_2D_Internal(dm, point, cellStart, cell);break;
535:     case DM_POLYTOPE_QUADRILATERAL:
536:     DMPlexLocatePoint_Quad_2D_Internal(dm, point, cellStart, cell);break;
537:     case DM_POLYTOPE_TETRAHEDRON:
538:     DMPlexLocatePoint_Simplex_3D_Internal(dm, point, cellStart, cell);break;
539:     case DM_POLYTOPE_HEXAHEDRON:
540:     DMPlexLocatePoint_General_3D_Internal(dm, point, cellStart, cell);break;
541:     default: SETERRQ2(PetscObjectComm((PetscObject) dm), PETSC_ERR_ARG_OUTOFRANGE, "No point location for cell %D with type %s", cellStart, DMPolytopeTypes[ct]);
542:   }
543:   return(0);
544: }

546: /*
547:   DMPlexClosestPoint_Internal - Returns the closest point in the cell to the given point
548: */
549: PetscErrorCode DMPlexClosestPoint_Internal(DM dm, PetscInt dim, const PetscScalar point[], PetscInt cell, PetscReal cpoint[])
550: {
551:   DMPolytopeType ct;

555:   DMPlexGetCellType(dm, cell, &ct);
556:   switch (ct) {
557:     case DM_POLYTOPE_TRIANGLE:
558:     DMPlexClosestPoint_Simplex_2D_Internal(dm, point, cell, cpoint);break;
559: #if 0
560:     case DM_POLYTOPE_QUADRILATERAL:
561:     DMPlexClosestPoint_General_2D_Internal(dm, point, cell, cpoint);break;
562:     case DM_POLYTOPE_TETRAHEDRON:
563:     DMPlexClosestPoint_Simplex_3D_Internal(dm, point, cell, cpoint);break;
564:     case DM_POLYTOPE_HEXAHEDRON:
565:     DMPlexClosestPoint_General_3D_Internal(dm, point, cell, cpoint);break;
566: #endif
567:     default: SETERRQ2(PetscObjectComm((PetscObject) dm), PETSC_ERR_ARG_OUTOFRANGE, "No closest point location for cell %D with type %s", cell, DMPolytopeTypes[ct]);
568:   }
569:   return(0);
570: }

572: /*
573:   DMPlexComputeGridHash_Internal - Create a grid hash structure covering the Plex

575:   Collective on dm

577:   Input Parameter:
578: . dm - The Plex

580:   Output Parameter:
581: . localBox - The grid hash object

583:   Level: developer

585: .seealso: PetscGridHashCreate(), PetscGridHashGetEnclosingBox()
586: */
587: PetscErrorCode DMPlexComputeGridHash_Internal(DM dm, PetscGridHash *localBox)
588: {
589:   const PetscInt     debug = 0;
590:   MPI_Comm           comm;
591:   PetscGridHash      lbox;
592:   Vec                coordinates;
593:   PetscSection       coordSection;
594:   Vec                coordsLocal;
595:   const PetscScalar *coords;
596:   PetscScalar       *edgeCoords;
597:   PetscInt          *dboxes, *boxes;
598:   PetscInt           n[3] = {2, 2, 2};
599:   PetscInt           dim, N, maxConeSize, cStart, cEnd, c, eStart, eEnd, i;
600:   PetscBool          flg;
601:   PetscErrorCode     ierr;

604:   PetscObjectGetComm((PetscObject) dm, &comm);
605:   DMGetCoordinatesLocal(dm, &coordinates);
606:   DMGetCoordinateDim(dm, &dim);
607:   DMPlexGetMaxSizes(dm, &maxConeSize, NULL);
608:   DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd);
609:   VecGetLocalSize(coordinates, &N);
610:   VecGetArrayRead(coordinates, &coords);
611:   PetscGridHashCreate(comm, dim, coords, &lbox);
612:   for (i = 0; i < N; i += dim) {PetscGridHashEnlarge(lbox, &coords[i]);}
613:   VecRestoreArrayRead(coordinates, &coords);
614:   c    = dim;
615:   PetscOptionsGetIntArray(NULL, ((PetscObject) dm)->prefix, "-dm_plex_hash_box_faces", n, &c, &flg);
616:   if (flg) {for (i = c; i < dim; ++i) n[i] = n[c-1];}
617:   else     {for (i = 0; i < dim; ++i) n[i] = PetscMax(2, PetscFloorReal(PetscPowReal((PetscReal) (cEnd - cStart), 1.0/dim) * 0.8));}
618:   PetscGridHashSetGrid(lbox, n, NULL);
619: #if 0
620:   /* Could define a custom reduction to merge these */
621:   MPIU_Allreduce(lbox->lower, gbox->lower, 3, MPIU_REAL, MPI_MIN, comm);
622:   MPIU_Allreduce(lbox->upper, gbox->upper, 3, MPIU_REAL, MPI_MAX, comm);
623: #endif
624:   /* Is there a reason to snap the local bounding box to a division of the global box? */
625:   /* Should we compute all overlaps of local boxes? We could do this with a rendevouz scheme partitioning the global box */
626:   /* Create label */
627:   DMPlexGetDepthStratum(dm, 1, &eStart, &eEnd);
628:   DMLabelCreate(PETSC_COMM_SELF, "cells", &lbox->cellsSparse);
629:   DMLabelCreateIndex(lbox->cellsSparse, cStart, cEnd);
630:   /* Compute boxes which overlap each cell: https://stackoverflow.com/questions/13790208/triangle-square-intersection-test-in-2d */
631:   DMGetCoordinatesLocal(dm, &coordsLocal);
632:   DMGetCoordinateSection(dm, &coordSection);
633:   PetscCalloc3(16 * dim, &dboxes, 16, &boxes, PetscPowInt(maxConeSize, dim) * dim, &edgeCoords);
634:   for (c = cStart; c < cEnd; ++c) {
635:     const PetscReal *h       = lbox->h;
636:     PetscScalar     *ccoords = NULL;
637:     PetscInt         csize   = 0;
638:     PetscInt        *closure = NULL;
639:     PetscInt         Ncl, cl, Ne = 0;
640:     PetscScalar      point[3];
641:     PetscInt         dlim[6], d, e, i, j, k;

643:     /* Get all edges in cell */
644:     DMPlexGetTransitiveClosure(dm, c, PETSC_TRUE, &Ncl, &closure);
645:     for (cl = 0; cl < Ncl*2; ++cl) {
646:       if ((closure[cl] >= eStart) && (closure[cl] < eEnd)) {
647:         PetscScalar *ecoords = &edgeCoords[Ne*dim*2];
648:         PetscInt     ecsize  = dim*2;

650:         DMPlexVecGetClosure(dm, coordSection, coordsLocal, closure[cl], &ecsize, &ecoords);
651:         if (ecsize != dim*2) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Got %D coords for edge, instead of %D", ecsize, dim*2);
652:         ++Ne;
653:       }
654:     }
655:     DMPlexRestoreTransitiveClosure(dm, c, PETSC_TRUE, &Ncl, &closure);
656:     /* Find boxes enclosing each vertex */
657:     DMPlexVecGetClosure(dm, coordSection, coordsLocal, c, &csize, &ccoords);
658:     PetscGridHashGetEnclosingBox(lbox, csize/dim, ccoords, dboxes, boxes);
659:     /* Mark cells containing the vertices */
660:     for (e = 0; e < csize/dim; ++e) {
661:       if (debug) {PetscPrintf(PETSC_COMM_SELF, "Cell %D has vertex in box %D (%D, %D, %D)\n", c, boxes[e], dboxes[e*dim+0], dim > 1 ? dboxes[e*dim+1] : -1, dim > 2 ? dboxes[e*dim+2] : -1);}
662:       DMLabelSetValue(lbox->cellsSparse, c, boxes[e]);
663:     }
664:     /* Get grid of boxes containing these */
665:     for (d = 0;   d < dim; ++d) {dlim[d*2+0] = dlim[d*2+1] = dboxes[d];}
666:     for (d = dim; d < 3;   ++d) {dlim[d*2+0] = dlim[d*2+1] = 0;}
667:     for (e = 1; e < dim+1; ++e) {
668:       for (d = 0; d < dim; ++d) {
669:         dlim[d*2+0] = PetscMin(dlim[d*2+0], dboxes[e*dim+d]);
670:         dlim[d*2+1] = PetscMax(dlim[d*2+1], dboxes[e*dim+d]);
671:       }
672:     }
673:     /* Check for intersection of box with cell */
674:     for (k = dlim[2*2+0], point[2] = lbox->lower[2] + k*h[2]; k <= dlim[2*2+1]; ++k, point[2] += h[2]) {
675:       for (j = dlim[1*2+0], point[1] = lbox->lower[1] + j*h[1]; j <= dlim[1*2+1]; ++j, point[1] += h[1]) {
676:         for (i = dlim[0*2+0], point[0] = lbox->lower[0] + i*h[0]; i <= dlim[0*2+1]; ++i, point[0] += h[0]) {
677:           const PetscInt box = (k*lbox->n[1] + j)*lbox->n[0] + i;
678:           PetscScalar    cpoint[3];
679:           PetscInt       cell, edge, ii, jj, kk;

681:           if (debug) {PetscPrintf(PETSC_COMM_SELF, "Box %D: (%.2g, %.2g, %.2g) -- (%.2g, %.2g, %.2g)\n", box, point[0], point[1], point[2], point[0] + h[0], point[1] + h[1], point[2] + h[2]);}
682:           /* Check whether cell contains any vertex of this subbox TODO vectorize this */
683:           for (kk = 0, cpoint[2] = point[2]; kk < (dim > 2 ? 2 : 1); ++kk, cpoint[2] += h[2]) {
684:             for (jj = 0, cpoint[1] = point[1]; jj < (dim > 1 ? 2 : 1); ++jj, cpoint[1] += h[1]) {
685:               for (ii = 0, cpoint[0] = point[0]; ii < 2; ++ii, cpoint[0] += h[0]) {

687:                 DMPlexLocatePoint_Internal(dm, dim, cpoint, c, &cell);
688:                 if (cell >= 0) {
689:                   if (debug) {PetscPrintf(PETSC_COMM_SELF, "  Cell %D contains vertex (%.2g, %.2g, %.2g) of box %D\n", c, cpoint[0], cpoint[1], cpoint[2], box);}
690:                   DMLabelSetValue(lbox->cellsSparse, c, box);
691:                   jj = kk = 2;
692:                   break;
693:                 }
694:               }
695:             }
696:           }
697:           /* Check whether cell edge intersects any face of these subboxes TODO vectorize this */
698:           for (edge = 0; edge < Ne; ++edge) {
699:             PetscReal segA[6] = {0.,0.,0.,0.,0.,0.};
700:             PetscReal segB[6] = {0.,0.,0.,0.,0.,0.};
701:             PetscReal segC[6] = {0.,0.,0.,0.,0.,0.};

703:             if (PetscUnlikely(dim > 3)) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Unexpected dim %d > 3",dim);
704:             for (d = 0; d < dim*2; ++d) segA[d] = PetscRealPart(edgeCoords[edge*dim*2+d]);
705:             /* 1D: (x) -- (x+h)               0 -- 1
706:                2D: (x,   y)   -- (x,   y+h)   (0, 0) -- (0, 1)
707:                    (x+h, y)   -- (x+h, y+h)   (1, 0) -- (1, 1)
708:                    (x,   y)   -- (x+h, y)     (0, 0) -- (1, 0)
709:                    (x,   y+h) -- (x+h, y+h)   (0, 1) -- (1, 1)
710:                3D: (x,   y,   z)   -- (x,   y+h, z),   (x,   y,   z)   -- (x,   y,   z+h) (0, 0, 0) -- (0, 1, 0), (0, 0, 0) -- (0, 0, 1)
711:                    (x+h, y,   z)   -- (x+h, y+h, z),   (x+h, y,   z)   -- (x+h, y,   z+h) (1, 0, 0) -- (1, 1, 0), (1, 0, 0) -- (1, 0, 1)
712:                    (x,   y,   z)   -- (x+h, y,   z),   (x,   y,   z)   -- (x,   y,   z+h) (0, 0, 0) -- (1, 0, 0), (0, 0, 0) -- (0, 0, 1)
713:                    (x,   y+h, z)   -- (x+h, y+h, z),   (x,   y+h, z)   -- (x,   y+h, z+h) (0, 1, 0) -- (1, 1, 0), (0, 1, 0) -- (0, 1, 1)
714:                    (x,   y,   z)   -- (x+h, y,   z),   (x,   y,   z)   -- (x,   y+h, z)   (0, 0, 0) -- (1, 0, 0), (0, 0, 0) -- (0, 1, 0)
715:                    (x,   y,   z+h) -- (x+h, y,   z+h), (x,   y,   z+h) -- (x,   y+h, z+h) (0, 0, 1) -- (1, 0, 1), (0, 0, 1) -- (0, 1, 1)
716:              */
717:             /* Loop over faces with normal in direction d */
718:             for (d = 0; d < dim; ++d) {
719:               PetscBool intersects = PETSC_FALSE;
720:               PetscInt  e = (d+1)%dim;
721:               PetscInt  f = (d+2)%dim;

723:               /* There are two faces in each dimension */
724:               for (ii = 0; ii < 2; ++ii) {
725:                 segB[d]     = PetscRealPart(point[d] + ii*h[d]);
726:                 segB[dim+d] = PetscRealPart(point[d] + ii*h[d]);
727:                 segC[d]     = PetscRealPart(point[d] + ii*h[d]);
728:                 segC[dim+d] = PetscRealPart(point[d] + ii*h[d]);
729:                 if (dim > 1) {
730:                   segB[e]     = PetscRealPart(point[e] + 0*h[e]);
731:                   segB[dim+e] = PetscRealPart(point[e] + 1*h[e]);
732:                   segC[e]     = PetscRealPart(point[e] + 0*h[e]);
733:                   segC[dim+e] = PetscRealPart(point[e] + 0*h[e]);
734:                 }
735:                 if (dim > 2) {
736:                   segB[f]     = PetscRealPart(point[f] + 0*h[f]);
737:                   segB[dim+f] = PetscRealPart(point[f] + 0*h[f]);
738:                   segC[f]     = PetscRealPart(point[f] + 0*h[f]);
739:                   segC[dim+f] = PetscRealPart(point[f] + 1*h[f]);
740:                 }
741:                 if (dim == 2) {
742:                   DMPlexGetLineIntersection_2D_Internal(segA, segB, NULL, &intersects);
743:                 } else if (dim == 3) {
744:                   DMPlexGetLinePlaneIntersection_3D_Internal(segA, segB, segC, NULL, &intersects);
745:                 }
746:                 if (intersects) {
747:                   if (debug) {PetscPrintf(PETSC_COMM_SELF, "  Cell %D edge %D (%.2g, %.2g, %.2g)--(%.2g, %.2g, %.2g) intersects box %D, face (%.2g, %.2g, %.2g)--(%.2g, %.2g, %.2g) (%.2g, %.2g, %.2g)--(%.2g, %.2g, %.2g)\n", c, edge, segA[0], segA[1], segA[2], segA[3], segA[4], segA[5], box, segB[0], segB[1], segB[2], segB[3], segB[4], segB[5], segC[0], segC[1], segC[2], segC[3], segC[4], segC[5]);}
748:                   DMLabelSetValue(lbox->cellsSparse, c, box); edge = Ne; break;
749:                 }
750:               }
751:             }
752:           }
753:         }
754:       }
755:     }
756:     DMPlexVecRestoreClosure(dm, coordSection, coordsLocal, c, NULL, &ccoords);
757:   }
758:   PetscFree3(dboxes, boxes, edgeCoords);
759:   if (debug) {DMLabelView(lbox->cellsSparse, PETSC_VIEWER_STDOUT_SELF);}
760:   DMLabelConvertToSection(lbox->cellsSparse, &lbox->cellSection, &lbox->cells);
761:   DMLabelDestroy(&lbox->cellsSparse);
762:   *localBox = lbox;
763:   return(0);
764: }

766: PetscErrorCode DMLocatePoints_Plex(DM dm, Vec v, DMPointLocationType ltype, PetscSF cellSF)
767: {
768:   const PetscInt  debug = 0;
769:   DM_Plex        *mesh = (DM_Plex *) dm->data;
770:   PetscBool       hash = mesh->useHashLocation, reuse = PETSC_FALSE;
771:   PetscInt        bs, numPoints, p, numFound, *found = NULL;
772:   PetscInt        dim, cStart, cEnd, numCells, c, d;
773:   const PetscInt *boxCells;
774:   PetscSFNode    *cells;
775:   PetscScalar    *a;
776:   PetscMPIInt     result;
777:   PetscLogDouble  t0,t1;
778:   PetscReal       gmin[3],gmax[3];
779:   PetscInt        terminating_query_type[] = { 0, 0, 0 };
780:   PetscErrorCode  ierr;

783:   PetscLogEventBegin(DMPLEX_LocatePoints,0,0,0,0);
784:   PetscTime(&t0);
785:   if (ltype == DM_POINTLOCATION_NEAREST && !hash) SETERRQ(PetscObjectComm((PetscObject) dm), PETSC_ERR_SUP, "Nearest point location only supported with grid hashing. Use -dm_plex_hash_location to enable it.");
786:   DMGetCoordinateDim(dm, &dim);
787:   VecGetBlockSize(v, &bs);
788:   MPI_Comm_compare(PetscObjectComm((PetscObject)cellSF),PETSC_COMM_SELF,&result);
789:   if (result != MPI_IDENT && result != MPI_CONGRUENT) SETERRQ(PetscObjectComm((PetscObject)cellSF),PETSC_ERR_SUP, "Trying parallel point location: only local point location supported");
790:   if (bs != dim) SETERRQ2(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Block size for point vector %D must be the mesh coordinate dimension %D", bs, dim);
791:   DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd);
792:   VecGetLocalSize(v, &numPoints);
793:   VecGetArray(v, &a);
794:   numPoints /= bs;
795:   {
796:     const PetscSFNode *sf_cells;

798:     PetscSFGetGraph(cellSF,NULL,NULL,NULL,&sf_cells);
799:     if (sf_cells) {
800:       PetscInfo(dm,"[DMLocatePoints_Plex] Re-using existing StarForest node list\n");
801:       cells = (PetscSFNode*)sf_cells;
802:       reuse = PETSC_TRUE;
803:     } else {
804:       PetscInfo(dm,"[DMLocatePoints_Plex] Creating and initializing new StarForest node list\n");
805:       PetscMalloc1(numPoints, &cells);
806:       /* initialize cells if created */
807:       for (p=0; p<numPoints; p++) {
808:         cells[p].rank  = 0;
809:         cells[p].index = DMLOCATEPOINT_POINT_NOT_FOUND;
810:       }
811:     }
812:   }
813:   /* define domain bounding box */
814:   {
815:     Vec coorglobal;

817:     DMGetCoordinates(dm,&coorglobal);
818:     VecStrideMaxAll(coorglobal,NULL,gmax);
819:     VecStrideMinAll(coorglobal,NULL,gmin);
820:   }
821:   if (hash) {
822:     if (!mesh->lbox) {PetscInfo(dm, "Initializing grid hashing");DMPlexComputeGridHash_Internal(dm, &mesh->lbox);}
823:     /* Designate the local box for each point */
824:     /* Send points to correct process */
825:     /* Search cells that lie in each subbox */
826:     /*   Should we bin points before doing search? */
827:     ISGetIndices(mesh->lbox->cells, &boxCells);
828:   }
829:   for (p = 0, numFound = 0; p < numPoints; ++p) {
830:     const PetscScalar *point = &a[p*bs];
831:     PetscInt           dbin[3] = {-1,-1,-1}, bin, cell = -1, cellOffset;
832:     PetscBool          point_outside_domain = PETSC_FALSE;

834:     /* check bounding box of domain */
835:     for (d=0; d<dim; d++) {
836:       if (PetscRealPart(point[d]) < gmin[d]) { point_outside_domain = PETSC_TRUE; break; }
837:       if (PetscRealPart(point[d]) > gmax[d]) { point_outside_domain = PETSC_TRUE; break; }
838:     }
839:     if (point_outside_domain) {
840:       cells[p].rank = 0;
841:       cells[p].index = DMLOCATEPOINT_POINT_NOT_FOUND;
842:       terminating_query_type[0]++;
843:       continue;
844:     }

846:     /* check initial values in cells[].index - abort early if found */
847:     if (cells[p].index != DMLOCATEPOINT_POINT_NOT_FOUND) {
848:       c = cells[p].index;
849:       cells[p].index = DMLOCATEPOINT_POINT_NOT_FOUND;
850:       DMPlexLocatePoint_Internal(dm, dim, point, c, &cell);
851:       if (cell >= 0) {
852:         cells[p].rank = 0;
853:         cells[p].index = cell;
854:         numFound++;
855:       }
856:     }
857:     if (cells[p].index != DMLOCATEPOINT_POINT_NOT_FOUND) {
858:       terminating_query_type[1]++;
859:       continue;
860:     }

862:     if (hash) {
863:       PetscBool found_box;

865:       if (debug) {PetscPrintf(PETSC_COMM_SELF, "Checking point %D (%.2g, %.2g, %.2g)\n", p, point[0], point[1], point[2]);}
866:       /* allow for case that point is outside box - abort early */
867:       PetscGridHashGetEnclosingBoxQuery(mesh->lbox, 1, point, dbin, &bin,&found_box);
868:       if (found_box) {
869:         if (debug) {PetscPrintf(PETSC_COMM_SELF, "  Found point in box %D (%D, %D, %D)\n", bin, dbin[0], dbin[1], dbin[2]);}
870:         /* TODO Lay an interface over this so we can switch between Section (dense) and Label (sparse) */
871:         PetscSectionGetDof(mesh->lbox->cellSection, bin, &numCells);
872:         PetscSectionGetOffset(mesh->lbox->cellSection, bin, &cellOffset);
873:         for (c = cellOffset; c < cellOffset + numCells; ++c) {
874:           if (debug) {PetscPrintf(PETSC_COMM_SELF, "    Checking for point in cell %D\n", boxCells[c]);}
875:           DMPlexLocatePoint_Internal(dm, dim, point, boxCells[c], &cell);
876:           if (cell >= 0) {
877:             if (debug) {PetscPrintf(PETSC_COMM_SELF, "      FOUND in cell %D\n", cell);}
878:             cells[p].rank = 0;
879:             cells[p].index = cell;
880:             numFound++;
881:             terminating_query_type[2]++;
882:             break;
883:           }
884:         }
885:       }
886:     } else {
887:       for (c = cStart; c < cEnd; ++c) {
888:         DMPlexLocatePoint_Internal(dm, dim, point, c, &cell);
889:         if (cell >= 0) {
890:           cells[p].rank = 0;
891:           cells[p].index = cell;
892:           numFound++;
893:           terminating_query_type[2]++;
894:           break;
895:         }
896:       }
897:     }
898:   }
899:   if (hash) {ISRestoreIndices(mesh->lbox->cells, &boxCells);}
900:   if (ltype == DM_POINTLOCATION_NEAREST && hash && numFound < numPoints) {
901:     for (p = 0; p < numPoints; p++) {
902:       const PetscScalar *point = &a[p*bs];
903:       PetscReal          cpoint[3], diff[3], dist, distMax = PETSC_MAX_REAL;
904:       PetscInt           dbin[3] = {-1,-1,-1}, bin, cellOffset, d;

906:       if (cells[p].index < 0) {
907:         ++numFound;
908:         PetscGridHashGetEnclosingBox(mesh->lbox, 1, point, dbin, &bin);
909:         PetscSectionGetDof(mesh->lbox->cellSection, bin, &numCells);
910:         PetscSectionGetOffset(mesh->lbox->cellSection, bin, &cellOffset);
911:         for (c = cellOffset; c < cellOffset + numCells; ++c) {
912:           DMPlexClosestPoint_Internal(dm, dim, point, boxCells[c], cpoint);
913:           for (d = 0; d < dim; ++d) diff[d] = cpoint[d] - PetscRealPart(point[d]);
914:           dist = DMPlex_NormD_Internal(dim, diff);
915:           if (dist < distMax) {
916:             for (d = 0; d < dim; ++d) a[p*bs+d] = cpoint[d];
917:             cells[p].rank  = 0;
918:             cells[p].index = boxCells[c];
919:             distMax = dist;
920:             break;
921:           }
922:         }
923:       }
924:     }
925:   }
926:   /* This code is only be relevant when interfaced to parallel point location */
927:   /* Check for highest numbered proc that claims a point (do we care?) */
928:   if (ltype == DM_POINTLOCATION_REMOVE && numFound < numPoints) {
929:     PetscMalloc1(numFound,&found);
930:     for (p = 0, numFound = 0; p < numPoints; p++) {
931:       if (cells[p].rank >= 0 && cells[p].index >= 0) {
932:         if (numFound < p) {
933:           cells[numFound] = cells[p];
934:         }
935:         found[numFound++] = p;
936:       }
937:     }
938:   }
939:   VecRestoreArray(v, &a);
940:   if (!reuse) {
941:     PetscSFSetGraph(cellSF, cEnd - cStart, numFound, found, PETSC_OWN_POINTER, cells, PETSC_OWN_POINTER);
942:   }
943:   PetscTime(&t1);
944:   if (hash) {
945:     PetscInfo3(dm,"[DMLocatePoints_Plex] terminating_query_type : %D [outside domain] : %D [inside initial cell] : %D [hash]\n",terminating_query_type[0],terminating_query_type[1],terminating_query_type[2]);
946:   } else {
947:     PetscInfo3(dm,"[DMLocatePoints_Plex] terminating_query_type : %D [outside domain] : %D [inside initial cell] : %D [brute-force]\n",terminating_query_type[0],terminating_query_type[1],terminating_query_type[2]);
948:   }
949:   PetscInfo3(dm,"[DMLocatePoints_Plex] npoints %D : time(rank0) %1.2e (sec): points/sec %1.4e\n",numPoints,t1-t0,(double)((double)numPoints/(t1-t0)));
950:   PetscLogEventEnd(DMPLEX_LocatePoints,0,0,0,0);
951:   return(0);
952: }

954: /*@C
955:   DMPlexComputeProjection2Dto1D - Rewrite coordinates to be the 1D projection of the 2D coordinates

957:   Not collective

959:   Input/Output Parameter:
960: . coords - The coordinates of a segment, on output the new y-coordinate, and 0 for x

962:   Output Parameter:
963: . R - The rotation which accomplishes the projection

965:   Level: developer

967: .seealso: DMPlexComputeProjection3Dto1D(), DMPlexComputeProjection3Dto2D()
968: @*/
969: PetscErrorCode DMPlexComputeProjection2Dto1D(PetscScalar coords[], PetscReal R[])
970: {
971:   const PetscReal x = PetscRealPart(coords[2] - coords[0]);
972:   const PetscReal y = PetscRealPart(coords[3] - coords[1]);
973:   const PetscReal r = PetscSqrtReal(x*x + y*y), c = x/r, s = y/r;

976:   R[0] = c; R[1] = -s;
977:   R[2] = s; R[3] =  c;
978:   coords[0] = 0.0;
979:   coords[1] = r;
980:   return(0);
981: }

983: /*@C
984:   DMPlexComputeProjection3Dto1D - Rewrite coordinates to be the 1D projection of the 3D coordinates

986:   Not collective

988:   Input/Output Parameter:
989: . coords - The coordinates of a segment; on output, the new y-coordinate, and 0 for x and z

991:   Output Parameter:
992: . R - The rotation which accomplishes the projection

994:   Note: This uses the basis completion described by Frisvad in http://www.imm.dtu.dk/~jerf/papers/abstracts/onb.html, DOI:10.1080/2165347X.2012.689606

996:   Level: developer

998: .seealso: DMPlexComputeProjection2Dto1D(), DMPlexComputeProjection3Dto2D()
999: @*/
1000: PetscErrorCode DMPlexComputeProjection3Dto1D(PetscScalar coords[], PetscReal R[])
1001: {
1002:   PetscReal      x    = PetscRealPart(coords[3] - coords[0]);
1003:   PetscReal      y    = PetscRealPart(coords[4] - coords[1]);
1004:   PetscReal      z    = PetscRealPart(coords[5] - coords[2]);
1005:   PetscReal      r    = PetscSqrtReal(x*x + y*y + z*z);
1006:   PetscReal      rinv = 1. / r;

1009:   x *= rinv; y *= rinv; z *= rinv;
1010:   if (x > 0.) {
1011:     PetscReal inv1pX   = 1./ (1. + x);

1013:     R[0] = x; R[1] = -y;              R[2] = -z;
1014:     R[3] = y; R[4] = 1. - y*y*inv1pX; R[5] =     -y*z*inv1pX;
1015:     R[6] = z; R[7] =     -y*z*inv1pX; R[8] = 1. - z*z*inv1pX;
1016:   }
1017:   else {
1018:     PetscReal inv1mX   = 1./ (1. - x);

1020:     R[0] = x; R[1] = z;               R[2] = y;
1021:     R[3] = y; R[4] =     -y*z*inv1mX; R[5] = 1. - y*y*inv1mX;
1022:     R[6] = z; R[7] = 1. - z*z*inv1mX; R[8] =     -y*z*inv1mX;
1023:   }
1024:   coords[0] = 0.0;
1025:   coords[1] = r;
1026:   return(0);
1027: }

1029: /*@
1030:   DMPlexComputeProjection3Dto2D - Rewrite coordinates of 3 or more coplanar 3D points to a common 2D basis for the
1031:     plane.  The normal is defined by positive orientation of the first 3 points.

1033:   Not collective

1035:   Input Parameter:
1036: . coordSize - Length of coordinate array (3x number of points); must be at least 9 (3 points)

1038:   Input/Output Parameter:
1039: . coords - The interlaced coordinates of each coplanar 3D point; on output the first
1040:            2*coordSize/3 entries contain interlaced 2D points, with the rest undefined

1042:   Output Parameter:
1043: . R - 3x3 row-major rotation matrix whose columns are the tangent basis [t1, t2, n].  Multiplying by R^T transforms from original frame to tangent frame.

1045:   Level: developer

1047: .seealso: DMPlexComputeProjection2Dto1D(), DMPlexComputeProjection3Dto1D()
1048: @*/
1049: PetscErrorCode DMPlexComputeProjection3Dto2D(PetscInt coordSize, PetscScalar coords[], PetscReal R[])
1050: {
1051:   PetscReal x1[3], x2[3], n[3], c[3], norm;
1052:   const PetscInt dim = 3;
1053:   PetscInt       d, p;

1056:   /* 0) Calculate normal vector */
1057:   for (d = 0; d < dim; ++d) {
1058:     x1[d] = PetscRealPart(coords[1*dim+d] - coords[0*dim+d]);
1059:     x2[d] = PetscRealPart(coords[2*dim+d] - coords[0*dim+d]);
1060:   }
1061:   // n = x1 \otimes x2
1062:   n[0] = x1[1]*x2[2] - x1[2]*x2[1];
1063:   n[1] = x1[2]*x2[0] - x1[0]*x2[2];
1064:   n[2] = x1[0]*x2[1] - x1[1]*x2[0];
1065:   norm = PetscSqrtReal(n[0]*n[0] + n[1]*n[1] + n[2]*n[2]);
1066:   for (d = 0; d < dim; d++) n[d] /= norm;
1067:   norm = PetscSqrtReal(x1[0] * x1[0] + x1[1] * x1[1] + x1[2] * x1[2]);
1068:   for (d = 0; d < dim; d++) x1[d] /= norm;
1069:   // x2 = n \otimes x1
1070:   x2[0] = n[1] * x1[2] - n[2] * x1[1];
1071:   x2[1] = n[2] * x1[0] - n[0] * x1[2];
1072:   x2[2] = n[0] * x1[1] - n[1] * x1[0];
1073:   for (d=0; d<dim; d++) {
1074:     R[d * dim + 0] = x1[d];
1075:     R[d * dim + 1] = x2[d];
1076:     R[d * dim + 2] = n[d];
1077:     c[d] = PetscRealPart(coords[0*dim + d]);
1078:   }
1079:   for (p=0; p<coordSize/dim; p++) {
1080:     PetscReal y[3];
1081:     for (d=0; d<dim; d++) y[d] = PetscRealPart(coords[p*dim + d]) - c[d];
1082:     for (d=0; d<2; d++) coords[p*2+d] = R[0*dim + d] * y[0] + R[1*dim + d] * y[1] + R[2*dim + d] * y[2];
1083:   }
1084:   return(0);
1085: }

1087: PETSC_UNUSED
1088: PETSC_STATIC_INLINE void Volume_Triangle_Internal(PetscReal *vol, PetscReal coords[])
1089: {
1090:   /* Signed volume is 1/2 the determinant

1092:    |  1  1  1 |
1093:    | x0 x1 x2 |
1094:    | y0 y1 y2 |

1096:      but if x0,y0 is the origin, we have

1098:    | x1 x2 |
1099:    | y1 y2 |
1100:   */
1101:   const PetscReal x1 = coords[2] - coords[0], y1 = coords[3] - coords[1];
1102:   const PetscReal x2 = coords[4] - coords[0], y2 = coords[5] - coords[1];
1103:   PetscReal       M[4], detM;
1104:   M[0] = x1; M[1] = x2;
1105:   M[2] = y1; M[3] = y2;
1106:   DMPlex_Det2D_Internal(&detM, M);
1107:   *vol = 0.5*detM;
1108:   (void)PetscLogFlops(5.0);
1109: }

1111: PETSC_STATIC_INLINE void Volume_Triangle_Origin_Internal(PetscReal *vol, PetscReal coords[])
1112: {
1113:   DMPlex_Det2D_Internal(vol, coords);
1114:   *vol *= 0.5;
1115: }

1117: PETSC_UNUSED
1118: PETSC_STATIC_INLINE void Volume_Tetrahedron_Internal(PetscReal *vol, PetscReal coords[])
1119: {
1120:   /* Signed volume is 1/6th of the determinant

1122:    |  1  1  1  1 |
1123:    | x0 x1 x2 x3 |
1124:    | y0 y1 y2 y3 |
1125:    | z0 z1 z2 z3 |

1127:      but if x0,y0,z0 is the origin, we have

1129:    | x1 x2 x3 |
1130:    | y1 y2 y3 |
1131:    | z1 z2 z3 |
1132:   */
1133:   const PetscReal x1 = coords[3] - coords[0], y1 = coords[4]  - coords[1], z1 = coords[5]  - coords[2];
1134:   const PetscReal x2 = coords[6] - coords[0], y2 = coords[7]  - coords[1], z2 = coords[8]  - coords[2];
1135:   const PetscReal x3 = coords[9] - coords[0], y3 = coords[10] - coords[1], z3 = coords[11] - coords[2];
1136:   const PetscReal onesixth = ((PetscReal)1./(PetscReal)6.);
1137:   PetscReal       M[9], detM;
1138:   M[0] = x1; M[1] = x2; M[2] = x3;
1139:   M[3] = y1; M[4] = y2; M[5] = y3;
1140:   M[6] = z1; M[7] = z2; M[8] = z3;
1141:   DMPlex_Det3D_Internal(&detM, M);
1142:   *vol = -onesixth*detM;
1143:   (void)PetscLogFlops(10.0);
1144: }

1146: PETSC_STATIC_INLINE void Volume_Tetrahedron_Origin_Internal(PetscReal *vol, PetscReal coords[])
1147: {
1148:   const PetscReal onesixth = ((PetscReal)1./(PetscReal)6.);
1149:   DMPlex_Det3D_Internal(vol, coords);
1150:   *vol *= -onesixth;
1151: }

1153: static PetscErrorCode DMPlexComputePointGeometry_Internal(DM dm, PetscInt e, PetscReal v0[], PetscReal J[], PetscReal invJ[], PetscReal *detJ)
1154: {
1155:   PetscSection   coordSection;
1156:   Vec            coordinates;
1157:   const PetscScalar *coords;
1158:   PetscInt       dim, d, off;

1162:   DMGetCoordinatesLocal(dm, &coordinates);
1163:   DMGetCoordinateSection(dm, &coordSection);
1164:   PetscSectionGetDof(coordSection,e,&dim);
1165:   if (!dim) return(0);
1166:   PetscSectionGetOffset(coordSection,e,&off);
1167:   VecGetArrayRead(coordinates,&coords);
1168:   if (v0) {for (d = 0; d < dim; d++) v0[d] = PetscRealPart(coords[off + d]);}
1169:   VecRestoreArrayRead(coordinates,&coords);
1170:   *detJ = 1.;
1171:   if (J) {
1172:     for (d = 0; d < dim * dim; d++) J[d] = 0.;
1173:     for (d = 0; d < dim; d++) J[d * dim + d] = 1.;
1174:     if (invJ) {
1175:       for (d = 0; d < dim * dim; d++) invJ[d] = 0.;
1176:       for (d = 0; d < dim; d++) invJ[d * dim + d] = 1.;
1177:     }
1178:   }
1179:   return(0);
1180: }

1182: static PetscErrorCode DMPlexComputeLineGeometry_Internal(DM dm, PetscInt e, PetscReal v0[], PetscReal J[], PetscReal invJ[], PetscReal *detJ)
1183: {
1184:   PetscSection   coordSection;
1185:   Vec            coordinates;
1186:   PetscScalar   *coords = NULL;
1187:   PetscInt       numCoords, d, pStart, pEnd, numSelfCoords = 0;

1191:   DMGetCoordinatesLocal(dm, &coordinates);
1192:   DMGetCoordinateSection(dm, &coordSection);
1193:   PetscSectionGetChart(coordSection,&pStart,&pEnd);
1194:   if (e >= pStart && e < pEnd) {PetscSectionGetDof(coordSection,e,&numSelfCoords);}
1195:   DMPlexVecGetClosure(dm, coordSection, coordinates, e, &numCoords, &coords);
1196:   numCoords = numSelfCoords ? numSelfCoords : numCoords;
1197:   if (invJ && !J) SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "In order to compute invJ, J must not be NULL");
1198:   *detJ = 0.0;
1199:   if (numCoords == 6) {
1200:     const PetscInt dim = 3;
1201:     PetscReal      R[9], J0;

1203:     if (v0)   {for (d = 0; d < dim; d++) v0[d] = PetscRealPart(coords[d]);}
1204:     DMPlexComputeProjection3Dto1D(coords, R);
1205:     if (J)    {
1206:       J0   = 0.5*PetscRealPart(coords[1]);
1207:       J[0] = R[0]*J0; J[1] = R[1]; J[2] = R[2];
1208:       J[3] = R[3]*J0; J[4] = R[4]; J[5] = R[5];
1209:       J[6] = R[6]*J0; J[7] = R[7]; J[8] = R[8];
1210:       DMPlex_Det3D_Internal(detJ, J);
1211:       if (invJ) {DMPlex_Invert2D_Internal(invJ, J, *detJ);}
1212:     }
1213:   } else if (numCoords == 4) {
1214:     const PetscInt dim = 2;
1215:     PetscReal      R[4], J0;

1217:     if (v0)   {for (d = 0; d < dim; d++) v0[d] = PetscRealPart(coords[d]);}
1218:     DMPlexComputeProjection2Dto1D(coords, R);
1219:     if (J)    {
1220:       J0   = 0.5*PetscRealPart(coords[1]);
1221:       J[0] = R[0]*J0; J[1] = R[1];
1222:       J[2] = R[2]*J0; J[3] = R[3];
1223:       DMPlex_Det2D_Internal(detJ, J);
1224:       if (invJ) {DMPlex_Invert2D_Internal(invJ, J, *detJ);}
1225:     }
1226:   } else if (numCoords == 2) {
1227:     const PetscInt dim = 1;

1229:     if (v0)   {for (d = 0; d < dim; d++) v0[d] = PetscRealPart(coords[d]);}
1230:     if (J)    {
1231:       J[0]  = 0.5*(PetscRealPart(coords[1]) - PetscRealPart(coords[0]));
1232:       *detJ = J[0];
1233:       PetscLogFlops(2.0);
1234:       if (invJ) {invJ[0] = 1.0/J[0]; PetscLogFlops(1.0);}
1235:     }
1236:   } else SETERRQ1(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "The number of coordinates for this segment is %D != 2", numCoords);
1237:   DMPlexVecRestoreClosure(dm, coordSection, coordinates, e, &numCoords, &coords);
1238:   return(0);
1239: }

1241: static PetscErrorCode DMPlexComputeTriangleGeometry_Internal(DM dm, PetscInt e, PetscReal v0[], PetscReal J[], PetscReal invJ[], PetscReal *detJ)
1242: {
1243:   PetscSection   coordSection;
1244:   Vec            coordinates;
1245:   PetscScalar   *coords = NULL;
1246:   PetscInt       numCoords, numSelfCoords = 0, d, f, g, pStart, pEnd;

1250:   DMGetCoordinatesLocal(dm, &coordinates);
1251:   DMGetCoordinateSection(dm, &coordSection);
1252:   PetscSectionGetChart(coordSection,&pStart,&pEnd);
1253:   if (e >= pStart && e < pEnd) {PetscSectionGetDof(coordSection,e,&numSelfCoords);}
1254:   DMPlexVecGetClosure(dm, coordSection, coordinates, e, &numCoords, &coords);
1255:   numCoords = numSelfCoords ? numSelfCoords : numCoords;
1256:   *detJ = 0.0;
1257:   if (numCoords == 9) {
1258:     const PetscInt dim = 3;
1259:     PetscReal      R[9], J0[9] = {1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0};

1261:     if (v0)   {for (d = 0; d < dim; d++) v0[d] = PetscRealPart(coords[d]);}
1262:     DMPlexComputeProjection3Dto2D(numCoords, coords, R);
1263:     if (J)    {
1264:       const PetscInt pdim = 2;

1266:       for (d = 0; d < pdim; d++) {
1267:         for (f = 0; f < pdim; f++) {
1268:           J0[d*dim+f] = 0.5*(PetscRealPart(coords[(f+1)*pdim+d]) - PetscRealPart(coords[0*pdim+d]));
1269:         }
1270:       }
1271:       PetscLogFlops(8.0);
1272:       DMPlex_Det3D_Internal(detJ, J0);
1273:       for (d = 0; d < dim; d++) {
1274:         for (f = 0; f < dim; f++) {
1275:           J[d*dim+f] = 0.0;
1276:           for (g = 0; g < dim; g++) {
1277:             J[d*dim+f] += R[d*dim+g]*J0[g*dim+f];
1278:           }
1279:         }
1280:       }
1281:       PetscLogFlops(18.0);
1282:     }
1283:     if (invJ) {DMPlex_Invert3D_Internal(invJ, J, *detJ);}
1284:   } else if (numCoords == 6) {
1285:     const PetscInt dim = 2;

1287:     if (v0)   {for (d = 0; d < dim; d++) v0[d] = PetscRealPart(coords[d]);}
1288:     if (J)    {
1289:       for (d = 0; d < dim; d++) {
1290:         for (f = 0; f < dim; f++) {
1291:           J[d*dim+f] = 0.5*(PetscRealPart(coords[(f+1)*dim+d]) - PetscRealPart(coords[0*dim+d]));
1292:         }
1293:       }
1294:       PetscLogFlops(8.0);
1295:       DMPlex_Det2D_Internal(detJ, J);
1296:     }
1297:     if (invJ) {DMPlex_Invert2D_Internal(invJ, J, *detJ);}
1298:   } else SETERRQ1(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "The number of coordinates for this triangle is %D != 6 or 9", numCoords);
1299:   DMPlexVecRestoreClosure(dm, coordSection, coordinates, e, &numCoords, &coords);
1300:   return(0);
1301: }

1303: static PetscErrorCode DMPlexComputeRectangleGeometry_Internal(DM dm, PetscInt e, PetscBool isTensor, PetscInt Nq, const PetscReal points[], PetscReal v[], PetscReal J[], PetscReal invJ[], PetscReal *detJ)
1304: {
1305:   PetscSection   coordSection;
1306:   Vec            coordinates;
1307:   PetscScalar   *coords = NULL;
1308:   PetscInt       numCoords, numSelfCoords = 0, d, f, g, pStart, pEnd;

1312:   DMGetCoordinatesLocal(dm, &coordinates);
1313:   DMGetCoordinateSection(dm, &coordSection);
1314:   PetscSectionGetChart(coordSection,&pStart,&pEnd);
1315:   if (e >= pStart && e < pEnd) {PetscSectionGetDof(coordSection,e,&numSelfCoords);}
1316:   DMPlexVecGetClosure(dm, coordSection, coordinates, e, &numCoords, &coords);
1317:   numCoords = numSelfCoords ? numSelfCoords : numCoords;
1318:   if (!Nq) {
1319:     PetscInt vorder[4] = {0, 1, 2, 3};

1321:     if (isTensor) {vorder[2] = 3; vorder[3] = 2;}
1322:     *detJ = 0.0;
1323:     if (numCoords == 12) {
1324:       const PetscInt dim = 3;
1325:       PetscReal      R[9], J0[9] = {1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0};

1327:       if (v)   {for (d = 0; d < dim; d++) v[d] = PetscRealPart(coords[d]);}
1328:       DMPlexComputeProjection3Dto2D(numCoords, coords, R);
1329:       if (J)    {
1330:         const PetscInt pdim = 2;

1332:         for (d = 0; d < pdim; d++) {
1333:           J0[d*dim+0] = 0.5*(PetscRealPart(coords[vorder[1]*pdim+d]) - PetscRealPart(coords[vorder[0]*pdim+d]));
1334:           J0[d*dim+1] = 0.5*(PetscRealPart(coords[vorder[2]*pdim+d]) - PetscRealPart(coords[vorder[1]*pdim+d]));
1335:         }
1336:         PetscLogFlops(8.0);
1337:         DMPlex_Det3D_Internal(detJ, J0);
1338:         for (d = 0; d < dim; d++) {
1339:           for (f = 0; f < dim; f++) {
1340:             J[d*dim+f] = 0.0;
1341:             for (g = 0; g < dim; g++) {
1342:               J[d*dim+f] += R[d*dim+g]*J0[g*dim+f];
1343:             }
1344:           }
1345:         }
1346:         PetscLogFlops(18.0);
1347:       }
1348:       if (invJ) {DMPlex_Invert3D_Internal(invJ, J, *detJ);}
1349:     } else if (numCoords == 8) {
1350:       const PetscInt dim = 2;

1352:       if (v)   {for (d = 0; d < dim; d++) v[d] = PetscRealPart(coords[d]);}
1353:       if (J)    {
1354:         for (d = 0; d < dim; d++) {
1355:           J[d*dim+0] = 0.5*(PetscRealPart(coords[vorder[1]*dim+d]) - PetscRealPart(coords[vorder[0]*dim+d]));
1356:           J[d*dim+1] = 0.5*(PetscRealPart(coords[vorder[3]*dim+d]) - PetscRealPart(coords[vorder[0]*dim+d]));
1357:         }
1358:         PetscLogFlops(8.0);
1359:         DMPlex_Det2D_Internal(detJ, J);
1360:       }
1361:       if (invJ) {DMPlex_Invert2D_Internal(invJ, J, *detJ);}
1362:     } else SETERRQ1(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "The number of coordinates for this quadrilateral is %D != 8 or 12", numCoords);
1363:   } else {
1364:     const PetscInt Nv = 4;
1365:     const PetscInt dimR = 2;
1366:     PetscInt  zToPlex[4] = {0, 1, 3, 2};
1367:     PetscReal zOrder[12];
1368:     PetscReal zCoeff[12];
1369:     PetscInt  i, j, k, l, dim;

1371:     if (isTensor) {zToPlex[2] = 2; zToPlex[3] = 3;}
1372:     if (numCoords == 12) {
1373:       dim = 3;
1374:     } else if (numCoords == 8) {
1375:       dim = 2;
1376:     } else SETERRQ1(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "The number of coordinates for this quadrilateral is %D != 8 or 12", numCoords);
1377:     for (i = 0; i < Nv; i++) {
1378:       PetscInt zi = zToPlex[i];

1380:       for (j = 0; j < dim; j++) {
1381:         zOrder[dim * i + j] = PetscRealPart(coords[dim * zi + j]);
1382:       }
1383:     }
1384:     for (j = 0; j < dim; j++) {
1385:       zCoeff[dim * 0 + j] = 0.25 * (  zOrder[dim * 0 + j] + zOrder[dim * 1 + j] + zOrder[dim * 2 + j] + zOrder[dim * 3 + j]);
1386:       zCoeff[dim * 1 + j] = 0.25 * (- zOrder[dim * 0 + j] + zOrder[dim * 1 + j] - zOrder[dim * 2 + j] + zOrder[dim * 3 + j]);
1387:       zCoeff[dim * 2 + j] = 0.25 * (- zOrder[dim * 0 + j] - zOrder[dim * 1 + j] + zOrder[dim * 2 + j] + zOrder[dim * 3 + j]);
1388:       zCoeff[dim * 3 + j] = 0.25 * (  zOrder[dim * 0 + j] - zOrder[dim * 1 + j] - zOrder[dim * 2 + j] + zOrder[dim * 3 + j]);
1389:     }
1390:     for (i = 0; i < Nq; i++) {
1391:       PetscReal xi = points[dimR * i], eta = points[dimR * i + 1];

1393:       if (v) {
1394:         PetscReal extPoint[4];

1396:         extPoint[0] = 1.;
1397:         extPoint[1] = xi;
1398:         extPoint[2] = eta;
1399:         extPoint[3] = xi * eta;
1400:         for (j = 0; j < dim; j++) {
1401:           PetscReal val = 0.;

1403:           for (k = 0; k < Nv; k++) {
1404:             val += extPoint[k] * zCoeff[dim * k + j];
1405:           }
1406:           v[i * dim + j] = val;
1407:         }
1408:       }
1409:       if (J) {
1410:         PetscReal extJ[8];

1412:         extJ[0] = 0.;
1413:         extJ[1] = 0.;
1414:         extJ[2] = 1.;
1415:         extJ[3] = 0.;
1416:         extJ[4] = 0.;
1417:         extJ[5] = 1.;
1418:         extJ[6] = eta;
1419:         extJ[7] = xi;
1420:         for (j = 0; j < dim; j++) {
1421:           for (k = 0; k < dimR; k++) {
1422:             PetscReal val = 0.;

1424:             for (l = 0; l < Nv; l++) {
1425:               val += zCoeff[dim * l + j] * extJ[dimR * l + k];
1426:             }
1427:             J[i * dim * dim + dim * j + k] = val;
1428:           }
1429:         }
1430:         if (dim == 3) { /* put the cross product in the third component of the Jacobian */
1431:           PetscReal x, y, z;
1432:           PetscReal *iJ = &J[i * dim * dim];
1433:           PetscReal norm;

1435:           x = iJ[1 * dim + 0] * iJ[2 * dim + 1] - iJ[1 * dim + 1] * iJ[2 * dim + 0];
1436:           y = iJ[0 * dim + 1] * iJ[2 * dim + 0] - iJ[0 * dim + 0] * iJ[2 * dim + 1];
1437:           z = iJ[0 * dim + 0] * iJ[1 * dim + 1] - iJ[0 * dim + 1] * iJ[1 * dim + 0];
1438:           norm = PetscSqrtReal(x * x + y * y + z * z);
1439:           iJ[2] = x / norm;
1440:           iJ[5] = y / norm;
1441:           iJ[8] = z / norm;
1442:           DMPlex_Det3D_Internal(&detJ[i], &J[i * dim * dim]);
1443:           if (invJ) {DMPlex_Invert3D_Internal(&invJ[i * dim * dim], &J[i * dim * dim], detJ[i]);}
1444:         } else {
1445:           DMPlex_Det2D_Internal(&detJ[i], &J[i * dim * dim]);
1446:           if (invJ) {DMPlex_Invert2D_Internal(&invJ[i * dim * dim], &J[i * dim * dim], detJ[i]);}
1447:         }
1448:       }
1449:     }
1450:   }
1451:   DMPlexVecRestoreClosure(dm, coordSection, coordinates, e, &numCoords, &coords);
1452:   return(0);
1453: }

1455: static PetscErrorCode DMPlexComputeTetrahedronGeometry_Internal(DM dm, PetscInt e, PetscReal v0[], PetscReal J[], PetscReal invJ[], PetscReal *detJ)
1456: {
1457:   PetscSection   coordSection;
1458:   Vec            coordinates;
1459:   PetscScalar   *coords = NULL;
1460:   const PetscInt dim = 3;
1461:   PetscInt       d;

1465:   DMGetCoordinatesLocal(dm, &coordinates);
1466:   DMGetCoordinateSection(dm, &coordSection);
1467:   DMPlexVecGetClosure(dm, coordSection, coordinates, e, NULL, &coords);
1468:   *detJ = 0.0;
1469:   if (v0)   {for (d = 0; d < dim; d++) v0[d] = PetscRealPart(coords[d]);}
1470:   if (J)    {
1471:     for (d = 0; d < dim; d++) {
1472:       /* I orient with outward face normals */
1473:       J[d*dim+0] = 0.5*(PetscRealPart(coords[2*dim+d]) - PetscRealPart(coords[0*dim+d]));
1474:       J[d*dim+1] = 0.5*(PetscRealPart(coords[1*dim+d]) - PetscRealPart(coords[0*dim+d]));
1475:       J[d*dim+2] = 0.5*(PetscRealPart(coords[3*dim+d]) - PetscRealPart(coords[0*dim+d]));
1476:     }
1477:     PetscLogFlops(18.0);
1478:     DMPlex_Det3D_Internal(detJ, J);
1479:   }
1480:   if (invJ) {DMPlex_Invert3D_Internal(invJ, J, *detJ);}
1481:   DMPlexVecRestoreClosure(dm, coordSection, coordinates, e, NULL, &coords);
1482:   return(0);
1483: }

1485: static PetscErrorCode DMPlexComputeHexahedronGeometry_Internal(DM dm, PetscInt e, PetscInt Nq, const PetscReal points[], PetscReal v[], PetscReal J[], PetscReal invJ[], PetscReal *detJ)
1486: {
1487:   PetscSection   coordSection;
1488:   Vec            coordinates;
1489:   PetscScalar   *coords = NULL;
1490:   const PetscInt dim = 3;
1491:   PetscInt       d;

1495:   DMGetCoordinatesLocal(dm, &coordinates);
1496:   DMGetCoordinateSection(dm, &coordSection);
1497:   DMPlexVecGetClosure(dm, coordSection, coordinates, e, NULL, &coords);
1498:   if (!Nq) {
1499:     *detJ = 0.0;
1500:     if (v)   {for (d = 0; d < dim; d++) v[d] = PetscRealPart(coords[d]);}
1501:     if (J)    {
1502:       for (d = 0; d < dim; d++) {
1503:         J[d*dim+0] = 0.5*(PetscRealPart(coords[3*dim+d]) - PetscRealPart(coords[0*dim+d]));
1504:         J[d*dim+1] = 0.5*(PetscRealPart(coords[1*dim+d]) - PetscRealPart(coords[0*dim+d]));
1505:         J[d*dim+2] = 0.5*(PetscRealPart(coords[4*dim+d]) - PetscRealPart(coords[0*dim+d]));
1506:       }
1507:       PetscLogFlops(18.0);
1508:       DMPlex_Det3D_Internal(detJ, J);
1509:     }
1510:     if (invJ) {DMPlex_Invert3D_Internal(invJ, J, *detJ);}
1511:   } else {
1512:     const PetscInt Nv = 8;
1513:     const PetscInt zToPlex[8] = {0, 3, 1, 2, 4, 5, 7, 6};
1514:     const PetscInt dim = 3;
1515:     const PetscInt dimR = 3;
1516:     PetscReal zOrder[24];
1517:     PetscReal zCoeff[24];
1518:     PetscInt  i, j, k, l;

1520:     for (i = 0; i < Nv; i++) {
1521:       PetscInt zi = zToPlex[i];

1523:       for (j = 0; j < dim; j++) {
1524:         zOrder[dim * i + j] = PetscRealPart(coords[dim * zi + j]);
1525:       }
1526:     }
1527:     for (j = 0; j < dim; j++) {
1528:       zCoeff[dim * 0 + j] = 0.125 * (  zOrder[dim * 0 + j] + zOrder[dim * 1 + j] + zOrder[dim * 2 + j] + zOrder[dim * 3 + j] + zOrder[dim * 4 + j] + zOrder[dim * 5 + j] + zOrder[dim * 6 + j] + zOrder[dim * 7 + j]);
1529:       zCoeff[dim * 1 + j] = 0.125 * (- zOrder[dim * 0 + j] + zOrder[dim * 1 + j] - zOrder[dim * 2 + j] + zOrder[dim * 3 + j] - zOrder[dim * 4 + j] + zOrder[dim * 5 + j] - zOrder[dim * 6 + j] + zOrder[dim * 7 + j]);
1530:       zCoeff[dim * 2 + j] = 0.125 * (- zOrder[dim * 0 + j] - zOrder[dim * 1 + j] + zOrder[dim * 2 + j] + zOrder[dim * 3 + j] - zOrder[dim * 4 + j] - zOrder[dim * 5 + j] + zOrder[dim * 6 + j] + zOrder[dim * 7 + j]);
1531:       zCoeff[dim * 3 + j] = 0.125 * (  zOrder[dim * 0 + j] - zOrder[dim * 1 + j] - zOrder[dim * 2 + j] + zOrder[dim * 3 + j] + zOrder[dim * 4 + j] - zOrder[dim * 5 + j] - zOrder[dim * 6 + j] + zOrder[dim * 7 + j]);
1532:       zCoeff[dim * 4 + j] = 0.125 * (- zOrder[dim * 0 + j] - zOrder[dim * 1 + j] - zOrder[dim * 2 + j] - zOrder[dim * 3 + j] + zOrder[dim * 4 + j] + zOrder[dim * 5 + j] + zOrder[dim * 6 + j] + zOrder[dim * 7 + j]);
1533:       zCoeff[dim * 5 + j] = 0.125 * (+ zOrder[dim * 0 + j] - zOrder[dim * 1 + j] + zOrder[dim * 2 + j] - zOrder[dim * 3 + j] - zOrder[dim * 4 + j] + zOrder[dim * 5 + j] - zOrder[dim * 6 + j] + zOrder[dim * 7 + j]);
1534:       zCoeff[dim * 6 + j] = 0.125 * (+ zOrder[dim * 0 + j] + zOrder[dim * 1 + j] - zOrder[dim * 2 + j] - zOrder[dim * 3 + j] - zOrder[dim * 4 + j] - zOrder[dim * 5 + j] + zOrder[dim * 6 + j] + zOrder[dim * 7 + j]);
1535:       zCoeff[dim * 7 + j] = 0.125 * (- zOrder[dim * 0 + j] + zOrder[dim * 1 + j] + zOrder[dim * 2 + j] - zOrder[dim * 3 + j] + zOrder[dim * 4 + j] - zOrder[dim * 5 + j] - zOrder[dim * 6 + j] + zOrder[dim * 7 + j]);
1536:     }
1537:     for (i = 0; i < Nq; i++) {
1538:       PetscReal xi = points[dimR * i], eta = points[dimR * i + 1], theta = points[dimR * i + 2];

1540:       if (v) {
1541:         PetscReal extPoint[8];

1543:         extPoint[0] = 1.;
1544:         extPoint[1] = xi;
1545:         extPoint[2] = eta;
1546:         extPoint[3] = xi * eta;
1547:         extPoint[4] = theta;
1548:         extPoint[5] = theta * xi;
1549:         extPoint[6] = theta * eta;
1550:         extPoint[7] = theta * eta * xi;
1551:         for (j = 0; j < dim; j++) {
1552:           PetscReal val = 0.;

1554:           for (k = 0; k < Nv; k++) {
1555:             val += extPoint[k] * zCoeff[dim * k + j];
1556:           }
1557:           v[i * dim + j] = val;
1558:         }
1559:       }
1560:       if (J) {
1561:         PetscReal extJ[24];

1563:         extJ[0]  = 0.         ; extJ[1]  = 0.        ; extJ[2]  = 0.      ;
1564:         extJ[3]  = 1.         ; extJ[4]  = 0.        ; extJ[5]  = 0.      ;
1565:         extJ[6]  = 0.         ; extJ[7]  = 1.        ; extJ[8]  = 0.      ;
1566:         extJ[9]  = eta        ; extJ[10] = xi        ; extJ[11] = 0.      ;
1567:         extJ[12] = 0.         ; extJ[13] = 0.        ; extJ[14] = 1.      ;
1568:         extJ[15] = theta      ; extJ[16] = 0.        ; extJ[17] = xi      ;
1569:         extJ[18] = 0.         ; extJ[19] = theta     ; extJ[20] = eta     ;
1570:         extJ[21] = theta * eta; extJ[22] = theta * xi; extJ[23] = eta * xi;

1572:         for (j = 0; j < dim; j++) {
1573:           for (k = 0; k < dimR; k++) {
1574:             PetscReal val = 0.;

1576:             for (l = 0; l < Nv; l++) {
1577:               val += zCoeff[dim * l + j] * extJ[dimR * l + k];
1578:             }
1579:             J[i * dim * dim + dim * j + k] = val;
1580:           }
1581:         }
1582:         DMPlex_Det3D_Internal(&detJ[i], &J[i * dim * dim]);
1583:         if (invJ) {DMPlex_Invert3D_Internal(&invJ[i * dim * dim], &J[i * dim * dim], detJ[i]);}
1584:       }
1585:     }
1586:   }
1587:   DMPlexVecRestoreClosure(dm, coordSection, coordinates, e, NULL, &coords);
1588:   return(0);
1589: }

1591: static PetscErrorCode DMPlexComputeCellGeometryFEM_Implicit(DM dm, PetscInt cell, PetscQuadrature quad, PetscReal *v, PetscReal *J, PetscReal *invJ, PetscReal *detJ)
1592: {
1593:   DMPolytopeType  ct;
1594:   PetscInt        depth, dim, coordDim, coneSize, i;
1595:   PetscInt        Nq = 0;
1596:   const PetscReal *points = NULL;
1597:   DMLabel         depthLabel;
1598:   PetscReal       xi0[3] = {-1.,-1.,-1.}, v0[3], J0[9], detJ0;
1599:   PetscBool       isAffine = PETSC_TRUE;
1600:   PetscErrorCode  ierr;

1603:   DMPlexGetDepth(dm, &depth);
1604:   DMPlexGetConeSize(dm, cell, &coneSize);
1605:   DMPlexGetDepthLabel(dm, &depthLabel);
1606:   DMLabelGetValue(depthLabel, cell, &dim);
1607:   if (depth == 1 && dim == 1) {
1608:     DMGetDimension(dm, &dim);
1609:   }
1610:   DMGetCoordinateDim(dm, &coordDim);
1611:   if (coordDim > 3) SETERRQ1(PetscObjectComm((PetscObject)dm), PETSC_ERR_SUP, "Unsupported coordinate dimension %D > 3", coordDim);
1612:   if (quad) {PetscQuadratureGetData(quad, NULL, NULL, &Nq, &points, NULL);}
1613:   DMPlexGetCellType(dm, cell, &ct);
1614:   switch (ct) {
1615:     case DM_POLYTOPE_POINT:
1616:     DMPlexComputePointGeometry_Internal(dm, cell, v, J, invJ, detJ);
1617:     isAffine = PETSC_FALSE;
1618:     break;
1619:     case DM_POLYTOPE_SEGMENT:
1620:     case DM_POLYTOPE_POINT_PRISM_TENSOR:
1621:     if (Nq) {DMPlexComputeLineGeometry_Internal(dm, cell, v0, J0, NULL, &detJ0);}
1622:     else    {DMPlexComputeLineGeometry_Internal(dm, cell, v,  J,  invJ,  detJ);}
1623:     break;
1624:     case DM_POLYTOPE_TRIANGLE:
1625:     if (Nq) {DMPlexComputeTriangleGeometry_Internal(dm, cell, v0, J0, NULL, &detJ0);}
1626:     else    {DMPlexComputeTriangleGeometry_Internal(dm, cell, v,  J,  invJ,  detJ);}
1627:     break;
1628:     case DM_POLYTOPE_QUADRILATERAL:
1629:     DMPlexComputeRectangleGeometry_Internal(dm, cell, PETSC_FALSE, Nq, points, v, J, invJ, detJ);
1630:     isAffine = PETSC_FALSE;
1631:     break;
1632:     case DM_POLYTOPE_SEG_PRISM_TENSOR:
1633:     DMPlexComputeRectangleGeometry_Internal(dm, cell, PETSC_TRUE, Nq, points, v, J, invJ, detJ);
1634:     isAffine = PETSC_FALSE;
1635:     break;
1636:     case DM_POLYTOPE_TETRAHEDRON:
1637:     if (Nq) {DMPlexComputeTetrahedronGeometry_Internal(dm, cell, v0, J0, NULL, &detJ0);}
1638:     else    {DMPlexComputeTetrahedronGeometry_Internal(dm, cell, v,  J,  invJ,  detJ);}
1639:     break;
1640:     case DM_POLYTOPE_HEXAHEDRON:
1641:     DMPlexComputeHexahedronGeometry_Internal(dm, cell, Nq, points, v, J, invJ, detJ);
1642:     isAffine = PETSC_FALSE;
1643:     break;
1644:     default: SETERRQ2(PetscObjectComm((PetscObject) dm), PETSC_ERR_ARG_OUTOFRANGE, "No element geometry for cell %D with type %s", cell, DMPolytopeTypes[ct]);
1645:   }
1646:   if (isAffine && Nq) {
1647:     if (v) {
1648:       for (i = 0; i < Nq; i++) {
1649:         CoordinatesRefToReal(coordDim, dim, xi0, v0, J0, &points[dim * i], &v[coordDim * i]);
1650:       }
1651:     }
1652:     if (detJ) {
1653:       for (i = 0; i < Nq; i++) {
1654:         detJ[i] = detJ0;
1655:       }
1656:     }
1657:     if (J) {
1658:       PetscInt k;

1660:       for (i = 0, k = 0; i < Nq; i++) {
1661:         PetscInt j;

1663:         for (j = 0; j < coordDim * coordDim; j++, k++) {
1664:           J[k] = J0[j];
1665:         }
1666:       }
1667:     }
1668:     if (invJ) {
1669:       PetscInt k;
1670:       switch (coordDim) {
1671:       case 0:
1672:         break;
1673:       case 1:
1674:         invJ[0] = 1./J0[0];
1675:         break;
1676:       case 2:
1677:         DMPlex_Invert2D_Internal(invJ, J0, detJ0);
1678:         break;
1679:       case 3:
1680:         DMPlex_Invert3D_Internal(invJ, J0, detJ0);
1681:         break;
1682:       }
1683:       for (i = 1, k = coordDim * coordDim; i < Nq; i++) {
1684:         PetscInt j;

1686:         for (j = 0; j < coordDim * coordDim; j++, k++) {
1687:           invJ[k] = invJ[j];
1688:         }
1689:       }
1690:     }
1691:   }
1692:   return(0);
1693: }

1695: /*@C
1696:   DMPlexComputeCellGeometryAffineFEM - Assuming an affine map, compute the Jacobian, inverse Jacobian, and Jacobian determinant for a given cell

1698:   Collective on dm

1700:   Input Parameters:
1701: + dm   - the DM
1702: - cell - the cell

1704:   Output Parameters:
1705: + v0   - the translation part of this affine transform
1706: . J    - the Jacobian of the transform from the reference element
1707: . invJ - the inverse of the Jacobian
1708: - detJ - the Jacobian determinant

1710:   Level: advanced

1712:   Fortran Notes:
1713:   Since it returns arrays, this routine is only available in Fortran 90, and you must
1714:   include petsc.h90 in your code.

1716: .seealso: DMPlexComputeCellGeometryFEM(), DMGetCoordinateSection(), DMGetCoordinates()
1717: @*/
1718: PetscErrorCode DMPlexComputeCellGeometryAffineFEM(DM dm, PetscInt cell, PetscReal *v0, PetscReal *J, PetscReal *invJ, PetscReal *detJ)
1719: {

1723:   DMPlexComputeCellGeometryFEM_Implicit(dm,cell,NULL,v0,J,invJ,detJ);
1724:   return(0);
1725: }

1727: static PetscErrorCode DMPlexComputeCellGeometryFEM_FE(DM dm, PetscFE fe, PetscInt point, PetscQuadrature quad, PetscReal v[], PetscReal J[], PetscReal invJ[], PetscReal *detJ)
1728: {
1729:   PetscQuadrature   feQuad;
1730:   PetscSection      coordSection;
1731:   Vec               coordinates;
1732:   PetscScalar      *coords = NULL;
1733:   const PetscReal  *quadPoints;
1734:   PetscTabulation T;
1735:   PetscInt          dim, cdim, pdim, qdim, Nq, numCoords, q;
1736:   PetscErrorCode    ierr;

1739:   DMGetCoordinatesLocal(dm, &coordinates);
1740:   DMGetCoordinateSection(dm, &coordSection);
1741:   DMPlexVecGetClosure(dm, coordSection, coordinates, point, &numCoords, &coords);
1742:   DMGetDimension(dm, &dim);
1743:   DMGetCoordinateDim(dm, &cdim);
1744:   if (!quad) { /* use the first point of the first functional of the dual space */
1745:     PetscDualSpace dsp;

1747:     PetscFEGetDualSpace(fe, &dsp);
1748:     PetscDualSpaceGetFunctional(dsp, 0, &quad);
1749:     PetscQuadratureGetData(quad, &qdim, NULL, &Nq, &quadPoints, NULL);
1750:     Nq = 1;
1751:   } else {
1752:     PetscQuadratureGetData(quad, &qdim, NULL, &Nq, &quadPoints, NULL);
1753:   }
1754:   PetscFEGetDimension(fe, &pdim);
1755:   PetscFEGetQuadrature(fe, &feQuad);
1756:   if (feQuad == quad) {
1757:     PetscFEGetCellTabulation(fe, J ? 1 : 0, &T);
1758:     if (numCoords != pdim*cdim) SETERRQ4(PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "There are %d coordinates for point %d != %d*%d", numCoords, point, pdim, cdim);
1759:   } else {
1760:     PetscFECreateTabulation(fe, 1, Nq, quadPoints, J ? 1 : 0, &T);
1761:   }
1762:   if (qdim != dim) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Point dimension %d != quadrature dimension %d", dim, qdim);
1763:   {
1764:     const PetscReal *basis    = T->T[0];
1765:     const PetscReal *basisDer = T->T[1];
1766:     PetscReal        detJt;

1768: #if defined(PETSC_USE_DEBUG)
1769:     if (Nq != T->Np)     SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Np %D != %D", Nq, T->Np);
1770:     if (pdim != T->Nb)   SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nb %D != %D", pdim, T->Nb);
1771:     if (dim != T->Nc)    SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nc %D != %D", dim, T->Nc);
1772:     if (cdim != T->cdim) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "cdim %D != %D", cdim, T->cdim);
1773: #endif
1774:     if (v) {
1775:       PetscArrayzero(v, Nq*cdim);
1776:       for (q = 0; q < Nq; ++q) {
1777:         PetscInt i, k;

1779:         for (k = 0; k < pdim; ++k) {
1780:           const PetscInt vertex = k/cdim;
1781:           for (i = 0; i < cdim; ++i) {
1782:             v[q*cdim + i] += basis[(q*pdim + k)*cdim + i] * PetscRealPart(coords[vertex*cdim + i]);
1783:           }
1784:         }
1785:         PetscLogFlops(2.0*pdim*cdim);
1786:       }
1787:     }
1788:     if (J) {
1789:       PetscArrayzero(J, Nq*cdim*cdim);
1790:       for (q = 0; q < Nq; ++q) {
1791:         PetscInt i, j, k, c, r;

1793:         /* J = dx_i/d\xi_j = sum[k=0,n-1] dN_k/d\xi_j * x_i(k) */
1794:         for (k = 0; k < pdim; ++k) {
1795:           const PetscInt vertex = k/cdim;
1796:           for (j = 0; j < dim; ++j) {
1797:             for (i = 0; i < cdim; ++i) {
1798:               J[(q*cdim + i)*cdim + j] += basisDer[((q*pdim + k)*cdim + i)*dim + j] * PetscRealPart(coords[vertex*cdim + i]);
1799:             }
1800:           }
1801:         }
1802:         PetscLogFlops(2.0*pdim*dim*cdim);
1803:         if (cdim > dim) {
1804:           for (c = dim; c < cdim; ++c)
1805:             for (r = 0; r < cdim; ++r)
1806:               J[r*cdim+c] = r == c ? 1.0 : 0.0;
1807:         }
1808:         if (!detJ && !invJ) continue;
1809:         detJt = 0.;
1810:         switch (cdim) {
1811:         case 3:
1812:           DMPlex_Det3D_Internal(&detJt, &J[q*cdim*dim]);
1813:           if (invJ) {DMPlex_Invert3D_Internal(&invJ[q*cdim*dim], &J[q*cdim*dim], detJt);}
1814:           break;
1815:         case 2:
1816:           DMPlex_Det2D_Internal(&detJt, &J[q*cdim*dim]);
1817:           if (invJ) {DMPlex_Invert2D_Internal(&invJ[q*cdim*dim], &J[q*cdim*dim], detJt);}
1818:           break;
1819:         case 1:
1820:           detJt = J[q*cdim*dim];
1821:           if (invJ) invJ[q*cdim*dim] = 1.0/detJt;
1822:         }
1823:         if (detJ) detJ[q] = detJt;
1824:       }
1825:     } else if (detJ || invJ) SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Need J to compute invJ or detJ");
1826:   }
1827:   if (feQuad != quad) {PetscTabulationDestroy(&T);}
1828:   DMPlexVecRestoreClosure(dm, coordSection, coordinates, point, &numCoords, &coords);
1829:   return(0);
1830: }

1832: /*@C
1833:   DMPlexComputeCellGeometryFEM - Compute the Jacobian, inverse Jacobian, and Jacobian determinant at each quadrature point in the given cell

1835:   Collective on dm

1837:   Input Parameters:
1838: + dm   - the DM
1839: . cell - the cell
1840: - quad - the quadrature containing the points in the reference element where the geometry will be evaluated.  If quad == NULL, geometry will be
1841:          evaluated at the first vertex of the reference element

1843:   Output Parameters:
1844: + v    - the image of the transformed quadrature points, otherwise the image of the first vertex in the closure of the reference element
1845: . J    - the Jacobian of the transform from the reference element at each quadrature point
1846: . invJ - the inverse of the Jacobian at each quadrature point
1847: - detJ - the Jacobian determinant at each quadrature point

1849:   Level: advanced

1851:   Fortran Notes:
1852:   Since it returns arrays, this routine is only available in Fortran 90, and you must
1853:   include petsc.h90 in your code.

1855: .seealso: DMGetCoordinateSection(), DMGetCoordinates()
1856: @*/
1857: PetscErrorCode DMPlexComputeCellGeometryFEM(DM dm, PetscInt cell, PetscQuadrature quad, PetscReal *v, PetscReal *J, PetscReal *invJ, PetscReal *detJ)
1858: {
1859:   DM             cdm;
1860:   PetscFE        fe = NULL;

1865:   DMGetCoordinateDM(dm, &cdm);
1866:   if (cdm) {
1867:     PetscClassId id;
1868:     PetscInt     numFields;
1869:     PetscDS      prob;
1870:     PetscObject  disc;

1872:     DMGetNumFields(cdm, &numFields);
1873:     if (numFields) {
1874:       DMGetDS(cdm, &prob);
1875:       PetscDSGetDiscretization(prob,0,&disc);
1876:       PetscObjectGetClassId(disc,&id);
1877:       if (id == PETSCFE_CLASSID) {
1878:         fe = (PetscFE) disc;
1879:       }
1880:     }
1881:   }
1882:   if (!fe) {DMPlexComputeCellGeometryFEM_Implicit(dm, cell, quad, v, J, invJ, detJ);}
1883:   else     {DMPlexComputeCellGeometryFEM_FE(dm, fe, cell, quad, v, J, invJ, detJ);}
1884:   return(0);
1885: }

1887: static PetscErrorCode DMPlexComputeGeometryFVM_1D_Internal(DM dm, PetscInt dim, PetscInt cell, PetscReal *vol, PetscReal centroid[], PetscReal normal[])
1888: {
1889:   PetscSection   coordSection;
1890:   Vec            coordinates;
1891:   PetscScalar   *coords = NULL;
1892:   PetscScalar    tmp[2];
1893:   PetscInt       coordSize, d;

1897:   DMGetCoordinatesLocal(dm, &coordinates);
1898:   DMGetCoordinateSection(dm, &coordSection);
1899:   DMPlexVecGetClosure(dm, coordSection, coordinates, cell, &coordSize, &coords);
1900:   DMLocalizeCoordinate_Internal(dm, dim, coords, &coords[dim], tmp);
1901:   if (centroid) {
1902:     for (d = 0; d < dim; ++d) centroid[d] = 0.5*PetscRealPart(coords[d] + tmp[d]);
1903:   }
1904:   if (normal) {
1905:     PetscReal norm;

1907:     if (dim != 2) SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "We only support 2D edges right now");
1908:     normal[0]  = -PetscRealPart(coords[1] - tmp[1]);
1909:     normal[1]  =  PetscRealPart(coords[0] - tmp[0]);
1910:     norm       = DMPlex_NormD_Internal(dim, normal);
1911:     for (d = 0; d < dim; ++d) normal[d] /= norm;
1912:   }
1913:   if (vol) {
1914:     *vol = 0.0;
1915:     for (d = 0; d < dim; ++d) *vol += PetscSqr(PetscRealPart(coords[d] - tmp[d]));
1916:     *vol = PetscSqrtReal(*vol);
1917:   }
1918:   DMPlexVecRestoreClosure(dm, coordSection, coordinates, cell, &coordSize, &coords);
1919:   return(0);
1920: }

1922: /* Centroid_i = (\sum_n A_n Cn_i) / A */
1923: static PetscErrorCode DMPlexComputeGeometryFVM_2D_Internal(DM dm, PetscInt dim, PetscInt cell, PetscReal *vol, PetscReal centroid[], PetscReal normal[])
1924: {
1925:   DMPolytopeType ct;
1926:   PetscSection   coordSection;
1927:   Vec            coordinates;
1928:   PetscScalar   *coords = NULL;
1929:   PetscInt       fv[4] = {0, 1, 2, 3};
1930:   PetscInt       cdim, coordSize, numCorners, p, d;

1934:   /* Must check for hybrid cells because prisms have a different orientation scheme */
1935:   DMPlexGetCellType(dm, cell, &ct);
1936:   switch (ct) {
1937:     case DM_POLYTOPE_SEG_PRISM_TENSOR: fv[2] = 3; fv[3] = 2;break;
1938:     default: break;
1939:   }
1940:   DMGetCoordinatesLocal(dm, &coordinates);
1941:   DMPlexGetConeSize(dm, cell, &numCorners);
1942:   DMGetCoordinateSection(dm, &coordSection);
1943:   DMPlexVecGetClosure(dm, coordSection, coordinates, cell, &coordSize, &coords);
1944:   DMGetCoordinateDim(dm, &cdim);

1946:   if (cdim > 2) {
1947:     PetscReal c[3] = {0., 0., 0.}, n[3] = {0., 0., 0.}, norm;

1949:     for (p = 0; p < numCorners-2; ++p) {
1950:       const PetscReal x0 = PetscRealPart(coords[cdim*fv[p+1]+0] - coords[0]), x1 = PetscRealPart(coords[cdim*fv[p+2]+0] - coords[0]);
1951:       const PetscReal y0 = PetscRealPart(coords[cdim*fv[p+1]+1] - coords[1]), y1 = PetscRealPart(coords[cdim*fv[p+2]+1] - coords[1]);
1952:       const PetscReal z0 = PetscRealPart(coords[cdim*fv[p+1]+2] - coords[2]), z1 = PetscRealPart(coords[cdim*fv[p+2]+2] - coords[2]);
1953:       const PetscReal dx = y0*z1 - z0*y1;
1954:       const PetscReal dy = z0*x1 - x0*z1;
1955:       const PetscReal dz = x0*y1 - y0*x1;
1956:       PetscReal       a  = PetscSqrtReal(dx*dx + dy*dy + dz*dz);

1958:       n[0] += dx;
1959:       n[1] += dy;
1960:       n[2] += dz;
1961:       c[0] += a * PetscRealPart(coords[0] + coords[cdim*fv[p+1]+0] + coords[cdim*fv[p+2]+0])/3.;
1962:       c[1] += a * PetscRealPart(coords[1] + coords[cdim*fv[p+1]+1] + coords[cdim*fv[p+2]+1])/3.;
1963:       c[2] += a * PetscRealPart(coords[2] + coords[cdim*fv[p+1]+2] + coords[cdim*fv[p+2]+2])/3.;
1964:     }
1965:     norm = PetscSqrtReal(n[0]*n[0] + n[1]*n[1] + n[2]*n[2]);
1966:     n[0] /= norm;
1967:     n[1] /= norm;
1968:     n[2] /= norm;
1969:     c[0] /= norm;
1970:     c[1] /= norm;
1971:     c[2] /= norm;
1972:     if (vol) *vol = 0.5*norm;
1973:     if (centroid) for (d = 0; d < cdim; ++d) centroid[d] = c[d];
1974:     if (normal) for (d = 0; d < cdim; ++d) normal[d] = n[d];
1975:   } else {
1976:     PetscReal vsum = 0.0, csum[2] = {0.0, 0.0}, vtmp, ctmp[4] = {0., 0., 0., 0.};

1978:     for (p = 0; p < numCorners; ++p) {
1979:       const PetscInt pi  = p < 4 ? fv[p] : p;
1980:       const PetscInt pin = p < 3 ? fv[(p+1)%numCorners] : (p+1)%numCorners;
1981:       /* Need to do this copy to get types right */
1982:       for (d = 0; d < cdim; ++d) {
1983:         ctmp[d]      = PetscRealPart(coords[pi*cdim+d]);
1984:         ctmp[cdim+d] = PetscRealPart(coords[pin*cdim+d]);
1985:       }
1986:       Volume_Triangle_Origin_Internal(&vtmp, ctmp);
1987:       vsum += vtmp;
1988:       for (d = 0; d < cdim; ++d) csum[d] += (ctmp[d] + ctmp[cdim+d])*vtmp;
1989:     }
1990:     if (vol) *vol = PetscAbsReal(vsum);
1991:     if (centroid) for (d = 0; d < cdim; ++d) centroid[d] = csum[d] / ((cdim+1)*vsum);
1992:     if (normal) for (d = 0; d < cdim; ++d) normal[d] = 0.0;
1993:   }
1994:   DMPlexVecRestoreClosure(dm, coordSection, coordinates, cell, &coordSize, &coords);
1995:   return(0);
1996: }

1998: /* Centroid_i = (\sum_n V_n Cn_i) / V */
1999: static PetscErrorCode DMPlexComputeGeometryFVM_3D_Internal(DM dm, PetscInt dim, PetscInt cell, PetscReal *vol, PetscReal centroid[], PetscReal normal[])
2000: {
2001:   DMPolytopeType  ct;
2002:   PetscSection    coordSection;
2003:   Vec             coordinates;
2004:   PetscScalar    *coords = NULL;
2005:   PetscReal       vsum = 0.0, vtmp, coordsTmp[3*3];
2006:   const PetscInt *faces, *facesO;
2007:   PetscBool       isHybrid = PETSC_FALSE;
2008:   PetscInt        numFaces, f, coordSize, p, d;
2009:   PetscErrorCode  ierr;

2012:   if (PetscUnlikely(dim > 3)) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"No support for dim %D > 3",dim);
2013:   /* Must check for hybrid cells because prisms have a different orientation scheme */
2014:   DMPlexGetCellType(dm, cell, &ct);
2015:   switch (ct) {
2016:     case DM_POLYTOPE_POINT_PRISM_TENSOR:
2017:     case DM_POLYTOPE_SEG_PRISM_TENSOR:
2018:     case DM_POLYTOPE_TRI_PRISM_TENSOR:
2019:     case DM_POLYTOPE_QUAD_PRISM_TENSOR:
2020:       isHybrid = PETSC_TRUE;
2021:     default: break;
2022:   }

2024:   DMGetCoordinatesLocal(dm, &coordinates);
2025:   DMGetCoordinateSection(dm, &coordSection);

2027:   if (centroid) for (d = 0; d < dim; ++d) centroid[d] = 0.0;
2028:   DMPlexGetConeSize(dm, cell, &numFaces);
2029:   DMPlexGetCone(dm, cell, &faces);
2030:   DMPlexGetConeOrientation(dm, cell, &facesO);
2031:   for (f = 0; f < numFaces; ++f) {
2032:     PetscBool      flip = isHybrid && f == 0 ? PETSC_TRUE : PETSC_FALSE; /* The first hybrid face is reversed */
2033:     DMPolytopeType ct;

2035:     DMPlexVecGetClosure(dm, coordSection, coordinates, faces[f], &coordSize, &coords);
2036:     DMPlexGetCellType(dm, faces[f], &ct);
2037:     switch (ct) {
2038:     case DM_POLYTOPE_TRIANGLE:
2039:       for (d = 0; d < dim; ++d) {
2040:         coordsTmp[0*dim+d] = PetscRealPart(coords[0*dim+d]);
2041:         coordsTmp[1*dim+d] = PetscRealPart(coords[1*dim+d]);
2042:         coordsTmp[2*dim+d] = PetscRealPart(coords[2*dim+d]);
2043:       }
2044:       Volume_Tetrahedron_Origin_Internal(&vtmp, coordsTmp);
2045:       if (facesO[f] < 0 || flip) vtmp = -vtmp;
2046:       vsum += vtmp;
2047:       if (centroid) {           /* Centroid of OABC = (a+b+c)/4 */
2048:         for (d = 0; d < dim; ++d) {
2049:           for (p = 0; p < 3; ++p) centroid[d] += coordsTmp[p*dim+d]*vtmp;
2050:         }
2051:       }
2052:       break;
2053:     case DM_POLYTOPE_QUADRILATERAL:
2054:     case DM_POLYTOPE_SEG_PRISM_TENSOR:
2055:     {
2056:       PetscInt fv[4] = {0, 1, 2, 3};

2058:       /* Side faces for hybrid cells are are stored as tensor products */
2059:       if (isHybrid && f > 1) {fv[2] = 3; fv[3] = 2;}
2060:       /* DO FOR PYRAMID */
2061:       /* First tet */
2062:       for (d = 0; d < dim; ++d) {
2063:         coordsTmp[0*dim+d] = PetscRealPart(coords[fv[0]*dim+d]);
2064:         coordsTmp[1*dim+d] = PetscRealPart(coords[fv[1]*dim+d]);
2065:         coordsTmp[2*dim+d] = PetscRealPart(coords[fv[3]*dim+d]);
2066:       }
2067:       Volume_Tetrahedron_Origin_Internal(&vtmp, coordsTmp);
2068:       if (facesO[f] < 0 || flip) vtmp = -vtmp;
2069:       vsum += vtmp;
2070:       if (centroid) {
2071:         for (d = 0; d < dim; ++d) {
2072:           for (p = 0; p < 3; ++p) centroid[d] += coordsTmp[p*dim+d]*vtmp;
2073:         }
2074:       }
2075:       /* Second tet */
2076:       for (d = 0; d < dim; ++d) {
2077:         coordsTmp[0*dim+d] = PetscRealPart(coords[fv[1]*dim+d]);
2078:         coordsTmp[1*dim+d] = PetscRealPart(coords[fv[2]*dim+d]);
2079:         coordsTmp[2*dim+d] = PetscRealPart(coords[fv[3]*dim+d]);
2080:       }
2081:       Volume_Tetrahedron_Origin_Internal(&vtmp, coordsTmp);
2082:       if (facesO[f] < 0 || flip) vtmp = -vtmp;
2083:       vsum += vtmp;
2084:       if (centroid) {
2085:         for (d = 0; d < dim; ++d) {
2086:           for (p = 0; p < 3; ++p) centroid[d] += coordsTmp[p*dim+d]*vtmp;
2087:         }
2088:       }
2089:       break;
2090:     }
2091:     default:
2092:       SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Cannot handle face %D of type %s", faces[f], DMPolytopeTypes[ct]);
2093:     }
2094:     DMPlexVecRestoreClosure(dm, coordSection, coordinates, faces[f], &coordSize, &coords);
2095:   }
2096:   if (vol)     *vol = PetscAbsReal(vsum);
2097:   if (normal)   for (d = 0; d < dim; ++d) normal[d]    = 0.0;
2098:   if (centroid) for (d = 0; d < dim; ++d) centroid[d] /= (vsum*4);
2099:   return(0);
2100: }

2102: /*@C
2103:   DMPlexComputeCellGeometryFVM - Compute the volume for a given cell

2105:   Collective on dm

2107:   Input Parameters:
2108: + dm   - the DM
2109: - cell - the cell

2111:   Output Parameters:
2112: + volume   - the cell volume
2113: . centroid - the cell centroid
2114: - normal - the cell normal, if appropriate

2116:   Level: advanced

2118:   Fortran Notes:
2119:   Since it returns arrays, this routine is only available in Fortran 90, and you must
2120:   include petsc.h90 in your code.

2122: .seealso: DMGetCoordinateSection(), DMGetCoordinates()
2123: @*/
2124: PetscErrorCode DMPlexComputeCellGeometryFVM(DM dm, PetscInt cell, PetscReal *vol, PetscReal centroid[], PetscReal normal[])
2125: {
2126:   PetscInt       depth, dim;

2130:   DMPlexGetDepth(dm, &depth);
2131:   DMGetDimension(dm, &dim);
2132:   if (depth != dim) SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Mesh must be interpolated");
2133:   DMPlexGetPointDepth(dm, cell, &depth);
2134:   switch (depth) {
2135:   case 1:
2136:     DMPlexComputeGeometryFVM_1D_Internal(dm, dim, cell, vol, centroid, normal);
2137:     break;
2138:   case 2:
2139:     DMPlexComputeGeometryFVM_2D_Internal(dm, dim, cell, vol, centroid, normal);
2140:     break;
2141:   case 3:
2142:     DMPlexComputeGeometryFVM_3D_Internal(dm, dim, cell, vol, centroid, normal);
2143:     break;
2144:   default:
2145:     SETERRQ2(PetscObjectComm((PetscObject)dm), PETSC_ERR_SUP, "Unsupported dimension %D (depth %D) for element geometry computation", dim, depth);
2146:   }
2147:   return(0);
2148: }

2150: /*@
2151:   DMPlexComputeGeometryFEM - Precompute cell geometry for the entire mesh

2153:   Collective on dm

2155:   Input Parameter:
2156: . dm - The DMPlex

2158:   Output Parameter:
2159: . cellgeom - A vector with the cell geometry data for each cell

2161:   Level: beginner

2163: @*/
2164: PetscErrorCode DMPlexComputeGeometryFEM(DM dm, Vec *cellgeom)
2165: {
2166:   DM             dmCell;
2167:   Vec            coordinates;
2168:   PetscSection   coordSection, sectionCell;
2169:   PetscScalar   *cgeom;
2170:   PetscInt       cStart, cEnd, c;

2174:   DMClone(dm, &dmCell);
2175:   DMGetCoordinateSection(dm, &coordSection);
2176:   DMGetCoordinatesLocal(dm, &coordinates);
2177:   DMSetCoordinateSection(dmCell, PETSC_DETERMINE, coordSection);
2178:   DMSetCoordinatesLocal(dmCell, coordinates);
2179:   PetscSectionCreate(PetscObjectComm((PetscObject) dm), &sectionCell);
2180:   DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd);
2181:   PetscSectionSetChart(sectionCell, cStart, cEnd);
2182:   /* TODO This needs to be multiplied by Nq for non-affine */
2183:   for (c = cStart; c < cEnd; ++c) {PetscSectionSetDof(sectionCell, c, (PetscInt) PetscCeilReal(((PetscReal) sizeof(PetscFEGeom))/sizeof(PetscScalar)));}
2184:   PetscSectionSetUp(sectionCell);
2185:   DMSetLocalSection(dmCell, sectionCell);
2186:   PetscSectionDestroy(&sectionCell);
2187:   DMCreateLocalVector(dmCell, cellgeom);
2188:   VecGetArray(*cellgeom, &cgeom);
2189:   for (c = cStart; c < cEnd; ++c) {
2190:     PetscFEGeom *cg;

2192:     DMPlexPointLocalRef(dmCell, c, cgeom, &cg);
2193:     PetscArrayzero(cg, 1);
2194:     DMPlexComputeCellGeometryFEM(dmCell, c, NULL, cg->v, cg->J, cg->invJ, cg->detJ);
2195:     if (*cg->detJ <= 0.0) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %D", (double) *cg->detJ, c);
2196:   }
2197:   return(0);
2198: }

2200: /*@
2201:   DMPlexComputeGeometryFVM - Computes the cell and face geometry for a finite volume method

2203:   Input Parameter:
2204: . dm - The DM

2206:   Output Parameters:
2207: + cellgeom - A Vec of PetscFVCellGeom data
2208: - facegeom - A Vec of PetscFVFaceGeom data

2210:   Level: developer

2212: .seealso: PetscFVFaceGeom, PetscFVCellGeom, DMPlexComputeGeometryFEM()
2213: @*/
2214: PetscErrorCode DMPlexComputeGeometryFVM(DM dm, Vec *cellgeom, Vec *facegeom)
2215: {
2216:   DM             dmFace, dmCell;
2217:   DMLabel        ghostLabel;
2218:   PetscSection   sectionFace, sectionCell;
2219:   PetscSection   coordSection;
2220:   Vec            coordinates;
2221:   PetscScalar   *fgeom, *cgeom;
2222:   PetscReal      minradius, gminradius;
2223:   PetscInt       dim, cStart, cEnd, cEndInterior, c, fStart, fEnd, f;

2227:   DMGetDimension(dm, &dim);
2228:   DMGetCoordinateSection(dm, &coordSection);
2229:   DMGetCoordinatesLocal(dm, &coordinates);
2230:   /* Make cell centroids and volumes */
2231:   DMClone(dm, &dmCell);
2232:   DMSetCoordinateSection(dmCell, PETSC_DETERMINE, coordSection);
2233:   DMSetCoordinatesLocal(dmCell, coordinates);
2234:   PetscSectionCreate(PetscObjectComm((PetscObject) dm), &sectionCell);
2235:   DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd);
2236:   DMPlexGetGhostCellStratum(dm, &cEndInterior, NULL);
2237:   PetscSectionSetChart(sectionCell, cStart, cEnd);
2238:   for (c = cStart; c < cEnd; ++c) {PetscSectionSetDof(sectionCell, c, (PetscInt) PetscCeilReal(((PetscReal) sizeof(PetscFVCellGeom))/sizeof(PetscScalar)));}
2239:   PetscSectionSetUp(sectionCell);
2240:   DMSetLocalSection(dmCell, sectionCell);
2241:   PetscSectionDestroy(&sectionCell);
2242:   DMCreateLocalVector(dmCell, cellgeom);
2243:   if (cEndInterior < 0) cEndInterior = cEnd;
2244:   VecGetArray(*cellgeom, &cgeom);
2245:   for (c = cStart; c < cEndInterior; ++c) {
2246:     PetscFVCellGeom *cg;

2248:     DMPlexPointLocalRef(dmCell, c, cgeom, &cg);
2249:     PetscArrayzero(cg, 1);
2250:     DMPlexComputeCellGeometryFVM(dmCell, c, &cg->volume, cg->centroid, NULL);
2251:   }
2252:   /* Compute face normals and minimum cell radius */
2253:   DMClone(dm, &dmFace);
2254:   PetscSectionCreate(PetscObjectComm((PetscObject) dm), &sectionFace);
2255:   DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd);
2256:   PetscSectionSetChart(sectionFace, fStart, fEnd);
2257:   for (f = fStart; f < fEnd; ++f) {PetscSectionSetDof(sectionFace, f, (PetscInt) PetscCeilReal(((PetscReal) sizeof(PetscFVFaceGeom))/sizeof(PetscScalar)));}
2258:   PetscSectionSetUp(sectionFace);
2259:   DMSetLocalSection(dmFace, sectionFace);
2260:   PetscSectionDestroy(&sectionFace);
2261:   DMCreateLocalVector(dmFace, facegeom);
2262:   VecGetArray(*facegeom, &fgeom);
2263:   DMGetLabel(dm, "ghost", &ghostLabel);
2264:   minradius = PETSC_MAX_REAL;
2265:   for (f = fStart; f < fEnd; ++f) {
2266:     PetscFVFaceGeom *fg;
2267:     PetscReal        area;
2268:     const PetscInt  *cells;
2269:     PetscInt         ncells, ghost = -1, d, numChildren;

2271:     if (ghostLabel) {DMLabelGetValue(ghostLabel, f, &ghost);}
2272:     DMPlexGetTreeChildren(dm,f,&numChildren,NULL);
2273:     DMPlexGetSupport(dm, f, &cells);
2274:     DMPlexGetSupportSize(dm, f, &ncells);
2275:     /* It is possible to get a face with no support when using partition overlap */
2276:     if (!ncells || ghost >= 0 || numChildren) continue;
2277:     DMPlexPointLocalRef(dmFace, f, fgeom, &fg);
2278:     DMPlexComputeCellGeometryFVM(dm, f, &area, fg->centroid, fg->normal);
2279:     for (d = 0; d < dim; ++d) fg->normal[d] *= area;
2280:     /* Flip face orientation if necessary to match ordering in support, and Update minimum radius */
2281:     {
2282:       PetscFVCellGeom *cL, *cR;
2283:       PetscReal       *lcentroid, *rcentroid;
2284:       PetscReal        l[3], r[3], v[3];

2286:       DMPlexPointLocalRead(dmCell, cells[0], cgeom, &cL);
2287:       lcentroid = cells[0] >= cEndInterior ? fg->centroid : cL->centroid;
2288:       if (ncells > 1) {
2289:         DMPlexPointLocalRead(dmCell, cells[1], cgeom, &cR);
2290:         rcentroid = cells[1] >= cEndInterior ? fg->centroid : cR->centroid;
2291:       }
2292:       else {
2293:         rcentroid = fg->centroid;
2294:       }
2295:       DMLocalizeCoordinateReal_Internal(dm, dim, fg->centroid, lcentroid, l);
2296:       DMLocalizeCoordinateReal_Internal(dm, dim, fg->centroid, rcentroid, r);
2297:       DMPlex_WaxpyD_Internal(dim, -1, l, r, v);
2298:       if (DMPlex_DotRealD_Internal(dim, fg->normal, v) < 0) {
2299:         for (d = 0; d < dim; ++d) fg->normal[d] = -fg->normal[d];
2300:       }
2301:       if (DMPlex_DotRealD_Internal(dim, fg->normal, v) <= 0) {
2302:         if (dim == 2) SETERRQ5(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Direction for face %d could not be fixed, normal (%g,%g) v (%g,%g)", f, (double) fg->normal[0], (double) fg->normal[1], (double) v[0], (double) v[1]);
2303:         if (dim == 3) SETERRQ7(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Direction for face %d could not be fixed, normal (%g,%g,%g) v (%g,%g,%g)", f, (double) fg->normal[0], (double) fg->normal[1], (double) fg->normal[2], (double) v[0], (double) v[1], (double) v[2]);
2304:         SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Direction for face %d could not be fixed", f);
2305:       }
2306:       if (cells[0] < cEndInterior) {
2307:         DMPlex_WaxpyD_Internal(dim, -1, fg->centroid, cL->centroid, v);
2308:         minradius = PetscMin(minradius, DMPlex_NormD_Internal(dim, v));
2309:       }
2310:       if (ncells > 1 && cells[1] < cEndInterior) {
2311:         DMPlex_WaxpyD_Internal(dim, -1, fg->centroid, cR->centroid, v);
2312:         minradius = PetscMin(minradius, DMPlex_NormD_Internal(dim, v));
2313:       }
2314:     }
2315:   }
2316:   MPIU_Allreduce(&minradius, &gminradius, 1, MPIU_REAL, MPIU_MIN, PetscObjectComm((PetscObject)dm));
2317:   DMPlexSetMinRadius(dm, gminradius);
2318:   /* Compute centroids of ghost cells */
2319:   for (c = cEndInterior; c < cEnd; ++c) {
2320:     PetscFVFaceGeom *fg;
2321:     const PetscInt  *cone,    *support;
2322:     PetscInt         coneSize, supportSize, s;

2324:     DMPlexGetConeSize(dmCell, c, &coneSize);
2325:     if (coneSize != 1) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Ghost cell %d has cone size %d != 1", c, coneSize);
2326:     DMPlexGetCone(dmCell, c, &cone);
2327:     DMPlexGetSupportSize(dmCell, cone[0], &supportSize);
2328:     if (supportSize != 2) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %d has support size %d != 2", cone[0], supportSize);
2329:     DMPlexGetSupport(dmCell, cone[0], &support);
2330:     DMPlexPointLocalRef(dmFace, cone[0], fgeom, &fg);
2331:     for (s = 0; s < 2; ++s) {
2332:       /* Reflect ghost centroid across plane of face */
2333:       if (support[s] == c) {
2334:         PetscFVCellGeom       *ci;
2335:         PetscFVCellGeom       *cg;
2336:         PetscReal              c2f[3], a;

2338:         DMPlexPointLocalRead(dmCell, support[(s+1)%2], cgeom, &ci);
2339:         DMPlex_WaxpyD_Internal(dim, -1, ci->centroid, fg->centroid, c2f); /* cell to face centroid */
2340:         a    = DMPlex_DotRealD_Internal(dim, c2f, fg->normal)/DMPlex_DotRealD_Internal(dim, fg->normal, fg->normal);
2341:         DMPlexPointLocalRef(dmCell, support[s], cgeom, &cg);
2342:         DMPlex_WaxpyD_Internal(dim, 2*a, fg->normal, ci->centroid, cg->centroid);
2343:         cg->volume = ci->volume;
2344:       }
2345:     }
2346:   }
2347:   VecRestoreArray(*facegeom, &fgeom);
2348:   VecRestoreArray(*cellgeom, &cgeom);
2349:   DMDestroy(&dmCell);
2350:   DMDestroy(&dmFace);
2351:   return(0);
2352: }

2354: /*@C
2355:   DMPlexGetMinRadius - Returns the minimum distance from any cell centroid to a face

2357:   Not collective

2359:   Input Parameter:
2360: . dm - the DM

2362:   Output Parameter:
2363: . minradius - the minimum cell radius

2365:   Level: developer

2367: .seealso: DMGetCoordinates()
2368: @*/
2369: PetscErrorCode DMPlexGetMinRadius(DM dm, PetscReal *minradius)
2370: {
2374:   *minradius = ((DM_Plex*) dm->data)->minradius;
2375:   return(0);
2376: }

2378: /*@C
2379:   DMPlexSetMinRadius - Sets the minimum distance from the cell centroid to a face

2381:   Logically collective

2383:   Input Parameters:
2384: + dm - the DM
2385: - minradius - the minimum cell radius

2387:   Level: developer

2389: .seealso: DMSetCoordinates()
2390: @*/
2391: PetscErrorCode DMPlexSetMinRadius(DM dm, PetscReal minradius)
2392: {
2395:   ((DM_Plex*) dm->data)->minradius = minradius;
2396:   return(0);
2397: }

2399: static PetscErrorCode BuildGradientReconstruction_Internal(DM dm, PetscFV fvm, DM dmFace, PetscScalar *fgeom, DM dmCell, PetscScalar *cgeom)
2400: {
2401:   DMLabel        ghostLabel;
2402:   PetscScalar   *dx, *grad, **gref;
2403:   PetscInt       dim, cStart, cEnd, c, cEndInterior, maxNumFaces;

2407:   DMGetDimension(dm, &dim);
2408:   DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd);
2409:   DMPlexGetGhostCellStratum(dm, &cEndInterior, NULL);
2410:   cEndInterior = cEndInterior < 0 ? cEnd : cEndInterior;
2411:   DMPlexGetMaxSizes(dm, &maxNumFaces, NULL);
2412:   PetscFVLeastSquaresSetMaxFaces(fvm, maxNumFaces);
2413:   DMGetLabel(dm, "ghost", &ghostLabel);
2414:   PetscMalloc3(maxNumFaces*dim, &dx, maxNumFaces*dim, &grad, maxNumFaces, &gref);
2415:   for (c = cStart; c < cEndInterior; c++) {
2416:     const PetscInt        *faces;
2417:     PetscInt               numFaces, usedFaces, f, d;
2418:     PetscFVCellGeom        *cg;
2419:     PetscBool              boundary;
2420:     PetscInt               ghost;

2422:     DMPlexPointLocalRead(dmCell, c, cgeom, &cg);
2423:     DMPlexGetConeSize(dm, c, &numFaces);
2424:     DMPlexGetCone(dm, c, &faces);
2425:     if (numFaces < dim) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Cell %D has only %D faces, not enough for gradient reconstruction", c, numFaces);
2426:     for (f = 0, usedFaces = 0; f < numFaces; ++f) {
2427:       PetscFVCellGeom       *cg1;
2428:       PetscFVFaceGeom       *fg;
2429:       const PetscInt        *fcells;
2430:       PetscInt               ncell, side;

2432:       DMLabelGetValue(ghostLabel, faces[f], &ghost);
2433:       DMIsBoundaryPoint(dm, faces[f], &boundary);
2434:       if ((ghost >= 0) || boundary) continue;
2435:       DMPlexGetSupport(dm, faces[f], &fcells);
2436:       side  = (c != fcells[0]); /* c is on left=0 or right=1 of face */
2437:       ncell = fcells[!side];    /* the neighbor */
2438:       DMPlexPointLocalRef(dmFace, faces[f], fgeom, &fg);
2439:       DMPlexPointLocalRead(dmCell, ncell, cgeom, &cg1);
2440:       for (d = 0; d < dim; ++d) dx[usedFaces*dim+d] = cg1->centroid[d] - cg->centroid[d];
2441:       gref[usedFaces++] = fg->grad[side];  /* Gradient reconstruction term will go here */
2442:     }
2443:     if (!usedFaces) SETERRQ(PETSC_COMM_SELF, PETSC_ERR_USER, "Mesh contains isolated cell (no neighbors). Is it intentional?");
2444:     PetscFVComputeGradient(fvm, usedFaces, dx, grad);
2445:     for (f = 0, usedFaces = 0; f < numFaces; ++f) {
2446:       DMLabelGetValue(ghostLabel, faces[f], &ghost);
2447:       DMIsBoundaryPoint(dm, faces[f], &boundary);
2448:       if ((ghost >= 0) || boundary) continue;
2449:       for (d = 0; d < dim; ++d) gref[usedFaces][d] = grad[usedFaces*dim+d];
2450:       ++usedFaces;
2451:     }
2452:   }
2453:   PetscFree3(dx, grad, gref);
2454:   return(0);
2455: }

2457: static PetscErrorCode BuildGradientReconstruction_Internal_Tree(DM dm, PetscFV fvm, DM dmFace, PetscScalar *fgeom, DM dmCell, PetscScalar *cgeom)
2458: {
2459:   DMLabel        ghostLabel;
2460:   PetscScalar   *dx, *grad, **gref;
2461:   PetscInt       dim, cStart, cEnd, c, cEndInterior, fStart, fEnd, f, nStart, nEnd, maxNumFaces = 0;
2462:   PetscSection   neighSec;
2463:   PetscInt     (*neighbors)[2];
2464:   PetscInt      *counter;

2468:   DMGetDimension(dm, &dim);
2469:   DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd);
2470:   DMPlexGetGhostCellStratum(dm, &cEndInterior, NULL);
2471:   if (cEndInterior < 0) cEndInterior = cEnd;
2472:   PetscSectionCreate(PetscObjectComm((PetscObject)dm),&neighSec);
2473:   PetscSectionSetChart(neighSec,cStart,cEndInterior);
2474:   DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd);
2475:   DMGetLabel(dm, "ghost", &ghostLabel);
2476:   for (f = fStart; f < fEnd; f++) {
2477:     const PetscInt        *fcells;
2478:     PetscBool              boundary;
2479:     PetscInt               ghost = -1;
2480:     PetscInt               numChildren, numCells, c;

2482:     if (ghostLabel) {DMLabelGetValue(ghostLabel, f, &ghost);}
2483:     DMIsBoundaryPoint(dm, f, &boundary);
2484:     DMPlexGetTreeChildren(dm, f, &numChildren, NULL);
2485:     if ((ghost >= 0) || boundary || numChildren) continue;
2486:     DMPlexGetSupportSize(dm, f, &numCells);
2487:     if (numCells == 2) {
2488:       DMPlexGetSupport(dm, f, &fcells);
2489:       for (c = 0; c < 2; c++) {
2490:         PetscInt cell = fcells[c];

2492:         if (cell >= cStart && cell < cEndInterior) {
2493:           PetscSectionAddDof(neighSec,cell,1);
2494:         }
2495:       }
2496:     }
2497:   }
2498:   PetscSectionSetUp(neighSec);
2499:   PetscSectionGetMaxDof(neighSec,&maxNumFaces);
2500:   PetscFVLeastSquaresSetMaxFaces(fvm, maxNumFaces);
2501:   nStart = 0;
2502:   PetscSectionGetStorageSize(neighSec,&nEnd);
2503:   PetscMalloc1((nEnd-nStart),&neighbors);
2504:   PetscCalloc1((cEndInterior-cStart),&counter);
2505:   for (f = fStart; f < fEnd; f++) {
2506:     const PetscInt        *fcells;
2507:     PetscBool              boundary;
2508:     PetscInt               ghost = -1;
2509:     PetscInt               numChildren, numCells, c;

2511:     if (ghostLabel) {DMLabelGetValue(ghostLabel, f, &ghost);}
2512:     DMIsBoundaryPoint(dm, f, &boundary);
2513:     DMPlexGetTreeChildren(dm, f, &numChildren, NULL);
2514:     if ((ghost >= 0) || boundary || numChildren) continue;
2515:     DMPlexGetSupportSize(dm, f, &numCells);
2516:     if (numCells == 2) {
2517:       DMPlexGetSupport(dm, f, &fcells);
2518:       for (c = 0; c < 2; c++) {
2519:         PetscInt cell = fcells[c], off;

2521:         if (cell >= cStart && cell < cEndInterior) {
2522:           PetscSectionGetOffset(neighSec,cell,&off);
2523:           off += counter[cell - cStart]++;
2524:           neighbors[off][0] = f;
2525:           neighbors[off][1] = fcells[1 - c];
2526:         }
2527:       }
2528:     }
2529:   }
2530:   PetscFree(counter);
2531:   PetscMalloc3(maxNumFaces*dim, &dx, maxNumFaces*dim, &grad, maxNumFaces, &gref);
2532:   for (c = cStart; c < cEndInterior; c++) {
2533:     PetscInt               numFaces, f, d, off, ghost = -1;
2534:     PetscFVCellGeom        *cg;

2536:     DMPlexPointLocalRead(dmCell, c, cgeom, &cg);
2537:     PetscSectionGetDof(neighSec, c, &numFaces);
2538:     PetscSectionGetOffset(neighSec, c, &off);
2539:     if (ghostLabel) {DMLabelGetValue(ghostLabel, c, &ghost);}
2540:     if (ghost < 0 && numFaces < dim) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Cell %D has only %D faces, not enough for gradient reconstruction", c, numFaces);
2541:     for (f = 0; f < numFaces; ++f) {
2542:       PetscFVCellGeom       *cg1;
2543:       PetscFVFaceGeom       *fg;
2544:       const PetscInt        *fcells;
2545:       PetscInt               ncell, side, nface;

2547:       nface = neighbors[off + f][0];
2548:       ncell = neighbors[off + f][1];
2549:       DMPlexGetSupport(dm,nface,&fcells);
2550:       side  = (c != fcells[0]);
2551:       DMPlexPointLocalRef(dmFace, nface, fgeom, &fg);
2552:       DMPlexPointLocalRead(dmCell, ncell, cgeom, &cg1);
2553:       for (d = 0; d < dim; ++d) dx[f*dim+d] = cg1->centroid[d] - cg->centroid[d];
2554:       gref[f] = fg->grad[side];  /* Gradient reconstruction term will go here */
2555:     }
2556:     PetscFVComputeGradient(fvm, numFaces, dx, grad);
2557:     for (f = 0; f < numFaces; ++f) {
2558:       for (d = 0; d < dim; ++d) gref[f][d] = grad[f*dim+d];
2559:     }
2560:   }
2561:   PetscFree3(dx, grad, gref);
2562:   PetscSectionDestroy(&neighSec);
2563:   PetscFree(neighbors);
2564:   return(0);
2565: }

2567: /*@
2568:   DMPlexComputeGradientFVM - Compute geometric factors for gradient reconstruction, which are stored in the geometry data, and compute layout for gradient data

2570:   Collective on dm

2572:   Input Parameters:
2573: + dm  - The DM
2574: . fvm - The PetscFV
2575: - cellGeometry - The face geometry from DMPlexComputeCellGeometryFVM()

2577:   Input/Output Parameter:
2578: . faceGeometry - The face geometry from DMPlexComputeFaceGeometryFVM(); on output
2579:                  the geometric factors for gradient calculation are inserted

2581:   Output Parameter:
2582: . dmGrad - The DM describing the layout of gradient data

2584:   Level: developer

2586: .seealso: DMPlexGetFaceGeometryFVM(), DMPlexGetCellGeometryFVM()
2587: @*/
2588: PetscErrorCode DMPlexComputeGradientFVM(DM dm, PetscFV fvm, Vec faceGeometry, Vec cellGeometry, DM *dmGrad)
2589: {
2590:   DM             dmFace, dmCell;
2591:   PetscScalar   *fgeom, *cgeom;
2592:   PetscSection   sectionGrad, parentSection;
2593:   PetscInt       dim, pdim, cStart, cEnd, cEndInterior, c;

2597:   DMGetDimension(dm, &dim);
2598:   PetscFVGetNumComponents(fvm, &pdim);
2599:   DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd);
2600:   DMPlexGetGhostCellStratum(dm, &cEndInterior, NULL);
2601:   /* Construct the interpolant corresponding to each face from the least-square solution over the cell neighborhood */
2602:   VecGetDM(faceGeometry, &dmFace);
2603:   VecGetDM(cellGeometry, &dmCell);
2604:   VecGetArray(faceGeometry, &fgeom);
2605:   VecGetArray(cellGeometry, &cgeom);
2606:   DMPlexGetTree(dm,&parentSection,NULL,NULL,NULL,NULL);
2607:   if (!parentSection) {
2608:     BuildGradientReconstruction_Internal(dm, fvm, dmFace, fgeom, dmCell, cgeom);
2609:   } else {
2610:     BuildGradientReconstruction_Internal_Tree(dm, fvm, dmFace, fgeom, dmCell, cgeom);
2611:   }
2612:   VecRestoreArray(faceGeometry, &fgeom);
2613:   VecRestoreArray(cellGeometry, &cgeom);
2614:   /* Create storage for gradients */
2615:   DMClone(dm, dmGrad);
2616:   PetscSectionCreate(PetscObjectComm((PetscObject) dm), &sectionGrad);
2617:   PetscSectionSetChart(sectionGrad, cStart, cEnd);
2618:   for (c = cStart; c < cEnd; ++c) {PetscSectionSetDof(sectionGrad, c, pdim*dim);}
2619:   PetscSectionSetUp(sectionGrad);
2620:   DMSetLocalSection(*dmGrad, sectionGrad);
2621:   PetscSectionDestroy(&sectionGrad);
2622:   return(0);
2623: }

2625: /*@
2626:   DMPlexGetDataFVM - Retrieve precomputed cell geometry

2628:   Collective on dm

2630:   Input Parameters:
2631: + dm  - The DM
2632: - fv  - The PetscFV

2634:   Output Parameters:
2635: + cellGeometry - The cell geometry
2636: . faceGeometry - The face geometry
2637: - gradDM       - The gradient matrices

2639:   Level: developer

2641: .seealso: DMPlexComputeGeometryFVM()
2642: @*/
2643: PetscErrorCode DMPlexGetDataFVM(DM dm, PetscFV fv, Vec *cellgeom, Vec *facegeom, DM *gradDM)
2644: {
2645:   PetscObject    cellgeomobj, facegeomobj;

2649:   PetscObjectQuery((PetscObject) dm, "DMPlex_cellgeom_fvm", &cellgeomobj);
2650:   if (!cellgeomobj) {
2651:     Vec cellgeomInt, facegeomInt;

2653:     DMPlexComputeGeometryFVM(dm, &cellgeomInt, &facegeomInt);
2654:     PetscObjectCompose((PetscObject) dm, "DMPlex_cellgeom_fvm",(PetscObject)cellgeomInt);
2655:     PetscObjectCompose((PetscObject) dm, "DMPlex_facegeom_fvm",(PetscObject)facegeomInt);
2656:     VecDestroy(&cellgeomInt);
2657:     VecDestroy(&facegeomInt);
2658:     PetscObjectQuery((PetscObject) dm, "DMPlex_cellgeom_fvm", &cellgeomobj);
2659:   }
2660:   PetscObjectQuery((PetscObject) dm, "DMPlex_facegeom_fvm", &facegeomobj);
2661:   if (cellgeom) *cellgeom = (Vec) cellgeomobj;
2662:   if (facegeom) *facegeom = (Vec) facegeomobj;
2663:   if (gradDM) {
2664:     PetscObject gradobj;
2665:     PetscBool   computeGradients;

2667:     PetscFVGetComputeGradients(fv,&computeGradients);
2668:     if (!computeGradients) {
2669:       *gradDM = NULL;
2670:       return(0);
2671:     }
2672:     PetscObjectQuery((PetscObject) dm, "DMPlex_dmgrad_fvm", &gradobj);
2673:     if (!gradobj) {
2674:       DM dmGradInt;

2676:       DMPlexComputeGradientFVM(dm,fv,(Vec) facegeomobj,(Vec) cellgeomobj,&dmGradInt);
2677:       PetscObjectCompose((PetscObject) dm, "DMPlex_dmgrad_fvm", (PetscObject)dmGradInt);
2678:       DMDestroy(&dmGradInt);
2679:       PetscObjectQuery((PetscObject) dm, "DMPlex_dmgrad_fvm", &gradobj);
2680:     }
2681:     *gradDM = (DM) gradobj;
2682:   }
2683:   return(0);
2684: }

2686: static PetscErrorCode DMPlexCoordinatesToReference_NewtonUpdate(PetscInt dimC, PetscInt dimR, PetscScalar *J, PetscScalar *invJ, PetscScalar *work,  PetscReal *resNeg, PetscReal *guess)
2687: {
2688:   PetscInt l, m;

2691:   if (dimC == dimR && dimR <= 3) {
2692:     /* invert Jacobian, multiply */
2693:     PetscScalar det, idet;

2695:     switch (dimR) {
2696:     case 1:
2697:       invJ[0] = 1./ J[0];
2698:       break;
2699:     case 2:
2700:       det = J[0] * J[3] - J[1] * J[2];
2701:       idet = 1./det;
2702:       invJ[0] =  J[3] * idet;
2703:       invJ[1] = -J[1] * idet;
2704:       invJ[2] = -J[2] * idet;
2705:       invJ[3] =  J[0] * idet;
2706:       break;
2707:     case 3:
2708:       {
2709:         invJ[0] = J[4] * J[8] - J[5] * J[7];
2710:         invJ[1] = J[2] * J[7] - J[1] * J[8];
2711:         invJ[2] = J[1] * J[5] - J[2] * J[4];
2712:         det = invJ[0] * J[0] + invJ[1] * J[3] + invJ[2] * J[6];
2713:         idet = 1./det;
2714:         invJ[0] *= idet;
2715:         invJ[1] *= idet;
2716:         invJ[2] *= idet;
2717:         invJ[3]  = idet * (J[5] * J[6] - J[3] * J[8]);
2718:         invJ[4]  = idet * (J[0] * J[8] - J[2] * J[6]);
2719:         invJ[5]  = idet * (J[2] * J[3] - J[0] * J[5]);
2720:         invJ[6]  = idet * (J[3] * J[7] - J[4] * J[6]);
2721:         invJ[7]  = idet * (J[1] * J[6] - J[0] * J[7]);
2722:         invJ[8]  = idet * (J[0] * J[4] - J[1] * J[3]);
2723:       }
2724:       break;
2725:     }
2726:     for (l = 0; l < dimR; l++) {
2727:       for (m = 0; m < dimC; m++) {
2728:         guess[l] += PetscRealPart(invJ[l * dimC + m]) * resNeg[m];
2729:       }
2730:     }
2731:   } else {
2732: #if defined(PETSC_USE_COMPLEX)
2733:     char transpose = 'C';
2734: #else
2735:     char transpose = 'T';
2736: #endif
2737:     PetscBLASInt m = dimR;
2738:     PetscBLASInt n = dimC;
2739:     PetscBLASInt one = 1;
2740:     PetscBLASInt worksize = dimR * dimC, info;

2742:     for (l = 0; l < dimC; l++) {invJ[l] = resNeg[l];}

2744:     PetscStackCallBLAS("LAPACKgels",LAPACKgels_(&transpose,&m,&n,&one,J,&m,invJ,&n,work,&worksize, &info));
2745:     if (info != 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"Bad argument to GELS");

2747:     for (l = 0; l < dimR; l++) {guess[l] += PetscRealPart(invJ[l]);}
2748:   }
2749:   return(0);
2750: }

2752: static PetscErrorCode DMPlexCoordinatesToReference_Tensor(DM dm, PetscInt cell, PetscInt numPoints, const PetscReal realCoords[], PetscReal refCoords[], Vec coords, PetscInt dimC, PetscInt dimR)
2753: {
2754:   PetscInt       coordSize, i, j, k, l, m, maxIts = 7, numV = (1 << dimR);
2755:   PetscScalar    *coordsScalar = NULL;
2756:   PetscReal      *cellData, *cellCoords, *cellCoeffs, *extJ, *resNeg;
2757:   PetscScalar    *J, *invJ, *work;

2762:   DMPlexVecGetClosure(dm, NULL, coords, cell, &coordSize, &coordsScalar);
2763:   if (coordSize < dimC * numV) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Expecting at least %D coordinates, got %D",dimC * (1 << dimR), coordSize);
2764:   DMGetWorkArray(dm, 2 * coordSize + dimR + dimC, MPIU_REAL, &cellData);
2765:   DMGetWorkArray(dm, 3 * dimR * dimC, MPIU_SCALAR, &J);
2766:   cellCoords = &cellData[0];
2767:   cellCoeffs = &cellData[coordSize];
2768:   extJ       = &cellData[2 * coordSize];
2769:   resNeg     = &cellData[2 * coordSize + dimR];
2770:   invJ       = &J[dimR * dimC];
2771:   work       = &J[2 * dimR * dimC];
2772:   if (dimR == 2) {
2773:     const PetscInt zToPlex[4] = {0, 1, 3, 2};

2775:     for (i = 0; i < 4; i++) {
2776:       PetscInt plexI = zToPlex[i];

2778:       for (j = 0; j < dimC; j++) {
2779:         cellCoords[dimC * i + j] = PetscRealPart(coordsScalar[dimC * plexI + j]);
2780:       }
2781:     }
2782:   } else if (dimR == 3) {
2783:     const PetscInt zToPlex[8] = {0, 3, 1, 2, 4, 5, 7, 6};

2785:     for (i = 0; i < 8; i++) {
2786:       PetscInt plexI = zToPlex[i];

2788:       for (j = 0; j < dimC; j++) {
2789:         cellCoords[dimC * i + j] = PetscRealPart(coordsScalar[dimC * plexI + j]);
2790:       }
2791:     }
2792:   } else {
2793:     for (i = 0; i < coordSize; i++) {cellCoords[i] = PetscRealPart(coordsScalar[i]);}
2794:   }
2795:   /* Perform the shuffling transform that converts values at the corners of [-1,1]^d to coefficients */
2796:   for (i = 0; i < dimR; i++) {
2797:     PetscReal *swap;

2799:     for (j = 0; j < (numV / 2); j++) {
2800:       for (k = 0; k < dimC; k++) {
2801:         cellCoeffs[dimC * j + k]                = 0.5 * (cellCoords[dimC * (2 * j + 1) + k] + cellCoords[dimC * 2 * j + k]);
2802:         cellCoeffs[dimC * (j + (numV / 2)) + k] = 0.5 * (cellCoords[dimC * (2 * j + 1) + k] - cellCoords[dimC * 2 * j + k]);
2803:       }
2804:     }

2806:     if (i < dimR - 1) {
2807:       swap = cellCoeffs;
2808:       cellCoeffs = cellCoords;
2809:       cellCoords = swap;
2810:     }
2811:   }
2812:   PetscArrayzero(refCoords,numPoints * dimR);
2813:   for (j = 0; j < numPoints; j++) {
2814:     for (i = 0; i < maxIts; i++) {
2815:       PetscReal *guess = &refCoords[dimR * j];

2817:       /* compute -residual and Jacobian */
2818:       for (k = 0; k < dimC; k++) {resNeg[k] = realCoords[dimC * j + k];}
2819:       for (k = 0; k < dimC * dimR; k++) {J[k] = 0.;}
2820:       for (k = 0; k < numV; k++) {
2821:         PetscReal extCoord = 1.;
2822:         for (l = 0; l < dimR; l++) {
2823:           PetscReal coord = guess[l];
2824:           PetscInt  dep   = (k & (1 << l)) >> l;

2826:           extCoord *= dep * coord + !dep;
2827:           extJ[l] = dep;

2829:           for (m = 0; m < dimR; m++) {
2830:             PetscReal coord = guess[m];
2831:             PetscInt  dep   = ((k & (1 << m)) >> m) && (m != l);
2832:             PetscReal mult  = dep * coord + !dep;

2834:             extJ[l] *= mult;
2835:           }
2836:         }
2837:         for (l = 0; l < dimC; l++) {
2838:           PetscReal coeff = cellCoeffs[dimC * k + l];

2840:           resNeg[l] -= coeff * extCoord;
2841:           for (m = 0; m < dimR; m++) {
2842:             J[dimR * l + m] += coeff * extJ[m];
2843:           }
2844:         }
2845:       }
2846:       if (0 && PetscDefined(USE_DEBUG)) {
2847:         PetscReal maxAbs = 0.;

2849:         for (l = 0; l < dimC; l++) {
2850:           maxAbs = PetscMax(maxAbs,PetscAbsReal(resNeg[l]));
2851:         }
2852:         PetscInfo4(dm,"cell %D, point %D, iter %D: res %g\n",cell,j,i,(double) maxAbs);
2853:       }

2855:       DMPlexCoordinatesToReference_NewtonUpdate(dimC,dimR,J,invJ,work,resNeg,guess);
2856:     }
2857:   }
2858:   DMRestoreWorkArray(dm, 3 * dimR * dimC, MPIU_SCALAR, &J);
2859:   DMRestoreWorkArray(dm, 2 * coordSize + dimR + dimC, MPIU_REAL, &cellData);
2860:   DMPlexVecRestoreClosure(dm, NULL, coords, cell, &coordSize, &coordsScalar);
2861:   return(0);
2862: }

2864: static PetscErrorCode DMPlexReferenceToCoordinates_Tensor(DM dm, PetscInt cell, PetscInt numPoints, const PetscReal refCoords[], PetscReal realCoords[], Vec coords, PetscInt dimC, PetscInt dimR)
2865: {
2866:   PetscInt       coordSize, i, j, k, l, numV = (1 << dimR);
2867:   PetscScalar    *coordsScalar = NULL;
2868:   PetscReal      *cellData, *cellCoords, *cellCoeffs;

2873:   DMPlexVecGetClosure(dm, NULL, coords, cell, &coordSize, &coordsScalar);
2874:   if (coordSize < dimC * numV) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Expecting at least %D coordinates, got %D",dimC * (1 << dimR), coordSize);
2875:   DMGetWorkArray(dm, 2 * coordSize, MPIU_REAL, &cellData);
2876:   cellCoords = &cellData[0];
2877:   cellCoeffs = &cellData[coordSize];
2878:   if (dimR == 2) {
2879:     const PetscInt zToPlex[4] = {0, 1, 3, 2};

2881:     for (i = 0; i < 4; i++) {
2882:       PetscInt plexI = zToPlex[i];

2884:       for (j = 0; j < dimC; j++) {
2885:         cellCoords[dimC * i + j] = PetscRealPart(coordsScalar[dimC * plexI + j]);
2886:       }
2887:     }
2888:   } else if (dimR == 3) {
2889:     const PetscInt zToPlex[8] = {0, 3, 1, 2, 4, 5, 7, 6};

2891:     for (i = 0; i < 8; i++) {
2892:       PetscInt plexI = zToPlex[i];

2894:       for (j = 0; j < dimC; j++) {
2895:         cellCoords[dimC * i + j] = PetscRealPart(coordsScalar[dimC * plexI + j]);
2896:       }
2897:     }
2898:   } else {
2899:     for (i = 0; i < coordSize; i++) {cellCoords[i] = PetscRealPart(coordsScalar[i]);}
2900:   }
2901:   /* Perform the shuffling transform that converts values at the corners of [-1,1]^d to coefficients */
2902:   for (i = 0; i < dimR; i++) {
2903:     PetscReal *swap;

2905:     for (j = 0; j < (numV / 2); j++) {
2906:       for (k = 0; k < dimC; k++) {
2907:         cellCoeffs[dimC * j + k]                = 0.5 * (cellCoords[dimC * (2 * j + 1) + k] + cellCoords[dimC * 2 * j + k]);
2908:         cellCoeffs[dimC * (j + (numV / 2)) + k] = 0.5 * (cellCoords[dimC * (2 * j + 1) + k] - cellCoords[dimC * 2 * j + k]);
2909:       }
2910:     }

2912:     if (i < dimR - 1) {
2913:       swap = cellCoeffs;
2914:       cellCoeffs = cellCoords;
2915:       cellCoords = swap;
2916:     }
2917:   }
2918:   PetscArrayzero(realCoords,numPoints * dimC);
2919:   for (j = 0; j < numPoints; j++) {
2920:     const PetscReal *guess  = &refCoords[dimR * j];
2921:     PetscReal       *mapped = &realCoords[dimC * j];

2923:     for (k = 0; k < numV; k++) {
2924:       PetscReal extCoord = 1.;
2925:       for (l = 0; l < dimR; l++) {
2926:         PetscReal coord = guess[l];
2927:         PetscInt  dep   = (k & (1 << l)) >> l;

2929:         extCoord *= dep * coord + !dep;
2930:       }
2931:       for (l = 0; l < dimC; l++) {
2932:         PetscReal coeff = cellCoeffs[dimC * k + l];

2934:         mapped[l] += coeff * extCoord;
2935:       }
2936:     }
2937:   }
2938:   DMRestoreWorkArray(dm, 2 * coordSize, MPIU_REAL, &cellData);
2939:   DMPlexVecRestoreClosure(dm, NULL, coords, cell, &coordSize, &coordsScalar);
2940:   return(0);
2941: }

2943: /* TODO: TOBY please fix this for Nc > 1 */
2944: static PetscErrorCode DMPlexCoordinatesToReference_FE(DM dm, PetscFE fe, PetscInt cell, PetscInt numPoints, const PetscReal realCoords[], PetscReal refCoords[], Vec coords, PetscInt Nc, PetscInt dimR)
2945: {
2946:   PetscInt       numComp, pdim, i, j, k, l, m, maxIter = 7, coordSize;
2947:   PetscScalar    *nodes = NULL;
2948:   PetscReal      *invV, *modes;
2949:   PetscReal      *B, *D, *resNeg;
2950:   PetscScalar    *J, *invJ, *work;

2954:   PetscFEGetDimension(fe, &pdim);
2955:   PetscFEGetNumComponents(fe, &numComp);
2956:   if (numComp != Nc) SETERRQ2(PetscObjectComm((PetscObject)dm),PETSC_ERR_SUP,"coordinate discretization must have as many components (%D) as embedding dimension (!= %D)",numComp,Nc);
2957:   DMPlexVecGetClosure(dm, NULL, coords, cell, &coordSize, &nodes);
2958:   /* convert nodes to values in the stable evaluation basis */
2959:   DMGetWorkArray(dm,pdim,MPIU_REAL,&modes);
2960:   invV = fe->invV;
2961:   for (i = 0; i < pdim; ++i) {
2962:     modes[i] = 0.;
2963:     for (j = 0; j < pdim; ++j) {
2964:       modes[i] += invV[i * pdim + j] * PetscRealPart(nodes[j]);
2965:     }
2966:   }
2967:   DMGetWorkArray(dm,pdim * Nc + pdim * Nc * dimR + Nc,MPIU_REAL,&B);
2968:   D      = &B[pdim*Nc];
2969:   resNeg = &D[pdim*Nc * dimR];
2970:   DMGetWorkArray(dm,3 * Nc * dimR,MPIU_SCALAR,&J);
2971:   invJ = &J[Nc * dimR];
2972:   work = &invJ[Nc * dimR];
2973:   for (i = 0; i < numPoints * dimR; i++) {refCoords[i] = 0.;}
2974:   for (j = 0; j < numPoints; j++) {
2975:       for (i = 0; i < maxIter; i++) { /* we could batch this so that we're not making big B and D arrays all the time */
2976:       PetscReal *guess = &refCoords[j * dimR];
2977:       PetscSpaceEvaluate(fe->basisSpace, 1, guess, B, D, NULL);
2978:       for (k = 0; k < Nc; k++) {resNeg[k] = realCoords[j * Nc + k];}
2979:       for (k = 0; k < Nc * dimR; k++) {J[k] = 0.;}
2980:       for (k = 0; k < pdim; k++) {
2981:         for (l = 0; l < Nc; l++) {
2982:           resNeg[l] -= modes[k] * B[k * Nc + l];
2983:           for (m = 0; m < dimR; m++) {
2984:             J[l * dimR + m] += modes[k] * D[(k * Nc + l) * dimR + m];
2985:           }
2986:         }
2987:       }
2988:       if (0 && PetscDefined(USE_DEBUG)) {
2989:         PetscReal maxAbs = 0.;

2991:         for (l = 0; l < Nc; l++) {
2992:           maxAbs = PetscMax(maxAbs,PetscAbsReal(resNeg[l]));
2993:         }
2994:         PetscInfo4(dm,"cell %D, point %D, iter %D: res %g\n",cell,j,i,(double) maxAbs);
2995:       }
2996:       DMPlexCoordinatesToReference_NewtonUpdate(Nc,dimR,J,invJ,work,resNeg,guess);
2997:     }
2998:   }
2999:   DMRestoreWorkArray(dm,3 * Nc * dimR,MPIU_SCALAR,&J);
3000:   DMRestoreWorkArray(dm,pdim * Nc + pdim * Nc * dimR + Nc,MPIU_REAL,&B);
3001:   DMRestoreWorkArray(dm,pdim,MPIU_REAL,&modes);
3002:   DMPlexVecRestoreClosure(dm, NULL, coords, cell, &coordSize, &nodes);
3003:   return(0);
3004: }

3006: /* TODO: TOBY please fix this for Nc > 1 */
3007: static PetscErrorCode DMPlexReferenceToCoordinates_FE(DM dm, PetscFE fe, PetscInt cell, PetscInt numPoints, const PetscReal refCoords[], PetscReal realCoords[], Vec coords, PetscInt Nc, PetscInt dimR)
3008: {
3009:   PetscInt       numComp, pdim, i, j, k, l, coordSize;
3010:   PetscScalar    *nodes = NULL;
3011:   PetscReal      *invV, *modes;
3012:   PetscReal      *B;

3016:   PetscFEGetDimension(fe, &pdim);
3017:   PetscFEGetNumComponents(fe, &numComp);
3018:   if (numComp != Nc) SETERRQ2(PetscObjectComm((PetscObject)dm),PETSC_ERR_SUP,"coordinate discretization must have as many components (%D) as embedding dimension (!= %D)",numComp,Nc);
3019:   DMPlexVecGetClosure(dm, NULL, coords, cell, &coordSize, &nodes);
3020:   /* convert nodes to values in the stable evaluation basis */
3021:   DMGetWorkArray(dm,pdim,MPIU_REAL,&modes);
3022:   invV = fe->invV;
3023:   for (i = 0; i < pdim; ++i) {
3024:     modes[i] = 0.;
3025:     for (j = 0; j < pdim; ++j) {
3026:       modes[i] += invV[i * pdim + j] * PetscRealPart(nodes[j]);
3027:     }
3028:   }
3029:   DMGetWorkArray(dm,numPoints * pdim * Nc,MPIU_REAL,&B);
3030:   PetscSpaceEvaluate(fe->basisSpace, numPoints, refCoords, B, NULL, NULL);
3031:   for (i = 0; i < numPoints * Nc; i++) {realCoords[i] = 0.;}
3032:   for (j = 0; j < numPoints; j++) {
3033:     PetscReal *mapped = &realCoords[j * Nc];

3035:     for (k = 0; k < pdim; k++) {
3036:       for (l = 0; l < Nc; l++) {
3037:         mapped[l] += modes[k] * B[(j * pdim + k) * Nc + l];
3038:       }
3039:     }
3040:   }
3041:   DMRestoreWorkArray(dm,numPoints * pdim * Nc,MPIU_REAL,&B);
3042:   DMRestoreWorkArray(dm,pdim,MPIU_REAL,&modes);
3043:   DMPlexVecRestoreClosure(dm, NULL, coords, cell, &coordSize, &nodes);
3044:   return(0);
3045: }

3047: /*@
3048:   DMPlexCoordinatesToReference - Pull coordinates back from the mesh to the reference element using a single element
3049:   map.  This inversion will be accurate inside the reference element, but may be inaccurate for mappings that do not
3050:   extend uniquely outside the reference cell (e.g, most non-affine maps)

3052:   Not collective

3054:   Input Parameters:
3055: + dm         - The mesh, with coordinate maps defined either by a PetscDS for the coordinate DM (see DMGetCoordinateDM()) or
3056:                implicitly by the coordinates of the corner vertices of the cell: as an affine map for simplicial elements, or
3057:                as a multilinear map for tensor-product elements
3058: . cell       - the cell whose map is used.
3059: . numPoints  - the number of points to locate
3060: - realCoords - (numPoints x coordinate dimension) array of coordinates (see DMGetCoordinateDim())

3062:   Output Parameters:
3063: . refCoords  - (numPoints x dimension) array of reference coordinates (see DMGetDimension())

3065:   Level: intermediate

3067: .seealso: DMPlexReferenceToCoordinates()
3068: @*/
3069: PetscErrorCode DMPlexCoordinatesToReference(DM dm, PetscInt cell, PetscInt numPoints, const PetscReal realCoords[], PetscReal refCoords[])
3070: {
3071:   PetscInt       dimC, dimR, depth, cStart, cEnd, i;
3072:   DM             coordDM = NULL;
3073:   Vec            coords;
3074:   PetscFE        fe = NULL;

3079:   DMGetDimension(dm,&dimR);
3080:   DMGetCoordinateDim(dm,&dimC);
3081:   if (dimR <= 0 || dimC <= 0 || numPoints <= 0) return(0);
3082:   DMPlexGetDepth(dm,&depth);
3083:   DMGetCoordinatesLocal(dm,&coords);
3084:   DMGetCoordinateDM(dm,&coordDM);
3085:   if (coordDM) {
3086:     PetscInt coordFields;

3088:     DMGetNumFields(coordDM,&coordFields);
3089:     if (coordFields) {
3090:       PetscClassId id;
3091:       PetscObject  disc;

3093:       DMGetField(coordDM,0,NULL,&disc);
3094:       PetscObjectGetClassId(disc,&id);
3095:       if (id == PETSCFE_CLASSID) {
3096:         fe = (PetscFE) disc;
3097:       }
3098:     }
3099:   }
3100:   DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd);
3101:   if (cell < cStart || cell >= cEnd) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"point %D not in cell range [%D,%D)",cell,cStart,cEnd);
3102:   if (!fe) { /* implicit discretization: affine or multilinear */
3103:     PetscInt  coneSize;
3104:     PetscBool isSimplex, isTensor;

3106:     DMPlexGetConeSize(dm,cell,&coneSize);
3107:     isSimplex = (coneSize == (dimR + 1)) ? PETSC_TRUE : PETSC_FALSE;
3108:     isTensor  = (coneSize == ((depth == 1) ? (1 << dimR) : (2 * dimR))) ? PETSC_TRUE : PETSC_FALSE;
3109:     if (isSimplex) {
3110:       PetscReal detJ, *v0, *J, *invJ;

3112:       DMGetWorkArray(dm,dimC + 2 * dimC * dimC, MPIU_REAL, &v0);
3113:       J    = &v0[dimC];
3114:       invJ = &J[dimC * dimC];
3115:       DMPlexComputeCellGeometryAffineFEM(dm, cell, v0, J, invJ, &detJ);
3116:       for (i = 0; i < numPoints; i++) { /* Apply the inverse affine transformation for each point */
3117:         const PetscReal x0[3] = {-1.,-1.,-1.};

3119:         CoordinatesRealToRef(dimC, dimR, x0, v0, invJ, &realCoords[dimC * i], &refCoords[dimR * i]);
3120:       }
3121:       DMRestoreWorkArray(dm,dimC + 2 * dimC * dimC, MPIU_REAL, &v0);
3122:     } else if (isTensor) {
3123:       DMPlexCoordinatesToReference_Tensor(coordDM, cell, numPoints, realCoords, refCoords, coords, dimC, dimR);
3124:     } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Unrecognized cone size %D",coneSize);
3125:   } else {
3126:     DMPlexCoordinatesToReference_FE(coordDM, fe, cell, numPoints, realCoords, refCoords, coords, dimC, dimR);
3127:   }
3128:   return(0);
3129: }

3131: /*@
3132:   DMPlexReferenceToCoordinates - Map references coordinates to coordinates in the the mesh for a single element map.

3134:   Not collective

3136:   Input Parameters:
3137: + dm         - The mesh, with coordinate maps defined either by a PetscDS for the coordinate DM (see DMGetCoordinateDM()) or
3138:                implicitly by the coordinates of the corner vertices of the cell: as an affine map for simplicial elements, or
3139:                as a multilinear map for tensor-product elements
3140: . cell       - the cell whose map is used.
3141: . numPoints  - the number of points to locate
3142: - refCoords  - (numPoints x dimension) array of reference coordinates (see DMGetDimension())

3144:   Output Parameters:
3145: . realCoords - (numPoints x coordinate dimension) array of coordinates (see DMGetCoordinateDim())

3147:    Level: intermediate

3149: .seealso: DMPlexCoordinatesToReference()
3150: @*/
3151: PetscErrorCode DMPlexReferenceToCoordinates(DM dm, PetscInt cell, PetscInt numPoints, const PetscReal refCoords[], PetscReal realCoords[])
3152: {
3153:   PetscInt       dimC, dimR, depth, cStart, cEnd, i;
3154:   DM             coordDM = NULL;
3155:   Vec            coords;
3156:   PetscFE        fe = NULL;

3161:   DMGetDimension(dm,&dimR);
3162:   DMGetCoordinateDim(dm,&dimC);
3163:   if (dimR <= 0 || dimC <= 0 || numPoints <= 0) return(0);
3164:   DMPlexGetDepth(dm,&depth);
3165:   DMGetCoordinatesLocal(dm,&coords);
3166:   DMGetCoordinateDM(dm,&coordDM);
3167:   if (coordDM) {
3168:     PetscInt coordFields;

3170:     DMGetNumFields(coordDM,&coordFields);
3171:     if (coordFields) {
3172:       PetscClassId id;
3173:       PetscObject  disc;

3175:       DMGetField(coordDM,0,NULL,&disc);
3176:       PetscObjectGetClassId(disc,&id);
3177:       if (id == PETSCFE_CLASSID) {
3178:         fe = (PetscFE) disc;
3179:       }
3180:     }
3181:   }
3182:   DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd);
3183:   if (cell < cStart || cell >= cEnd) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"point %D not in cell range [%D,%D)",cell,cStart,cEnd);
3184:   if (!fe) { /* implicit discretization: affine or multilinear */
3185:     PetscInt  coneSize;
3186:     PetscBool isSimplex, isTensor;

3188:     DMPlexGetConeSize(dm,cell,&coneSize);
3189:     isSimplex = (coneSize == (dimR + 1)) ? PETSC_TRUE : PETSC_FALSE;
3190:     isTensor  = (coneSize == ((depth == 1) ? (1 << dimR) : (2 * dimR))) ? PETSC_TRUE : PETSC_FALSE;
3191:     if (isSimplex) {
3192:       PetscReal detJ, *v0, *J;

3194:       DMGetWorkArray(dm,dimC + 2 * dimC * dimC, MPIU_REAL, &v0);
3195:       J    = &v0[dimC];
3196:       DMPlexComputeCellGeometryAffineFEM(dm, cell, v0, J, NULL, &detJ);
3197:       for (i = 0; i < numPoints; i++) { /* Apply the affine transformation for each point */
3198:         const PetscReal xi0[3] = {-1.,-1.,-1.};

3200:         CoordinatesRefToReal(dimC, dimR, xi0, v0, J, &refCoords[dimR * i], &realCoords[dimC * i]);
3201:       }
3202:       DMRestoreWorkArray(dm,dimC + 2 * dimC * dimC, MPIU_REAL, &v0);
3203:     } else if (isTensor) {
3204:       DMPlexReferenceToCoordinates_Tensor(coordDM, cell, numPoints, refCoords, realCoords, coords, dimC, dimR);
3205:     } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Unrecognized cone size %D",coneSize);
3206:   } else {
3207:     DMPlexReferenceToCoordinates_FE(coordDM, fe, cell, numPoints, refCoords, realCoords, coords, dimC, dimR);
3208:   }
3209:   return(0);
3210: }

3212: /*@C
3213:   DMPlexRemapGeometry - This function maps the original DM coordinates to new coordinates.

3215:   Not collective

3217:   Input Parameters:
3218: + dm      - The DM
3219: . time    - The time
3220: - func    - The function transforming current coordinates to new coordaintes

3222:    Calling sequence of func:
3223: $    func(PetscInt dim, PetscInt Nf, PetscInt NfAux,
3224: $         const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
3225: $         const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
3226: $         PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f[]);

3228: +  dim          - The spatial dimension
3229: .  Nf           - The number of input fields (here 1)
3230: .  NfAux        - The number of input auxiliary fields
3231: .  uOff         - The offset of the coordinates in u[] (here 0)
3232: .  uOff_x       - The offset of the coordinates in u_x[] (here 0)
3233: .  u            - The coordinate values at this point in space
3234: .  u_t          - The coordinate time derivative at this point in space (here NULL)
3235: .  u_x          - The coordinate derivatives at this point in space
3236: .  aOff         - The offset of each auxiliary field in u[]
3237: .  aOff_x       - The offset of each auxiliary field in u_x[]
3238: .  a            - The auxiliary field values at this point in space
3239: .  a_t          - The auxiliary field time derivative at this point in space (or NULL)
3240: .  a_x          - The auxiliary field derivatives at this point in space
3241: .  t            - The current time
3242: .  x            - The coordinates of this point (here not used)
3243: .  numConstants - The number of constants
3244: .  constants    - The value of each constant
3245: -  f            - The new coordinates at this point in space

3247:   Level: intermediate

3249: .seealso: DMGetCoordinates(), DMGetCoordinatesLocal(), DMGetCoordinateDM(), DMProjectFieldLocal(), DMProjectFieldLabelLocal()
3250: @*/
3251: PetscErrorCode DMPlexRemapGeometry(DM dm, PetscReal time,
3252:                                    void (*func)(PetscInt, PetscInt, PetscInt,
3253:                                                 const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[],
3254:                                                 const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[],
3255:                                                 PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]))
3256: {
3257:   DM             cdm;
3258:   DMField        cf;
3259:   Vec            lCoords, tmpCoords;

3263:   DMGetCoordinateDM(dm, &cdm);
3264:   DMGetCoordinatesLocal(dm, &lCoords);
3265:   DMGetLocalVector(cdm, &tmpCoords);
3266:   VecCopy(lCoords, tmpCoords);
3267:   /* We have to do the coordinate field manually right now since the coordinate DM will not have its own */
3268:   DMGetCoordinateField(dm, &cf);
3269:   cdm->coordinateField = cf;
3270:   DMProjectFieldLocal(cdm, time, tmpCoords, &func, INSERT_VALUES, lCoords);
3271:   cdm->coordinateField = NULL;
3272:   DMRestoreLocalVector(cdm, &tmpCoords);
3273:   DMSetCoordinatesLocal(dm, lCoords);
3274:   return(0);
3275: }

3277: /* Shear applies the transformation, assuming we fix z,
3278:   / 1  0  m_0 \
3279:   | 0  1  m_1 |
3280:   \ 0  0   1  /
3281: */
3282: static void f0_shear(PetscInt dim, PetscInt Nf, PetscInt NfAux,
3283:                      const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
3284:                      const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
3285:                      PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar coords[])
3286: {
3287:   const PetscInt Nc = uOff[1]-uOff[0];
3288:   const PetscInt ax = (PetscInt) PetscRealPart(constants[0]);
3289:   PetscInt       c;

3291:   for (c = 0; c < Nc; ++c) {
3292:     coords[c] = u[c] + constants[c+1]*u[ax];
3293:   }
3294: }

3296: /*@C
3297:   DMPlexShearGeometry - This shears the domain, meaning adds a multiple of the shear coordinate to all other coordinates.

3299:   Not collective

3301:   Input Parameters:
3302: + dm          - The DM
3303: . direction   - The shear coordinate direction, e.g. 0 is the x-axis
3304: - multipliers - The multiplier m for each direction which is not the shear direction

3306:   Level: intermediate

3308: .seealso: DMPlexRemapGeometry()
3309: @*/
3310: PetscErrorCode DMPlexShearGeometry(DM dm, DMDirection direction, PetscReal multipliers[])
3311: {
3312:   DM             cdm;
3313:   PetscDS        cds;
3314:   PetscObject    obj;
3315:   PetscClassId   id;
3316:   PetscScalar   *moduli;
3317:   const PetscInt dir = (PetscInt) direction;
3318:   PetscInt       dE, d, e;

3322:   DMGetCoordinateDM(dm, &cdm);
3323:   DMGetCoordinateDim(dm, &dE);
3324:   PetscMalloc1(dE+1, &moduli);
3325:   moduli[0] = dir;
3326:   for (d = 0, e = 0; d < dE; ++d) moduli[d+1] = d == dir ? 0.0 : (multipliers ? multipliers[e++] : 1.0);
3327:   DMGetDS(cdm, &cds);
3328:   PetscDSGetDiscretization(cds, 0, &obj);
3329:   PetscObjectGetClassId(obj, &id);
3330:   if (id != PETSCFE_CLASSID) {
3331:     Vec           lCoords;
3332:     PetscSection  cSection;
3333:     PetscScalar  *coords;
3334:     PetscInt      vStart, vEnd, v;

3336:     DMPlexGetDepthStratum(dm, 0, &vStart, &vEnd);
3337:     DMGetCoordinateSection(dm, &cSection);
3338:     DMGetCoordinatesLocal(dm, &lCoords);
3339:     VecGetArray(lCoords, &coords);
3340:     for (v = vStart; v < vEnd; ++v) {
3341:       PetscReal ds;
3342:       PetscInt  off, c;

3344:       PetscSectionGetOffset(cSection, v, &off);
3345:       ds   = PetscRealPart(coords[off+dir]);
3346:       for (c = 0; c < dE; ++c) coords[off+c] += moduli[c]*ds;
3347:     }
3348:     VecRestoreArray(lCoords, &coords);
3349:   } else {
3350:     PetscDSSetConstants(cds, dE+1, moduli);
3351:     DMPlexRemapGeometry(dm, 0.0, f0_shear);
3352:   }
3353:   PetscFree(moduli);
3354:   return(0);
3355: }