Actual source code: ts.c

  1: #include <petsc/private/tsimpl.h>
  2: #include <petscdmshell.h>
  3: #include <petscdmda.h>
  4: #include <petscviewer.h>
  5: #include <petscdraw.h>
  6: #include <petscconvest.h>

  8: #define SkipSmallValue(a,b,tol) if (PetscAbsScalar(a)< tol || PetscAbsScalar(b)< tol) continue;

 10: /* Logging support */
 11: PetscClassId  TS_CLASSID, DMTS_CLASSID;
 12: PetscLogEvent TS_Step, TS_PseudoComputeTimeStep, TS_FunctionEval, TS_JacobianEval;

 14: const char *const TSExactFinalTimeOptions[] = {"UNSPECIFIED","STEPOVER","INTERPOLATE","MATCHSTEP","TSExactFinalTimeOption","TS_EXACTFINALTIME_",NULL};


 17: /*@C
 18:    TSMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type indicated by the user

 20:    Collective on TS

 22:    Input Parameters:
 23: +  ts - TS object you wish to monitor
 24: .  name - the monitor type one is seeking
 25: .  help - message indicating what monitoring is done
 26: .  manual - manual page for the monitor
 27: .  monitor - the monitor function
 28: -  monitorsetup - a function that is called once ONLY if the user selected this monitor that may set additional features of the TS or PetscViewer objects

 30:    Level: developer

 32: .seealso: PetscOptionsGetViewer(), PetscOptionsGetReal(), PetscOptionsHasName(), PetscOptionsGetString(),
 33:           PetscOptionsGetIntArray(), PetscOptionsGetRealArray(), PetscOptionsBool()
 34:           PetscOptionsInt(), PetscOptionsString(), PetscOptionsReal(), PetscOptionsBool(),
 35:           PetscOptionsName(), PetscOptionsBegin(), PetscOptionsEnd(), PetscOptionsHead(),
 36:           PetscOptionsStringArray(),PetscOptionsRealArray(), PetscOptionsScalar(),
 37:           PetscOptionsBoolGroupBegin(), PetscOptionsBoolGroup(), PetscOptionsBoolGroupEnd(),
 38:           PetscOptionsFList(), PetscOptionsEList()
 39: @*/
 40: PetscErrorCode  TSMonitorSetFromOptions(TS ts,const char name[],const char help[], const char manual[],PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,PetscViewerAndFormat*),PetscErrorCode (*monitorsetup)(TS,PetscViewerAndFormat*))
 41: {
 42:   PetscErrorCode    ierr;
 43:   PetscViewer       viewer;
 44:   PetscViewerFormat format;
 45:   PetscBool         flg;

 48:   PetscOptionsGetViewer(PetscObjectComm((PetscObject)ts),((PetscObject) ts)->options,((PetscObject)ts)->prefix,name,&viewer,&format,&flg);
 49:   if (flg) {
 50:     PetscViewerAndFormat *vf;
 51:     PetscViewerAndFormatCreate(viewer,format,&vf);
 52:     PetscObjectDereference((PetscObject)viewer);
 53:     if (monitorsetup) {
 54:       (*monitorsetup)(ts,vf);
 55:     }
 56:     TSMonitorSet(ts,(PetscErrorCode (*)(TS,PetscInt,PetscReal,Vec,void*))monitor,vf,(PetscErrorCode (*)(void**))PetscViewerAndFormatDestroy);
 57:   }
 58:   return(0);
 59: }

 61: static PetscErrorCode TSAdaptSetDefaultType(TSAdapt adapt,TSAdaptType default_type)
 62: {

 68:   if (!((PetscObject)adapt)->type_name) {
 69:     TSAdaptSetType(adapt,default_type);
 70:   }
 71:   return(0);
 72: }

 74: /*@
 75:    TSSetFromOptions - Sets various TS parameters from user options.

 77:    Collective on TS

 79:    Input Parameter:
 80: .  ts - the TS context obtained from TSCreate()

 82:    Options Database Keys:
 83: +  -ts_type <type> - TSEULER, TSBEULER, TSSUNDIALS, TSPSEUDO, TSCN, TSRK, TSTHETA, TSALPHA, TSGLLE, TSSSP, TSGLEE, TSBSYMP
 84: .  -ts_save_trajectory - checkpoint the solution at each time-step
 85: .  -ts_max_time <time> - maximum time to compute to
 86: .  -ts_max_steps <steps> - maximum number of time-steps to take
 87: .  -ts_init_time <time> - initial time to start computation
 88: .  -ts_final_time <time> - final time to compute to (deprecated: use -ts_max_time)
 89: .  -ts_dt <dt> - initial time step
 90: .  -ts_exact_final_time <stepover,interpolate,matchstep> - whether to stop at the exact given final time and how to compute the solution at that time
 91: .  -ts_max_snes_failures <maxfailures> - Maximum number of nonlinear solve failures allowed
 92: .  -ts_max_reject <maxrejects> - Maximum number of step rejections before step fails
 93: .  -ts_error_if_step_fails <true,false> - Error if no step succeeds
 94: .  -ts_rtol <rtol> - relative tolerance for local truncation error
 95: .  -ts_atol <atol> Absolute tolerance for local truncation error
 96: .  -ts_rhs_jacobian_test_mult -mat_shell_test_mult_view - test the Jacobian at each iteration against finite difference with RHS function
 97: .  -ts_rhs_jacobian_test_mult_transpose -mat_shell_test_mult_transpose_view - test the Jacobian at each iteration against finite difference with RHS function
 98: .  -ts_adjoint_solve <yes,no> After solving the ODE/DAE solve the adjoint problem (requires -ts_save_trajectory)
 99: .  -ts_fd_color - Use finite differences with coloring to compute IJacobian
100: .  -ts_monitor - print information at each timestep
101: .  -ts_monitor_cancel - Cancel all monitors
102: .  -ts_monitor_lg_solution - Monitor solution graphically
103: .  -ts_monitor_lg_error - Monitor error graphically
104: .  -ts_monitor_error - Monitors norm of error
105: .  -ts_monitor_lg_timestep - Monitor timestep size graphically
106: .  -ts_monitor_lg_timestep_log - Monitor log timestep size graphically
107: .  -ts_monitor_lg_snes_iterations - Monitor number nonlinear iterations for each timestep graphically
108: .  -ts_monitor_lg_ksp_iterations - Monitor number nonlinear iterations for each timestep graphically
109: .  -ts_monitor_sp_eig - Monitor eigenvalues of linearized operator graphically
110: .  -ts_monitor_draw_solution - Monitor solution graphically
111: .  -ts_monitor_draw_solution_phase  <xleft,yleft,xright,yright> - Monitor solution graphically with phase diagram, requires problem with exactly 2 degrees of freedom
112: .  -ts_monitor_draw_error - Monitor error graphically, requires use to have provided TSSetSolutionFunction()
113: .  -ts_monitor_solution [ascii binary draw][:filename][:viewerformat] - monitors the solution at each timestep
114: .  -ts_monitor_solution_vtk <filename.vts,filename.vtu> - Save each time step to a binary file, use filename-%%03D.vts (filename-%%03D.vtu)
115: -  -ts_monitor_envelope - determine maximum and minimum value of each component of the solution over the solution time

117:    Notes:
118:      See SNESSetFromOptions() and KSPSetFromOptions() for how to control the nonlinear and linear solves used by the time-stepper.

120:      Certain SNES options get reset for each new nonlinear solver, for example -snes_lag_jacobian <its> and -snes_lag_preconditioner <its>, in order
121:      to retain them over the multiple nonlinear solves that TS uses you mush also provide -snes_lag_jacobian_persists true and
122:      -snes_lag_preconditioner_persists true

124:    Developer Note:
125:      We should unify all the -ts_monitor options in the way that -xxx_view has been unified

127:    Level: beginner

129: .seealso: TSGetType()
130: @*/
131: PetscErrorCode  TSSetFromOptions(TS ts)
132: {
133:   PetscBool              opt,flg,tflg;
134:   PetscErrorCode         ierr;
135:   char                   monfilename[PETSC_MAX_PATH_LEN];
136:   PetscReal              time_step;
137:   TSExactFinalTimeOption eftopt;
138:   char                   dir[16];
139:   TSIFunction            ifun;
140:   const char             *defaultType;
141:   char                   typeName[256];


146:   TSRegisterAll();
147:   TSGetIFunction(ts,NULL,&ifun,NULL);

149:   PetscObjectOptionsBegin((PetscObject)ts);
150:   if (((PetscObject)ts)->type_name) defaultType = ((PetscObject)ts)->type_name;
151:   else defaultType = ifun ? TSBEULER : TSEULER;
152:   PetscOptionsFList("-ts_type","TS method","TSSetType",TSList,defaultType,typeName,256,&opt);
153:   if (opt) {
154:     TSSetType(ts,typeName);
155:   } else {
156:     TSSetType(ts,defaultType);
157:   }

159:   /* Handle generic TS options */
160:   PetscOptionsDeprecated("-ts_final_time","-ts_max_time","3.10",NULL);
161:   PetscOptionsReal("-ts_max_time","Maximum time to run to","TSSetMaxTime",ts->max_time,&ts->max_time,NULL);
162:   PetscOptionsInt("-ts_max_steps","Maximum number of time steps","TSSetMaxSteps",ts->max_steps,&ts->max_steps,NULL);
163:   PetscOptionsReal("-ts_init_time","Initial time","TSSetTime",ts->ptime,&ts->ptime,NULL);
164:   PetscOptionsReal("-ts_dt","Initial time step","TSSetTimeStep",ts->time_step,&time_step,&flg);
165:   if (flg) {TSSetTimeStep(ts,time_step);}
166:   PetscOptionsEnum("-ts_exact_final_time","Option for handling of final time step","TSSetExactFinalTime",TSExactFinalTimeOptions,(PetscEnum)ts->exact_final_time,(PetscEnum*)&eftopt,&flg);
167:   if (flg) {TSSetExactFinalTime(ts,eftopt);}
168:   PetscOptionsInt("-ts_max_snes_failures","Maximum number of nonlinear solve failures","TSSetMaxSNESFailures",ts->max_snes_failures,&ts->max_snes_failures,NULL);
169:   PetscOptionsInt("-ts_max_reject","Maximum number of step rejections before step fails","TSSetMaxStepRejections",ts->max_reject,&ts->max_reject,NULL);
170:   PetscOptionsBool("-ts_error_if_step_fails","Error if no step succeeds","TSSetErrorIfStepFails",ts->errorifstepfailed,&ts->errorifstepfailed,NULL);
171:   PetscOptionsReal("-ts_rtol","Relative tolerance for local truncation error","TSSetTolerances",ts->rtol,&ts->rtol,NULL);
172:   PetscOptionsReal("-ts_atol","Absolute tolerance for local truncation error","TSSetTolerances",ts->atol,&ts->atol,NULL);

174:   PetscOptionsBool("-ts_rhs_jacobian_test_mult","Test the RHS Jacobian for consistency with RHS at each solve ","None",ts->testjacobian,&ts->testjacobian,NULL);
175:   PetscOptionsBool("-ts_rhs_jacobian_test_mult_transpose","Test the RHS Jacobian transpose for consistency with RHS at each solve ","None",ts->testjacobiantranspose,&ts->testjacobiantranspose,NULL);
176:   PetscOptionsBool("-ts_use_splitrhsfunction","Use the split RHS function for multirate solvers ","TSSetUseSplitRHSFunction",ts->use_splitrhsfunction,&ts->use_splitrhsfunction,NULL);
177: #if defined(PETSC_HAVE_SAWS)
178:   {
179:     PetscBool set;
180:     flg  = PETSC_FALSE;
181:     PetscOptionsBool("-ts_saws_block","Block for SAWs memory snooper at end of TSSolve","PetscObjectSAWsBlock",((PetscObject)ts)->amspublishblock,&flg,&set);
182:     if (set) {
183:       PetscObjectSAWsSetBlock((PetscObject)ts,flg);
184:     }
185:   }
186: #endif

188:   /* Monitor options */
189:   TSMonitorSetFromOptions(ts,"-ts_monitor","Monitor time and timestep size","TSMonitorDefault",TSMonitorDefault,NULL);
190:   TSMonitorSetFromOptions(ts,"-ts_monitor_extreme","Monitor extreme values of the solution","TSMonitorExtreme",TSMonitorExtreme,NULL);
191:   TSMonitorSetFromOptions(ts,"-ts_monitor_solution","View the solution at each timestep","TSMonitorSolution",TSMonitorSolution,NULL);

193:   PetscOptionsString("-ts_monitor_python","Use Python function","TSMonitorSet",NULL,monfilename,sizeof(monfilename),&flg);
194:   if (flg) {PetscPythonMonitorSet((PetscObject)ts,monfilename);}

196:   PetscOptionsName("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",&opt);
197:   if (opt) {
198:     PetscInt       howoften = 1;
199:     DM             dm;
200:     PetscBool      net;

202:     PetscOptionsInt("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",howoften,&howoften,NULL);
203:     TSGetDM(ts,&dm);
204:     PetscObjectTypeCompare((PetscObject)dm,DMNETWORK,&net);
205:     if (net) {
206:       TSMonitorLGCtxNetwork ctx;
207:       TSMonitorLGCtxNetworkCreate(ts,NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
208:       TSMonitorSet(ts,TSMonitorLGCtxNetworkSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxNetworkDestroy);
209:       PetscOptionsBool("-ts_monitor_lg_solution_semilogy","Plot the solution with a semi-log axis","",ctx->semilogy,&ctx->semilogy,NULL);
210:     } else {
211:       TSMonitorLGCtx ctx;
212:       TSMonitorLGCtxCreate(PETSC_COMM_SELF,NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
213:       TSMonitorSet(ts,TSMonitorLGSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
214:     }
215:   }

217:   PetscOptionsName("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",&opt);
218:   if (opt) {
219:     TSMonitorLGCtx ctx;
220:     PetscInt       howoften = 1;

222:     PetscOptionsInt("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",howoften,&howoften,NULL);
223:     TSMonitorLGCtxCreate(PETSC_COMM_SELF,NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
224:     TSMonitorSet(ts,TSMonitorLGError,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
225:   }
226:   TSMonitorSetFromOptions(ts,"-ts_monitor_error","View the error at each timestep","TSMonitorError",TSMonitorError,NULL);

228:   PetscOptionsName("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",&opt);
229:   if (opt) {
230:     TSMonitorLGCtx ctx;
231:     PetscInt       howoften = 1;

233:     PetscOptionsInt("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
234:     TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
235:     TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
236:   }
237:   PetscOptionsName("-ts_monitor_lg_timestep_log","Monitor log timestep size graphically","TSMonitorLGTimeStep",&opt);
238:   if (opt) {
239:     TSMonitorLGCtx ctx;
240:     PetscInt       howoften = 1;

242:     PetscOptionsInt("-ts_monitor_lg_timestep_log","Monitor log timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
243:     TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
244:     TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
245:     ctx->semilogy = PETSC_TRUE;
246:   }

248:   PetscOptionsName("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",&opt);
249:   if (opt) {
250:     TSMonitorLGCtx ctx;
251:     PetscInt       howoften = 1;

253:     PetscOptionsInt("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",howoften,&howoften,NULL);
254:     TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
255:     TSMonitorSet(ts,TSMonitorLGSNESIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
256:   }
257:   PetscOptionsName("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",&opt);
258:   if (opt) {
259:     TSMonitorLGCtx ctx;
260:     PetscInt       howoften = 1;

262:     PetscOptionsInt("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",howoften,&howoften,NULL);
263:     TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
264:     TSMonitorSet(ts,TSMonitorLGKSPIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
265:   }
266:   PetscOptionsName("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",&opt);
267:   if (opt) {
268:     TSMonitorSPEigCtx ctx;
269:     PetscInt          howoften = 1;

271:     PetscOptionsInt("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",howoften,&howoften,NULL);
272:     TSMonitorSPEigCtxCreate(PETSC_COMM_SELF,NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
273:     TSMonitorSet(ts,TSMonitorSPEig,ctx,(PetscErrorCode (*)(void**))TSMonitorSPEigCtxDestroy);
274:   }
275:   PetscOptionsName("-ts_monitor_sp_swarm","Display particle phase from the DMSwarm","TSMonitorSPSwarm",&opt);
276:   if (opt) {
277:     TSMonitorSPCtx  ctx;
278:     PetscInt        howoften = 1;
279:     PetscOptionsInt("-ts_monitor_sp_swarm","Display particles phase from the DMSwarm","TSMonitorSPSwarm",howoften,&howoften,NULL);
280:     TSMonitorSPCtxCreate(PETSC_COMM_SELF, NULL, NULL, PETSC_DECIDE, PETSC_DECIDE, 300, 300, howoften, &ctx);
281:     TSMonitorSet(ts, TSMonitorSPSwarmSolution, ctx, (PetscErrorCode (*)(void**))TSMonitorSPCtxDestroy);
282:   }
283:   opt  = PETSC_FALSE;
284:   PetscOptionsName("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",&opt);
285:   if (opt) {
286:     TSMonitorDrawCtx ctx;
287:     PetscInt         howoften = 1;

289:     PetscOptionsInt("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",howoften,&howoften,NULL);
290:     TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),NULL,"Computed Solution",PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
291:     TSMonitorSet(ts,TSMonitorDrawSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
292:   }
293:   opt  = PETSC_FALSE;
294:   PetscOptionsName("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",&opt);
295:   if (opt) {
296:     TSMonitorDrawCtx ctx;
297:     PetscReal        bounds[4];
298:     PetscInt         n = 4;
299:     PetscDraw        draw;
300:     PetscDrawAxis    axis;

302:     PetscOptionsRealArray("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",bounds,&n,NULL);
303:     if (n != 4) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Must provide bounding box of phase field");
304:     TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,300,300,1,&ctx);
305:     PetscViewerDrawGetDraw(ctx->viewer,0,&draw);
306:     PetscViewerDrawGetDrawAxis(ctx->viewer,0,&axis);
307:     PetscDrawAxisSetLimits(axis,bounds[0],bounds[2],bounds[1],bounds[3]);
308:     PetscDrawAxisSetLabels(axis,"Phase Diagram","Variable 1","Variable 2");
309:     TSMonitorSet(ts,TSMonitorDrawSolutionPhase,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
310:   }
311:   opt  = PETSC_FALSE;
312:   PetscOptionsName("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",&opt);
313:   if (opt) {
314:     TSMonitorDrawCtx ctx;
315:     PetscInt         howoften = 1;

317:     PetscOptionsInt("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",howoften,&howoften,NULL);
318:     TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),NULL,"Error",PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
319:     TSMonitorSet(ts,TSMonitorDrawError,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
320:   }
321:   opt  = PETSC_FALSE;
322:   PetscOptionsName("-ts_monitor_draw_solution_function","Monitor solution provided by TSMonitorSetSolutionFunction() graphically","TSMonitorDrawSolutionFunction",&opt);
323:   if (opt) {
324:     TSMonitorDrawCtx ctx;
325:     PetscInt         howoften = 1;

327:     PetscOptionsInt("-ts_monitor_draw_solution_function","Monitor solution provided by TSMonitorSetSolutionFunction() graphically","TSMonitorDrawSolutionFunction",howoften,&howoften,NULL);
328:     TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),NULL,"Solution provided by user function",PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
329:     TSMonitorSet(ts,TSMonitorDrawSolutionFunction,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
330:   }

332:   opt  = PETSC_FALSE;
333:   PetscOptionsString("-ts_monitor_solution_vtk","Save each time step to a binary file, use filename-%%03D.vts","TSMonitorSolutionVTK",NULL,monfilename,sizeof(monfilename),&flg);
334:   if (flg) {
335:     const char *ptr,*ptr2;
336:     char       *filetemplate;
337:     if (!monfilename[0]) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
338:     /* Do some cursory validation of the input. */
339:     PetscStrstr(monfilename,"%",(char**)&ptr);
340:     if (!ptr) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
341:     for (ptr++; ptr && *ptr; ptr++) {
342:       PetscStrchr("DdiouxX",*ptr,(char**)&ptr2);
343:       if (!ptr2 && (*ptr < '0' || '9' < *ptr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Invalid file template argument to -ts_monitor_solution_vtk, should look like filename-%%03D.vts");
344:       if (ptr2) break;
345:     }
346:     PetscStrallocpy(monfilename,&filetemplate);
347:     TSMonitorSet(ts,TSMonitorSolutionVTK,filetemplate,(PetscErrorCode (*)(void**))TSMonitorSolutionVTKDestroy);
348:   }

350:   PetscOptionsString("-ts_monitor_dmda_ray","Display a ray of the solution","None","y=0",dir,sizeof(dir),&flg);
351:   if (flg) {
352:     TSMonitorDMDARayCtx *rayctx;
353:     int                  ray = 0;
354:     DMDirection          ddir;
355:     DM                   da;
356:     PetscMPIInt          rank;

358:     if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
359:     if (dir[0] == 'x') ddir = DM_X;
360:     else if (dir[0] == 'y') ddir = DM_Y;
361:     else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
362:     sscanf(dir+2,"%d",&ray);

364:     PetscInfo2(((PetscObject)ts),"Displaying DMDA ray %c = %d\n",dir[0],ray);
365:     PetscNew(&rayctx);
366:     TSGetDM(ts,&da);
367:     DMDAGetRay(da,ddir,ray,&rayctx->ray,&rayctx->scatter);
368:     MPI_Comm_rank(PetscObjectComm((PetscObject)ts),&rank);
369:     if (!rank) {
370:       PetscViewerDrawOpen(PETSC_COMM_SELF,NULL,NULL,0,0,600,300,&rayctx->viewer);
371:     }
372:     rayctx->lgctx = NULL;
373:     TSMonitorSet(ts,TSMonitorDMDARay,rayctx,TSMonitorDMDARayDestroy);
374:   }
375:   PetscOptionsString("-ts_monitor_lg_dmda_ray","Display a ray of the solution","None","x=0",dir,sizeof(dir),&flg);
376:   if (flg) {
377:     TSMonitorDMDARayCtx *rayctx;
378:     int                 ray = 0;
379:     DMDirection         ddir;
380:     DM                  da;
381:     PetscInt            howoften = 1;

383:     if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Malformed ray %s", dir);
384:     if      (dir[0] == 'x') ddir = DM_X;
385:     else if (dir[0] == 'y') ddir = DM_Y;
386:     else SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Unknown ray direction %s", dir);
387:     sscanf(dir+2, "%d", &ray);

389:     PetscInfo2(((PetscObject) ts),"Displaying LG DMDA ray %c = %d\n", dir[0], ray);
390:     PetscNew(&rayctx);
391:     TSGetDM(ts, &da);
392:     DMDAGetRay(da, ddir, ray, &rayctx->ray, &rayctx->scatter);
393:     TSMonitorLGCtxCreate(PETSC_COMM_SELF,NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&rayctx->lgctx);
394:     TSMonitorSet(ts, TSMonitorLGDMDARay, rayctx, TSMonitorDMDARayDestroy);
395:   }

397:   PetscOptionsName("-ts_monitor_envelope","Monitor maximum and minimum value of each component of the solution","TSMonitorEnvelope",&opt);
398:   if (opt) {
399:     TSMonitorEnvelopeCtx ctx;

401:     TSMonitorEnvelopeCtxCreate(ts,&ctx);
402:     TSMonitorSet(ts,TSMonitorEnvelope,ctx,(PetscErrorCode (*)(void**))TSMonitorEnvelopeCtxDestroy);
403:   }
404:   flg  = PETSC_FALSE;
405:   PetscOptionsBool("-ts_monitor_cancel","Remove all monitors","TSMonitorCancel",flg,&flg,&opt);
406:   if (opt && flg) {TSMonitorCancel(ts);}

408:   flg  = PETSC_FALSE;
409:   PetscOptionsBool("-ts_fd_color", "Use finite differences with coloring to compute IJacobian", "TSComputeJacobianDefaultColor", flg, &flg, NULL);
410:   if (flg) {
411:     DM   dm;
412:     DMTS tdm;

414:     TSGetDM(ts, &dm);
415:     DMGetDMTS(dm, &tdm);
416:     tdm->ijacobianctx = NULL;
417:     TSSetIJacobian(ts, NULL, NULL, TSComputeIJacobianDefaultColor, NULL);
418:     PetscInfo(ts, "Setting default finite difference coloring Jacobian matrix\n");
419:   }

421:   /* Handle specific TS options */
422:   if (ts->ops->setfromoptions) {
423:     (*ts->ops->setfromoptions)(PetscOptionsObject,ts);
424:   }

426:   /* Handle TSAdapt options */
427:   TSGetAdapt(ts,&ts->adapt);
428:   TSAdaptSetDefaultType(ts->adapt,ts->default_adapt_type);
429:   TSAdaptSetFromOptions(PetscOptionsObject,ts->adapt);

431:   /* TS trajectory must be set after TS, since it may use some TS options above */
432:   tflg = ts->trajectory ? PETSC_TRUE : PETSC_FALSE;
433:   PetscOptionsBool("-ts_save_trajectory","Save the solution at each timestep","TSSetSaveTrajectory",tflg,&tflg,NULL);
434:   if (tflg) {
435:     TSSetSaveTrajectory(ts);
436:   }

438:   TSAdjointSetFromOptions(PetscOptionsObject,ts);

440:   /* process any options handlers added with PetscObjectAddOptionsHandler() */
441:   PetscObjectProcessOptionsHandlers(PetscOptionsObject,(PetscObject)ts);
442:   PetscOptionsEnd();

444:   if (ts->trajectory) {
445:     TSTrajectorySetFromOptions(ts->trajectory,ts);
446:   }

448:   /* why do we have to do this here and not during TSSetUp? */
449:   TSGetSNES(ts,&ts->snes);
450:   if (ts->problem_type == TS_LINEAR) {
451:     PetscObjectTypeCompareAny((PetscObject)ts->snes,&flg,SNESKSPONLY,SNESKSPTRANSPOSEONLY,"");
452:     if (!flg) { SNESSetType(ts->snes,SNESKSPONLY); }
453:   }
454:   SNESSetFromOptions(ts->snes);
455:   return(0);
456: }

458: /*@
459:    TSGetTrajectory - Gets the trajectory from a TS if it exists

461:    Collective on TS

463:    Input Parameters:
464: .  ts - the TS context obtained from TSCreate()

466:    Output Parameters:
467: .  tr - the TSTrajectory object, if it exists

469:    Note: This routine should be called after all TS options have been set

471:    Level: advanced

473: .seealso: TSGetTrajectory(), TSAdjointSolve(), TSTrajectory, TSTrajectoryCreate()

475: @*/
476: PetscErrorCode  TSGetTrajectory(TS ts,TSTrajectory *tr)
477: {
480:   *tr = ts->trajectory;
481:   return(0);
482: }

484: /*@
485:    TSSetSaveTrajectory - Causes the TS to save its solutions as it iterates forward in time in a TSTrajectory object

487:    Collective on TS

489:    Input Parameters:
490: .  ts - the TS context obtained from TSCreate()

492:    Options Database:
493: +  -ts_save_trajectory - saves the trajectory to a file
494: -  -ts_trajectory_type type

496: Note: This routine should be called after all TS options have been set

498:     The TSTRAJECTORYVISUALIZATION files can be loaded into Python with $PETSC_DIR/lib/petsc/bin/PetscBinaryIOTrajectory.py and
499:    MATLAB with $PETSC_DIR/share/petsc/matlab/PetscReadBinaryTrajectory.m

501:    Level: intermediate

503: .seealso: TSGetTrajectory(), TSAdjointSolve()

505: @*/
506: PetscErrorCode  TSSetSaveTrajectory(TS ts)
507: {

512:   if (!ts->trajectory) {
513:     TSTrajectoryCreate(PetscObjectComm((PetscObject)ts),&ts->trajectory);
514:   }
515:   return(0);
516: }

518: /*@
519:    TSResetTrajectory - Destroys and recreates the internal TSTrajectory object

521:    Collective on TS

523:    Input Parameters:
524: .  ts - the TS context obtained from TSCreate()

526:    Level: intermediate

528: .seealso: TSGetTrajectory(), TSAdjointSolve()

530: @*/
531: PetscErrorCode  TSResetTrajectory(TS ts)
532: {

537:   if (ts->trajectory) {
538:     TSTrajectoryDestroy(&ts->trajectory);
539:     TSTrajectoryCreate(PetscObjectComm((PetscObject)ts),&ts->trajectory);
540:   }
541:   return(0);
542: }

544: /*@
545:    TSComputeRHSJacobian - Computes the Jacobian matrix that has been
546:       set with TSSetRHSJacobian().

548:    Collective on TS

550:    Input Parameters:
551: +  ts - the TS context
552: .  t - current timestep
553: -  U - input vector

555:    Output Parameters:
556: +  A - Jacobian matrix
557: .  B - optional preconditioning matrix
558: -  flag - flag indicating matrix structure

560:    Notes:
561:    Most users should not need to explicitly call this routine, as it
562:    is used internally within the nonlinear solvers.

564:    See KSPSetOperators() for important information about setting the
565:    flag parameter.

567:    Level: developer

569: .seealso:  TSSetRHSJacobian(), KSPSetOperators()
570: @*/
571: PetscErrorCode  TSComputeRHSJacobian(TS ts,PetscReal t,Vec U,Mat A,Mat B)
572: {
573:   PetscErrorCode   ierr;
574:   PetscObjectState Ustate;
575:   PetscObjectId    Uid;
576:   DM               dm;
577:   DMTS             tsdm;
578:   TSRHSJacobian    rhsjacobianfunc;
579:   void             *ctx;
580:   TSRHSFunction    rhsfunction;

586:   TSGetDM(ts,&dm);
587:   DMGetDMTS(dm,&tsdm);
588:   DMTSGetRHSFunction(dm,&rhsfunction,NULL);
589:   DMTSGetRHSJacobian(dm,&rhsjacobianfunc,&ctx);
590:   PetscObjectStateGet((PetscObject)U,&Ustate);
591:   PetscObjectGetId((PetscObject)U,&Uid);

593:   if (ts->rhsjacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->rhsjacobian.Xid == Uid && ts->rhsjacobian.Xstate == Ustate)) && (rhsfunction != TSComputeRHSFunctionLinear)) return(0);

595:   if (ts->rhsjacobian.shift && ts->rhsjacobian.reuse) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Should not call TSComputeRHSJacobian() on a shifted matrix (shift=%lf) when RHSJacobian is reusable.",ts->rhsjacobian.shift);
596:   if (rhsjacobianfunc) {
597:     PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
598:     PetscStackPush("TS user Jacobian function");
599:     (*rhsjacobianfunc)(ts,t,U,A,B,ctx);
600:     PetscStackPop;
601:     ts->rhsjacs++;
602:     PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
603:   } else {
604:     MatZeroEntries(A);
605:     if (B && A != B) {MatZeroEntries(B);}
606:   }
607:   ts->rhsjacobian.time  = t;
608:   ts->rhsjacobian.shift = 0;
609:   ts->rhsjacobian.scale = 1.;
610:   PetscObjectGetId((PetscObject)U,&ts->rhsjacobian.Xid);
611:   PetscObjectStateGet((PetscObject)U,&ts->rhsjacobian.Xstate);
612:   return(0);
613: }

615: /*@
616:    TSComputeRHSFunction - Evaluates the right-hand-side function.

618:    Collective on TS

620:    Input Parameters:
621: +  ts - the TS context
622: .  t - current time
623: -  U - state vector

625:    Output Parameter:
626: .  y - right hand side

628:    Note:
629:    Most users should not need to explicitly call this routine, as it
630:    is used internally within the nonlinear solvers.

632:    Level: developer

634: .seealso: TSSetRHSFunction(), TSComputeIFunction()
635: @*/
636: PetscErrorCode TSComputeRHSFunction(TS ts,PetscReal t,Vec U,Vec y)
637: {
639:   TSRHSFunction  rhsfunction;
640:   TSIFunction    ifunction;
641:   void           *ctx;
642:   DM             dm;

648:   TSGetDM(ts,&dm);
649:   DMTSGetRHSFunction(dm,&rhsfunction,&ctx);
650:   DMTSGetIFunction(dm,&ifunction,NULL);

652:   if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");

654:   if (rhsfunction) {
655:     PetscLogEventBegin(TS_FunctionEval,ts,U,y,0);
656:     VecLockReadPush(U);
657:     PetscStackPush("TS user right-hand-side function");
658:     (*rhsfunction)(ts,t,U,y,ctx);
659:     PetscStackPop;
660:     VecLockReadPop(U);
661:     ts->rhsfuncs++;
662:     PetscLogEventEnd(TS_FunctionEval,ts,U,y,0);
663:   } else {
664:     VecZeroEntries(y);
665:   }
666:   return(0);
667: }

669: /*@
670:    TSComputeSolutionFunction - Evaluates the solution function.

672:    Collective on TS

674:    Input Parameters:
675: +  ts - the TS context
676: -  t - current time

678:    Output Parameter:
679: .  U - the solution

681:    Note:
682:    Most users should not need to explicitly call this routine, as it
683:    is used internally within the nonlinear solvers.

685:    Level: developer

687: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
688: @*/
689: PetscErrorCode TSComputeSolutionFunction(TS ts,PetscReal t,Vec U)
690: {
691:   PetscErrorCode     ierr;
692:   TSSolutionFunction solutionfunction;
693:   void               *ctx;
694:   DM                 dm;

699:   TSGetDM(ts,&dm);
700:   DMTSGetSolutionFunction(dm,&solutionfunction,&ctx);

702:   if (solutionfunction) {
703:     PetscStackPush("TS user solution function");
704:     (*solutionfunction)(ts,t,U,ctx);
705:     PetscStackPop;
706:   }
707:   return(0);
708: }
709: /*@
710:    TSComputeForcingFunction - Evaluates the forcing function.

712:    Collective on TS

714:    Input Parameters:
715: +  ts - the TS context
716: -  t - current time

718:    Output Parameter:
719: .  U - the function value

721:    Note:
722:    Most users should not need to explicitly call this routine, as it
723:    is used internally within the nonlinear solvers.

725:    Level: developer

727: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
728: @*/
729: PetscErrorCode TSComputeForcingFunction(TS ts,PetscReal t,Vec U)
730: {
731:   PetscErrorCode     ierr, (*forcing)(TS,PetscReal,Vec,void*);
732:   void               *ctx;
733:   DM                 dm;

738:   TSGetDM(ts,&dm);
739:   DMTSGetForcingFunction(dm,&forcing,&ctx);

741:   if (forcing) {
742:     PetscStackPush("TS user forcing function");
743:     (*forcing)(ts,t,U,ctx);
744:     PetscStackPop;
745:   }
746:   return(0);
747: }

749: static PetscErrorCode TSGetRHSVec_Private(TS ts,Vec *Frhs)
750: {
751:   Vec            F;

755:   *Frhs = NULL;
756:   TSGetIFunction(ts,&F,NULL,NULL);
757:   if (!ts->Frhs) {
758:     VecDuplicate(F,&ts->Frhs);
759:   }
760:   *Frhs = ts->Frhs;
761:   return(0);
762: }

764: PetscErrorCode TSGetRHSMats_Private(TS ts,Mat *Arhs,Mat *Brhs)
765: {
766:   Mat            A,B;
768:   TSIJacobian    ijacobian;

771:   if (Arhs) *Arhs = NULL;
772:   if (Brhs) *Brhs = NULL;
773:   TSGetIJacobian(ts,&A,&B,&ijacobian,NULL);
774:   if (Arhs) {
775:     if (!ts->Arhs) {
776:       if (ijacobian) {
777:         MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&ts->Arhs);
778:         TSSetMatStructure(ts,SAME_NONZERO_PATTERN);
779:       } else {
780:         ts->Arhs = A;
781:         PetscObjectReference((PetscObject)A);
782:       }
783:     } else {
784:       PetscBool flg;
785:       SNESGetUseMatrixFree(ts->snes,NULL,&flg);
786:       /* Handle case where user provided only RHSJacobian and used -snes_mf_operator */
787:       if (flg && !ijacobian && ts->Arhs == ts->Brhs){
788:         PetscObjectDereference((PetscObject)ts->Arhs);
789:         ts->Arhs = A;
790:         PetscObjectReference((PetscObject)A);
791:       }
792:     }
793:     *Arhs = ts->Arhs;
794:   }
795:   if (Brhs) {
796:     if (!ts->Brhs) {
797:       if (A != B) {
798:         if (ijacobian) {
799:           MatDuplicate(B,MAT_DO_NOT_COPY_VALUES,&ts->Brhs);
800:         } else {
801:           ts->Brhs = B;
802:           PetscObjectReference((PetscObject)B);
803:         }
804:       } else {
805:         PetscObjectReference((PetscObject)ts->Arhs);
806:         ts->Brhs = ts->Arhs;
807:       }
808:     }
809:     *Brhs = ts->Brhs;
810:   }
811:   return(0);
812: }

814: /*@
815:    TSComputeIFunction - Evaluates the DAE residual written in implicit form F(t,U,Udot)=0

817:    Collective on TS

819:    Input Parameters:
820: +  ts - the TS context
821: .  t - current time
822: .  U - state vector
823: .  Udot - time derivative of state vector
824: -  imex - flag indicates if the method is IMEX so that the RHSFunction should be kept separate

826:    Output Parameter:
827: .  Y - right hand side

829:    Note:
830:    Most users should not need to explicitly call this routine, as it
831:    is used internally within the nonlinear solvers.

833:    If the user did did not write their equations in implicit form, this
834:    function recasts them in implicit form.

836:    Level: developer

838: .seealso: TSSetIFunction(), TSComputeRHSFunction()
839: @*/
840: PetscErrorCode TSComputeIFunction(TS ts,PetscReal t,Vec U,Vec Udot,Vec Y,PetscBool imex)
841: {
843:   TSIFunction    ifunction;
844:   TSRHSFunction  rhsfunction;
845:   void           *ctx;
846:   DM             dm;


854:   TSGetDM(ts,&dm);
855:   DMTSGetIFunction(dm,&ifunction,&ctx);
856:   DMTSGetRHSFunction(dm,&rhsfunction,NULL);

858:   if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");

860:   PetscLogEventBegin(TS_FunctionEval,ts,U,Udot,Y);
861:   if (ifunction) {
862:     PetscStackPush("TS user implicit function");
863:     (*ifunction)(ts,t,U,Udot,Y,ctx);
864:     PetscStackPop;
865:     ts->ifuncs++;
866:   }
867:   if (imex) {
868:     if (!ifunction) {
869:       VecCopy(Udot,Y);
870:     }
871:   } else if (rhsfunction) {
872:     if (ifunction) {
873:       Vec Frhs;
874:       TSGetRHSVec_Private(ts,&Frhs);
875:       TSComputeRHSFunction(ts,t,U,Frhs);
876:       VecAXPY(Y,-1,Frhs);
877:     } else {
878:       TSComputeRHSFunction(ts,t,U,Y);
879:       VecAYPX(Y,-1,Udot);
880:     }
881:   }
882:   PetscLogEventEnd(TS_FunctionEval,ts,U,Udot,Y);
883:   return(0);
884: }

886: /*
887:    TSRecoverRHSJacobian - Recover the Jacobian matrix so that one can call TSComputeRHSJacobian() on it.

889:    Note:
890:    This routine is needed when one switches from TSComputeIJacobian() to TSComputeRHSJacobian() because the Jacobian matrix may be shifted or scaled in TSComputeIJacobian().

892: */
893: static PetscErrorCode TSRecoverRHSJacobian(TS ts,Mat A,Mat B)
894: {
895:   PetscErrorCode   ierr;

899:   if (A != ts->Arhs) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Invalid Amat");
900:   if (B != ts->Brhs) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Invalid Bmat");

902:   if (ts->rhsjacobian.shift) {
903:     MatShift(A,-ts->rhsjacobian.shift);
904:   }
905:   if (ts->rhsjacobian.scale == -1.) {
906:     MatScale(A,-1);
907:   }
908:   if (B && B == ts->Brhs && A != B) {
909:     if (ts->rhsjacobian.shift) {
910:       MatShift(B,-ts->rhsjacobian.shift);
911:     }
912:     if (ts->rhsjacobian.scale == -1.) {
913:       MatScale(B,-1);
914:     }
915:   }
916:   ts->rhsjacobian.shift = 0;
917:   ts->rhsjacobian.scale = 1.;
918:   return(0);
919: }

921: /*@
922:    TSComputeIJacobian - Evaluates the Jacobian of the DAE

924:    Collective on TS

926:    Input
927:       Input Parameters:
928: +  ts - the TS context
929: .  t - current timestep
930: .  U - state vector
931: .  Udot - time derivative of state vector
932: .  shift - shift to apply, see note below
933: -  imex - flag indicates if the method is IMEX so that the RHSJacobian should be kept separate

935:    Output Parameters:
936: +  A - Jacobian matrix
937: -  B - matrix from which the preconditioner is constructed; often the same as A

939:    Notes:
940:    If F(t,U,Udot)=0 is the DAE, the required Jacobian is

942:    dF/dU + shift*dF/dUdot

944:    Most users should not need to explicitly call this routine, as it
945:    is used internally within the nonlinear solvers.

947:    Level: developer

949: .seealso:  TSSetIJacobian()
950: @*/
951: PetscErrorCode TSComputeIJacobian(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat A,Mat B,PetscBool imex)
952: {
954:   TSIJacobian    ijacobian;
955:   TSRHSJacobian  rhsjacobian;
956:   DM             dm;
957:   void           *ctx;


968:   TSGetDM(ts,&dm);
969:   DMTSGetIJacobian(dm,&ijacobian,&ctx);
970:   DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);

972:   if (!rhsjacobian && !ijacobian) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");

974:   PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
975:   if (ijacobian) {
976:     PetscStackPush("TS user implicit Jacobian");
977:     (*ijacobian)(ts,t,U,Udot,shift,A,B,ctx);
978:     ts->ijacs++;
979:     PetscStackPop;
980:   }
981:   if (imex) {
982:     if (!ijacobian) {  /* system was written as Udot = G(t,U) */
983:       PetscBool assembled;
984:       if (rhsjacobian) {
985:         Mat Arhs = NULL;
986:         TSGetRHSMats_Private(ts,&Arhs,NULL);
987:         if (A == Arhs) {
988:           if (rhsjacobian == TSComputeRHSJacobianConstant) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Unsupported operation! cannot use TSComputeRHSJacobianConstant"); /* there is no way to reconstruct shift*M-J since J cannot be reevaluated */
989:           ts->rhsjacobian.time = PETSC_MIN_REAL;
990:         }
991:       }
992:       MatZeroEntries(A);
993:       MatAssembled(A,&assembled);
994:       if (!assembled) {
995:         MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
996:         MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
997:       }
998:       MatShift(A,shift);
999:       if (A != B) {
1000:         MatZeroEntries(B);
1001:         MatAssembled(B,&assembled);
1002:         if (!assembled) {
1003:           MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
1004:           MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
1005:         }
1006:         MatShift(B,shift);
1007:       }
1008:     }
1009:   } else {
1010:     Mat Arhs = NULL,Brhs = NULL;
1011:     if (rhsjacobian) { /* RHSJacobian needs to be converted to part of IJacobian if exists */
1012:       TSGetRHSMats_Private(ts,&Arhs,&Brhs);
1013:     }
1014:     if (Arhs == A) { /* No IJacobian matrix, so we only have the RHS matrix */
1015:       PetscObjectState Ustate;
1016:       PetscObjectId    Uid;
1017:       TSRHSFunction    rhsfunction;

1019:       DMTSGetRHSFunction(dm,&rhsfunction,NULL);
1020:       PetscObjectStateGet((PetscObject)U,&Ustate);
1021:       PetscObjectGetId((PetscObject)U,&Uid);
1022:       if ((rhsjacobian == TSComputeRHSJacobianConstant || (ts->rhsjacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->rhsjacobian.Xid == Uid && ts->rhsjacobian.Xstate == Ustate)) && rhsfunction != TSComputeRHSFunctionLinear)) && ts->rhsjacobian.scale == -1.) { /* No need to recompute RHSJacobian */
1023:         MatShift(A,shift-ts->rhsjacobian.shift); /* revert the old shift and add the new shift with a single call to MatShift */
1024:         if (A != B) {
1025:           MatShift(B,shift-ts->rhsjacobian.shift);
1026:         }
1027:       } else {
1028:         PetscBool flg;

1030:         if (ts->rhsjacobian.reuse) { /* Undo the damage */
1031:           /* MatScale has a short path for this case.
1032:              However, this code path is taken the first time TSComputeRHSJacobian is called
1033:              and the matrices have not been assembled yet */
1034:           TSRecoverRHSJacobian(ts,A,B);
1035:         }
1036:         TSComputeRHSJacobian(ts,t,U,A,B);
1037:         SNESGetUseMatrixFree(ts->snes,NULL,&flg);
1038:         /* since -snes_mf_operator uses the full SNES function it does not need to be shifted or scaled here */
1039:         if (!flg) {
1040:           MatScale(A,-1);
1041:           MatShift(A,shift);
1042:         }
1043:         if (A != B) {
1044:           MatScale(B,-1);
1045:           MatShift(B,shift);
1046:         }
1047:       }
1048:       ts->rhsjacobian.scale = -1;
1049:       ts->rhsjacobian.shift = shift;
1050:     } else if (Arhs) {          /* Both IJacobian and RHSJacobian */
1051:       if (!ijacobian) {         /* No IJacobian provided, but we have a separate RHS matrix */
1052:         MatZeroEntries(A);
1053:         MatShift(A,shift);
1054:         if (A != B) {
1055:           MatZeroEntries(B);
1056:           MatShift(B,shift);
1057:         }
1058:       }
1059:       TSComputeRHSJacobian(ts,t,U,Arhs,Brhs);
1060:       MatAXPY(A,-1,Arhs,ts->axpy_pattern);
1061:       if (A != B) {
1062:         MatAXPY(B,-1,Brhs,ts->axpy_pattern);
1063:       }
1064:     }
1065:   }
1066:   PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
1067:   return(0);
1068: }

1070: /*@C
1071:     TSSetRHSFunction - Sets the routine for evaluating the function,
1072:     where U_t = G(t,u).

1074:     Logically Collective on TS

1076:     Input Parameters:
1077: +   ts - the TS context obtained from TSCreate()
1078: .   r - vector to put the computed right hand side (or NULL to have it created)
1079: .   f - routine for evaluating the right-hand-side function
1080: -   ctx - [optional] user-defined context for private data for the
1081:           function evaluation routine (may be NULL)

1083:     Calling sequence of f:
1084: $     PetscErrorCode f(TS ts,PetscReal t,Vec u,Vec F,void *ctx);

1086: +   ts - timestep context
1087: .   t - current timestep
1088: .   u - input vector
1089: .   F - function vector
1090: -   ctx - [optional] user-defined function context

1092:     Level: beginner

1094:     Notes:
1095:     You must call this function or TSSetIFunction() to define your ODE. You cannot use this function when solving a DAE.

1097: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSSetIFunction()
1098: @*/
1099: PetscErrorCode  TSSetRHSFunction(TS ts,Vec r,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,void*),void *ctx)
1100: {
1102:   SNES           snes;
1103:   Vec            ralloc = NULL;
1104:   DM             dm;


1110:   TSGetDM(ts,&dm);
1111:   DMTSSetRHSFunction(dm,f,ctx);
1112:   TSGetSNES(ts,&snes);
1113:   if (!r && !ts->dm && ts->vec_sol) {
1114:     VecDuplicate(ts->vec_sol,&ralloc);
1115:     r = ralloc;
1116:   }
1117:   SNESSetFunction(snes,r,SNESTSFormFunction,ts);
1118:   VecDestroy(&ralloc);
1119:   return(0);
1120: }

1122: /*@C
1123:     TSSetSolutionFunction - Provide a function that computes the solution of the ODE or DAE

1125:     Logically Collective on TS

1127:     Input Parameters:
1128: +   ts - the TS context obtained from TSCreate()
1129: .   f - routine for evaluating the solution
1130: -   ctx - [optional] user-defined context for private data for the
1131:           function evaluation routine (may be NULL)

1133:     Calling sequence of f:
1134: $     PetscErrorCode f(TS ts,PetscReal t,Vec u,void *ctx);

1136: +   t - current timestep
1137: .   u - output vector
1138: -   ctx - [optional] user-defined function context

1140:     Options Database:
1141: +  -ts_monitor_lg_error - create a graphical monitor of error history, requires user to have provided TSSetSolutionFunction()
1142: -  -ts_monitor_draw_error - Monitor error graphically, requires user to have provided TSSetSolutionFunction()

1144:     Notes:
1145:     This routine is used for testing accuracy of time integration schemes when you already know the solution.
1146:     If analytic solutions are not known for your system, consider using the Method of Manufactured Solutions to
1147:     create closed-form solutions with non-physical forcing terms.

1149:     For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.

1151:     Level: beginner

1153: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetForcingFunction(), TSSetSolution(), TSGetSolution(), TSMonitorLGError(), TSMonitorDrawError()
1154: @*/
1155: PetscErrorCode  TSSetSolutionFunction(TS ts,PetscErrorCode (*f)(TS,PetscReal,Vec,void*),void *ctx)
1156: {
1158:   DM             dm;

1162:   TSGetDM(ts,&dm);
1163:   DMTSSetSolutionFunction(dm,f,ctx);
1164:   return(0);
1165: }

1167: /*@C
1168:     TSSetForcingFunction - Provide a function that computes a forcing term for a ODE or PDE

1170:     Logically Collective on TS

1172:     Input Parameters:
1173: +   ts - the TS context obtained from TSCreate()
1174: .   func - routine for evaluating the forcing function
1175: -   ctx - [optional] user-defined context for private data for the
1176:           function evaluation routine (may be NULL)

1178:     Calling sequence of func:
1179: $     PetscErrorCode func (TS ts,PetscReal t,Vec f,void *ctx);

1181: +   t - current timestep
1182: .   f - output vector
1183: -   ctx - [optional] user-defined function context

1185:     Notes:
1186:     This routine is useful for testing accuracy of time integration schemes when using the Method of Manufactured Solutions to
1187:     create closed-form solutions with a non-physical forcing term. It allows you to use the Method of Manufactored Solution without directly editing the
1188:     definition of the problem you are solving and hence possibly introducing bugs.

1190:     This replaces the ODE F(u,u_t,t) = 0 the TS is solving with F(u,u_t,t) - func(t) = 0

1192:     This forcing function does not depend on the solution to the equations, it can only depend on spatial location, time, and possibly parameters, the
1193:     parameters can be passed in the ctx variable.

1195:     For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.

1197:     Level: beginner

1199: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetSolutionFunction()
1200: @*/
1201: PetscErrorCode  TSSetForcingFunction(TS ts,TSForcingFunction func,void *ctx)
1202: {
1204:   DM             dm;

1208:   TSGetDM(ts,&dm);
1209:   DMTSSetForcingFunction(dm,func,ctx);
1210:   return(0);
1211: }

1213: /*@C
1214:    TSSetRHSJacobian - Sets the function to compute the Jacobian of G,
1215:    where U_t = G(U,t), as well as the location to store the matrix.

1217:    Logically Collective on TS

1219:    Input Parameters:
1220: +  ts  - the TS context obtained from TSCreate()
1221: .  Amat - (approximate) Jacobian matrix
1222: .  Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1223: .  f   - the Jacobian evaluation routine
1224: -  ctx - [optional] user-defined context for private data for the
1225:          Jacobian evaluation routine (may be NULL)

1227:    Calling sequence of f:
1228: $     PetscErrorCode f(TS ts,PetscReal t,Vec u,Mat A,Mat B,void *ctx);

1230: +  t - current timestep
1231: .  u - input vector
1232: .  Amat - (approximate) Jacobian matrix
1233: .  Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1234: -  ctx - [optional] user-defined context for matrix evaluation routine

1236:    Notes:
1237:    You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value

1239:    The TS solver may modify the nonzero structure and the entries of the matrices Amat and Pmat between the calls to f()
1240:    You should not assume the values are the same in the next call to f() as you set them in the previous call.

1242:    Level: beginner

1244: .seealso: SNESComputeJacobianDefaultColor(), TSSetRHSFunction(), TSRHSJacobianSetReuse(), TSSetIJacobian()

1246: @*/
1247: PetscErrorCode  TSSetRHSJacobian(TS ts,Mat Amat,Mat Pmat,TSRHSJacobian f,void *ctx)
1248: {
1250:   SNES           snes;
1251:   DM             dm;
1252:   TSIJacobian    ijacobian;


1261:   TSGetDM(ts,&dm);
1262:   DMTSSetRHSJacobian(dm,f,ctx);
1263:   DMTSGetIJacobian(dm,&ijacobian,NULL);
1264:   TSGetSNES(ts,&snes);
1265:   if (!ijacobian) {
1266:     SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1267:   }
1268:   if (Amat) {
1269:     PetscObjectReference((PetscObject)Amat);
1270:     MatDestroy(&ts->Arhs);
1271:     ts->Arhs = Amat;
1272:   }
1273:   if (Pmat) {
1274:     PetscObjectReference((PetscObject)Pmat);
1275:     MatDestroy(&ts->Brhs);
1276:     ts->Brhs = Pmat;
1277:   }
1278:   return(0);
1279: }

1281: /*@C
1282:    TSSetIFunction - Set the function to compute F(t,U,U_t) where F() = 0 is the DAE to be solved.

1284:    Logically Collective on TS

1286:    Input Parameters:
1287: +  ts  - the TS context obtained from TSCreate()
1288: .  r   - vector to hold the residual (or NULL to have it created internally)
1289: .  f   - the function evaluation routine
1290: -  ctx - user-defined context for private data for the function evaluation routine (may be NULL)

1292:    Calling sequence of f:
1293: $     PetscErrorCode f(TS ts,PetscReal t,Vec u,Vec u_t,Vec F,ctx);

1295: +  t   - time at step/stage being solved
1296: .  u   - state vector
1297: .  u_t - time derivative of state vector
1298: .  F   - function vector
1299: -  ctx - [optional] user-defined context for matrix evaluation routine

1301:    Important:
1302:    The user MUST call either this routine or TSSetRHSFunction() to define the ODE.  When solving DAEs you must use this function.

1304:    Level: beginner

1306: .seealso: TSSetRHSJacobian(), TSSetRHSFunction(), TSSetIJacobian()
1307: @*/
1308: PetscErrorCode  TSSetIFunction(TS ts,Vec r,TSIFunction f,void *ctx)
1309: {
1311:   SNES           snes;
1312:   Vec            ralloc = NULL;
1313:   DM             dm;


1319:   TSGetDM(ts,&dm);
1320:   DMTSSetIFunction(dm,f,ctx);

1322:   TSGetSNES(ts,&snes);
1323:   if (!r && !ts->dm && ts->vec_sol) {
1324:     VecDuplicate(ts->vec_sol,&ralloc);
1325:     r  = ralloc;
1326:   }
1327:   SNESSetFunction(snes,r,SNESTSFormFunction,ts);
1328:   VecDestroy(&ralloc);
1329:   return(0);
1330: }

1332: /*@C
1333:    TSGetIFunction - Returns the vector where the implicit residual is stored and the function/contex to compute it.

1335:    Not Collective

1337:    Input Parameter:
1338: .  ts - the TS context

1340:    Output Parameter:
1341: +  r - vector to hold residual (or NULL)
1342: .  func - the function to compute residual (or NULL)
1343: -  ctx - the function context (or NULL)

1345:    Level: advanced

1347: .seealso: TSSetIFunction(), SNESGetFunction()
1348: @*/
1349: PetscErrorCode TSGetIFunction(TS ts,Vec *r,TSIFunction *func,void **ctx)
1350: {
1352:   SNES           snes;
1353:   DM             dm;

1357:   TSGetSNES(ts,&snes);
1358:   SNESGetFunction(snes,r,NULL,NULL);
1359:   TSGetDM(ts,&dm);
1360:   DMTSGetIFunction(dm,func,ctx);
1361:   return(0);
1362: }

1364: /*@C
1365:    TSGetRHSFunction - Returns the vector where the right hand side is stored and the function/context to compute it.

1367:    Not Collective

1369:    Input Parameter:
1370: .  ts - the TS context

1372:    Output Parameter:
1373: +  r - vector to hold computed right hand side (or NULL)
1374: .  func - the function to compute right hand side (or NULL)
1375: -  ctx - the function context (or NULL)

1377:    Level: advanced

1379: .seealso: TSSetRHSFunction(), SNESGetFunction()
1380: @*/
1381: PetscErrorCode TSGetRHSFunction(TS ts,Vec *r,TSRHSFunction *func,void **ctx)
1382: {
1384:   SNES           snes;
1385:   DM             dm;

1389:   TSGetSNES(ts,&snes);
1390:   SNESGetFunction(snes,r,NULL,NULL);
1391:   TSGetDM(ts,&dm);
1392:   DMTSGetRHSFunction(dm,func,ctx);
1393:   return(0);
1394: }

1396: /*@C
1397:    TSSetIJacobian - Set the function to compute the matrix dF/dU + a*dF/dU_t where F(t,U,U_t) is the function
1398:         provided with TSSetIFunction().

1400:    Logically Collective on TS

1402:    Input Parameters:
1403: +  ts  - the TS context obtained from TSCreate()
1404: .  Amat - (approximate) Jacobian matrix
1405: .  Pmat - matrix used to compute preconditioner (usually the same as Amat)
1406: .  f   - the Jacobian evaluation routine
1407: -  ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)

1409:    Calling sequence of f:
1410: $    PetscErrorCode f(TS ts,PetscReal t,Vec U,Vec U_t,PetscReal a,Mat Amat,Mat Pmat,void *ctx);

1412: +  t    - time at step/stage being solved
1413: .  U    - state vector
1414: .  U_t  - time derivative of state vector
1415: .  a    - shift
1416: .  Amat - (approximate) Jacobian of F(t,U,W+a*U), equivalent to dF/dU + a*dF/dU_t
1417: .  Pmat - matrix used for constructing preconditioner, usually the same as Amat
1418: -  ctx  - [optional] user-defined context for matrix evaluation routine

1420:    Notes:
1421:    The matrices Amat and Pmat are exactly the matrices that are used by SNES for the nonlinear solve.

1423:    If you know the operator Amat has a null space you can use MatSetNullSpace() and MatSetTransposeNullSpace() to supply the null
1424:    space to Amat and the KSP solvers will automatically use that null space as needed during the solution process.

1426:    The matrix dF/dU + a*dF/dU_t you provide turns out to be
1427:    the Jacobian of F(t,U,W+a*U) where F(t,U,U_t) = 0 is the DAE to be solved.
1428:    The time integrator internally approximates U_t by W+a*U where the positive "shift"
1429:    a and vector W depend on the integration method, step size, and past states. For example with
1430:    the backward Euler method a = 1/dt and W = -a*U(previous timestep) so
1431:    W + a*U = a*(U - U(previous timestep)) = (U - U(previous timestep))/dt

1433:    You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value

1435:    The TS solver may modify the nonzero structure and the entries of the matrices Amat and Pmat between the calls to f()
1436:    You should not assume the values are the same in the next call to f() as you set them in the previous call.

1438:    Level: beginner

1440: .seealso: TSSetIFunction(), TSSetRHSJacobian(), SNESComputeJacobianDefaultColor(), SNESComputeJacobianDefault(), TSSetRHSFunction()

1442: @*/
1443: PetscErrorCode  TSSetIJacobian(TS ts,Mat Amat,Mat Pmat,TSIJacobian f,void *ctx)
1444: {
1446:   SNES           snes;
1447:   DM             dm;


1456:   TSGetDM(ts,&dm);
1457:   DMTSSetIJacobian(dm,f,ctx);

1459:   TSGetSNES(ts,&snes);
1460:   SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1461:   return(0);
1462: }

1464: /*@
1465:    TSRHSJacobianSetReuse - restore RHS Jacobian before re-evaluating.  Without this flag, TS will change the sign and
1466:    shift the RHS Jacobian for a finite-time-step implicit solve, in which case the user function will need to recompute
1467:    the entire Jacobian.  The reuse flag must be set if the evaluation function will assume that the matrix entries have
1468:    not been changed by the TS.

1470:    Logically Collective

1472:    Input Arguments:
1473: +  ts - TS context obtained from TSCreate()
1474: -  reuse - PETSC_TRUE if the RHS Jacobian

1476:    Level: intermediate

1478: .seealso: TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
1479: @*/
1480: PetscErrorCode TSRHSJacobianSetReuse(TS ts,PetscBool reuse)
1481: {
1483:   ts->rhsjacobian.reuse = reuse;
1484:   return(0);
1485: }

1487: /*@C
1488:    TSSetI2Function - Set the function to compute F(t,U,U_t,U_tt) where F = 0 is the DAE to be solved.

1490:    Logically Collective on TS

1492:    Input Parameters:
1493: +  ts  - the TS context obtained from TSCreate()
1494: .  F   - vector to hold the residual (or NULL to have it created internally)
1495: .  fun - the function evaluation routine
1496: -  ctx - user-defined context for private data for the function evaluation routine (may be NULL)

1498:    Calling sequence of fun:
1499: $     PetscErrorCode fun(TS ts,PetscReal t,Vec U,Vec U_t,Vec U_tt,Vec F,ctx);

1501: +  t    - time at step/stage being solved
1502: .  U    - state vector
1503: .  U_t  - time derivative of state vector
1504: .  U_tt - second time derivative of state vector
1505: .  F    - function vector
1506: -  ctx  - [optional] user-defined context for matrix evaluation routine (may be NULL)

1508:    Level: beginner

1510: .seealso: TSSetI2Jacobian(), TSSetIFunction(), TSCreate(), TSSetRHSFunction()
1511: @*/
1512: PetscErrorCode TSSetI2Function(TS ts,Vec F,TSI2Function fun,void *ctx)
1513: {
1514:   DM             dm;

1520:   TSSetIFunction(ts,F,NULL,NULL);
1521:   TSGetDM(ts,&dm);
1522:   DMTSSetI2Function(dm,fun,ctx);
1523:   return(0);
1524: }

1526: /*@C
1527:   TSGetI2Function - Returns the vector where the implicit residual is stored and the function/contex to compute it.

1529:   Not Collective

1531:   Input Parameter:
1532: . ts - the TS context

1534:   Output Parameter:
1535: + r - vector to hold residual (or NULL)
1536: . fun - the function to compute residual (or NULL)
1537: - ctx - the function context (or NULL)

1539:   Level: advanced

1541: .seealso: TSSetIFunction(), SNESGetFunction(), TSCreate()
1542: @*/
1543: PetscErrorCode TSGetI2Function(TS ts,Vec *r,TSI2Function *fun,void **ctx)
1544: {
1546:   SNES           snes;
1547:   DM             dm;

1551:   TSGetSNES(ts,&snes);
1552:   SNESGetFunction(snes,r,NULL,NULL);
1553:   TSGetDM(ts,&dm);
1554:   DMTSGetI2Function(dm,fun,ctx);
1555:   return(0);
1556: }

1558: /*@C
1559:    TSSetI2Jacobian - Set the function to compute the matrix dF/dU + v*dF/dU_t  + a*dF/dU_tt
1560:         where F(t,U,U_t,U_tt) is the function you provided with TSSetI2Function().

1562:    Logically Collective on TS

1564:    Input Parameters:
1565: +  ts  - the TS context obtained from TSCreate()
1566: .  J   - Jacobian matrix
1567: .  P   - preconditioning matrix for J (may be same as J)
1568: .  jac - the Jacobian evaluation routine
1569: -  ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)

1571:    Calling sequence of jac:
1572: $    PetscErrorCode jac(TS ts,PetscReal t,Vec U,Vec U_t,Vec U_tt,PetscReal v,PetscReal a,Mat J,Mat P,void *ctx);

1574: +  t    - time at step/stage being solved
1575: .  U    - state vector
1576: .  U_t  - time derivative of state vector
1577: .  U_tt - second time derivative of state vector
1578: .  v    - shift for U_t
1579: .  a    - shift for U_tt
1580: .  J    - Jacobian of G(U) = F(t,U,W+v*U,W'+a*U), equivalent to dF/dU + v*dF/dU_t  + a*dF/dU_tt
1581: .  P    - preconditioning matrix for J, may be same as J
1582: -  ctx  - [optional] user-defined context for matrix evaluation routine

1584:    Notes:
1585:    The matrices J and P are exactly the matrices that are used by SNES for the nonlinear solve.

1587:    The matrix dF/dU + v*dF/dU_t + a*dF/dU_tt you provide turns out to be
1588:    the Jacobian of G(U) = F(t,U,W+v*U,W'+a*U) where F(t,U,U_t,U_tt) = 0 is the DAE to be solved.
1589:    The time integrator internally approximates U_t by W+v*U and U_tt by W'+a*U  where the positive "shift"
1590:    parameters 'v' and 'a' and vectors W, W' depend on the integration method, step size, and past states.

1592:    Level: beginner

1594: .seealso: TSSetI2Function(), TSGetI2Jacobian()
1595: @*/
1596: PetscErrorCode TSSetI2Jacobian(TS ts,Mat J,Mat P,TSI2Jacobian jac,void *ctx)
1597: {
1598:   DM             dm;

1605:   TSSetIJacobian(ts,J,P,NULL,NULL);
1606:   TSGetDM(ts,&dm);
1607:   DMTSSetI2Jacobian(dm,jac,ctx);
1608:   return(0);
1609: }

1611: /*@C
1612:   TSGetI2Jacobian - Returns the implicit Jacobian at the present timestep.

1614:   Not Collective, but parallel objects are returned if TS is parallel

1616:   Input Parameter:
1617: . ts  - The TS context obtained from TSCreate()

1619:   Output Parameters:
1620: + J  - The (approximate) Jacobian of F(t,U,U_t,U_tt)
1621: . P - The matrix from which the preconditioner is constructed, often the same as J
1622: . jac - The function to compute the Jacobian matrices
1623: - ctx - User-defined context for Jacobian evaluation routine

1625:   Notes:
1626:     You can pass in NULL for any return argument you do not need.

1628:   Level: advanced

1630: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetStepNumber(), TSSetI2Jacobian(), TSGetI2Function(), TSCreate()

1632: @*/
1633: PetscErrorCode  TSGetI2Jacobian(TS ts,Mat *J,Mat *P,TSI2Jacobian *jac,void **ctx)
1634: {
1636:   SNES           snes;
1637:   DM             dm;

1640:   TSGetSNES(ts,&snes);
1641:   SNESSetUpMatrices(snes);
1642:   SNESGetJacobian(snes,J,P,NULL,NULL);
1643:   TSGetDM(ts,&dm);
1644:   DMTSGetI2Jacobian(dm,jac,ctx);
1645:   return(0);
1646: }

1648: /*@
1649:   TSComputeI2Function - Evaluates the DAE residual written in implicit form F(t,U,U_t,U_tt) = 0

1651:   Collective on TS

1653:   Input Parameters:
1654: + ts - the TS context
1655: . t - current time
1656: . U - state vector
1657: . V - time derivative of state vector (U_t)
1658: - A - second time derivative of state vector (U_tt)

1660:   Output Parameter:
1661: . F - the residual vector

1663:   Note:
1664:   Most users should not need to explicitly call this routine, as it
1665:   is used internally within the nonlinear solvers.

1667:   Level: developer

1669: .seealso: TSSetI2Function(), TSGetI2Function()
1670: @*/
1671: PetscErrorCode TSComputeI2Function(TS ts,PetscReal t,Vec U,Vec V,Vec A,Vec F)
1672: {
1673:   DM             dm;
1674:   TSI2Function   I2Function;
1675:   void           *ctx;
1676:   TSRHSFunction  rhsfunction;


1686:   TSGetDM(ts,&dm);
1687:   DMTSGetI2Function(dm,&I2Function,&ctx);
1688:   DMTSGetRHSFunction(dm,&rhsfunction,NULL);

1690:   if (!I2Function) {
1691:     TSComputeIFunction(ts,t,U,A,F,PETSC_FALSE);
1692:     return(0);
1693:   }

1695:   PetscLogEventBegin(TS_FunctionEval,ts,U,V,F);

1697:   PetscStackPush("TS user implicit function");
1698:   I2Function(ts,t,U,V,A,F,ctx);
1699:   PetscStackPop;

1701:   if (rhsfunction) {
1702:     Vec Frhs;
1703:     TSGetRHSVec_Private(ts,&Frhs);
1704:     TSComputeRHSFunction(ts,t,U,Frhs);
1705:     VecAXPY(F,-1,Frhs);
1706:   }

1708:   PetscLogEventEnd(TS_FunctionEval,ts,U,V,F);
1709:   return(0);
1710: }

1712: /*@
1713:   TSComputeI2Jacobian - Evaluates the Jacobian of the DAE

1715:   Collective on TS

1717:   Input Parameters:
1718: + ts - the TS context
1719: . t - current timestep
1720: . U - state vector
1721: . V - time derivative of state vector
1722: . A - second time derivative of state vector
1723: . shiftV - shift to apply, see note below
1724: - shiftA - shift to apply, see note below

1726:   Output Parameters:
1727: + J - Jacobian matrix
1728: - P - optional preconditioning matrix

1730:   Notes:
1731:   If F(t,U,V,A)=0 is the DAE, the required Jacobian is

1733:   dF/dU + shiftV*dF/dV + shiftA*dF/dA

1735:   Most users should not need to explicitly call this routine, as it
1736:   is used internally within the nonlinear solvers.

1738:   Level: developer

1740: .seealso:  TSSetI2Jacobian()
1741: @*/
1742: PetscErrorCode TSComputeI2Jacobian(TS ts,PetscReal t,Vec U,Vec V,Vec A,PetscReal shiftV,PetscReal shiftA,Mat J,Mat P)
1743: {
1744:   DM             dm;
1745:   TSI2Jacobian   I2Jacobian;
1746:   void           *ctx;
1747:   TSRHSJacobian  rhsjacobian;


1758:   TSGetDM(ts,&dm);
1759:   DMTSGetI2Jacobian(dm,&I2Jacobian,&ctx);
1760:   DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);

1762:   if (!I2Jacobian) {
1763:     TSComputeIJacobian(ts,t,U,A,shiftA,J,P,PETSC_FALSE);
1764:     return(0);
1765:   }

1767:   PetscLogEventBegin(TS_JacobianEval,ts,U,J,P);

1769:   PetscStackPush("TS user implicit Jacobian");
1770:   I2Jacobian(ts,t,U,V,A,shiftV,shiftA,J,P,ctx);
1771:   PetscStackPop;

1773:   if (rhsjacobian) {
1774:     Mat Jrhs,Prhs;
1775:     TSGetRHSMats_Private(ts,&Jrhs,&Prhs);
1776:     TSComputeRHSJacobian(ts,t,U,Jrhs,Prhs);
1777:     MatAXPY(J,-1,Jrhs,ts->axpy_pattern);
1778:     if (P != J) {MatAXPY(P,-1,Prhs,ts->axpy_pattern);}
1779:   }

1781:   PetscLogEventEnd(TS_JacobianEval,ts,U,J,P);
1782:   return(0);
1783: }

1785: /*@C
1786:    TSSetTransientVariable - sets function to transform from state to transient variables

1788:    Logically Collective

1790:    Input Arguments:
1791: +  ts - time stepping context on which to change the transient variable
1792: .  tvar - a function that transforms to transient variables
1793: -  ctx - a context for tvar

1795:     Calling sequence of tvar:
1796: $     PetscErrorCode tvar(TS ts,Vec p,Vec c,void *ctx);

1798: +   ts - timestep context
1799: .   p - input vector (primative form)
1800: .   c - output vector, transient variables (conservative form)
1801: -   ctx - [optional] user-defined function context

1803:    Level: advanced

1805:    Notes:
1806:    This is typically used to transform from primitive to conservative variables so that a time integrator (e.g., TSBDF)
1807:    can be conservative.  In this context, primitive variables P are used to model the state (e.g., because they lead to
1808:    well-conditioned formulations even in limiting cases such as low-Mach or zero porosity).  The transient variable is
1809:    C(P), specified by calling this function.  An IFunction thus receives arguments (P, Cdot) and the IJacobian must be
1810:    evaluated via the chain rule, as in

1812:      dF/dP + shift * dF/dCdot dC/dP.

1814: .seealso: DMTSSetTransientVariable(), DMTSGetTransientVariable(), TSSetIFunction(), TSSetIJacobian()
1815: @*/
1816: PetscErrorCode TSSetTransientVariable(TS ts,TSTransientVariable tvar,void *ctx)
1817: {
1819:   DM             dm;

1823:   TSGetDM(ts,&dm);
1824:   DMTSSetTransientVariable(dm,tvar,ctx);
1825:   return(0);
1826: }

1828: /*@
1829:    TSComputeTransientVariable - transforms state (primitive) variables to transient (conservative) variables

1831:    Logically Collective

1833:    Input Parameters:
1834: +  ts - TS on which to compute
1835: -  U - state vector to be transformed to transient variables

1837:    Output Parameters:
1838: .  C - transient (conservative) variable

1840:    Developer Notes:
1841:    If DMTSSetTransientVariable() has not been called, then C is not modified in this routine and C=NULL is allowed.
1842:    This makes it safe to call without a guard.  One can use TSHasTransientVariable() to check if transient variables are
1843:    being used.

1845:    Level: developer

1847: .seealso: DMTSSetTransientVariable(), TSComputeIFunction(), TSComputeIJacobian()
1848: @*/
1849: PetscErrorCode TSComputeTransientVariable(TS ts,Vec U,Vec C)
1850: {
1852:   DM             dm;
1853:   DMTS           dmts;

1858:   TSGetDM(ts,&dm);
1859:   DMGetDMTS(dm,&dmts);
1860:   if (dmts->ops->transientvar) {
1862:     (*dmts->ops->transientvar)(ts,U,C,dmts->transientvarctx);
1863:   }
1864:   return(0);
1865: }

1867: /*@
1868:    TSHasTransientVariable - determine whether transient variables have been set

1870:    Logically Collective

1872:    Input Parameters:
1873: .  ts - TS on which to compute

1875:    Output Parameters:
1876: .  has - PETSC_TRUE if transient variables have been set

1878:    Level: developer

1880: .seealso: DMTSSetTransientVariable(), TSComputeTransientVariable()
1881: @*/
1882: PetscErrorCode TSHasTransientVariable(TS ts,PetscBool *has)
1883: {
1885:   DM             dm;
1886:   DMTS           dmts;

1890:   TSGetDM(ts,&dm);
1891:   DMGetDMTS(dm,&dmts);
1892:   *has = dmts->ops->transientvar ? PETSC_TRUE : PETSC_FALSE;
1893:   return(0);
1894: }

1896: /*@
1897:    TS2SetSolution - Sets the initial solution and time derivative vectors
1898:    for use by the TS routines handling second order equations.

1900:    Logically Collective on TS

1902:    Input Parameters:
1903: +  ts - the TS context obtained from TSCreate()
1904: .  u - the solution vector
1905: -  v - the time derivative vector

1907:    Level: beginner

1909: @*/
1910: PetscErrorCode  TS2SetSolution(TS ts,Vec u,Vec v)
1911: {

1918:   TSSetSolution(ts,u);
1919:   PetscObjectReference((PetscObject)v);
1920:   VecDestroy(&ts->vec_dot);
1921:   ts->vec_dot = v;
1922:   return(0);
1923: }

1925: /*@
1926:    TS2GetSolution - Returns the solution and time derivative at the present timestep
1927:    for second order equations. It is valid to call this routine inside the function
1928:    that you are evaluating in order to move to the new timestep. This vector not
1929:    changed until the solution at the next timestep has been calculated.

1931:    Not Collective, but Vec returned is parallel if TS is parallel

1933:    Input Parameter:
1934: .  ts - the TS context obtained from TSCreate()

1936:    Output Parameter:
1937: +  u - the vector containing the solution
1938: -  v - the vector containing the time derivative

1940:    Level: intermediate

1942: .seealso: TS2SetSolution(), TSGetTimeStep(), TSGetTime()

1944: @*/
1945: PetscErrorCode  TS2GetSolution(TS ts,Vec *u,Vec *v)
1946: {
1951:   if (u) *u = ts->vec_sol;
1952:   if (v) *v = ts->vec_dot;
1953:   return(0);
1954: }

1956: /*@C
1957:   TSLoad - Loads a KSP that has been stored in binary  with KSPView().

1959:   Collective on PetscViewer

1961:   Input Parameters:
1962: + newdm - the newly loaded TS, this needs to have been created with TSCreate() or
1963:            some related function before a call to TSLoad().
1964: - viewer - binary file viewer, obtained from PetscViewerBinaryOpen()

1966:    Level: intermediate

1968:   Notes:
1969:    The type is determined by the data in the file, any type set into the TS before this call is ignored.

1971:   Notes for advanced users:
1972:   Most users should not need to know the details of the binary storage
1973:   format, since TSLoad() and TSView() completely hide these details.
1974:   But for anyone who's interested, the standard binary matrix storage
1975:   format is
1976: .vb
1977:      has not yet been determined
1978: .ve

1980: .seealso: PetscViewerBinaryOpen(), TSView(), MatLoad(), VecLoad()
1981: @*/
1982: PetscErrorCode  TSLoad(TS ts, PetscViewer viewer)
1983: {
1985:   PetscBool      isbinary;
1986:   PetscInt       classid;
1987:   char           type[256];
1988:   DMTS           sdm;
1989:   DM             dm;

1994:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1995:   if (!isbinary) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Invalid viewer; open viewer with PetscViewerBinaryOpen()");

1997:   PetscViewerBinaryRead(viewer,&classid,1,NULL,PETSC_INT);
1998:   if (classid != TS_FILE_CLASSID) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Not TS next in file");
1999:   PetscViewerBinaryRead(viewer,type,256,NULL,PETSC_CHAR);
2000:   TSSetType(ts, type);
2001:   if (ts->ops->load) {
2002:     (*ts->ops->load)(ts,viewer);
2003:   }
2004:   DMCreate(PetscObjectComm((PetscObject)ts),&dm);
2005:   DMLoad(dm,viewer);
2006:   TSSetDM(ts,dm);
2007:   DMCreateGlobalVector(ts->dm,&ts->vec_sol);
2008:   VecLoad(ts->vec_sol,viewer);
2009:   DMGetDMTS(ts->dm,&sdm);
2010:   DMTSLoad(sdm,viewer);
2011:   return(0);
2012: }

2014: #include <petscdraw.h>
2015: #if defined(PETSC_HAVE_SAWS)
2016: #include <petscviewersaws.h>
2017: #endif

2019: /*@C
2020:    TSViewFromOptions - View from Options

2022:    Collective on TS

2024:    Input Parameters:
2025: +  A - the application ordering context
2026: .  obj - Optional object
2027: -  name - command line option

2029:    Level: intermediate
2030: .seealso:  TS, TSView, PetscObjectViewFromOptions(), TSCreate()
2031: @*/
2032: PetscErrorCode  TSViewFromOptions(TS A,PetscObject obj,const char name[])
2033: {

2038:   PetscObjectViewFromOptions((PetscObject)A,obj,name);
2039:   return(0);
2040: }

2042: /*@C
2043:     TSView - Prints the TS data structure.

2045:     Collective on TS

2047:     Input Parameters:
2048: +   ts - the TS context obtained from TSCreate()
2049: -   viewer - visualization context

2051:     Options Database Key:
2052: .   -ts_view - calls TSView() at end of TSStep()

2054:     Notes:
2055:     The available visualization contexts include
2056: +     PETSC_VIEWER_STDOUT_SELF - standard output (default)
2057: -     PETSC_VIEWER_STDOUT_WORLD - synchronized standard
2058:          output where only the first processor opens
2059:          the file.  All other processors send their
2060:          data to the first processor to print.

2062:     The user can open an alternative visualization context with
2063:     PetscViewerASCIIOpen() - output to a specified file.

2065:     In the debugger you can do "call TSView(ts,0)" to display the TS solver. (The same holds for any PETSc object viewer).

2067:     Level: beginner

2069: .seealso: PetscViewerASCIIOpen()
2070: @*/
2071: PetscErrorCode  TSView(TS ts,PetscViewer viewer)
2072: {
2074:   TSType         type;
2075:   PetscBool      iascii,isstring,isundials,isbinary,isdraw;
2076:   DMTS           sdm;
2077: #if defined(PETSC_HAVE_SAWS)
2078:   PetscBool      issaws;
2079: #endif

2083:   if (!viewer) {
2084:     PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)ts),&viewer);
2085:   }

2089:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
2090:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSTRING,&isstring);
2091:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
2092:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
2093: #if defined(PETSC_HAVE_SAWS)
2094:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSAWS,&issaws);
2095: #endif
2096:   if (iascii) {
2097:     PetscObjectPrintClassNamePrefixType((PetscObject)ts,viewer);
2098:     if (ts->ops->view) {
2099:       PetscViewerASCIIPushTab(viewer);
2100:       (*ts->ops->view)(ts,viewer);
2101:       PetscViewerASCIIPopTab(viewer);
2102:     }
2103:     if (ts->max_steps < PETSC_MAX_INT) {
2104:       PetscViewerASCIIPrintf(viewer,"  maximum steps=%D\n",ts->max_steps);
2105:     }
2106:     if (ts->max_time < PETSC_MAX_REAL) {
2107:       PetscViewerASCIIPrintf(viewer,"  maximum time=%g\n",(double)ts->max_time);
2108:     }
2109:     if (ts->ifuncs) {
2110:       PetscViewerASCIIPrintf(viewer,"  total number of I function evaluations=%D\n",ts->ifuncs);
2111:     }
2112:     if (ts->ijacs) {
2113:       PetscViewerASCIIPrintf(viewer,"  total number of I Jacobian evaluations=%D\n",ts->ijacs);
2114:     }
2115:     if (ts->rhsfuncs) {
2116:       PetscViewerASCIIPrintf(viewer,"  total number of RHS function evaluations=%D\n",ts->rhsfuncs);
2117:     }
2118:     if (ts->rhsjacs) {
2119:       PetscViewerASCIIPrintf(viewer,"  total number of RHS Jacobian evaluations=%D\n",ts->rhsjacs);
2120:     }
2121:     if (ts->usessnes) {
2122:       PetscBool lin;
2123:       if (ts->problem_type == TS_NONLINEAR) {
2124:         PetscViewerASCIIPrintf(viewer,"  total number of nonlinear solver iterations=%D\n",ts->snes_its);
2125:       }
2126:       PetscViewerASCIIPrintf(viewer,"  total number of linear solver iterations=%D\n",ts->ksp_its);
2127:       PetscObjectTypeCompareAny((PetscObject)ts->snes,&lin,SNESKSPONLY,SNESKSPTRANSPOSEONLY,"");
2128:       PetscViewerASCIIPrintf(viewer,"  total number of %slinear solve failures=%D\n",lin ? "" : "non",ts->num_snes_failures);
2129:     }
2130:     PetscViewerASCIIPrintf(viewer,"  total number of rejected steps=%D\n",ts->reject);
2131:     if (ts->vrtol) {
2132:       PetscViewerASCIIPrintf(viewer,"  using vector of relative error tolerances, ");
2133:     } else {
2134:       PetscViewerASCIIPrintf(viewer,"  using relative error tolerance of %g, ",(double)ts->rtol);
2135:     }
2136:     if (ts->vatol) {
2137:       PetscViewerASCIIPrintf(viewer,"  using vector of absolute error tolerances\n");
2138:     } else {
2139:       PetscViewerASCIIPrintf(viewer,"  using absolute error tolerance of %g\n",(double)ts->atol);
2140:     }
2141:     PetscViewerASCIIPushTab(viewer);
2142:     TSAdaptView(ts->adapt,viewer);
2143:     PetscViewerASCIIPopTab(viewer);
2144:   } else if (isstring) {
2145:     TSGetType(ts,&type);
2146:     PetscViewerStringSPrintf(viewer," TSType: %-7.7s",type);
2147:     if (ts->ops->view) {(*ts->ops->view)(ts,viewer);}
2148:   } else if (isbinary) {
2149:     PetscInt    classid = TS_FILE_CLASSID;
2150:     MPI_Comm    comm;
2151:     PetscMPIInt rank;
2152:     char        type[256];

2154:     PetscObjectGetComm((PetscObject)ts,&comm);
2155:     MPI_Comm_rank(comm,&rank);
2156:     if (!rank) {
2157:       PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT);
2158:       PetscStrncpy(type,((PetscObject)ts)->type_name,256);
2159:       PetscViewerBinaryWrite(viewer,type,256,PETSC_CHAR);
2160:     }
2161:     if (ts->ops->view) {
2162:       (*ts->ops->view)(ts,viewer);
2163:     }
2164:     if (ts->adapt) {TSAdaptView(ts->adapt,viewer);}
2165:     DMView(ts->dm,viewer);
2166:     VecView(ts->vec_sol,viewer);
2167:     DMGetDMTS(ts->dm,&sdm);
2168:     DMTSView(sdm,viewer);
2169:   } else if (isdraw) {
2170:     PetscDraw draw;
2171:     char      str[36];
2172:     PetscReal x,y,bottom,h;

2174:     PetscViewerDrawGetDraw(viewer,0,&draw);
2175:     PetscDrawGetCurrentPoint(draw,&x,&y);
2176:     PetscStrcpy(str,"TS: ");
2177:     PetscStrcat(str,((PetscObject)ts)->type_name);
2178:     PetscDrawStringBoxed(draw,x,y,PETSC_DRAW_BLACK,PETSC_DRAW_BLACK,str,NULL,&h);
2179:     bottom = y - h;
2180:     PetscDrawPushCurrentPoint(draw,x,bottom);
2181:     if (ts->ops->view) {
2182:       (*ts->ops->view)(ts,viewer);
2183:     }
2184:     if (ts->adapt) {TSAdaptView(ts->adapt,viewer);}
2185:     if (ts->snes)  {SNESView(ts->snes,viewer);}
2186:     PetscDrawPopCurrentPoint(draw);
2187: #if defined(PETSC_HAVE_SAWS)
2188:   } else if (issaws) {
2189:     PetscMPIInt rank;
2190:     const char  *name;

2192:     PetscObjectGetName((PetscObject)ts,&name);
2193:     MPI_Comm_rank(PETSC_COMM_WORLD,&rank);
2194:     if (!((PetscObject)ts)->amsmem && !rank) {
2195:       char       dir[1024];

2197:       PetscObjectViewSAWs((PetscObject)ts,viewer);
2198:       PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time_step",name);
2199:       PetscStackCallSAWs(SAWs_Register,(dir,&ts->steps,1,SAWs_READ,SAWs_INT));
2200:       PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time",name);
2201:       PetscStackCallSAWs(SAWs_Register,(dir,&ts->ptime,1,SAWs_READ,SAWs_DOUBLE));
2202:     }
2203:     if (ts->ops->view) {
2204:       (*ts->ops->view)(ts,viewer);
2205:     }
2206: #endif
2207:   }
2208:   if (ts->snes && ts->usessnes)  {
2209:     PetscViewerASCIIPushTab(viewer);
2210:     SNESView(ts->snes,viewer);
2211:     PetscViewerASCIIPopTab(viewer);
2212:   }
2213:   DMGetDMTS(ts->dm,&sdm);
2214:   DMTSView(sdm,viewer);

2216:   PetscViewerASCIIPushTab(viewer);
2217:   PetscObjectTypeCompare((PetscObject)ts,TSSUNDIALS,&isundials);
2218:   PetscViewerASCIIPopTab(viewer);
2219:   return(0);
2220: }

2222: /*@
2223:    TSSetApplicationContext - Sets an optional user-defined context for
2224:    the timesteppers.

2226:    Logically Collective on TS

2228:    Input Parameters:
2229: +  ts - the TS context obtained from TSCreate()
2230: -  usrP - optional user context

2232:    Fortran Notes:
2233:     To use this from Fortran you must write a Fortran interface definition for this
2234:     function that tells Fortran the Fortran derived data type that you are passing in as the ctx argument.

2236:    Level: intermediate

2238: .seealso: TSGetApplicationContext()
2239: @*/
2240: PetscErrorCode  TSSetApplicationContext(TS ts,void *usrP)
2241: {
2244:   ts->user = usrP;
2245:   return(0);
2246: }

2248: /*@
2249:     TSGetApplicationContext - Gets the user-defined context for the
2250:     timestepper.

2252:     Not Collective

2254:     Input Parameter:
2255: .   ts - the TS context obtained from TSCreate()

2257:     Output Parameter:
2258: .   usrP - user context

2260:    Fortran Notes:
2261:     To use this from Fortran you must write a Fortran interface definition for this
2262:     function that tells Fortran the Fortran derived data type that you are passing in as the ctx argument.

2264:     Level: intermediate

2266: .seealso: TSSetApplicationContext()
2267: @*/
2268: PetscErrorCode  TSGetApplicationContext(TS ts,void *usrP)
2269: {
2272:   *(void**)usrP = ts->user;
2273:   return(0);
2274: }

2276: /*@
2277:    TSGetStepNumber - Gets the number of steps completed.

2279:    Not Collective

2281:    Input Parameter:
2282: .  ts - the TS context obtained from TSCreate()

2284:    Output Parameter:
2285: .  steps - number of steps completed so far

2287:    Level: intermediate

2289: .seealso: TSGetTime(), TSGetTimeStep(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSSetPostStep()
2290: @*/
2291: PetscErrorCode TSGetStepNumber(TS ts,PetscInt *steps)
2292: {
2296:   *steps = ts->steps;
2297:   return(0);
2298: }

2300: /*@
2301:    TSSetStepNumber - Sets the number of steps completed.

2303:    Logically Collective on TS

2305:    Input Parameters:
2306: +  ts - the TS context
2307: -  steps - number of steps completed so far

2309:    Notes:
2310:    For most uses of the TS solvers the user need not explicitly call
2311:    TSSetStepNumber(), as the step counter is appropriately updated in
2312:    TSSolve()/TSStep()/TSRollBack(). Power users may call this routine to
2313:    reinitialize timestepping by setting the step counter to zero (and time
2314:    to the initial time) to solve a similar problem with different initial
2315:    conditions or parameters. Other possible use case is to continue
2316:    timestepping from a previously interrupted run in such a way that TS
2317:    monitors will be called with a initial nonzero step counter.

2319:    Level: advanced

2321: .seealso: TSGetStepNumber(), TSSetTime(), TSSetTimeStep(), TSSetSolution()
2322: @*/
2323: PetscErrorCode TSSetStepNumber(TS ts,PetscInt steps)
2324: {
2328:   if (steps < 0) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Step number must be non-negative");
2329:   ts->steps = steps;
2330:   return(0);
2331: }

2333: /*@
2334:    TSSetTimeStep - Allows one to reset the timestep at any time,
2335:    useful for simple pseudo-timestepping codes.

2337:    Logically Collective on TS

2339:    Input Parameters:
2340: +  ts - the TS context obtained from TSCreate()
2341: -  time_step - the size of the timestep

2343:    Level: intermediate

2345: .seealso: TSGetTimeStep(), TSSetTime()

2347: @*/
2348: PetscErrorCode  TSSetTimeStep(TS ts,PetscReal time_step)
2349: {
2353:   ts->time_step = time_step;
2354:   return(0);
2355: }

2357: /*@
2358:    TSSetExactFinalTime - Determines whether to adapt the final time step to
2359:      match the exact final time, interpolate solution to the exact final time,
2360:      or just return at the final time TS computed.

2362:   Logically Collective on TS

2364:    Input Parameter:
2365: +   ts - the time-step context
2366: -   eftopt - exact final time option

2368: $  TS_EXACTFINALTIME_STEPOVER    - Don't do anything if final time is exceeded
2369: $  TS_EXACTFINALTIME_INTERPOLATE - Interpolate back to final time
2370: $  TS_EXACTFINALTIME_MATCHSTEP - Adapt final time step to match the final time

2372:    Options Database:
2373: .   -ts_exact_final_time <stepover,interpolate,matchstep> - select the final step at runtime

2375:    Warning: If you use the option TS_EXACTFINALTIME_STEPOVER the solution may be at a very different time
2376:     then the final time you selected.

2378:    Level: beginner

2380: .seealso: TSExactFinalTimeOption, TSGetExactFinalTime()
2381: @*/
2382: PetscErrorCode TSSetExactFinalTime(TS ts,TSExactFinalTimeOption eftopt)
2383: {
2387:   ts->exact_final_time = eftopt;
2388:   return(0);
2389: }

2391: /*@
2392:    TSGetExactFinalTime - Gets the exact final time option.

2394:    Not Collective

2396:    Input Parameter:
2397: .  ts - the TS context

2399:    Output Parameter:
2400: .  eftopt - exact final time option

2402:    Level: beginner

2404: .seealso: TSExactFinalTimeOption, TSSetExactFinalTime()
2405: @*/
2406: PetscErrorCode TSGetExactFinalTime(TS ts,TSExactFinalTimeOption *eftopt)
2407: {
2411:   *eftopt = ts->exact_final_time;
2412:   return(0);
2413: }

2415: /*@
2416:    TSGetTimeStep - Gets the current timestep size.

2418:    Not Collective

2420:    Input Parameter:
2421: .  ts - the TS context obtained from TSCreate()

2423:    Output Parameter:
2424: .  dt - the current timestep size

2426:    Level: intermediate

2428: .seealso: TSSetTimeStep(), TSGetTime()

2430: @*/
2431: PetscErrorCode  TSGetTimeStep(TS ts,PetscReal *dt)
2432: {
2436:   *dt = ts->time_step;
2437:   return(0);
2438: }

2440: /*@
2441:    TSGetSolution - Returns the solution at the present timestep. It
2442:    is valid to call this routine inside the function that you are evaluating
2443:    in order to move to the new timestep. This vector not changed until
2444:    the solution at the next timestep has been calculated.

2446:    Not Collective, but Vec returned is parallel if TS is parallel

2448:    Input Parameter:
2449: .  ts - the TS context obtained from TSCreate()

2451:    Output Parameter:
2452: .  v - the vector containing the solution

2454:    Note: If you used TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP); this does not return the solution at the requested
2455:    final time. It returns the solution at the next timestep.

2457:    Level: intermediate

2459: .seealso: TSGetTimeStep(), TSGetTime(), TSGetSolveTime(), TSGetSolutionComponents(), TSSetSolutionFunction()

2461: @*/
2462: PetscErrorCode  TSGetSolution(TS ts,Vec *v)
2463: {
2467:   *v = ts->vec_sol;
2468:   return(0);
2469: }

2471: /*@
2472:    TSGetSolutionComponents - Returns any solution components at the present
2473:    timestep, if available for the time integration method being used.
2474:    Solution components are quantities that share the same size and
2475:    structure as the solution vector.

2477:    Not Collective, but Vec returned is parallel if TS is parallel

2479:    Parameters :
2480: +  ts - the TS context obtained from TSCreate() (input parameter).
2481: .  n - If v is PETSC_NULL, then the number of solution components is
2482:        returned through n, else the n-th solution component is
2483:        returned in v.
2484: -  v - the vector containing the n-th solution component
2485:        (may be PETSC_NULL to use this function to find out
2486:         the number of solutions components).

2488:    Level: advanced

2490: .seealso: TSGetSolution()

2492: @*/
2493: PetscErrorCode  TSGetSolutionComponents(TS ts,PetscInt *n,Vec *v)
2494: {

2499:   if (!ts->ops->getsolutioncomponents) *n = 0;
2500:   else {
2501:     (*ts->ops->getsolutioncomponents)(ts,n,v);
2502:   }
2503:   return(0);
2504: }

2506: /*@
2507:    TSGetAuxSolution - Returns an auxiliary solution at the present
2508:    timestep, if available for the time integration method being used.

2510:    Not Collective, but Vec returned is parallel if TS is parallel

2512:    Parameters :
2513: +  ts - the TS context obtained from TSCreate() (input parameter).
2514: -  v - the vector containing the auxiliary solution

2516:    Level: intermediate

2518: .seealso: TSGetSolution()

2520: @*/
2521: PetscErrorCode  TSGetAuxSolution(TS ts,Vec *v)
2522: {

2527:   if (ts->ops->getauxsolution) {
2528:     (*ts->ops->getauxsolution)(ts,v);
2529:   } else {
2530:     VecZeroEntries(*v);
2531:   }
2532:   return(0);
2533: }

2535: /*@
2536:    TSGetTimeError - Returns the estimated error vector, if the chosen
2537:    TSType has an error estimation functionality.

2539:    Not Collective, but Vec returned is parallel if TS is parallel

2541:    Note: MUST call after TSSetUp()

2543:    Parameters :
2544: +  ts - the TS context obtained from TSCreate() (input parameter).
2545: .  n - current estimate (n=0) or previous one (n=-1)
2546: -  v - the vector containing the error (same size as the solution).

2548:    Level: intermediate

2550: .seealso: TSGetSolution(), TSSetTimeError()

2552: @*/
2553: PetscErrorCode  TSGetTimeError(TS ts,PetscInt n,Vec *v)
2554: {

2559:   if (ts->ops->gettimeerror) {
2560:     (*ts->ops->gettimeerror)(ts,n,v);
2561:   } else {
2562:     VecZeroEntries(*v);
2563:   }
2564:   return(0);
2565: }

2567: /*@
2568:    TSSetTimeError - Sets the estimated error vector, if the chosen
2569:    TSType has an error estimation functionality. This can be used
2570:    to restart such a time integrator with a given error vector.

2572:    Not Collective, but Vec returned is parallel if TS is parallel

2574:    Parameters :
2575: +  ts - the TS context obtained from TSCreate() (input parameter).
2576: -  v - the vector containing the error (same size as the solution).

2578:    Level: intermediate

2580: .seealso: TSSetSolution(), TSGetTimeError)

2582: @*/
2583: PetscErrorCode  TSSetTimeError(TS ts,Vec v)
2584: {

2589:   if (!ts->setupcalled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetUp() first");
2590:   if (ts->ops->settimeerror) {
2591:     (*ts->ops->settimeerror)(ts,v);
2592:   }
2593:   return(0);
2594: }

2596: /* ----- Routines to initialize and destroy a timestepper ---- */
2597: /*@
2598:   TSSetProblemType - Sets the type of problem to be solved.

2600:   Not collective

2602:   Input Parameters:
2603: + ts   - The TS
2604: - type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
2605: .vb
2606:          U_t - A U = 0      (linear)
2607:          U_t - A(t) U = 0   (linear)
2608:          F(t,U,U_t) = 0     (nonlinear)
2609: .ve

2611:    Level: beginner

2613: .seealso: TSSetUp(), TSProblemType, TS
2614: @*/
2615: PetscErrorCode  TSSetProblemType(TS ts, TSProblemType type)
2616: {

2621:   ts->problem_type = type;
2622:   if (type == TS_LINEAR) {
2623:     SNES snes;
2624:     TSGetSNES(ts,&snes);
2625:     SNESSetType(snes,SNESKSPONLY);
2626:   }
2627:   return(0);
2628: }

2630: /*@C
2631:   TSGetProblemType - Gets the type of problem to be solved.

2633:   Not collective

2635:   Input Parameter:
2636: . ts   - The TS

2638:   Output Parameter:
2639: . type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
2640: .vb
2641:          M U_t = A U
2642:          M(t) U_t = A(t) U
2643:          F(t,U,U_t)
2644: .ve

2646:    Level: beginner

2648: .seealso: TSSetUp(), TSProblemType, TS
2649: @*/
2650: PetscErrorCode  TSGetProblemType(TS ts, TSProblemType *type)
2651: {
2655:   *type = ts->problem_type;
2656:   return(0);
2657: }

2659: /*
2660:     Attempt to check/preset a default value for the exact final time option. This is needed at the beginning of TSSolve() and in TSSetUp()
2661: */
2662: static PetscErrorCode TSSetExactFinalTimeDefault(TS ts)
2663: {
2665:   PetscBool      isnone;

2668:   TSGetAdapt(ts,&ts->adapt);
2669:   TSAdaptSetDefaultType(ts->adapt,ts->default_adapt_type);

2671:   PetscObjectTypeCompare((PetscObject)ts->adapt,TSADAPTNONE,&isnone);
2672:   if (!isnone && ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) {
2673:     ts->exact_final_time = TS_EXACTFINALTIME_MATCHSTEP;
2674:   } else if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) {
2675:     ts->exact_final_time = TS_EXACTFINALTIME_INTERPOLATE;
2676:   }
2677:   return(0);
2678: }


2681: /*@
2682:    TSSetUp - Sets up the internal data structures for the later use of a timestepper.

2684:    Collective on TS

2686:    Input Parameter:
2687: .  ts - the TS context obtained from TSCreate()

2689:    Notes:
2690:    For basic use of the TS solvers the user need not explicitly call
2691:    TSSetUp(), since these actions will automatically occur during
2692:    the call to TSStep() or TSSolve().  However, if one wishes to control this
2693:    phase separately, TSSetUp() should be called after TSCreate()
2694:    and optional routines of the form TSSetXXX(), but before TSStep() and TSSolve().

2696:    Level: advanced

2698: .seealso: TSCreate(), TSStep(), TSDestroy(), TSSolve()
2699: @*/
2700: PetscErrorCode  TSSetUp(TS ts)
2701: {
2703:   DM             dm;
2704:   PetscErrorCode (*func)(SNES,Vec,Vec,void*);
2705:   PetscErrorCode (*jac)(SNES,Vec,Mat,Mat,void*);
2706:   TSIFunction    ifun;
2707:   TSIJacobian    ijac;
2708:   TSI2Jacobian   i2jac;
2709:   TSRHSJacobian  rhsjac;

2713:   if (ts->setupcalled) return(0);

2715:   if (!((PetscObject)ts)->type_name) {
2716:     TSGetIFunction(ts,NULL,&ifun,NULL);
2717:     TSSetType(ts,ifun ? TSBEULER : TSEULER);
2718:   }

2720:   if (!ts->vec_sol) {
2721:     if (ts->dm) {
2722:       DMCreateGlobalVector(ts->dm,&ts->vec_sol);
2723:     } else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetSolution() first");
2724:   }

2726:   if (!ts->Jacp && ts->Jacprhs) { /* IJacobianP shares the same matrix with RHSJacobianP if only RHSJacobianP is provided */
2727:     PetscObjectReference((PetscObject)ts->Jacprhs);
2728:     ts->Jacp = ts->Jacprhs;
2729:   }

2731:   if (ts->quadraturets) {
2732:     TSSetUp(ts->quadraturets);
2733:     VecDestroy(&ts->vec_costintegrand);
2734:     VecDuplicate(ts->quadraturets->vec_sol,&ts->vec_costintegrand);
2735:   }

2737:   TSGetRHSJacobian(ts,NULL,NULL,&rhsjac,NULL);
2738:   if (rhsjac == TSComputeRHSJacobianConstant) {
2739:     Mat Amat,Pmat;
2740:     SNES snes;
2741:     TSGetSNES(ts,&snes);
2742:     SNESGetJacobian(snes,&Amat,&Pmat,NULL,NULL);
2743:     /* Matching matrices implies that an IJacobian is NOT set, because if it had been set, the IJacobian's matrix would
2744:      * have displaced the RHS matrix */
2745:     if (Amat && Amat == ts->Arhs) {
2746:       /* we need to copy the values of the matrix because for the constant Jacobian case the user will never set the numerical values in this new location */
2747:       MatDuplicate(ts->Arhs,MAT_COPY_VALUES,&Amat);
2748:       SNESSetJacobian(snes,Amat,NULL,NULL,NULL);
2749:       MatDestroy(&Amat);
2750:     }
2751:     if (Pmat && Pmat == ts->Brhs) {
2752:       MatDuplicate(ts->Brhs,MAT_COPY_VALUES,&Pmat);
2753:       SNESSetJacobian(snes,NULL,Pmat,NULL,NULL);
2754:       MatDestroy(&Pmat);
2755:     }
2756:   }

2758:   TSGetAdapt(ts,&ts->adapt);
2759:   TSAdaptSetDefaultType(ts->adapt,ts->default_adapt_type);

2761:   if (ts->ops->setup) {
2762:     (*ts->ops->setup)(ts);
2763:   }

2765:   TSSetExactFinalTimeDefault(ts);

2767:   /* In the case where we've set a DMTSFunction or what have you, we need the default SNESFunction
2768:      to be set right but can't do it elsewhere due to the overreliance on ctx=ts.
2769:    */
2770:   TSGetDM(ts,&dm);
2771:   DMSNESGetFunction(dm,&func,NULL);
2772:   if (!func) {
2773:     DMSNESSetFunction(dm,SNESTSFormFunction,ts);
2774:   }
2775:   /* If the SNES doesn't have a jacobian set and the TS has an ijacobian or rhsjacobian set, set the SNES to use it.
2776:      Otherwise, the SNES will use coloring internally to form the Jacobian.
2777:    */
2778:   DMSNESGetJacobian(dm,&jac,NULL);
2779:   DMTSGetIJacobian(dm,&ijac,NULL);
2780:   DMTSGetI2Jacobian(dm,&i2jac,NULL);
2781:   DMTSGetRHSJacobian(dm,&rhsjac,NULL);
2782:   if (!jac && (ijac || i2jac || rhsjac)) {
2783:     DMSNESSetJacobian(dm,SNESTSFormJacobian,ts);
2784:   }

2786:   /* if time integration scheme has a starting method, call it */
2787:   if (ts->ops->startingmethod) {
2788:     (*ts->ops->startingmethod)(ts);
2789:   }

2791:   ts->setupcalled = PETSC_TRUE;
2792:   return(0);
2793: }

2795: /*@
2796:    TSReset - Resets a TS context and removes any allocated Vecs and Mats.

2798:    Collective on TS

2800:    Input Parameter:
2801: .  ts - the TS context obtained from TSCreate()

2803:    Level: beginner

2805: .seealso: TSCreate(), TSSetup(), TSDestroy()
2806: @*/
2807: PetscErrorCode  TSReset(TS ts)
2808: {
2809:   TS_RHSSplitLink ilink = ts->tsrhssplit,next;
2810:   PetscErrorCode  ierr;


2815:   if (ts->ops->reset) {
2816:     (*ts->ops->reset)(ts);
2817:   }
2818:   if (ts->snes) {SNESReset(ts->snes);}
2819:   if (ts->adapt) {TSAdaptReset(ts->adapt);}

2821:   MatDestroy(&ts->Arhs);
2822:   MatDestroy(&ts->Brhs);
2823:   VecDestroy(&ts->Frhs);
2824:   VecDestroy(&ts->vec_sol);
2825:   VecDestroy(&ts->vec_dot);
2826:   VecDestroy(&ts->vatol);
2827:   VecDestroy(&ts->vrtol);
2828:   VecDestroyVecs(ts->nwork,&ts->work);

2830:   MatDestroy(&ts->Jacprhs);
2831:   MatDestroy(&ts->Jacp);
2832:   if (ts->forward_solve) {
2833:     TSForwardReset(ts);
2834:   }
2835:   if (ts->quadraturets) {
2836:     TSReset(ts->quadraturets);
2837:     VecDestroy(&ts->vec_costintegrand);
2838:   }
2839:   while (ilink) {
2840:     next = ilink->next;
2841:     TSDestroy(&ilink->ts);
2842:     PetscFree(ilink->splitname);
2843:     ISDestroy(&ilink->is);
2844:     PetscFree(ilink);
2845:     ilink = next;
2846:   }
2847:   ts->num_rhs_splits = 0;
2848:   ts->setupcalled = PETSC_FALSE;
2849:   return(0);
2850: }

2852: /*@C
2853:    TSDestroy - Destroys the timestepper context that was created
2854:    with TSCreate().

2856:    Collective on TS

2858:    Input Parameter:
2859: .  ts - the TS context obtained from TSCreate()

2861:    Level: beginner

2863: .seealso: TSCreate(), TSSetUp(), TSSolve()
2864: @*/
2865: PetscErrorCode  TSDestroy(TS *ts)
2866: {

2870:   if (!*ts) return(0);
2872:   if (--((PetscObject)(*ts))->refct > 0) {*ts = NULL; return(0);}

2874:   TSReset(*ts);
2875:   TSAdjointReset(*ts);
2876:   if ((*ts)->forward_solve) {
2877:     TSForwardReset(*ts);
2878:   }
2879:   /* if memory was published with SAWs then destroy it */
2880:   PetscObjectSAWsViewOff((PetscObject)*ts);
2881:   if ((*ts)->ops->destroy) {(*(*ts)->ops->destroy)((*ts));}

2883:   TSTrajectoryDestroy(&(*ts)->trajectory);

2885:   TSAdaptDestroy(&(*ts)->adapt);
2886:   TSEventDestroy(&(*ts)->event);

2888:   SNESDestroy(&(*ts)->snes);
2889:   DMDestroy(&(*ts)->dm);
2890:   TSMonitorCancel((*ts));
2891:   TSAdjointMonitorCancel((*ts));

2893:   TSDestroy(&(*ts)->quadraturets);
2894:   PetscHeaderDestroy(ts);
2895:   return(0);
2896: }

2898: /*@
2899:    TSGetSNES - Returns the SNES (nonlinear solver) associated with
2900:    a TS (timestepper) context. Valid only for nonlinear problems.

2902:    Not Collective, but SNES is parallel if TS is parallel

2904:    Input Parameter:
2905: .  ts - the TS context obtained from TSCreate()

2907:    Output Parameter:
2908: .  snes - the nonlinear solver context

2910:    Notes:
2911:    The user can then directly manipulate the SNES context to set various
2912:    options, etc.  Likewise, the user can then extract and manipulate the
2913:    KSP, KSP, and PC contexts as well.

2915:    TSGetSNES() does not work for integrators that do not use SNES; in
2916:    this case TSGetSNES() returns NULL in snes.

2918:    Level: beginner

2920: @*/
2921: PetscErrorCode  TSGetSNES(TS ts,SNES *snes)
2922: {

2928:   if (!ts->snes) {
2929:     SNESCreate(PetscObjectComm((PetscObject)ts),&ts->snes);
2930:     PetscObjectSetOptions((PetscObject)ts->snes,((PetscObject)ts)->options);
2931:     SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2932:     PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->snes);
2933:     PetscObjectIncrementTabLevel((PetscObject)ts->snes,(PetscObject)ts,1);
2934:     if (ts->dm) {SNESSetDM(ts->snes,ts->dm);}
2935:     if (ts->problem_type == TS_LINEAR) {
2936:       SNESSetType(ts->snes,SNESKSPONLY);
2937:     }
2938:   }
2939:   *snes = ts->snes;
2940:   return(0);
2941: }

2943: /*@
2944:    TSSetSNES - Set the SNES (nonlinear solver) to be used by the timestepping context

2946:    Collective

2948:    Input Parameter:
2949: +  ts - the TS context obtained from TSCreate()
2950: -  snes - the nonlinear solver context

2952:    Notes:
2953:    Most users should have the TS created by calling TSGetSNES()

2955:    Level: developer

2957: @*/
2958: PetscErrorCode TSSetSNES(TS ts,SNES snes)
2959: {
2961:   PetscErrorCode (*func)(SNES,Vec,Mat,Mat,void*);

2966:   PetscObjectReference((PetscObject)snes);
2967:   SNESDestroy(&ts->snes);

2969:   ts->snes = snes;

2971:   SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2972:   SNESGetJacobian(ts->snes,NULL,NULL,&func,NULL);
2973:   if (func == SNESTSFormJacobian) {
2974:     SNESSetJacobian(ts->snes,NULL,NULL,SNESTSFormJacobian,ts);
2975:   }
2976:   return(0);
2977: }

2979: /*@
2980:    TSGetKSP - Returns the KSP (linear solver) associated with
2981:    a TS (timestepper) context.

2983:    Not Collective, but KSP is parallel if TS is parallel

2985:    Input Parameter:
2986: .  ts - the TS context obtained from TSCreate()

2988:    Output Parameter:
2989: .  ksp - the nonlinear solver context

2991:    Notes:
2992:    The user can then directly manipulate the KSP context to set various
2993:    options, etc.  Likewise, the user can then extract and manipulate the
2994:    KSP and PC contexts as well.

2996:    TSGetKSP() does not work for integrators that do not use KSP;
2997:    in this case TSGetKSP() returns NULL in ksp.

2999:    Level: beginner

3001: @*/
3002: PetscErrorCode  TSGetKSP(TS ts,KSP *ksp)
3003: {
3005:   SNES           snes;

3010:   if (!((PetscObject)ts)->type_name) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NULL,"KSP is not created yet. Call TSSetType() first");
3011:   if (ts->problem_type != TS_LINEAR) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Linear only; use TSGetSNES()");
3012:   TSGetSNES(ts,&snes);
3013:   SNESGetKSP(snes,ksp);
3014:   return(0);
3015: }

3017: /* ----------- Routines to set solver parameters ---------- */

3019: /*@
3020:    TSSetMaxSteps - Sets the maximum number of steps to use.

3022:    Logically Collective on TS

3024:    Input Parameters:
3025: +  ts - the TS context obtained from TSCreate()
3026: -  maxsteps - maximum number of steps to use

3028:    Options Database Keys:
3029: .  -ts_max_steps <maxsteps> - Sets maxsteps

3031:    Notes:
3032:    The default maximum number of steps is 5000

3034:    Level: intermediate

3036: .seealso: TSGetMaxSteps(), TSSetMaxTime(), TSSetExactFinalTime()
3037: @*/
3038: PetscErrorCode TSSetMaxSteps(TS ts,PetscInt maxsteps)
3039: {
3043:   if (maxsteps < 0) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Maximum number of steps must be non-negative");
3044:   ts->max_steps = maxsteps;
3045:   return(0);
3046: }

3048: /*@
3049:    TSGetMaxSteps - Gets the maximum number of steps to use.

3051:    Not Collective

3053:    Input Parameters:
3054: .  ts - the TS context obtained from TSCreate()

3056:    Output Parameter:
3057: .  maxsteps - maximum number of steps to use

3059:    Level: advanced

3061: .seealso: TSSetMaxSteps(), TSGetMaxTime(), TSSetMaxTime()
3062: @*/
3063: PetscErrorCode TSGetMaxSteps(TS ts,PetscInt *maxsteps)
3064: {
3068:   *maxsteps = ts->max_steps;
3069:   return(0);
3070: }

3072: /*@
3073:    TSSetMaxTime - Sets the maximum (or final) time for timestepping.

3075:    Logically Collective on TS

3077:    Input Parameters:
3078: +  ts - the TS context obtained from TSCreate()
3079: -  maxtime - final time to step to

3081:    Options Database Keys:
3082: .  -ts_max_time <maxtime> - Sets maxtime

3084:    Notes:
3085:    The default maximum time is 5.0

3087:    Level: intermediate

3089: .seealso: TSGetMaxTime(), TSSetMaxSteps(), TSSetExactFinalTime()
3090: @*/
3091: PetscErrorCode TSSetMaxTime(TS ts,PetscReal maxtime)
3092: {
3096:   ts->max_time = maxtime;
3097:   return(0);
3098: }

3100: /*@
3101:    TSGetMaxTime - Gets the maximum (or final) time for timestepping.

3103:    Not Collective

3105:    Input Parameters:
3106: .  ts - the TS context obtained from TSCreate()

3108:    Output Parameter:
3109: .  maxtime - final time to step to

3111:    Level: advanced

3113: .seealso: TSSetMaxTime(), TSGetMaxSteps(), TSSetMaxSteps()
3114: @*/
3115: PetscErrorCode TSGetMaxTime(TS ts,PetscReal *maxtime)
3116: {
3120:   *maxtime = ts->max_time;
3121:   return(0);
3122: }

3124: /*@
3125:    TSSetInitialTimeStep - Deprecated, use TSSetTime() and TSSetTimeStep().

3127:    Level: deprecated

3129: @*/
3130: PetscErrorCode  TSSetInitialTimeStep(TS ts,PetscReal initial_time,PetscReal time_step)
3131: {
3135:   TSSetTime(ts,initial_time);
3136:   TSSetTimeStep(ts,time_step);
3137:   return(0);
3138: }

3140: /*@
3141:    TSGetDuration - Deprecated, use TSGetMaxSteps() and TSGetMaxTime().

3143:    Level: deprecated

3145: @*/
3146: PetscErrorCode TSGetDuration(TS ts, PetscInt *maxsteps, PetscReal *maxtime)
3147: {
3150:   if (maxsteps) {
3152:     *maxsteps = ts->max_steps;
3153:   }
3154:   if (maxtime) {
3156:     *maxtime = ts->max_time;
3157:   }
3158:   return(0);
3159: }

3161: /*@
3162:    TSSetDuration - Deprecated, use TSSetMaxSteps() and TSSetMaxTime().

3164:    Level: deprecated

3166: @*/
3167: PetscErrorCode TSSetDuration(TS ts,PetscInt maxsteps,PetscReal maxtime)
3168: {
3173:   if (maxsteps >= 0) ts->max_steps = maxsteps;
3174:   if (maxtime != PETSC_DEFAULT) ts->max_time = maxtime;
3175:   return(0);
3176: }

3178: /*@
3179:    TSGetTimeStepNumber - Deprecated, use TSGetStepNumber().

3181:    Level: deprecated

3183: @*/
3184: PetscErrorCode TSGetTimeStepNumber(TS ts,PetscInt *steps) { return TSGetStepNumber(ts,steps); }

3186: /*@
3187:    TSGetTotalSteps - Deprecated, use TSGetStepNumber().

3189:    Level: deprecated

3191: @*/
3192: PetscErrorCode TSGetTotalSteps(TS ts,PetscInt *steps) { return TSGetStepNumber(ts,steps); }

3194: /*@
3195:    TSSetSolution - Sets the initial solution vector
3196:    for use by the TS routines.

3198:    Logically Collective on TS

3200:    Input Parameters:
3201: +  ts - the TS context obtained from TSCreate()
3202: -  u - the solution vector

3204:    Level: beginner

3206: .seealso: TSSetSolutionFunction(), TSGetSolution(), TSCreate()
3207: @*/
3208: PetscErrorCode  TSSetSolution(TS ts,Vec u)
3209: {
3211:   DM             dm;

3216:   PetscObjectReference((PetscObject)u);
3217:   VecDestroy(&ts->vec_sol);
3218:   ts->vec_sol = u;

3220:   TSGetDM(ts,&dm);
3221:   DMShellSetGlobalVector(dm,u);
3222:   return(0);
3223: }

3225: /*@C
3226:   TSSetPreStep - Sets the general-purpose function
3227:   called once at the beginning of each time step.

3229:   Logically Collective on TS

3231:   Input Parameters:
3232: + ts   - The TS context obtained from TSCreate()
3233: - func - The function

3235:   Calling sequence of func:
3236: .   PetscErrorCode func (TS ts);

3238:   Level: intermediate

3240: .seealso: TSSetPreStage(), TSSetPostStage(), TSSetPostStep(), TSStep(), TSRestartStep()
3241: @*/
3242: PetscErrorCode  TSSetPreStep(TS ts, PetscErrorCode (*func)(TS))
3243: {
3246:   ts->prestep = func;
3247:   return(0);
3248: }

3250: /*@
3251:   TSPreStep - Runs the user-defined pre-step function.

3253:   Collective on TS

3255:   Input Parameters:
3256: . ts   - The TS context obtained from TSCreate()

3258:   Notes:
3259:   TSPreStep() is typically used within time stepping implementations,
3260:   so most users would not generally call this routine themselves.

3262:   Level: developer

3264: .seealso: TSSetPreStep(), TSPreStage(), TSPostStage(), TSPostStep()
3265: @*/
3266: PetscErrorCode  TSPreStep(TS ts)
3267: {

3272:   if (ts->prestep) {
3273:     Vec              U;
3274:     PetscObjectState sprev,spost;

3276:     TSGetSolution(ts,&U);
3277:     PetscObjectStateGet((PetscObject)U,&sprev);
3278:     PetscStackCallStandard((*ts->prestep),(ts));
3279:     PetscObjectStateGet((PetscObject)U,&spost);
3280:     if (sprev != spost) {TSRestartStep(ts);}
3281:   }
3282:   return(0);
3283: }

3285: /*@C
3286:   TSSetPreStage - Sets the general-purpose function
3287:   called once at the beginning of each stage.

3289:   Logically Collective on TS

3291:   Input Parameters:
3292: + ts   - The TS context obtained from TSCreate()
3293: - func - The function

3295:   Calling sequence of func:
3296: .    PetscErrorCode func(TS ts, PetscReal stagetime);

3298:   Level: intermediate

3300:   Note:
3301:   There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
3302:   The time step number being computed can be queried using TSGetStepNumber() and the total size of the step being
3303:   attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().

3305: .seealso: TSSetPostStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3306: @*/
3307: PetscErrorCode  TSSetPreStage(TS ts, PetscErrorCode (*func)(TS,PetscReal))
3308: {
3311:   ts->prestage = func;
3312:   return(0);
3313: }

3315: /*@C
3316:   TSSetPostStage - Sets the general-purpose function
3317:   called once at the end of each stage.

3319:   Logically Collective on TS

3321:   Input Parameters:
3322: + ts   - The TS context obtained from TSCreate()
3323: - func - The function

3325:   Calling sequence of func:
3326: . PetscErrorCode func(TS ts, PetscReal stagetime, PetscInt stageindex, Vec* Y);

3328:   Level: intermediate

3330:   Note:
3331:   There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
3332:   The time step number being computed can be queried using TSGetStepNumber() and the total size of the step being
3333:   attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().

3335: .seealso: TSSetPreStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3336: @*/
3337: PetscErrorCode  TSSetPostStage(TS ts, PetscErrorCode (*func)(TS,PetscReal,PetscInt,Vec*))
3338: {
3341:   ts->poststage = func;
3342:   return(0);
3343: }

3345: /*@C
3346:   TSSetPostEvaluate - Sets the general-purpose function
3347:   called once at the end of each step evaluation.

3349:   Logically Collective on TS

3351:   Input Parameters:
3352: + ts   - The TS context obtained from TSCreate()
3353: - func - The function

3355:   Calling sequence of func:
3356: . PetscErrorCode func(TS ts);

3358:   Level: intermediate

3360:   Note:
3361:   Semantically, TSSetPostEvaluate() differs from TSSetPostStep() since the function it sets is called before event-handling
3362:   thus guaranteeing the same solution (computed by the time-stepper) will be passed to it. On the other hand, TSPostStep()
3363:   may be passed a different solution, possibly changed by the event handler. TSPostEvaluate() is called after the next step
3364:   solution is evaluated allowing to modify it, if need be. The solution can be obtained with TSGetSolution(), the time step
3365:   with TSGetTimeStep(), and the time at the start of the step is available via TSGetTime()

3367: .seealso: TSSetPreStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3368: @*/
3369: PetscErrorCode  TSSetPostEvaluate(TS ts, PetscErrorCode (*func)(TS))
3370: {
3373:   ts->postevaluate = func;
3374:   return(0);
3375: }

3377: /*@
3378:   TSPreStage - Runs the user-defined pre-stage function set using TSSetPreStage()

3380:   Collective on TS

3382:   Input Parameters:
3383: . ts          - The TS context obtained from TSCreate()
3384:   stagetime   - The absolute time of the current stage

3386:   Notes:
3387:   TSPreStage() is typically used within time stepping implementations,
3388:   most users would not generally call this routine themselves.

3390:   Level: developer

3392: .seealso: TSPostStage(), TSSetPreStep(), TSPreStep(), TSPostStep()
3393: @*/
3394: PetscErrorCode  TSPreStage(TS ts, PetscReal stagetime)
3395: {
3398:   if (ts->prestage) {
3399:     PetscStackCallStandard((*ts->prestage),(ts,stagetime));
3400:   }
3401:   return(0);
3402: }

3404: /*@
3405:   TSPostStage - Runs the user-defined post-stage function set using TSSetPostStage()

3407:   Collective on TS

3409:   Input Parameters:
3410: . ts          - The TS context obtained from TSCreate()
3411:   stagetime   - The absolute time of the current stage
3412:   stageindex  - Stage number
3413:   Y           - Array of vectors (of size = total number
3414:                 of stages) with the stage solutions

3416:   Notes:
3417:   TSPostStage() is typically used within time stepping implementations,
3418:   most users would not generally call this routine themselves.

3420:   Level: developer

3422: .seealso: TSPreStage(), TSSetPreStep(), TSPreStep(), TSPostStep()
3423: @*/
3424: PetscErrorCode  TSPostStage(TS ts, PetscReal stagetime, PetscInt stageindex, Vec *Y)
3425: {
3428:   if (ts->poststage) {
3429:     PetscStackCallStandard((*ts->poststage),(ts,stagetime,stageindex,Y));
3430:   }
3431:   return(0);
3432: }

3434: /*@
3435:   TSPostEvaluate - Runs the user-defined post-evaluate function set using TSSetPostEvaluate()

3437:   Collective on TS

3439:   Input Parameters:
3440: . ts          - The TS context obtained from TSCreate()

3442:   Notes:
3443:   TSPostEvaluate() is typically used within time stepping implementations,
3444:   most users would not generally call this routine themselves.

3446:   Level: developer

3448: .seealso: TSSetPostEvaluate(), TSSetPreStep(), TSPreStep(), TSPostStep()
3449: @*/
3450: PetscErrorCode  TSPostEvaluate(TS ts)
3451: {

3456:   if (ts->postevaluate) {
3457:     Vec              U;
3458:     PetscObjectState sprev,spost;

3460:     TSGetSolution(ts,&U);
3461:     PetscObjectStateGet((PetscObject)U,&sprev);
3462:     PetscStackCallStandard((*ts->postevaluate),(ts));
3463:     PetscObjectStateGet((PetscObject)U,&spost);
3464:     if (sprev != spost) {TSRestartStep(ts);}
3465:   }
3466:   return(0);
3467: }

3469: /*@C
3470:   TSSetPostStep - Sets the general-purpose function
3471:   called once at the end of each time step.

3473:   Logically Collective on TS

3475:   Input Parameters:
3476: + ts   - The TS context obtained from TSCreate()
3477: - func - The function

3479:   Calling sequence of func:
3480: $ func (TS ts);

3482:   Notes:
3483:   The function set by TSSetPostStep() is called after each successful step. The solution vector X
3484:   obtained by TSGetSolution() may be different than that computed at the step end if the event handler
3485:   locates an event and TSPostEvent() modifies it. Use TSSetPostEvaluate() if an unmodified solution is needed instead.

3487:   Level: intermediate

3489: .seealso: TSSetPreStep(), TSSetPreStage(), TSSetPostEvaluate(), TSGetTimeStep(), TSGetStepNumber(), TSGetTime(), TSRestartStep()
3490: @*/
3491: PetscErrorCode  TSSetPostStep(TS ts, PetscErrorCode (*func)(TS))
3492: {
3495:   ts->poststep = func;
3496:   return(0);
3497: }

3499: /*@
3500:   TSPostStep - Runs the user-defined post-step function.

3502:   Collective on TS

3504:   Input Parameters:
3505: . ts   - The TS context obtained from TSCreate()

3507:   Notes:
3508:   TSPostStep() is typically used within time stepping implementations,
3509:   so most users would not generally call this routine themselves.

3511:   Level: developer

3513: @*/
3514: PetscErrorCode  TSPostStep(TS ts)
3515: {

3520:   if (ts->poststep) {
3521:     Vec              U;
3522:     PetscObjectState sprev,spost;

3524:     TSGetSolution(ts,&U);
3525:     PetscObjectStateGet((PetscObject)U,&sprev);
3526:     PetscStackCallStandard((*ts->poststep),(ts));
3527:     PetscObjectStateGet((PetscObject)U,&spost);
3528:     if (sprev != spost) {TSRestartStep(ts);}
3529:   }
3530:   return(0);
3531: }

3533: /* ------------ Routines to set performance monitoring options ----------- */

3535: /*@C
3536:    TSMonitorSet - Sets an ADDITIONAL function that is to be used at every
3537:    timestep to display the iteration's  progress.

3539:    Logically Collective on TS

3541:    Input Parameters:
3542: +  ts - the TS context obtained from TSCreate()
3543: .  monitor - monitoring routine
3544: .  mctx - [optional] user-defined context for private data for the
3545:              monitor routine (use NULL if no context is desired)
3546: -  monitordestroy - [optional] routine that frees monitor context
3547:           (may be NULL)

3549:    Calling sequence of monitor:
3550: $    PetscErrorCode monitor(TS ts,PetscInt steps,PetscReal time,Vec u,void *mctx)

3552: +    ts - the TS context
3553: .    steps - iteration number (after the final time step the monitor routine may be called with a step of -1, this indicates the solution has been interpolated to this time)
3554: .    time - current time
3555: .    u - current iterate
3556: -    mctx - [optional] monitoring context

3558:    Notes:
3559:    This routine adds an additional monitor to the list of monitors that
3560:    already has been loaded.

3562:    Fortran Notes:
3563:     Only a single monitor function can be set for each TS object

3565:    Level: intermediate

3567: .seealso: TSMonitorDefault(), TSMonitorCancel()
3568: @*/
3569: PetscErrorCode  TSMonitorSet(TS ts,PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,void*),void *mctx,PetscErrorCode (*mdestroy)(void**))
3570: {
3572:   PetscInt       i;
3573:   PetscBool      identical;

3577:   for (i=0; i<ts->numbermonitors;i++) {
3578:     PetscMonitorCompare((PetscErrorCode (*)(void))monitor,mctx,mdestroy,(PetscErrorCode (*)(void))ts->monitor[i],ts->monitorcontext[i],ts->monitordestroy[i],&identical);
3579:     if (identical) return(0);
3580:   }
3581:   if (ts->numbermonitors >= MAXTSMONITORS) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many monitors set");
3582:   ts->monitor[ts->numbermonitors]          = monitor;
3583:   ts->monitordestroy[ts->numbermonitors]   = mdestroy;
3584:   ts->monitorcontext[ts->numbermonitors++] = (void*)mctx;
3585:   return(0);
3586: }

3588: /*@C
3589:    TSMonitorCancel - Clears all the monitors that have been set on a time-step object.

3591:    Logically Collective on TS

3593:    Input Parameters:
3594: .  ts - the TS context obtained from TSCreate()

3596:    Notes:
3597:    There is no way to remove a single, specific monitor.

3599:    Level: intermediate

3601: .seealso: TSMonitorDefault(), TSMonitorSet()
3602: @*/
3603: PetscErrorCode  TSMonitorCancel(TS ts)
3604: {
3606:   PetscInt       i;

3610:   for (i=0; i<ts->numbermonitors; i++) {
3611:     if (ts->monitordestroy[i]) {
3612:       (*ts->monitordestroy[i])(&ts->monitorcontext[i]);
3613:     }
3614:   }
3615:   ts->numbermonitors = 0;
3616:   return(0);
3617: }

3619: /*@C
3620:    TSMonitorDefault - The Default monitor, prints the timestep and time for each step

3622:    Level: intermediate

3624: .seealso:  TSMonitorSet()
3625: @*/
3626: PetscErrorCode TSMonitorDefault(TS ts,PetscInt step,PetscReal ptime,Vec v,PetscViewerAndFormat *vf)
3627: {
3629:   PetscViewer    viewer =  vf->viewer;
3630:   PetscBool      iascii,ibinary;

3634:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
3635:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&ibinary);
3636:   PetscViewerPushFormat(viewer,vf->format);
3637:   if (iascii) {
3638:     PetscViewerASCIIAddTab(viewer,((PetscObject)ts)->tablevel);
3639:     if (step == -1){ /* this indicates it is an interpolated solution */
3640:       PetscViewerASCIIPrintf(viewer,"Interpolated solution at time %g between steps %D and %D\n",(double)ptime,ts->steps-1,ts->steps);
3641:     } else {
3642:       PetscViewerASCIIPrintf(viewer,"%D TS dt %g time %g%s",step,(double)ts->time_step,(double)ptime,ts->steprollback ? " (r)\n" : "\n");
3643:     }
3644:     PetscViewerASCIISubtractTab(viewer,((PetscObject)ts)->tablevel);
3645:   } else if (ibinary) {
3646:     PetscMPIInt rank;
3647:     MPI_Comm_rank(PetscObjectComm((PetscObject)viewer),&rank);
3648:     if (!rank) {
3649:       PetscBool skipHeader;
3650:       PetscInt  classid = REAL_FILE_CLASSID;

3652:       PetscViewerBinaryGetSkipHeader(viewer,&skipHeader);
3653:       if (!skipHeader) {
3654:          PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT);
3655:        }
3656:       PetscRealView(1,&ptime,viewer);
3657:     } else {
3658:       PetscRealView(0,&ptime,viewer);
3659:     }
3660:   }
3661:   PetscViewerPopFormat(viewer);
3662:   return(0);
3663: }

3665: /*@C
3666:    TSMonitorExtreme - Prints the extreme values of the solution at each timestep

3668:    Level: intermediate

3670: .seealso:  TSMonitorSet()
3671: @*/
3672: PetscErrorCode TSMonitorExtreme(TS ts,PetscInt step,PetscReal ptime,Vec v,PetscViewerAndFormat *vf)
3673: {
3675:   PetscViewer    viewer =  vf->viewer;
3676:   PetscBool      iascii;
3677:   PetscReal      max,min;


3682:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
3683:   PetscViewerPushFormat(viewer,vf->format);
3684:   if (iascii) {
3685:     VecMax(v,NULL,&max);
3686:     VecMin(v,NULL,&min);
3687:     PetscViewerASCIIAddTab(viewer,((PetscObject)ts)->tablevel);
3688:     PetscViewerASCIIPrintf(viewer,"%D TS dt %g time %g%s max %g min %g\n",step,(double)ts->time_step,(double)ptime,ts->steprollback ? " (r)" : "",(double)max,(double)min);
3689:     PetscViewerASCIISubtractTab(viewer,((PetscObject)ts)->tablevel);
3690:   }
3691:   PetscViewerPopFormat(viewer);
3692:   return(0);
3693: }

3695: /*@
3696:    TSInterpolate - Interpolate the solution computed during the previous step to an arbitrary location in the interval

3698:    Collective on TS

3700:    Input Argument:
3701: +  ts - time stepping context
3702: -  t - time to interpolate to

3704:    Output Argument:
3705: .  U - state at given time

3707:    Level: intermediate

3709:    Developer Notes:
3710:    TSInterpolate() and the storing of previous steps/stages should be generalized to support delay differential equations and continuous adjoints.

3712: .seealso: TSSetExactFinalTime(), TSSolve()
3713: @*/
3714: PetscErrorCode TSInterpolate(TS ts,PetscReal t,Vec U)
3715: {

3721:   if (t < ts->ptime_prev || t > ts->ptime) SETERRQ3(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Requested time %g not in last time steps [%g,%g]",t,(double)ts->ptime_prev,(double)ts->ptime);
3722:   if (!ts->ops->interpolate) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"%s does not provide interpolation",((PetscObject)ts)->type_name);
3723:   (*ts->ops->interpolate)(ts,t,U);
3724:   return(0);
3725: }

3727: /*@
3728:    TSStep - Steps one time step

3730:    Collective on TS

3732:    Input Parameter:
3733: .  ts - the TS context obtained from TSCreate()

3735:    Level: developer

3737:    Notes:
3738:    The public interface for the ODE/DAE solvers is TSSolve(), you should almost for sure be using that routine and not this routine.

3740:    The hook set using TSSetPreStep() is called before each attempt to take the step. In general, the time step size may
3741:    be changed due to adaptive error controller or solve failures. Note that steps may contain multiple stages.

3743:    This may over-step the final time provided in TSSetMaxTime() depending on the time-step used. TSSolve() interpolates to exactly the
3744:    time provided in TSSetMaxTime(). One can use TSInterpolate() to determine an interpolated solution within the final timestep.

3746: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSInterpolate()
3747: @*/
3748: PetscErrorCode  TSStep(TS ts)
3749: {
3750:   PetscErrorCode   ierr;
3751:   static PetscBool cite = PETSC_FALSE;
3752:   PetscReal        ptime;

3756:   PetscCitationsRegister("@article{tspaper,\n"
3757:                                 "  title         = {{PETSc/TS}: A Modern Scalable {DAE/ODE} Solver Library},\n"
3758:                                 "  author        = {Abhyankar, Shrirang and Brown, Jed and Constantinescu, Emil and Ghosh, Debojyoti and Smith, Barry F. and Zhang, Hong},\n"
3759:                                 "  journal       = {arXiv e-preprints},\n"
3760:                                 "  eprint        = {1806.01437},\n"
3761:                                 "  archivePrefix = {arXiv},\n"
3762:                                 "  year          = {2018}\n}\n",&cite);

3764:   TSSetUp(ts);
3765:   TSTrajectorySetUp(ts->trajectory,ts);

3767:   if (!ts->ops->step) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSStep not implemented for type '%s'",((PetscObject)ts)->type_name);
3768:   if (ts->max_time >= PETSC_MAX_REAL && ts->max_steps == PETSC_MAX_INT) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetMaxTime() or TSSetMaxSteps(), or use -ts_max_time <time> or -ts_max_steps <steps>");
3769:   if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetExactFinalTime() or use -ts_exact_final_time <stepover,interpolate,matchstep> before calling TSStep()");
3770:   if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP && !ts->adapt) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Since TS is not adaptive you cannot use TS_EXACTFINALTIME_MATCHSTEP, suggest TS_EXACTFINALTIME_INTERPOLATE");

3772:   if (!ts->steps) ts->ptime_prev = ts->ptime;
3773:   ptime = ts->ptime; ts->ptime_prev_rollback = ts->ptime_prev;
3774:   ts->reason = TS_CONVERGED_ITERATING;

3776:   PetscLogEventBegin(TS_Step,ts,0,0,0);
3777:   (*ts->ops->step)(ts);
3778:   PetscLogEventEnd(TS_Step,ts,0,0,0);

3780:   if (ts->reason >= 0) {
3781:     ts->ptime_prev = ptime;
3782:     ts->steps++;
3783:     ts->steprollback = PETSC_FALSE;
3784:     ts->steprestart  = PETSC_FALSE;
3785:   }

3787:   if (!ts->reason) {
3788:     if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
3789:     else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
3790:   }

3792:   if (ts->reason < 0 && ts->errorifstepfailed && ts->reason == TS_DIVERGED_NONLINEAR_SOLVE) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s, increase -ts_max_snes_failures or make negative to attempt recovery",TSConvergedReasons[ts->reason]);
3793:   if (ts->reason < 0 && ts->errorifstepfailed) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s",TSConvergedReasons[ts->reason]);
3794:   return(0);
3795: }

3797: /*@
3798:    TSEvaluateWLTE - Evaluate the weighted local truncation error norm
3799:    at the end of a time step with a given order of accuracy.

3801:    Collective on TS

3803:    Input Arguments:
3804: +  ts - time stepping context
3805: .  wnormtype - norm type, either NORM_2 or NORM_INFINITY
3806: -  order - optional, desired order for the error evaluation or PETSC_DECIDE

3808:    Output Arguments:
3809: +  order - optional, the actual order of the error evaluation
3810: -  wlte - the weighted local truncation error norm

3812:    Level: advanced

3814:    Notes:
3815:    If the timestepper cannot evaluate the error in a particular step
3816:    (eg. in the first step or restart steps after event handling),
3817:    this routine returns wlte=-1.0 .

3819: .seealso: TSStep(), TSAdapt, TSErrorWeightedNorm()
3820: @*/
3821: PetscErrorCode TSEvaluateWLTE(TS ts,NormType wnormtype,PetscInt *order,PetscReal *wlte)
3822: {

3832:   if (wnormtype != NORM_2 && wnormtype != NORM_INFINITY) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
3833:   if (!ts->ops->evaluatewlte) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSEvaluateWLTE not implemented for type '%s'",((PetscObject)ts)->type_name);
3834:   (*ts->ops->evaluatewlte)(ts,wnormtype,order,wlte);
3835:   return(0);
3836: }

3838: /*@
3839:    TSEvaluateStep - Evaluate the solution at the end of a time step with a given order of accuracy.

3841:    Collective on TS

3843:    Input Arguments:
3844: +  ts - time stepping context
3845: .  order - desired order of accuracy
3846: -  done - whether the step was evaluated at this order (pass NULL to generate an error if not available)

3848:    Output Arguments:
3849: .  U - state at the end of the current step

3851:    Level: advanced

3853:    Notes:
3854:    This function cannot be called until all stages have been evaluated.
3855:    It is normally called by adaptive controllers before a step has been accepted and may also be called by the user after TSStep() has returned.

3857: .seealso: TSStep(), TSAdapt
3858: @*/
3859: PetscErrorCode TSEvaluateStep(TS ts,PetscInt order,Vec U,PetscBool *done)
3860: {

3867:   if (!ts->ops->evaluatestep) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSEvaluateStep not implemented for type '%s'",((PetscObject)ts)->type_name);
3868:   (*ts->ops->evaluatestep)(ts,order,U,done);
3869:   return(0);
3870: }

3872: /*@C
3873:   TSGetComputeInitialCondition - Get the function used to automatically compute an initial condition for the timestepping.

3875:   Not collective

3877:   Input Argument:
3878: . ts        - time stepping context

3880:   Output Argument:
3881: . initConditions - The function which computes an initial condition

3883:    Level: advanced

3885:    Notes:
3886:    The calling sequence for the function is
3887: $ initCondition(TS ts, Vec u)
3888: $ ts - The timestepping context
3889: $ u  - The input vector in which the initial condition is stored

3891: .seealso: TSSetComputeInitialCondition(), TSComputeInitialCondition()
3892: @*/
3893: PetscErrorCode TSGetComputeInitialCondition(TS ts, PetscErrorCode (**initCondition)(TS, Vec))
3894: {
3898:   *initCondition = ts->ops->initcondition;
3899:   return(0);
3900: }

3902: /*@C
3903:   TSSetComputeInitialCondition - Set the function used to automatically compute an initial condition for the timestepping.

3905:   Logically collective on ts

3907:   Input Arguments:
3908: + ts        - time stepping context
3909: - initCondition - The function which computes an initial condition

3911:   Level: advanced

3913:   Calling sequence for initCondition:
3914: $ PetscErrorCode initCondition(TS ts, Vec u)

3916: + ts - The timestepping context
3917: - u  - The input vector in which the initial condition is to be stored

3919: .seealso: TSGetComputeInitialCondition(), TSComputeInitialCondition()
3920: @*/
3921: PetscErrorCode TSSetComputeInitialCondition(TS ts, PetscErrorCode (*initCondition)(TS, Vec))
3922: {
3926:   ts->ops->initcondition = initCondition;
3927:   return(0);
3928: }

3930: /*@
3931:   TSComputeInitialCondition - Compute an initial condition for the timestepping using the function previously set.

3933:   Collective on ts

3935:   Input Arguments:
3936: + ts - time stepping context
3937: - u  - The Vec to store the condition in which will be used in TSSolve()

3939:   Level: advanced

3941: .seealso: TSGetComputeInitialCondition(), TSSetComputeInitialCondition(), TSSolve()
3942: @*/
3943: PetscErrorCode TSComputeInitialCondition(TS ts, Vec u)
3944: {

3950:   if (ts->ops->initcondition) {(*ts->ops->initcondition)(ts, u);}
3951:   return(0);
3952: }

3954: /*@C
3955:   TSGetComputeExactError - Get the function used to automatically compute the exact error for the timestepping.

3957:   Not collective

3959:   Input Argument:
3960: . ts         - time stepping context

3962:   Output Argument:
3963: . exactError - The function which computes the solution error

3965:   Level: advanced

3967:   Calling sequence for exactError:
3968: $ PetscErrorCode exactError(TS ts, Vec u)

3970: + ts - The timestepping context
3971: . u  - The approximate solution vector
3972: - e  - The input vector in which the error is stored

3974: .seealso: TSGetComputeExactError(), TSComputeExactError()
3975: @*/
3976: PetscErrorCode TSGetComputeExactError(TS ts, PetscErrorCode (**exactError)(TS, Vec, Vec))
3977: {
3981:   *exactError = ts->ops->exacterror;
3982:   return(0);
3983: }

3985: /*@C
3986:   TSSetComputeExactError - Set the function used to automatically compute the exact error for the timestepping.

3988:   Logically collective on ts

3990:   Input Arguments:
3991: + ts         - time stepping context
3992: - exactError - The function which computes the solution error

3994:   Level: advanced

3996:   Calling sequence for exactError:
3997: $ PetscErrorCode exactError(TS ts, Vec u)

3999: + ts - The timestepping context
4000: . u  - The approximate solution vector
4001: - e  - The input vector in which the error is stored

4003: .seealso: TSGetComputeExactError(), TSComputeExactError()
4004: @*/
4005: PetscErrorCode TSSetComputeExactError(TS ts, PetscErrorCode (*exactError)(TS, Vec, Vec))
4006: {
4010:   ts->ops->exacterror = exactError;
4011:   return(0);
4012: }

4014: /*@
4015:   TSComputeExactError - Compute the solution error for the timestepping using the function previously set.

4017:   Collective on ts

4019:   Input Arguments:
4020: + ts - time stepping context
4021: . u  - The approximate solution
4022: - e  - The Vec used to store the error

4024:   Level: advanced

4026: .seealso: TSGetComputeInitialCondition(), TSSetComputeInitialCondition(), TSSolve()
4027: @*/
4028: PetscErrorCode TSComputeExactError(TS ts, Vec u, Vec e)
4029: {

4036:   if (ts->ops->exacterror) {(*ts->ops->exacterror)(ts, u, e);}
4037:   return(0);
4038: }

4040: /*@
4041:    TSSolve - Steps the requested number of timesteps.

4043:    Collective on TS

4045:    Input Parameter:
4046: +  ts - the TS context obtained from TSCreate()
4047: -  u - the solution vector  (can be null if TSSetSolution() was used and TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP) was not used,
4048:                              otherwise must contain the initial conditions and will contain the solution at the final requested time

4050:    Level: beginner

4052:    Notes:
4053:    The final time returned by this function may be different from the time of the internally
4054:    held state accessible by TSGetSolution() and TSGetTime() because the method may have
4055:    stepped over the final time.

4057: .seealso: TSCreate(), TSSetSolution(), TSStep(), TSGetTime(), TSGetSolveTime()
4058: @*/
4059: PetscErrorCode TSSolve(TS ts,Vec u)
4060: {
4061:   Vec               solution;
4062:   PetscErrorCode    ierr;


4068:   TSSetExactFinalTimeDefault(ts);
4069:   if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && u) {   /* Need ts->vec_sol to be distinct so it is not overwritten when we interpolate at the end */
4070:     if (!ts->vec_sol || u == ts->vec_sol) {
4071:       VecDuplicate(u,&solution);
4072:       TSSetSolution(ts,solution);
4073:       VecDestroy(&solution); /* grant ownership */
4074:     }
4075:     VecCopy(u,ts->vec_sol);
4076:     if (ts->forward_solve) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Sensitivity analysis does not support the mode TS_EXACTFINALTIME_INTERPOLATE");
4077:   } else if (u) {
4078:     TSSetSolution(ts,u);
4079:   }
4080:   TSSetUp(ts);
4081:   TSTrajectorySetUp(ts->trajectory,ts);

4083:   if (ts->max_time >= PETSC_MAX_REAL && ts->max_steps == PETSC_MAX_INT) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetMaxTime() or TSSetMaxSteps(), or use -ts_max_time <time> or -ts_max_steps <steps>");
4084:   if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetExactFinalTime() or use -ts_exact_final_time <stepover,interpolate,matchstep> before calling TSSolve()");
4085:   if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP && !ts->adapt) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Since TS is not adaptive you cannot use TS_EXACTFINALTIME_MATCHSTEP, suggest TS_EXACTFINALTIME_INTERPOLATE");

4087:   if (ts->forward_solve) {
4088:     TSForwardSetUp(ts);
4089:   }

4091:   /* reset number of steps only when the step is not restarted. ARKIMEX
4092:      restarts the step after an event. Resetting these counters in such case causes
4093:      TSTrajectory to incorrectly save the output files
4094:   */
4095:   /* reset time step and iteration counters */
4096:   if (!ts->steps) {
4097:     ts->ksp_its           = 0;
4098:     ts->snes_its          = 0;
4099:     ts->num_snes_failures = 0;
4100:     ts->reject            = 0;
4101:     ts->steprestart       = PETSC_TRUE;
4102:     ts->steprollback      = PETSC_FALSE;
4103:     ts->rhsjacobian.time  = PETSC_MIN_REAL;
4104:   }

4106:   /* make sure initial time step does not overshoot final time */
4107:   if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP) {
4108:     PetscReal maxdt = ts->max_time-ts->ptime;
4109:     PetscReal dt = ts->time_step;

4111:     ts->time_step = dt >= maxdt ? maxdt : (PetscIsCloseAtTol(dt,maxdt,10*PETSC_MACHINE_EPSILON,0) ? maxdt : dt);
4112:   }
4113:   ts->reason = TS_CONVERGED_ITERATING;

4115:   {
4116:     PetscViewer       viewer;
4117:     PetscViewerFormat format;
4118:     PetscBool         flg;
4119:     static PetscBool  incall = PETSC_FALSE;

4121:     if (!incall) {
4122:       /* Estimate the convergence rate of the time discretization */
4123:       PetscOptionsGetViewer(PetscObjectComm((PetscObject) ts),((PetscObject)ts)->options, ((PetscObject) ts)->prefix, "-ts_convergence_estimate", &viewer, &format, &flg);
4124:       if (flg) {
4125:         PetscConvEst conv;
4126:         DM           dm;
4127:         PetscReal   *alpha; /* Convergence rate of the solution error for each field in the L_2 norm */
4128:         PetscInt     Nf;
4129:         PetscBool    checkTemporal = PETSC_TRUE;

4131:         incall = PETSC_TRUE;
4132:         PetscOptionsGetBool(((PetscObject)ts)->options, ((PetscObject) ts)->prefix, "-ts_convergence_temporal", &checkTemporal, &flg);
4133:         TSGetDM(ts, &dm);
4134:         DMGetNumFields(dm, &Nf);
4135:         PetscCalloc1(PetscMax(Nf, 1), &alpha);
4136:         PetscConvEstCreate(PetscObjectComm((PetscObject) ts), &conv);
4137:         PetscConvEstUseTS(conv, checkTemporal);
4138:         PetscConvEstSetSolver(conv, (PetscObject) ts);
4139:         PetscConvEstSetFromOptions(conv);
4140:         PetscConvEstSetUp(conv);
4141:         PetscConvEstGetConvRate(conv, alpha);
4142:         PetscViewerPushFormat(viewer, format);
4143:         PetscConvEstRateView(conv, alpha, viewer);
4144:         PetscViewerPopFormat(viewer);
4145:         PetscViewerDestroy(&viewer);
4146:         PetscConvEstDestroy(&conv);
4147:         PetscFree(alpha);
4148:         incall = PETSC_FALSE;
4149:       }
4150:     }
4151:   }

4153:   TSViewFromOptions(ts,NULL,"-ts_view_pre");

4155:   if (ts->ops->solve) { /* This private interface is transitional and should be removed when all implementations are updated. */
4156:     (*ts->ops->solve)(ts);
4157:     if (u) {VecCopy(ts->vec_sol,u);}
4158:     ts->solvetime = ts->ptime;
4159:     solution = ts->vec_sol;
4160:   } else { /* Step the requested number of timesteps. */
4161:     if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
4162:     else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;

4164:     if (!ts->steps) {
4165:       TSTrajectorySet(ts->trajectory,ts,ts->steps,ts->ptime,ts->vec_sol);
4166:       TSEventInitialize(ts->event,ts,ts->ptime,ts->vec_sol);
4167:     }

4169:     while (!ts->reason) {
4170:       TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);
4171:       if (!ts->steprollback) {
4172:         TSPreStep(ts);
4173:       }
4174:       TSStep(ts);
4175:       if (ts->testjacobian) {
4176:         TSRHSJacobianTest(ts,NULL);
4177:       }
4178:       if (ts->testjacobiantranspose) {
4179:         TSRHSJacobianTestTranspose(ts,NULL);
4180:       }
4181:       if (ts->quadraturets && ts->costintegralfwd) { /* Must evaluate the cost integral before event is handled. The cost integral value can also be rolled back. */
4182:         if (ts->reason >= 0) ts->steps--; /* Revert the step number changed by TSStep() */
4183:         TSForwardCostIntegral(ts);
4184:         if (ts->reason >= 0) ts->steps++;
4185:       }
4186:       if (ts->forward_solve) { /* compute forward sensitivities before event handling because postevent() may change RHS and jump conditions may have to be applied */
4187:         if (ts->reason >= 0) ts->steps--; /* Revert the step number changed by TSStep() */
4188:         TSForwardStep(ts);
4189:         if (ts->reason >= 0) ts->steps++;
4190:       }
4191:       TSPostEvaluate(ts);
4192:       TSEventHandler(ts); /* The right-hand side may be changed due to event. Be careful with Any computation using the RHS information after this point. */
4193:       if (ts->steprollback) {
4194:         TSPostEvaluate(ts);
4195:       }
4196:       if (!ts->steprollback) {
4197:         TSTrajectorySet(ts->trajectory,ts,ts->steps,ts->ptime,ts->vec_sol);
4198:         TSPostStep(ts);
4199:       }
4200:     }
4201:     TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);

4203:     if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && ts->ptime > ts->max_time) {
4204:       TSInterpolate(ts,ts->max_time,u);
4205:       ts->solvetime = ts->max_time;
4206:       solution = u;
4207:       TSMonitor(ts,-1,ts->solvetime,solution);
4208:     } else {
4209:       if (u) {VecCopy(ts->vec_sol,u);}
4210:       ts->solvetime = ts->ptime;
4211:       solution = ts->vec_sol;
4212:     }
4213:   }

4215:   TSViewFromOptions(ts,NULL,"-ts_view");
4216:   VecViewFromOptions(solution,(PetscObject)ts,"-ts_view_solution");
4217:   PetscObjectSAWsBlock((PetscObject)ts);
4218:   if (ts->adjoint_solve) {
4219:     TSAdjointSolve(ts);
4220:   }
4221:   return(0);
4222: }

4224: /*@C
4225:    TSMonitor - Runs all user-provided monitor routines set using TSMonitorSet()

4227:    Collective on TS

4229:    Input Parameters:
4230: +  ts - time stepping context obtained from TSCreate()
4231: .  step - step number that has just completed
4232: .  ptime - model time of the state
4233: -  u - state at the current model time

4235:    Notes:
4236:    TSMonitor() is typically used automatically within the time stepping implementations.
4237:    Users would almost never call this routine directly.

4239:    A step of -1 indicates that the monitor is being called on a solution obtained by interpolating from computed solutions

4241:    Level: developer

4243: @*/
4244: PetscErrorCode TSMonitor(TS ts,PetscInt step,PetscReal ptime,Vec u)
4245: {
4246:   DM             dm;
4247:   PetscInt       i,n = ts->numbermonitors;


4254:   TSGetDM(ts,&dm);
4255:   DMSetOutputSequenceNumber(dm,step,ptime);

4257:   VecLockReadPush(u);
4258:   for (i=0; i<n; i++) {
4259:     (*ts->monitor[i])(ts,step,ptime,u,ts->monitorcontext[i]);
4260:   }
4261:   VecLockReadPop(u);
4262:   return(0);
4263: }

4265: /* ------------------------------------------------------------------------*/
4266: /*@C
4267:    TSMonitorLGCtxCreate - Creates a TSMonitorLGCtx context for use with
4268:    TS to monitor the solution process graphically in various ways

4270:    Collective on TS

4272:    Input Parameters:
4273: +  host - the X display to open, or null for the local machine
4274: .  label - the title to put in the title bar
4275: .  x, y - the screen coordinates of the upper left coordinate of the window
4276: .  m, n - the screen width and height in pixels
4277: -  howoften - if positive then determines the frequency of the plotting, if -1 then only at the final time

4279:    Output Parameter:
4280: .  ctx - the context

4282:    Options Database Key:
4283: +  -ts_monitor_lg_timestep - automatically sets line graph monitor
4284: +  -ts_monitor_lg_timestep_log - automatically sets line graph monitor
4285: .  -ts_monitor_lg_solution - monitor the solution (or certain values of the solution by calling TSMonitorLGSetDisplayVariables() or TSMonitorLGCtxSetDisplayVariables())
4286: .  -ts_monitor_lg_error -  monitor the error
4287: .  -ts_monitor_lg_ksp_iterations - monitor the number of KSP iterations needed for each timestep
4288: .  -ts_monitor_lg_snes_iterations - monitor the number of SNES iterations needed for each timestep
4289: -  -lg_use_markers <true,false> - mark the data points (at each time step) on the plot; default is true

4291:    Notes:
4292:    Use TSMonitorLGCtxDestroy() to destroy.

4294:    One can provide a function that transforms the solution before plotting it with TSMonitorLGCtxSetTransform() or TSMonitorLGSetTransform()

4296:    Many of the functions that control the monitoring have two forms: TSMonitorLGSet/GetXXXX() and TSMonitorLGCtxSet/GetXXXX() the first take a TS object as the
4297:    first argument (if that TS object does not have a TSMonitorLGCtx associated with it the function call is ignored) and the second takes a TSMonitorLGCtx object
4298:    as the first argument.

4300:    One can control the names displayed for each solution or error variable with TSMonitorLGCtxSetVariableNames() or TSMonitorLGSetVariableNames()

4302:    Level: intermediate

4304: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError(), TSMonitorDefault(), VecView(),
4305:            TSMonitorLGCtxCreate(), TSMonitorLGCtxSetVariableNames(), TSMonitorLGCtxGetVariableNames(),
4306:            TSMonitorLGSetVariableNames(), TSMonitorLGGetVariableNames(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetDisplayVariables(),
4307:            TSMonitorLGCtxSetTransform(), TSMonitorLGSetTransform(), TSMonitorLGError(), TSMonitorLGSNESIterations(), TSMonitorLGKSPIterations(),
4308:            TSMonitorEnvelopeCtxCreate(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxDestroy(), TSMonitorEnvelop()

4310: @*/
4311: PetscErrorCode  TSMonitorLGCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorLGCtx *ctx)
4312: {
4313:   PetscDraw      draw;

4317:   PetscNew(ctx);
4318:   PetscDrawCreate(comm,host,label,x,y,m,n,&draw);
4319:   PetscDrawSetFromOptions(draw);
4320:   PetscDrawLGCreate(draw,1,&(*ctx)->lg);
4321:   PetscDrawLGSetFromOptions((*ctx)->lg);
4322:   PetscDrawDestroy(&draw);
4323:   (*ctx)->howoften = howoften;
4324:   return(0);
4325: }

4327: PetscErrorCode TSMonitorLGTimeStep(TS ts,PetscInt step,PetscReal ptime,Vec v,void *monctx)
4328: {
4329:   TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
4330:   PetscReal      x   = ptime,y;

4334:   if (step < 0) return(0); /* -1 indicates an interpolated solution */
4335:   if (!step) {
4336:     PetscDrawAxis axis;
4337:     const char *ylabel = ctx->semilogy ? "Log Time Step" : "Time Step";
4338:     PetscDrawLGGetAxis(ctx->lg,&axis);
4339:     PetscDrawAxisSetLabels(axis,"Timestep as function of time","Time",ylabel);
4340:     PetscDrawLGReset(ctx->lg);
4341:   }
4342:   TSGetTimeStep(ts,&y);
4343:   if (ctx->semilogy) y = PetscLog10Real(y);
4344:   PetscDrawLGAddPoint(ctx->lg,&x,&y);
4345:   if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
4346:     PetscDrawLGDraw(ctx->lg);
4347:     PetscDrawLGSave(ctx->lg);
4348:   }
4349:   return(0);
4350: }

4352: /*@C
4353:    TSMonitorLGCtxDestroy - Destroys a line graph context that was created
4354:    with TSMonitorLGCtxCreate().

4356:    Collective on TSMonitorLGCtx

4358:    Input Parameter:
4359: .  ctx - the monitor context

4361:    Level: intermediate

4363: .seealso: TSMonitorLGCtxCreate(),  TSMonitorSet(), TSMonitorLGTimeStep();
4364: @*/
4365: PetscErrorCode  TSMonitorLGCtxDestroy(TSMonitorLGCtx *ctx)
4366: {

4370:   if ((*ctx)->transformdestroy) {
4371:     ((*ctx)->transformdestroy)((*ctx)->transformctx);
4372:   }
4373:   PetscDrawLGDestroy(&(*ctx)->lg);
4374:   PetscStrArrayDestroy(&(*ctx)->names);
4375:   PetscStrArrayDestroy(&(*ctx)->displaynames);
4376:   PetscFree((*ctx)->displayvariables);
4377:   PetscFree((*ctx)->displayvalues);
4378:   PetscFree(*ctx);
4379:   return(0);
4380: }

4382: /*

4384:   Creates a TS Monitor SPCtx for use with DM Swarm particle visualizations

4386: */
4387: PetscErrorCode TSMonitorSPCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorSPCtx *ctx)
4388: {
4389:   PetscDraw      draw;

4393:   PetscNew(ctx);
4394:   PetscDrawCreate(comm,host,label,x,y,m,n,&draw);
4395:   PetscDrawSetFromOptions(draw);
4396:   PetscDrawSPCreate(draw,1,&(*ctx)->sp);
4397:   PetscDrawDestroy(&draw);
4398:   (*ctx)->howoften = howoften;
4399:   return(0);

4401: }

4403: /*
4404:   Destroys a TSMonitorSPCtx that was created with TSMonitorSPCtxCreate
4405: */
4406: PetscErrorCode TSMonitorSPCtxDestroy(TSMonitorSPCtx *ctx)
4407: {


4412:   PetscDrawSPDestroy(&(*ctx)->sp);
4413:   PetscFree(*ctx);

4415:   return(0);

4417: }

4419: /*@
4420:    TSGetTime - Gets the time of the most recently completed step.

4422:    Not Collective

4424:    Input Parameter:
4425: .  ts - the TS context obtained from TSCreate()

4427:    Output Parameter:
4428: .  t  - the current time. This time may not corresponds to the final time set with TSSetMaxTime(), use TSGetSolveTime().

4430:    Level: beginner

4432:    Note:
4433:    When called during time step evaluation (e.g. during residual evaluation or via hooks set using TSSetPreStep(),
4434:    TSSetPreStage(), TSSetPostStage(), or TSSetPostStep()), the time is the time at the start of the step being evaluated.

4436: .seealso:  TSGetSolveTime(), TSSetTime(), TSGetTimeStep(), TSGetStepNumber()

4438: @*/
4439: PetscErrorCode  TSGetTime(TS ts,PetscReal *t)
4440: {
4444:   *t = ts->ptime;
4445:   return(0);
4446: }

4448: /*@
4449:    TSGetPrevTime - Gets the starting time of the previously completed step.

4451:    Not Collective

4453:    Input Parameter:
4454: .  ts - the TS context obtained from TSCreate()

4456:    Output Parameter:
4457: .  t  - the previous time

4459:    Level: beginner

4461: .seealso: TSGetTime(), TSGetSolveTime(), TSGetTimeStep()

4463: @*/
4464: PetscErrorCode  TSGetPrevTime(TS ts,PetscReal *t)
4465: {
4469:   *t = ts->ptime_prev;
4470:   return(0);
4471: }

4473: /*@
4474:    TSSetTime - Allows one to reset the time.

4476:    Logically Collective on TS

4478:    Input Parameters:
4479: +  ts - the TS context obtained from TSCreate()
4480: -  time - the time

4482:    Level: intermediate

4484: .seealso: TSGetTime(), TSSetMaxSteps()

4486: @*/
4487: PetscErrorCode  TSSetTime(TS ts, PetscReal t)
4488: {
4492:   ts->ptime = t;
4493:   return(0);
4494: }

4496: /*@C
4497:    TSSetOptionsPrefix - Sets the prefix used for searching for all
4498:    TS options in the database.

4500:    Logically Collective on TS

4502:    Input Parameter:
4503: +  ts     - The TS context
4504: -  prefix - The prefix to prepend to all option names

4506:    Notes:
4507:    A hyphen (-) must NOT be given at the beginning of the prefix name.
4508:    The first character of all runtime options is AUTOMATICALLY the
4509:    hyphen.

4511:    Level: advanced

4513: .seealso: TSSetFromOptions()

4515: @*/
4516: PetscErrorCode  TSSetOptionsPrefix(TS ts,const char prefix[])
4517: {
4519:   SNES           snes;

4523:   PetscObjectSetOptionsPrefix((PetscObject)ts,prefix);
4524:   TSGetSNES(ts,&snes);
4525:   SNESSetOptionsPrefix(snes,prefix);
4526:   return(0);
4527: }

4529: /*@C
4530:    TSAppendOptionsPrefix - Appends to the prefix used for searching for all
4531:    TS options in the database.

4533:    Logically Collective on TS

4535:    Input Parameter:
4536: +  ts     - The TS context
4537: -  prefix - The prefix to prepend to all option names

4539:    Notes:
4540:    A hyphen (-) must NOT be given at the beginning of the prefix name.
4541:    The first character of all runtime options is AUTOMATICALLY the
4542:    hyphen.

4544:    Level: advanced

4546: .seealso: TSGetOptionsPrefix()

4548: @*/
4549: PetscErrorCode  TSAppendOptionsPrefix(TS ts,const char prefix[])
4550: {
4552:   SNES           snes;

4556:   PetscObjectAppendOptionsPrefix((PetscObject)ts,prefix);
4557:   TSGetSNES(ts,&snes);
4558:   SNESAppendOptionsPrefix(snes,prefix);
4559:   return(0);
4560: }

4562: /*@C
4563:    TSGetOptionsPrefix - Sets the prefix used for searching for all
4564:    TS options in the database.

4566:    Not Collective

4568:    Input Parameter:
4569: .  ts - The TS context

4571:    Output Parameter:
4572: .  prefix - A pointer to the prefix string used

4574:    Notes:
4575:     On the fortran side, the user should pass in a string 'prifix' of
4576:    sufficient length to hold the prefix.

4578:    Level: intermediate

4580: .seealso: TSAppendOptionsPrefix()
4581: @*/
4582: PetscErrorCode  TSGetOptionsPrefix(TS ts,const char *prefix[])
4583: {

4589:   PetscObjectGetOptionsPrefix((PetscObject)ts,prefix);
4590:   return(0);
4591: }

4593: /*@C
4594:    TSGetRHSJacobian - Returns the Jacobian J at the present timestep.

4596:    Not Collective, but parallel objects are returned if TS is parallel

4598:    Input Parameter:
4599: .  ts  - The TS context obtained from TSCreate()

4601:    Output Parameters:
4602: +  Amat - The (approximate) Jacobian J of G, where U_t = G(U,t)  (or NULL)
4603: .  Pmat - The matrix from which the preconditioner is constructed, usually the same as Amat  (or NULL)
4604: .  func - Function to compute the Jacobian of the RHS  (or NULL)
4605: -  ctx - User-defined context for Jacobian evaluation routine  (or NULL)

4607:    Notes:
4608:     You can pass in NULL for any return argument you do not need.

4610:    Level: intermediate

4612: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetStepNumber()

4614: @*/
4615: PetscErrorCode  TSGetRHSJacobian(TS ts,Mat *Amat,Mat *Pmat,TSRHSJacobian *func,void **ctx)
4616: {
4618:   DM             dm;

4621:   if (Amat || Pmat) {
4622:     SNES snes;
4623:     TSGetSNES(ts,&snes);
4624:     SNESSetUpMatrices(snes);
4625:     SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
4626:   }
4627:   TSGetDM(ts,&dm);
4628:   DMTSGetRHSJacobian(dm,func,ctx);
4629:   return(0);
4630: }

4632: /*@C
4633:    TSGetIJacobian - Returns the implicit Jacobian at the present timestep.

4635:    Not Collective, but parallel objects are returned if TS is parallel

4637:    Input Parameter:
4638: .  ts  - The TS context obtained from TSCreate()

4640:    Output Parameters:
4641: +  Amat  - The (approximate) Jacobian of F(t,U,U_t)
4642: .  Pmat - The matrix from which the preconditioner is constructed, often the same as Amat
4643: .  f   - The function to compute the matrices
4644: - ctx - User-defined context for Jacobian evaluation routine

4646:    Notes:
4647:     You can pass in NULL for any return argument you do not need.

4649:    Level: advanced

4651: .seealso: TSGetTimeStep(), TSGetRHSJacobian(), TSGetMatrices(), TSGetTime(), TSGetStepNumber()

4653: @*/
4654: PetscErrorCode  TSGetIJacobian(TS ts,Mat *Amat,Mat *Pmat,TSIJacobian *f,void **ctx)
4655: {
4657:   DM             dm;

4660:   if (Amat || Pmat) {
4661:     SNES snes;
4662:     TSGetSNES(ts,&snes);
4663:     SNESSetUpMatrices(snes);
4664:     SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
4665:   }
4666:   TSGetDM(ts,&dm);
4667:   DMTSGetIJacobian(dm,f,ctx);
4668:   return(0);
4669: }

4671: /*@C
4672:    TSMonitorDrawSolution - Monitors progress of the TS solvers by calling
4673:    VecView() for the solution at each timestep

4675:    Collective on TS

4677:    Input Parameters:
4678: +  ts - the TS context
4679: .  step - current time-step
4680: .  ptime - current time
4681: -  dummy - either a viewer or NULL

4683:    Options Database:
4684: .   -ts_monitor_draw_solution_initial - show initial solution as well as current solution

4686:    Notes:
4687:     the initial solution and current solution are not display with a common axis scaling so generally the option -ts_monitor_draw_solution_initial
4688:        will look bad

4690:    Level: intermediate

4692: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4693: @*/
4694: PetscErrorCode  TSMonitorDrawSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4695: {
4696:   PetscErrorCode   ierr;
4697:   TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
4698:   PetscDraw        draw;

4701:   if (!step && ictx->showinitial) {
4702:     if (!ictx->initialsolution) {
4703:       VecDuplicate(u,&ictx->initialsolution);
4704:     }
4705:     VecCopy(u,ictx->initialsolution);
4706:   }
4707:   if (!(((ictx->howoften > 0) && (!(step % ictx->howoften))) || ((ictx->howoften == -1) && ts->reason))) return(0);

4709:   if (ictx->showinitial) {
4710:     PetscReal pause;
4711:     PetscViewerDrawGetPause(ictx->viewer,&pause);
4712:     PetscViewerDrawSetPause(ictx->viewer,0.0);
4713:     VecView(ictx->initialsolution,ictx->viewer);
4714:     PetscViewerDrawSetPause(ictx->viewer,pause);
4715:     PetscViewerDrawSetHold(ictx->viewer,PETSC_TRUE);
4716:   }
4717:   VecView(u,ictx->viewer);
4718:   if (ictx->showtimestepandtime) {
4719:     PetscReal xl,yl,xr,yr,h;
4720:     char      time[32];

4722:     PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
4723:     PetscSNPrintf(time,32,"Timestep %d Time %g",(int)step,(double)ptime);
4724:     PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
4725:     h    = yl + .95*(yr - yl);
4726:     PetscDrawStringCentered(draw,.5*(xl+xr),h,PETSC_DRAW_BLACK,time);
4727:     PetscDrawFlush(draw);
4728:   }

4730:   if (ictx->showinitial) {
4731:     PetscViewerDrawSetHold(ictx->viewer,PETSC_FALSE);
4732:   }
4733:   return(0);
4734: }

4736: /*@C
4737:    TSMonitorDrawSolutionPhase - Monitors progress of the TS solvers by plotting the solution as a phase diagram

4739:    Collective on TS

4741:    Input Parameters:
4742: +  ts - the TS context
4743: .  step - current time-step
4744: .  ptime - current time
4745: -  dummy - either a viewer or NULL

4747:    Level: intermediate

4749: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4750: @*/
4751: PetscErrorCode  TSMonitorDrawSolutionPhase(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4752: {
4753:   PetscErrorCode    ierr;
4754:   TSMonitorDrawCtx  ictx = (TSMonitorDrawCtx)dummy;
4755:   PetscDraw         draw;
4756:   PetscDrawAxis     axis;
4757:   PetscInt          n;
4758:   PetscMPIInt       size;
4759:   PetscReal         U0,U1,xl,yl,xr,yr,h;
4760:   char              time[32];
4761:   const PetscScalar *U;

4764:   MPI_Comm_size(PetscObjectComm((PetscObject)ts),&size);
4765:   if (size != 1) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Only allowed for sequential runs");
4766:   VecGetSize(u,&n);
4767:   if (n != 2) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Only for ODEs with two unknowns");

4769:   PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
4770:   PetscViewerDrawGetDrawAxis(ictx->viewer,0,&axis);
4771:   PetscDrawAxisGetLimits(axis,&xl,&xr,&yl,&yr);
4772:   if (!step) {
4773:     PetscDrawClear(draw);
4774:     PetscDrawAxisDraw(axis);
4775:   }

4777:   VecGetArrayRead(u,&U);
4778:   U0 = PetscRealPart(U[0]);
4779:   U1 = PetscRealPart(U[1]);
4780:   VecRestoreArrayRead(u,&U);
4781:   if ((U0 < xl) || (U1 < yl) || (U0 > xr) || (U1 > yr)) return(0);

4783:   PetscDrawCollectiveBegin(draw);
4784:   PetscDrawPoint(draw,U0,U1,PETSC_DRAW_BLACK);
4785:   if (ictx->showtimestepandtime) {
4786:     PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
4787:     PetscSNPrintf(time,32,"Timestep %d Time %g",(int)step,(double)ptime);
4788:     h    = yl + .95*(yr - yl);
4789:     PetscDrawStringCentered(draw,.5*(xl+xr),h,PETSC_DRAW_BLACK,time);
4790:   }
4791:   PetscDrawCollectiveEnd(draw);
4792:   PetscDrawFlush(draw);
4793:   PetscDrawPause(draw);
4794:   PetscDrawSave(draw);
4795:   return(0);
4796: }

4798: /*@C
4799:    TSMonitorDrawCtxDestroy - Destroys the monitor context for TSMonitorDrawSolution()

4801:    Collective on TS

4803:    Input Parameters:
4804: .    ctx - the monitor context

4806:    Level: intermediate

4808: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawSolution(), TSMonitorDrawError()
4809: @*/
4810: PetscErrorCode  TSMonitorDrawCtxDestroy(TSMonitorDrawCtx *ictx)
4811: {

4815:   PetscViewerDestroy(&(*ictx)->viewer);
4816:   VecDestroy(&(*ictx)->initialsolution);
4817:   PetscFree(*ictx);
4818:   return(0);
4819: }

4821: /*@C
4822:    TSMonitorDrawCtxCreate - Creates the monitor context for TSMonitorDrawCtx

4824:    Collective on TS

4826:    Input Parameter:
4827: .    ts - time-step context

4829:    Output Patameter:
4830: .    ctx - the monitor context

4832:    Options Database:
4833: .   -ts_monitor_draw_solution_initial - show initial solution as well as current solution

4835:    Level: intermediate

4837: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawCtx()
4838: @*/
4839: PetscErrorCode  TSMonitorDrawCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorDrawCtx *ctx)
4840: {
4841:   PetscErrorCode   ierr;

4844:   PetscNew(ctx);
4845:   PetscViewerDrawOpen(comm,host,label,x,y,m,n,&(*ctx)->viewer);
4846:   PetscViewerSetFromOptions((*ctx)->viewer);

4848:   (*ctx)->howoften    = howoften;
4849:   (*ctx)->showinitial = PETSC_FALSE;
4850:   PetscOptionsGetBool(NULL,NULL,"-ts_monitor_draw_solution_initial",&(*ctx)->showinitial,NULL);

4852:   (*ctx)->showtimestepandtime = PETSC_FALSE;
4853:   PetscOptionsGetBool(NULL,NULL,"-ts_monitor_draw_solution_show_time",&(*ctx)->showtimestepandtime,NULL);
4854:   return(0);
4855: }

4857: /*@C
4858:    TSMonitorDrawSolutionFunction - Monitors progress of the TS solvers by calling
4859:    VecView() for the solution provided by TSSetSolutionFunction() at each timestep

4861:    Collective on TS

4863:    Input Parameters:
4864: +  ts - the TS context
4865: .  step - current time-step
4866: .  ptime - current time
4867: -  dummy - either a viewer or NULL

4869:    Options Database:
4870: .  -ts_monitor_draw_solution_function - Monitor error graphically, requires user to have provided TSSetSolutionFunction()

4872:    Level: intermediate

4874: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
4875: @*/
4876: PetscErrorCode  TSMonitorDrawSolutionFunction(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4877: {
4878:   PetscErrorCode   ierr;
4879:   TSMonitorDrawCtx ctx    = (TSMonitorDrawCtx)dummy;
4880:   PetscViewer      viewer = ctx->viewer;
4881:   Vec              work;

4884:   if (!(((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason))) return(0);
4885:   VecDuplicate(u,&work);
4886:   TSComputeSolutionFunction(ts,ptime,work);
4887:   VecView(work,viewer);
4888:   VecDestroy(&work);
4889:   return(0);
4890: }

4892: /*@C
4893:    TSMonitorDrawError - Monitors progress of the TS solvers by calling
4894:    VecView() for the error at each timestep

4896:    Collective on TS

4898:    Input Parameters:
4899: +  ts - the TS context
4900: .  step - current time-step
4901: .  ptime - current time
4902: -  dummy - either a viewer or NULL

4904:    Options Database:
4905: .  -ts_monitor_draw_error - Monitor error graphically, requires user to have provided TSSetSolutionFunction()

4907:    Level: intermediate

4909: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
4910: @*/
4911: PetscErrorCode  TSMonitorDrawError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4912: {
4913:   PetscErrorCode   ierr;
4914:   TSMonitorDrawCtx ctx    = (TSMonitorDrawCtx)dummy;
4915:   PetscViewer      viewer = ctx->viewer;
4916:   Vec              work;

4919:   if (!(((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason))) return(0);
4920:   VecDuplicate(u,&work);
4921:   TSComputeSolutionFunction(ts,ptime,work);
4922:   VecAXPY(work,-1.0,u);
4923:   VecView(work,viewer);
4924:   VecDestroy(&work);
4925:   return(0);
4926: }

4928: #include <petsc/private/dmimpl.h>
4929: /*@
4930:    TSSetDM - Sets the DM that may be used by some nonlinear solvers or preconditioners under the TS

4932:    Logically Collective on ts

4934:    Input Parameters:
4935: +  ts - the ODE integrator object
4936: -  dm - the dm, cannot be NULL

4938:    Notes:
4939:    A DM can only be used for solving one problem at a time because information about the problem is stored on the DM,
4940:    even when not using interfaces like DMTSSetIFunction().  Use DMClone() to get a distinct DM when solving
4941:    different problems using the same function space.

4943:    Level: intermediate

4945: .seealso: TSGetDM(), SNESSetDM(), SNESGetDM()
4946: @*/
4947: PetscErrorCode  TSSetDM(TS ts,DM dm)
4948: {
4950:   SNES           snes;
4951:   DMTS           tsdm;

4956:   PetscObjectReference((PetscObject)dm);
4957:   if (ts->dm) {               /* Move the DMTS context over to the new DM unless the new DM already has one */
4958:     if (ts->dm->dmts && !dm->dmts) {
4959:       DMCopyDMTS(ts->dm,dm);
4960:       DMGetDMTS(ts->dm,&tsdm);
4961:       if (tsdm->originaldm == ts->dm) { /* Grant write privileges to the replacement DM */
4962:         tsdm->originaldm = dm;
4963:       }
4964:     }
4965:     DMDestroy(&ts->dm);
4966:   }
4967:   ts->dm = dm;

4969:   TSGetSNES(ts,&snes);
4970:   SNESSetDM(snes,dm);
4971:   return(0);
4972: }

4974: /*@
4975:    TSGetDM - Gets the DM that may be used by some preconditioners

4977:    Not Collective

4979:    Input Parameter:
4980: . ts - the preconditioner context

4982:    Output Parameter:
4983: .  dm - the dm

4985:    Level: intermediate

4987: .seealso: TSSetDM(), SNESSetDM(), SNESGetDM()
4988: @*/
4989: PetscErrorCode  TSGetDM(TS ts,DM *dm)
4990: {

4995:   if (!ts->dm) {
4996:     DMShellCreate(PetscObjectComm((PetscObject)ts),&ts->dm);
4997:     if (ts->snes) {SNESSetDM(ts->snes,ts->dm);}
4998:   }
4999:   *dm = ts->dm;
5000:   return(0);
5001: }

5003: /*@
5004:    SNESTSFormFunction - Function to evaluate nonlinear residual

5006:    Logically Collective on SNES

5008:    Input Parameter:
5009: + snes - nonlinear solver
5010: . U - the current state at which to evaluate the residual
5011: - ctx - user context, must be a TS

5013:    Output Parameter:
5014: . F - the nonlinear residual

5016:    Notes:
5017:    This function is not normally called by users and is automatically registered with the SNES used by TS.
5018:    It is most frequently passed to MatFDColoringSetFunction().

5020:    Level: advanced

5022: .seealso: SNESSetFunction(), MatFDColoringSetFunction()
5023: @*/
5024: PetscErrorCode  SNESTSFormFunction(SNES snes,Vec U,Vec F,void *ctx)
5025: {
5026:   TS             ts = (TS)ctx;

5034:   (ts->ops->snesfunction)(snes,U,F,ts);
5035:   return(0);
5036: }

5038: /*@
5039:    SNESTSFormJacobian - Function to evaluate the Jacobian

5041:    Collective on SNES

5043:    Input Parameter:
5044: + snes - nonlinear solver
5045: . U - the current state at which to evaluate the residual
5046: - ctx - user context, must be a TS

5048:    Output Parameter:
5049: + A - the Jacobian
5050: . B - the preconditioning matrix (may be the same as A)
5051: - flag - indicates any structure change in the matrix

5053:    Notes:
5054:    This function is not normally called by users and is automatically registered with the SNES used by TS.

5056:    Level: developer

5058: .seealso: SNESSetJacobian()
5059: @*/
5060: PetscErrorCode  SNESTSFormJacobian(SNES snes,Vec U,Mat A,Mat B,void *ctx)
5061: {
5062:   TS             ts = (TS)ctx;

5073:   (ts->ops->snesjacobian)(snes,U,A,B,ts);
5074:   return(0);
5075: }

5077: /*@C
5078:    TSComputeRHSFunctionLinear - Evaluate the right hand side via the user-provided Jacobian, for linear problems Udot = A U only

5080:    Collective on TS

5082:    Input Arguments:
5083: +  ts - time stepping context
5084: .  t - time at which to evaluate
5085: .  U - state at which to evaluate
5086: -  ctx - context

5088:    Output Arguments:
5089: .  F - right hand side

5091:    Level: intermediate

5093:    Notes:
5094:    This function is intended to be passed to TSSetRHSFunction() to evaluate the right hand side for linear problems.
5095:    The matrix (and optionally the evaluation context) should be passed to TSSetRHSJacobian().

5097: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
5098: @*/
5099: PetscErrorCode TSComputeRHSFunctionLinear(TS ts,PetscReal t,Vec U,Vec F,void *ctx)
5100: {
5102:   Mat            Arhs,Brhs;

5105:   TSGetRHSMats_Private(ts,&Arhs,&Brhs);
5106:   /* undo the damage caused by shifting */
5107:   TSRecoverRHSJacobian(ts,Arhs,Brhs);
5108:   TSComputeRHSJacobian(ts,t,U,Arhs,Brhs);
5109:   MatMult(Arhs,U,F);
5110:   return(0);
5111: }

5113: /*@C
5114:    TSComputeRHSJacobianConstant - Reuses a Jacobian that is time-independent.

5116:    Collective on TS

5118:    Input Arguments:
5119: +  ts - time stepping context
5120: .  t - time at which to evaluate
5121: .  U - state at which to evaluate
5122: -  ctx - context

5124:    Output Arguments:
5125: +  A - pointer to operator
5126: .  B - pointer to preconditioning matrix
5127: -  flg - matrix structure flag

5129:    Level: intermediate

5131:    Notes:
5132:    This function is intended to be passed to TSSetRHSJacobian() to evaluate the Jacobian for linear time-independent problems.

5134: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSFunctionLinear()
5135: @*/
5136: PetscErrorCode TSComputeRHSJacobianConstant(TS ts,PetscReal t,Vec U,Mat A,Mat B,void *ctx)
5137: {
5139:   return(0);
5140: }

5142: /*@C
5143:    TSComputeIFunctionLinear - Evaluate the left hand side via the user-provided Jacobian, for linear problems only

5145:    Collective on TS

5147:    Input Arguments:
5148: +  ts - time stepping context
5149: .  t - time at which to evaluate
5150: .  U - state at which to evaluate
5151: .  Udot - time derivative of state vector
5152: -  ctx - context

5154:    Output Arguments:
5155: .  F - left hand side

5157:    Level: intermediate

5159:    Notes:
5160:    The assumption here is that the left hand side is of the form A*Udot (and not A*Udot + B*U). For other cases, the
5161:    user is required to write their own TSComputeIFunction.
5162:    This function is intended to be passed to TSSetIFunction() to evaluate the left hand side for linear problems.
5163:    The matrix (and optionally the evaluation context) should be passed to TSSetIJacobian().

5165:    Note that using this function is NOT equivalent to using TSComputeRHSFunctionLinear() since that solves Udot = A U

5167: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIJacobianConstant(), TSComputeRHSFunctionLinear()
5168: @*/
5169: PetscErrorCode TSComputeIFunctionLinear(TS ts,PetscReal t,Vec U,Vec Udot,Vec F,void *ctx)
5170: {
5172:   Mat            A,B;

5175:   TSGetIJacobian(ts,&A,&B,NULL,NULL);
5176:   TSComputeIJacobian(ts,t,U,Udot,1.0,A,B,PETSC_TRUE);
5177:   MatMult(A,Udot,F);
5178:   return(0);
5179: }

5181: /*@C
5182:    TSComputeIJacobianConstant - Reuses a time-independent for a semi-implicit DAE or ODE

5184:    Collective on TS

5186:    Input Arguments:
5187: +  ts - time stepping context
5188: .  t - time at which to evaluate
5189: .  U - state at which to evaluate
5190: .  Udot - time derivative of state vector
5191: .  shift - shift to apply
5192: -  ctx - context

5194:    Output Arguments:
5195: +  A - pointer to operator
5196: .  B - pointer to preconditioning matrix
5197: -  flg - matrix structure flag

5199:    Level: advanced

5201:    Notes:
5202:    This function is intended to be passed to TSSetIJacobian() to evaluate the Jacobian for linear time-independent problems.

5204:    It is only appropriate for problems of the form

5206: $     M Udot = F(U,t)

5208:   where M is constant and F is non-stiff.  The user must pass M to TSSetIJacobian().  The current implementation only
5209:   works with IMEX time integration methods such as TSROSW and TSARKIMEX, since there is no support for de-constructing
5210:   an implicit operator of the form

5212: $    shift*M + J

5214:   where J is the Jacobian of -F(U).  Support may be added in a future version of PETSc, but for now, the user must store
5215:   a copy of M or reassemble it when requested.

5217: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIFunctionLinear()
5218: @*/
5219: PetscErrorCode TSComputeIJacobianConstant(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat A,Mat B,void *ctx)
5220: {

5224:   MatScale(A, shift / ts->ijacobian.shift);
5225:   ts->ijacobian.shift = shift;
5226:   return(0);
5227: }

5229: /*@
5230:    TSGetEquationType - Gets the type of the equation that TS is solving.

5232:    Not Collective

5234:    Input Parameter:
5235: .  ts - the TS context

5237:    Output Parameter:
5238: .  equation_type - see TSEquationType

5240:    Level: beginner

5242: .seealso: TSSetEquationType(), TSEquationType
5243: @*/
5244: PetscErrorCode  TSGetEquationType(TS ts,TSEquationType *equation_type)
5245: {
5249:   *equation_type = ts->equation_type;
5250:   return(0);
5251: }

5253: /*@
5254:    TSSetEquationType - Sets the type of the equation that TS is solving.

5256:    Not Collective

5258:    Input Parameter:
5259: +  ts - the TS context
5260: -  equation_type - see TSEquationType

5262:    Level: advanced

5264: .seealso: TSGetEquationType(), TSEquationType
5265: @*/
5266: PetscErrorCode  TSSetEquationType(TS ts,TSEquationType equation_type)
5267: {
5270:   ts->equation_type = equation_type;
5271:   return(0);
5272: }

5274: /*@
5275:    TSGetConvergedReason - Gets the reason the TS iteration was stopped.

5277:    Not Collective

5279:    Input Parameter:
5280: .  ts - the TS context

5282:    Output Parameter:
5283: .  reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
5284:             manual pages for the individual convergence tests for complete lists

5286:    Level: beginner

5288:    Notes:
5289:    Can only be called after the call to TSSolve() is complete.

5291: .seealso: TSSetConvergenceTest(), TSConvergedReason
5292: @*/
5293: PetscErrorCode  TSGetConvergedReason(TS ts,TSConvergedReason *reason)
5294: {
5298:   *reason = ts->reason;
5299:   return(0);
5300: }

5302: /*@
5303:    TSSetConvergedReason - Sets the reason for handling the convergence of TSSolve.

5305:    Logically Collective; reason must contain common value

5307:    Input Parameters:
5308: +  ts - the TS context
5309: -  reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
5310:             manual pages for the individual convergence tests for complete lists

5312:    Level: advanced

5314:    Notes:
5315:    Can only be called while TSSolve() is active.

5317: .seealso: TSConvergedReason
5318: @*/
5319: PetscErrorCode  TSSetConvergedReason(TS ts,TSConvergedReason reason)
5320: {
5323:   ts->reason = reason;
5324:   return(0);
5325: }

5327: /*@
5328:    TSGetSolveTime - Gets the time after a call to TSSolve()

5330:    Not Collective

5332:    Input Parameter:
5333: .  ts - the TS context

5335:    Output Parameter:
5336: .  ftime - the final time. This time corresponds to the final time set with TSSetMaxTime()

5338:    Level: beginner

5340:    Notes:
5341:    Can only be called after the call to TSSolve() is complete.

5343: .seealso: TSSetConvergenceTest(), TSConvergedReason
5344: @*/
5345: PetscErrorCode  TSGetSolveTime(TS ts,PetscReal *ftime)
5346: {
5350:   *ftime = ts->solvetime;
5351:   return(0);
5352: }

5354: /*@
5355:    TSGetSNESIterations - Gets the total number of nonlinear iterations
5356:    used by the time integrator.

5358:    Not Collective

5360:    Input Parameter:
5361: .  ts - TS context

5363:    Output Parameter:
5364: .  nits - number of nonlinear iterations

5366:    Notes:
5367:    This counter is reset to zero for each successive call to TSSolve().

5369:    Level: intermediate

5371: .seealso:  TSGetKSPIterations()
5372: @*/
5373: PetscErrorCode TSGetSNESIterations(TS ts,PetscInt *nits)
5374: {
5378:   *nits = ts->snes_its;
5379:   return(0);
5380: }

5382: /*@
5383:    TSGetKSPIterations - Gets the total number of linear iterations
5384:    used by the time integrator.

5386:    Not Collective

5388:    Input Parameter:
5389: .  ts - TS context

5391:    Output Parameter:
5392: .  lits - number of linear iterations

5394:    Notes:
5395:    This counter is reset to zero for each successive call to TSSolve().

5397:    Level: intermediate

5399: .seealso:  TSGetSNESIterations(), SNESGetKSPIterations()
5400: @*/
5401: PetscErrorCode TSGetKSPIterations(TS ts,PetscInt *lits)
5402: {
5406:   *lits = ts->ksp_its;
5407:   return(0);
5408: }

5410: /*@
5411:    TSGetStepRejections - Gets the total number of rejected steps.

5413:    Not Collective

5415:    Input Parameter:
5416: .  ts - TS context

5418:    Output Parameter:
5419: .  rejects - number of steps rejected

5421:    Notes:
5422:    This counter is reset to zero for each successive call to TSSolve().

5424:    Level: intermediate

5426: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetSNESFailures(), TSSetMaxSNESFailures(), TSSetErrorIfStepFails()
5427: @*/
5428: PetscErrorCode TSGetStepRejections(TS ts,PetscInt *rejects)
5429: {
5433:   *rejects = ts->reject;
5434:   return(0);
5435: }

5437: /*@
5438:    TSGetSNESFailures - Gets the total number of failed SNES solves

5440:    Not Collective

5442:    Input Parameter:
5443: .  ts - TS context

5445:    Output Parameter:
5446: .  fails - number of failed nonlinear solves

5448:    Notes:
5449:    This counter is reset to zero for each successive call to TSSolve().

5451:    Level: intermediate

5453: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSSetMaxSNESFailures()
5454: @*/
5455: PetscErrorCode TSGetSNESFailures(TS ts,PetscInt *fails)
5456: {
5460:   *fails = ts->num_snes_failures;
5461:   return(0);
5462: }

5464: /*@
5465:    TSSetMaxStepRejections - Sets the maximum number of step rejections before a step fails

5467:    Not Collective

5469:    Input Parameter:
5470: +  ts - TS context
5471: -  rejects - maximum number of rejected steps, pass -1 for unlimited

5473:    Notes:
5474:    The counter is reset to zero for each step

5476:    Options Database Key:
5477:  .  -ts_max_reject - Maximum number of step rejections before a step fails

5479:    Level: intermediate

5481: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxSNESFailures(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
5482: @*/
5483: PetscErrorCode TSSetMaxStepRejections(TS ts,PetscInt rejects)
5484: {
5487:   ts->max_reject = rejects;
5488:   return(0);
5489: }

5491: /*@
5492:    TSSetMaxSNESFailures - Sets the maximum number of failed SNES solves

5494:    Not Collective

5496:    Input Parameter:
5497: +  ts - TS context
5498: -  fails - maximum number of failed nonlinear solves, pass -1 for unlimited

5500:    Notes:
5501:    The counter is reset to zero for each successive call to TSSolve().

5503:    Options Database Key:
5504:  .  -ts_max_snes_failures - Maximum number of nonlinear solve failures

5506:    Level: intermediate

5508: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), SNESGetConvergedReason(), TSGetConvergedReason()
5509: @*/
5510: PetscErrorCode TSSetMaxSNESFailures(TS ts,PetscInt fails)
5511: {
5514:   ts->max_snes_failures = fails;
5515:   return(0);
5516: }

5518: /*@
5519:    TSSetErrorIfStepFails - Error if no step succeeds

5521:    Not Collective

5523:    Input Parameter:
5524: +  ts - TS context
5525: -  err - PETSC_TRUE to error if no step succeeds, PETSC_FALSE to return without failure

5527:    Options Database Key:
5528:  .  -ts_error_if_step_fails - Error if no step succeeds

5530:    Level: intermediate

5532: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
5533: @*/
5534: PetscErrorCode TSSetErrorIfStepFails(TS ts,PetscBool err)
5535: {
5538:   ts->errorifstepfailed = err;
5539:   return(0);
5540: }

5542: /*@C
5543:    TSMonitorSolution - Monitors progress of the TS solvers by VecView() for the solution at each timestep. Normally the viewer is a binary file or a PetscDraw object

5545:    Collective on TS

5547:    Input Parameters:
5548: +  ts - the TS context
5549: .  step - current time-step
5550: .  ptime - current time
5551: .  u - current state
5552: -  vf - viewer and its format

5554:    Level: intermediate

5556: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
5557: @*/
5558: PetscErrorCode  TSMonitorSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,PetscViewerAndFormat *vf)
5559: {

5563:   PetscViewerPushFormat(vf->viewer,vf->format);
5564:   VecView(u,vf->viewer);
5565:   PetscViewerPopFormat(vf->viewer);
5566:   return(0);
5567: }

5569: /*@C
5570:    TSMonitorSolutionVTK - Monitors progress of the TS solvers by VecView() for the solution at each timestep.

5572:    Collective on TS

5574:    Input Parameters:
5575: +  ts - the TS context
5576: .  step - current time-step
5577: .  ptime - current time
5578: .  u - current state
5579: -  filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)

5581:    Level: intermediate

5583:    Notes:
5584:    The VTK format does not allow writing multiple time steps in the same file, therefore a different file will be written for each time step.
5585:    These are named according to the file name template.

5587:    This function is normally passed as an argument to TSMonitorSet() along with TSMonitorSolutionVTKDestroy().

5589: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
5590: @*/
5591: PetscErrorCode TSMonitorSolutionVTK(TS ts,PetscInt step,PetscReal ptime,Vec u,void *filenametemplate)
5592: {
5594:   char           filename[PETSC_MAX_PATH_LEN];
5595:   PetscViewer    viewer;

5598:   if (step < 0) return(0); /* -1 indicates interpolated solution */
5599:   PetscSNPrintf(filename,sizeof(filename),(const char*)filenametemplate,step);
5600:   PetscViewerVTKOpen(PetscObjectComm((PetscObject)ts),filename,FILE_MODE_WRITE,&viewer);
5601:   VecView(u,viewer);
5602:   PetscViewerDestroy(&viewer);
5603:   return(0);
5604: }

5606: /*@C
5607:    TSMonitorSolutionVTKDestroy - Destroy context for monitoring

5609:    Collective on TS

5611:    Input Parameters:
5612: .  filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)

5614:    Level: intermediate

5616:    Note:
5617:    This function is normally passed to TSMonitorSet() along with TSMonitorSolutionVTK().

5619: .seealso: TSMonitorSet(), TSMonitorSolutionVTK()
5620: @*/
5621: PetscErrorCode TSMonitorSolutionVTKDestroy(void *filenametemplate)
5622: {

5626:   PetscFree(*(char**)filenametemplate);
5627:   return(0);
5628: }

5630: /*@
5631:    TSGetAdapt - Get the adaptive controller context for the current method

5633:    Collective on TS if controller has not been created yet

5635:    Input Arguments:
5636: .  ts - time stepping context

5638:    Output Arguments:
5639: .  adapt - adaptive controller

5641:    Level: intermediate

5643: .seealso: TSAdapt, TSAdaptSetType(), TSAdaptChoose()
5644: @*/
5645: PetscErrorCode TSGetAdapt(TS ts,TSAdapt *adapt)
5646: {

5652:   if (!ts->adapt) {
5653:     TSAdaptCreate(PetscObjectComm((PetscObject)ts),&ts->adapt);
5654:     PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->adapt);
5655:     PetscObjectIncrementTabLevel((PetscObject)ts->adapt,(PetscObject)ts,1);
5656:   }
5657:   *adapt = ts->adapt;
5658:   return(0);
5659: }

5661: /*@
5662:    TSSetTolerances - Set tolerances for local truncation error when using adaptive controller

5664:    Logically Collective

5666:    Input Arguments:
5667: +  ts - time integration context
5668: .  atol - scalar absolute tolerances, PETSC_DECIDE to leave current value
5669: .  vatol - vector of absolute tolerances or NULL, used in preference to atol if present
5670: .  rtol - scalar relative tolerances, PETSC_DECIDE to leave current value
5671: -  vrtol - vector of relative tolerances or NULL, used in preference to atol if present

5673:    Options Database keys:
5674: +  -ts_rtol <rtol> - relative tolerance for local truncation error
5675: -  -ts_atol <atol> Absolute tolerance for local truncation error

5677:    Notes:
5678:    With PETSc's implicit schemes for DAE problems, the calculation of the local truncation error
5679:    (LTE) includes both the differential and the algebraic variables. If one wants the LTE to be
5680:    computed only for the differential or the algebraic part then this can be done using the vector of
5681:    tolerances vatol. For example, by setting the tolerance vector with the desired tolerance for the
5682:    differential part and infinity for the algebraic part, the LTE calculation will include only the
5683:    differential variables.

5685:    Level: beginner

5687: .seealso: TS, TSAdapt, TSErrorWeightedNorm(), TSGetTolerances()
5688: @*/
5689: PetscErrorCode TSSetTolerances(TS ts,PetscReal atol,Vec vatol,PetscReal rtol,Vec vrtol)
5690: {

5694:   if (atol != PETSC_DECIDE && atol != PETSC_DEFAULT) ts->atol = atol;
5695:   if (vatol) {
5696:     PetscObjectReference((PetscObject)vatol);
5697:     VecDestroy(&ts->vatol);
5698:     ts->vatol = vatol;
5699:   }
5700:   if (rtol != PETSC_DECIDE && rtol != PETSC_DEFAULT) ts->rtol = rtol;
5701:   if (vrtol) {
5702:     PetscObjectReference((PetscObject)vrtol);
5703:     VecDestroy(&ts->vrtol);
5704:     ts->vrtol = vrtol;
5705:   }
5706:   return(0);
5707: }

5709: /*@
5710:    TSGetTolerances - Get tolerances for local truncation error when using adaptive controller

5712:    Logically Collective

5714:    Input Arguments:
5715: .  ts - time integration context

5717:    Output Arguments:
5718: +  atol - scalar absolute tolerances, NULL to ignore
5719: .  vatol - vector of absolute tolerances, NULL to ignore
5720: .  rtol - scalar relative tolerances, NULL to ignore
5721: -  vrtol - vector of relative tolerances, NULL to ignore

5723:    Level: beginner

5725: .seealso: TS, TSAdapt, TSErrorWeightedNorm(), TSSetTolerances()
5726: @*/
5727: PetscErrorCode TSGetTolerances(TS ts,PetscReal *atol,Vec *vatol,PetscReal *rtol,Vec *vrtol)
5728: {
5730:   if (atol)  *atol  = ts->atol;
5731:   if (vatol) *vatol = ts->vatol;
5732:   if (rtol)  *rtol  = ts->rtol;
5733:   if (vrtol) *vrtol = ts->vrtol;
5734:   return(0);
5735: }

5737: /*@
5738:    TSErrorWeightedNorm2 - compute a weighted 2-norm of the difference between two state vectors

5740:    Collective on TS

5742:    Input Arguments:
5743: +  ts - time stepping context
5744: .  U - state vector, usually ts->vec_sol
5745: -  Y - state vector to be compared to U

5747:    Output Arguments:
5748: +  norm - weighted norm, a value of 1.0 means that the error matches the tolerances
5749: .  norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
5750: -  normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances

5752:    Level: developer

5754: .seealso: TSErrorWeightedNorm(), TSErrorWeightedNormInfinity()
5755: @*/
5756: PetscErrorCode TSErrorWeightedNorm2(TS ts,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5757: {
5758:   PetscErrorCode    ierr;
5759:   PetscInt          i,n,N,rstart;
5760:   PetscInt          n_loc,na_loc,nr_loc;
5761:   PetscReal         n_glb,na_glb,nr_glb;
5762:   const PetscScalar *u,*y;
5763:   PetscReal         sum,suma,sumr,gsum,gsuma,gsumr,diff;
5764:   PetscReal         tol,tola,tolr;
5765:   PetscReal         err_loc[6],err_glb[6];

5777:   if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"U and Y cannot be the same vector");

5779:   VecGetSize(U,&N);
5780:   VecGetLocalSize(U,&n);
5781:   VecGetOwnershipRange(U,&rstart,NULL);
5782:   VecGetArrayRead(U,&u);
5783:   VecGetArrayRead(Y,&y);
5784:   sum  = 0.; n_loc  = 0;
5785:   suma = 0.; na_loc = 0;
5786:   sumr = 0.; nr_loc = 0;
5787:   if (ts->vatol && ts->vrtol) {
5788:     const PetscScalar *atol,*rtol;
5789:     VecGetArrayRead(ts->vatol,&atol);
5790:     VecGetArrayRead(ts->vrtol,&rtol);
5791:     for (i=0; i<n; i++) {
5792:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5793:       diff = PetscAbsScalar(y[i] - u[i]);
5794:       tola = PetscRealPart(atol[i]);
5795:       if (tola>0.){
5796:         suma  += PetscSqr(diff/tola);
5797:         na_loc++;
5798:       }
5799:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5800:       if (tolr>0.){
5801:         sumr  += PetscSqr(diff/tolr);
5802:         nr_loc++;
5803:       }
5804:       tol=tola+tolr;
5805:       if (tol>0.){
5806:         sum  += PetscSqr(diff/tol);
5807:         n_loc++;
5808:       }
5809:     }
5810:     VecRestoreArrayRead(ts->vatol,&atol);
5811:     VecRestoreArrayRead(ts->vrtol,&rtol);
5812:   } else if (ts->vatol) {       /* vector atol, scalar rtol */
5813:     const PetscScalar *atol;
5814:     VecGetArrayRead(ts->vatol,&atol);
5815:     for (i=0; i<n; i++) {
5816:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5817:       diff = PetscAbsScalar(y[i] - u[i]);
5818:       tola = PetscRealPart(atol[i]);
5819:       if (tola>0.){
5820:         suma  += PetscSqr(diff/tola);
5821:         na_loc++;
5822:       }
5823:       tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5824:       if (tolr>0.){
5825:         sumr  += PetscSqr(diff/tolr);
5826:         nr_loc++;
5827:       }
5828:       tol=tola+tolr;
5829:       if (tol>0.){
5830:         sum  += PetscSqr(diff/tol);
5831:         n_loc++;
5832:       }
5833:     }
5834:     VecRestoreArrayRead(ts->vatol,&atol);
5835:   } else if (ts->vrtol) {       /* scalar atol, vector rtol */
5836:     const PetscScalar *rtol;
5837:     VecGetArrayRead(ts->vrtol,&rtol);
5838:     for (i=0; i<n; i++) {
5839:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5840:       diff = PetscAbsScalar(y[i] - u[i]);
5841:       tola = ts->atol;
5842:       if (tola>0.){
5843:         suma  += PetscSqr(diff/tola);
5844:         na_loc++;
5845:       }
5846:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5847:       if (tolr>0.){
5848:         sumr  += PetscSqr(diff/tolr);
5849:         nr_loc++;
5850:       }
5851:       tol=tola+tolr;
5852:       if (tol>0.){
5853:         sum  += PetscSqr(diff/tol);
5854:         n_loc++;
5855:       }
5856:     }
5857:     VecRestoreArrayRead(ts->vrtol,&rtol);
5858:   } else {                      /* scalar atol, scalar rtol */
5859:     for (i=0; i<n; i++) {
5860:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5861:       diff = PetscAbsScalar(y[i] - u[i]);
5862:       tola = ts->atol;
5863:       if (tola>0.){
5864:         suma  += PetscSqr(diff/tola);
5865:         na_loc++;
5866:       }
5867:       tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5868:       if (tolr>0.){
5869:         sumr  += PetscSqr(diff/tolr);
5870:         nr_loc++;
5871:       }
5872:       tol=tola+tolr;
5873:       if (tol>0.){
5874:         sum  += PetscSqr(diff/tol);
5875:         n_loc++;
5876:       }
5877:     }
5878:   }
5879:   VecRestoreArrayRead(U,&u);
5880:   VecRestoreArrayRead(Y,&y);

5882:   err_loc[0] = sum;
5883:   err_loc[1] = suma;
5884:   err_loc[2] = sumr;
5885:   err_loc[3] = (PetscReal)n_loc;
5886:   err_loc[4] = (PetscReal)na_loc;
5887:   err_loc[5] = (PetscReal)nr_loc;

5889:   MPIU_Allreduce(err_loc,err_glb,6,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));

5891:   gsum   = err_glb[0];
5892:   gsuma  = err_glb[1];
5893:   gsumr  = err_glb[2];
5894:   n_glb  = err_glb[3];
5895:   na_glb = err_glb[4];
5896:   nr_glb = err_glb[5];

5898:   *norm  = 0.;
5899:   if (n_glb>0.){*norm  = PetscSqrtReal(gsum  / n_glb);}
5900:   *norma = 0.;
5901:   if (na_glb>0.){*norma = PetscSqrtReal(gsuma / na_glb);}
5902:   *normr = 0.;
5903:   if (nr_glb>0.){*normr = PetscSqrtReal(gsumr / nr_glb);}

5905:   if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
5906:   if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
5907:   if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
5908:   return(0);
5909: }

5911: /*@
5912:    TSErrorWeightedNormInfinity - compute a weighted infinity-norm of the difference between two state vectors

5914:    Collective on TS

5916:    Input Arguments:
5917: +  ts - time stepping context
5918: .  U - state vector, usually ts->vec_sol
5919: -  Y - state vector to be compared to U

5921:    Output Arguments:
5922: +  norm - weighted norm, a value of 1.0 means that the error matches the tolerances
5923: .  norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
5924: -  normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances

5926:    Level: developer

5928: .seealso: TSErrorWeightedNorm(), TSErrorWeightedNorm2()
5929: @*/
5930: PetscErrorCode TSErrorWeightedNormInfinity(TS ts,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5931: {
5932:   PetscErrorCode    ierr;
5933:   PetscInt          i,n,N,rstart;
5934:   const PetscScalar *u,*y;
5935:   PetscReal         max,gmax,maxa,gmaxa,maxr,gmaxr;
5936:   PetscReal         tol,tola,tolr,diff;
5937:   PetscReal         err_loc[3],err_glb[3];

5949:   if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"U and Y cannot be the same vector");

5951:   VecGetSize(U,&N);
5952:   VecGetLocalSize(U,&n);
5953:   VecGetOwnershipRange(U,&rstart,NULL);
5954:   VecGetArrayRead(U,&u);
5955:   VecGetArrayRead(Y,&y);

5957:   max=0.;
5958:   maxa=0.;
5959:   maxr=0.;

5961:   if (ts->vatol && ts->vrtol) {     /* vector atol, vector rtol */
5962:     const PetscScalar *atol,*rtol;
5963:     VecGetArrayRead(ts->vatol,&atol);
5964:     VecGetArrayRead(ts->vrtol,&rtol);

5966:     for (i=0; i<n; i++) {
5967:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5968:       diff = PetscAbsScalar(y[i] - u[i]);
5969:       tola = PetscRealPart(atol[i]);
5970:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5971:       tol  = tola+tolr;
5972:       if (tola>0.){
5973:         maxa = PetscMax(maxa,diff / tola);
5974:       }
5975:       if (tolr>0.){
5976:         maxr = PetscMax(maxr,diff / tolr);
5977:       }
5978:       if (tol>0.){
5979:         max = PetscMax(max,diff / tol);
5980:       }
5981:     }
5982:     VecRestoreArrayRead(ts->vatol,&atol);
5983:     VecRestoreArrayRead(ts->vrtol,&rtol);
5984:   } else if (ts->vatol) {       /* vector atol, scalar rtol */
5985:     const PetscScalar *atol;
5986:     VecGetArrayRead(ts->vatol,&atol);
5987:     for (i=0; i<n; i++) {
5988:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5989:       diff = PetscAbsScalar(y[i] - u[i]);
5990:       tola = PetscRealPart(atol[i]);
5991:       tolr = ts->rtol  * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5992:       tol  = tola+tolr;
5993:       if (tola>0.){
5994:         maxa = PetscMax(maxa,diff / tola);
5995:       }
5996:       if (tolr>0.){
5997:         maxr = PetscMax(maxr,diff / tolr);
5998:       }
5999:       if (tol>0.){
6000:         max = PetscMax(max,diff / tol);
6001:       }
6002:     }
6003:     VecRestoreArrayRead(ts->vatol,&atol);
6004:   } else if (ts->vrtol) {       /* scalar atol, vector rtol */
6005:     const PetscScalar *rtol;
6006:     VecGetArrayRead(ts->vrtol,&rtol);

6008:     for (i=0; i<n; i++) {
6009:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6010:       diff = PetscAbsScalar(y[i] - u[i]);
6011:       tola = ts->atol;
6012:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6013:       tol  = tola+tolr;
6014:       if (tola>0.){
6015:         maxa = PetscMax(maxa,diff / tola);
6016:       }
6017:       if (tolr>0.){
6018:         maxr = PetscMax(maxr,diff / tolr);
6019:       }
6020:       if (tol>0.){
6021:         max = PetscMax(max,diff / tol);
6022:       }
6023:     }
6024:     VecRestoreArrayRead(ts->vrtol,&rtol);
6025:   } else {                      /* scalar atol, scalar rtol */

6027:     for (i=0; i<n; i++) {
6028:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6029:       diff = PetscAbsScalar(y[i] - u[i]);
6030:       tola = ts->atol;
6031:       tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6032:       tol  = tola+tolr;
6033:       if (tola>0.){
6034:         maxa = PetscMax(maxa,diff / tola);
6035:       }
6036:       if (tolr>0.){
6037:         maxr = PetscMax(maxr,diff / tolr);
6038:       }
6039:       if (tol>0.){
6040:         max = PetscMax(max,diff / tol);
6041:       }
6042:     }
6043:   }
6044:   VecRestoreArrayRead(U,&u);
6045:   VecRestoreArrayRead(Y,&y);
6046:   err_loc[0] = max;
6047:   err_loc[1] = maxa;
6048:   err_loc[2] = maxr;
6049:   MPIU_Allreduce(err_loc,err_glb,3,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
6050:   gmax   = err_glb[0];
6051:   gmaxa  = err_glb[1];
6052:   gmaxr  = err_glb[2];

6054:   *norm = gmax;
6055:   *norma = gmaxa;
6056:   *normr = gmaxr;
6057:   if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
6058:     if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
6059:     if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
6060:   return(0);
6061: }

6063: /*@
6064:    TSErrorWeightedNorm - compute a weighted norm of the difference between two state vectors based on supplied absolute and relative tolerances

6066:    Collective on TS

6068:    Input Arguments:
6069: +  ts - time stepping context
6070: .  U - state vector, usually ts->vec_sol
6071: .  Y - state vector to be compared to U
6072: -  wnormtype - norm type, either NORM_2 or NORM_INFINITY

6074:    Output Arguments:
6075: +  norm  - weighted norm, a value of 1.0 achieves a balance between absolute and relative tolerances
6076: .  norma - weighted norm, a value of 1.0 means that the error meets the absolute tolerance set by the user
6077: -  normr - weighted norm, a value of 1.0 means that the error meets the relative tolerance set by the user

6079:    Options Database Keys:
6080: .  -ts_adapt_wnormtype <wnormtype> - 2, INFINITY

6082:    Level: developer

6084: .seealso: TSErrorWeightedNormInfinity(), TSErrorWeightedNorm2(), TSErrorWeightedENorm
6085: @*/
6086: PetscErrorCode TSErrorWeightedNorm(TS ts,Vec U,Vec Y,NormType wnormtype,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6087: {

6091:   if (wnormtype == NORM_2) {
6092:     TSErrorWeightedNorm2(ts,U,Y,norm,norma,normr);
6093:   } else if (wnormtype == NORM_INFINITY) {
6094:     TSErrorWeightedNormInfinity(ts,U,Y,norm,norma,normr);
6095:   } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
6096:   return(0);
6097: }


6100: /*@
6101:    TSErrorWeightedENorm2 - compute a weighted 2 error norm based on supplied absolute and relative tolerances

6103:    Collective on TS

6105:    Input Arguments:
6106: +  ts - time stepping context
6107: .  E - error vector
6108: .  U - state vector, usually ts->vec_sol
6109: -  Y - state vector, previous time step

6111:    Output Arguments:
6112: +  norm - weighted norm, a value of 1.0 means that the error matches the tolerances
6113: .  norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
6114: -  normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances

6116:    Level: developer

6118: .seealso: TSErrorWeightedENorm(), TSErrorWeightedENormInfinity()
6119: @*/
6120: PetscErrorCode TSErrorWeightedENorm2(TS ts,Vec E,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6121: {
6122:   PetscErrorCode    ierr;
6123:   PetscInt          i,n,N,rstart;
6124:   PetscInt          n_loc,na_loc,nr_loc;
6125:   PetscReal         n_glb,na_glb,nr_glb;
6126:   const PetscScalar *e,*u,*y;
6127:   PetscReal         err,sum,suma,sumr,gsum,gsuma,gsumr;
6128:   PetscReal         tol,tola,tolr;
6129:   PetscReal         err_loc[6],err_glb[6];


6145:   VecGetSize(E,&N);
6146:   VecGetLocalSize(E,&n);
6147:   VecGetOwnershipRange(E,&rstart,NULL);
6148:   VecGetArrayRead(E,&e);
6149:   VecGetArrayRead(U,&u);
6150:   VecGetArrayRead(Y,&y);
6151:   sum  = 0.; n_loc  = 0;
6152:   suma = 0.; na_loc = 0;
6153:   sumr = 0.; nr_loc = 0;
6154:   if (ts->vatol && ts->vrtol) {
6155:     const PetscScalar *atol,*rtol;
6156:     VecGetArrayRead(ts->vatol,&atol);
6157:     VecGetArrayRead(ts->vrtol,&rtol);
6158:     for (i=0; i<n; i++) {
6159:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6160:       err = PetscAbsScalar(e[i]);
6161:       tola = PetscRealPart(atol[i]);
6162:       if (tola>0.){
6163:         suma  += PetscSqr(err/tola);
6164:         na_loc++;
6165:       }
6166:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6167:       if (tolr>0.){
6168:         sumr  += PetscSqr(err/tolr);
6169:         nr_loc++;
6170:       }
6171:       tol=tola+tolr;
6172:       if (tol>0.){
6173:         sum  += PetscSqr(err/tol);
6174:         n_loc++;
6175:       }
6176:     }
6177:     VecRestoreArrayRead(ts->vatol,&atol);
6178:     VecRestoreArrayRead(ts->vrtol,&rtol);
6179:   } else if (ts->vatol) {       /* vector atol, scalar rtol */
6180:     const PetscScalar *atol;
6181:     VecGetArrayRead(ts->vatol,&atol);
6182:     for (i=0; i<n; i++) {
6183:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6184:       err = PetscAbsScalar(e[i]);
6185:       tola = PetscRealPart(atol[i]);
6186:       if (tola>0.){
6187:         suma  += PetscSqr(err/tola);
6188:         na_loc++;
6189:       }
6190:       tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6191:       if (tolr>0.){
6192:         sumr  += PetscSqr(err/tolr);
6193:         nr_loc++;
6194:       }
6195:       tol=tola+tolr;
6196:       if (tol>0.){
6197:         sum  += PetscSqr(err/tol);
6198:         n_loc++;
6199:       }
6200:     }
6201:     VecRestoreArrayRead(ts->vatol,&atol);
6202:   } else if (ts->vrtol) {       /* scalar atol, vector rtol */
6203:     const PetscScalar *rtol;
6204:     VecGetArrayRead(ts->vrtol,&rtol);
6205:     for (i=0; i<n; i++) {
6206:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6207:       err = PetscAbsScalar(e[i]);
6208:       tola = ts->atol;
6209:       if (tola>0.){
6210:         suma  += PetscSqr(err/tola);
6211:         na_loc++;
6212:       }
6213:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6214:       if (tolr>0.){
6215:         sumr  += PetscSqr(err/tolr);
6216:         nr_loc++;
6217:       }
6218:       tol=tola+tolr;
6219:       if (tol>0.){
6220:         sum  += PetscSqr(err/tol);
6221:         n_loc++;
6222:       }
6223:     }
6224:     VecRestoreArrayRead(ts->vrtol,&rtol);
6225:   } else {                      /* scalar atol, scalar rtol */
6226:     for (i=0; i<n; i++) {
6227:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6228:       err = PetscAbsScalar(e[i]);
6229:       tola = ts->atol;
6230:       if (tola>0.){
6231:         suma  += PetscSqr(err/tola);
6232:         na_loc++;
6233:       }
6234:       tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6235:       if (tolr>0.){
6236:         sumr  += PetscSqr(err/tolr);
6237:         nr_loc++;
6238:       }
6239:       tol=tola+tolr;
6240:       if (tol>0.){
6241:         sum  += PetscSqr(err/tol);
6242:         n_loc++;
6243:       }
6244:     }
6245:   }
6246:   VecRestoreArrayRead(E,&e);
6247:   VecRestoreArrayRead(U,&u);
6248:   VecRestoreArrayRead(Y,&y);

6250:   err_loc[0] = sum;
6251:   err_loc[1] = suma;
6252:   err_loc[2] = sumr;
6253:   err_loc[3] = (PetscReal)n_loc;
6254:   err_loc[4] = (PetscReal)na_loc;
6255:   err_loc[5] = (PetscReal)nr_loc;

6257:   MPIU_Allreduce(err_loc,err_glb,6,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));

6259:   gsum   = err_glb[0];
6260:   gsuma  = err_glb[1];
6261:   gsumr  = err_glb[2];
6262:   n_glb  = err_glb[3];
6263:   na_glb = err_glb[4];
6264:   nr_glb = err_glb[5];

6266:   *norm  = 0.;
6267:   if (n_glb>0.){*norm  = PetscSqrtReal(gsum  / n_glb);}
6268:   *norma = 0.;
6269:   if (na_glb>0.){*norma = PetscSqrtReal(gsuma / na_glb);}
6270:   *normr = 0.;
6271:   if (nr_glb>0.){*normr = PetscSqrtReal(gsumr / nr_glb);}

6273:   if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
6274:   if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
6275:   if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
6276:   return(0);
6277: }

6279: /*@
6280:    TSErrorWeightedENormInfinity - compute a weighted infinity error norm based on supplied absolute and relative tolerances
6281:    Collective on TS

6283:    Input Arguments:
6284: +  ts - time stepping context
6285: .  E - error vector
6286: .  U - state vector, usually ts->vec_sol
6287: -  Y - state vector, previous time step

6289:    Output Arguments:
6290: +  norm - weighted norm, a value of 1.0 means that the error matches the tolerances
6291: .  norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
6292: -  normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances

6294:    Level: developer

6296: .seealso: TSErrorWeightedENorm(), TSErrorWeightedENorm2()
6297: @*/
6298: PetscErrorCode TSErrorWeightedENormInfinity(TS ts,Vec E,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6299: {
6300:   PetscErrorCode    ierr;
6301:   PetscInt          i,n,N,rstart;
6302:   const PetscScalar *e,*u,*y;
6303:   PetscReal         err,max,gmax,maxa,gmaxa,maxr,gmaxr;
6304:   PetscReal         tol,tola,tolr;
6305:   PetscReal         err_loc[3],err_glb[3];


6321:   VecGetSize(E,&N);
6322:   VecGetLocalSize(E,&n);
6323:   VecGetOwnershipRange(E,&rstart,NULL);
6324:   VecGetArrayRead(E,&e);
6325:   VecGetArrayRead(U,&u);
6326:   VecGetArrayRead(Y,&y);

6328:   max=0.;
6329:   maxa=0.;
6330:   maxr=0.;

6332:   if (ts->vatol && ts->vrtol) {     /* vector atol, vector rtol */
6333:     const PetscScalar *atol,*rtol;
6334:     VecGetArrayRead(ts->vatol,&atol);
6335:     VecGetArrayRead(ts->vrtol,&rtol);

6337:     for (i=0; i<n; i++) {
6338:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6339:       err = PetscAbsScalar(e[i]);
6340:       tola = PetscRealPart(atol[i]);
6341:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6342:       tol  = tola+tolr;
6343:       if (tola>0.){
6344:         maxa = PetscMax(maxa,err / tola);
6345:       }
6346:       if (tolr>0.){
6347:         maxr = PetscMax(maxr,err / tolr);
6348:       }
6349:       if (tol>0.){
6350:         max = PetscMax(max,err / tol);
6351:       }
6352:     }
6353:     VecRestoreArrayRead(ts->vatol,&atol);
6354:     VecRestoreArrayRead(ts->vrtol,&rtol);
6355:   } else if (ts->vatol) {       /* vector atol, scalar rtol */
6356:     const PetscScalar *atol;
6357:     VecGetArrayRead(ts->vatol,&atol);
6358:     for (i=0; i<n; i++) {
6359:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6360:       err = PetscAbsScalar(e[i]);
6361:       tola = PetscRealPart(atol[i]);
6362:       tolr = ts->rtol  * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6363:       tol  = tola+tolr;
6364:       if (tola>0.){
6365:         maxa = PetscMax(maxa,err / tola);
6366:       }
6367:       if (tolr>0.){
6368:         maxr = PetscMax(maxr,err / tolr);
6369:       }
6370:       if (tol>0.){
6371:         max = PetscMax(max,err / tol);
6372:       }
6373:     }
6374:     VecRestoreArrayRead(ts->vatol,&atol);
6375:   } else if (ts->vrtol) {       /* scalar atol, vector rtol */
6376:     const PetscScalar *rtol;
6377:     VecGetArrayRead(ts->vrtol,&rtol);

6379:     for (i=0; i<n; i++) {
6380:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6381:       err = PetscAbsScalar(e[i]);
6382:       tola = ts->atol;
6383:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6384:       tol  = tola+tolr;
6385:       if (tola>0.){
6386:         maxa = PetscMax(maxa,err / tola);
6387:       }
6388:       if (tolr>0.){
6389:         maxr = PetscMax(maxr,err / tolr);
6390:       }
6391:       if (tol>0.){
6392:         max = PetscMax(max,err / tol);
6393:       }
6394:     }
6395:     VecRestoreArrayRead(ts->vrtol,&rtol);
6396:   } else {                      /* scalar atol, scalar rtol */

6398:     for (i=0; i<n; i++) {
6399:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6400:       err = PetscAbsScalar(e[i]);
6401:       tola = ts->atol;
6402:       tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6403:       tol  = tola+tolr;
6404:       if (tola>0.){
6405:         maxa = PetscMax(maxa,err / tola);
6406:       }
6407:       if (tolr>0.){
6408:         maxr = PetscMax(maxr,err / tolr);
6409:       }
6410:       if (tol>0.){
6411:         max = PetscMax(max,err / tol);
6412:       }
6413:     }
6414:   }
6415:   VecRestoreArrayRead(E,&e);
6416:   VecRestoreArrayRead(U,&u);
6417:   VecRestoreArrayRead(Y,&y);
6418:   err_loc[0] = max;
6419:   err_loc[1] = maxa;
6420:   err_loc[2] = maxr;
6421:   MPIU_Allreduce(err_loc,err_glb,3,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
6422:   gmax   = err_glb[0];
6423:   gmaxa  = err_glb[1];
6424:   gmaxr  = err_glb[2];

6426:   *norm = gmax;
6427:   *norma = gmaxa;
6428:   *normr = gmaxr;
6429:   if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
6430:     if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
6431:     if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
6432:   return(0);
6433: }

6435: /*@
6436:    TSErrorWeightedENorm - compute a weighted error norm based on supplied absolute and relative tolerances

6438:    Collective on TS

6440:    Input Arguments:
6441: +  ts - time stepping context
6442: .  E - error vector
6443: .  U - state vector, usually ts->vec_sol
6444: .  Y - state vector, previous time step
6445: -  wnormtype - norm type, either NORM_2 or NORM_INFINITY

6447:    Output Arguments:
6448: +  norm  - weighted norm, a value of 1.0 achieves a balance between absolute and relative tolerances
6449: .  norma - weighted norm, a value of 1.0 means that the error meets the absolute tolerance set by the user
6450: -  normr - weighted norm, a value of 1.0 means that the error meets the relative tolerance set by the user

6452:    Options Database Keys:
6453: .  -ts_adapt_wnormtype <wnormtype> - 2, INFINITY

6455:    Level: developer

6457: .seealso: TSErrorWeightedENormInfinity(), TSErrorWeightedENorm2(), TSErrorWeightedNormInfinity(), TSErrorWeightedNorm2()
6458: @*/
6459: PetscErrorCode TSErrorWeightedENorm(TS ts,Vec E,Vec U,Vec Y,NormType wnormtype,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6460: {

6464:   if (wnormtype == NORM_2) {
6465:     TSErrorWeightedENorm2(ts,E,U,Y,norm,norma,normr);
6466:   } else if (wnormtype == NORM_INFINITY) {
6467:     TSErrorWeightedENormInfinity(ts,E,U,Y,norm,norma,normr);
6468:   } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
6469:   return(0);
6470: }


6473: /*@
6474:    TSSetCFLTimeLocal - Set the local CFL constraint relative to forward Euler

6476:    Logically Collective on TS

6478:    Input Arguments:
6479: +  ts - time stepping context
6480: -  cfltime - maximum stable time step if using forward Euler (value can be different on each process)

6482:    Note:
6483:    After calling this function, the global CFL time can be obtained by calling TSGetCFLTime()

6485:    Level: intermediate

6487: .seealso: TSGetCFLTime(), TSADAPTCFL
6488: @*/
6489: PetscErrorCode TSSetCFLTimeLocal(TS ts,PetscReal cfltime)
6490: {
6493:   ts->cfltime_local = cfltime;
6494:   ts->cfltime       = -1.;
6495:   return(0);
6496: }

6498: /*@
6499:    TSGetCFLTime - Get the maximum stable time step according to CFL criteria applied to forward Euler

6501:    Collective on TS

6503:    Input Arguments:
6504: .  ts - time stepping context

6506:    Output Arguments:
6507: .  cfltime - maximum stable time step for forward Euler

6509:    Level: advanced

6511: .seealso: TSSetCFLTimeLocal()
6512: @*/
6513: PetscErrorCode TSGetCFLTime(TS ts,PetscReal *cfltime)
6514: {

6518:   if (ts->cfltime < 0) {
6519:     MPIU_Allreduce(&ts->cfltime_local,&ts->cfltime,1,MPIU_REAL,MPIU_MIN,PetscObjectComm((PetscObject)ts));
6520:   }
6521:   *cfltime = ts->cfltime;
6522:   return(0);
6523: }

6525: /*@
6526:    TSVISetVariableBounds - Sets the lower and upper bounds for the solution vector. xl <= x <= xu

6528:    Input Parameters:
6529: +  ts   - the TS context.
6530: .  xl   - lower bound.
6531: -  xu   - upper bound.

6533:    Notes:
6534:    If this routine is not called then the lower and upper bounds are set to
6535:    PETSC_NINFINITY and PETSC_INFINITY respectively during SNESSetUp().

6537:    Level: advanced

6539: @*/
6540: PetscErrorCode TSVISetVariableBounds(TS ts, Vec xl, Vec xu)
6541: {
6543:   SNES           snes;

6546:   TSGetSNES(ts,&snes);
6547:   SNESVISetVariableBounds(snes,xl,xu);
6548:   return(0);
6549: }

6551: /*@C
6552:    TSMonitorLGSolution - Monitors progress of the TS solvers by plotting each component of the solution vector
6553:        in a time based line graph

6555:    Collective on TS

6557:    Input Parameters:
6558: +  ts - the TS context
6559: .  step - current time-step
6560: .  ptime - current time
6561: .  u - current solution
6562: -  dctx - the TSMonitorLGCtx object that contains all the options for the monitoring, this is created with TSMonitorLGCtxCreate()

6564:    Options Database:
6565: .   -ts_monitor_lg_solution_variables

6567:    Level: intermediate

6569:    Notes:
6570:     Each process in a parallel run displays its component solutions in a separate window

6572: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGCtxCreate(), TSMonitorLGCtxSetVariableNames(), TSMonitorLGCtxGetVariableNames(),
6573:            TSMonitorLGSetVariableNames(), TSMonitorLGGetVariableNames(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetDisplayVariables(),
6574:            TSMonitorLGCtxSetTransform(), TSMonitorLGSetTransform(), TSMonitorLGError(), TSMonitorLGSNESIterations(), TSMonitorLGKSPIterations(),
6575:            TSMonitorEnvelopeCtxCreate(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxDestroy(), TSMonitorEnvelop()
6576: @*/
6577: PetscErrorCode  TSMonitorLGSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
6578: {
6579:   PetscErrorCode    ierr;
6580:   TSMonitorLGCtx    ctx = (TSMonitorLGCtx)dctx;
6581:   const PetscScalar *yy;
6582:   Vec               v;

6585:   if (step < 0) return(0); /* -1 indicates interpolated solution */
6586:   if (!step) {
6587:     PetscDrawAxis axis;
6588:     PetscInt      dim;
6589:     PetscDrawLGGetAxis(ctx->lg,&axis);
6590:     PetscDrawAxisSetLabels(axis,"Solution as function of time","Time","Solution");
6591:     if (!ctx->names) {
6592:       PetscBool flg;
6593:       /* user provides names of variables to plot but no names has been set so assume names are integer values */
6594:       PetscOptionsHasName(((PetscObject)ts)->options,((PetscObject)ts)->prefix,"-ts_monitor_lg_solution_variables",&flg);
6595:       if (flg) {
6596:         PetscInt i,n;
6597:         char     **names;
6598:         VecGetSize(u,&n);
6599:         PetscMalloc1(n+1,&names);
6600:         for (i=0; i<n; i++) {
6601:           PetscMalloc1(5,&names[i]);
6602:           PetscSNPrintf(names[i],5,"%D",i);
6603:         }
6604:         names[n] = NULL;
6605:         ctx->names = names;
6606:       }
6607:     }
6608:     if (ctx->names && !ctx->displaynames) {
6609:       char      **displaynames;
6610:       PetscBool flg;
6611:       VecGetLocalSize(u,&dim);
6612:       PetscCalloc1(dim+1,&displaynames);
6613:       PetscOptionsGetStringArray(((PetscObject)ts)->options,((PetscObject)ts)->prefix,"-ts_monitor_lg_solution_variables",displaynames,&dim,&flg);
6614:       if (flg) {
6615:         TSMonitorLGCtxSetDisplayVariables(ctx,(const char *const *)displaynames);
6616:       }
6617:       PetscStrArrayDestroy(&displaynames);
6618:     }
6619:     if (ctx->displaynames) {
6620:       PetscDrawLGSetDimension(ctx->lg,ctx->ndisplayvariables);
6621:       PetscDrawLGSetLegend(ctx->lg,(const char *const *)ctx->displaynames);
6622:     } else if (ctx->names) {
6623:       VecGetLocalSize(u,&dim);
6624:       PetscDrawLGSetDimension(ctx->lg,dim);
6625:       PetscDrawLGSetLegend(ctx->lg,(const char *const *)ctx->names);
6626:     } else {
6627:       VecGetLocalSize(u,&dim);
6628:       PetscDrawLGSetDimension(ctx->lg,dim);
6629:     }
6630:     PetscDrawLGReset(ctx->lg);
6631:   }

6633:   if (!ctx->transform) v = u;
6634:   else {(*ctx->transform)(ctx->transformctx,u,&v);}
6635:   VecGetArrayRead(v,&yy);
6636:   if (ctx->displaynames) {
6637:     PetscInt i;
6638:     for (i=0; i<ctx->ndisplayvariables; i++)
6639:       ctx->displayvalues[i] = PetscRealPart(yy[ctx->displayvariables[i]]);
6640:     PetscDrawLGAddCommonPoint(ctx->lg,ptime,ctx->displayvalues);
6641:   } else {
6642: #if defined(PETSC_USE_COMPLEX)
6643:     PetscInt  i,n;
6644:     PetscReal *yreal;
6645:     VecGetLocalSize(v,&n);
6646:     PetscMalloc1(n,&yreal);
6647:     for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
6648:     PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
6649:     PetscFree(yreal);
6650: #else
6651:     PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
6652: #endif
6653:   }
6654:   VecRestoreArrayRead(v,&yy);
6655:   if (ctx->transform) {VecDestroy(&v);}

6657:   if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
6658:     PetscDrawLGDraw(ctx->lg);
6659:     PetscDrawLGSave(ctx->lg);
6660:   }
6661:   return(0);
6662: }

6664: /*@C
6665:    TSMonitorLGSetVariableNames - Sets the name of each component in the solution vector so that it may be displayed in the plot

6667:    Collective on TS

6669:    Input Parameters:
6670: +  ts - the TS context
6671: -  names - the names of the components, final string must be NULL

6673:    Level: intermediate

6675:    Notes:
6676:     If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored

6678: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetVariableNames()
6679: @*/
6680: PetscErrorCode  TSMonitorLGSetVariableNames(TS ts,const char * const *names)
6681: {
6682:   PetscErrorCode    ierr;
6683:   PetscInt          i;

6686:   for (i=0; i<ts->numbermonitors; i++) {
6687:     if (ts->monitor[i] == TSMonitorLGSolution) {
6688:       TSMonitorLGCtxSetVariableNames((TSMonitorLGCtx)ts->monitorcontext[i],names);
6689:       break;
6690:     }
6691:   }
6692:   return(0);
6693: }

6695: /*@C
6696:    TSMonitorLGCtxSetVariableNames - Sets the name of each component in the solution vector so that it may be displayed in the plot

6698:    Collective on TS

6700:    Input Parameters:
6701: +  ts - the TS context
6702: -  names - the names of the components, final string must be NULL

6704:    Level: intermediate

6706: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables(), TSMonitorLGSetVariableNames()
6707: @*/
6708: PetscErrorCode  TSMonitorLGCtxSetVariableNames(TSMonitorLGCtx ctx,const char * const *names)
6709: {
6710:   PetscErrorCode    ierr;

6713:   PetscStrArrayDestroy(&ctx->names);
6714:   PetscStrArrayallocpy(names,&ctx->names);
6715:   return(0);
6716: }

6718: /*@C
6719:    TSMonitorLGGetVariableNames - Gets the name of each component in the solution vector so that it may be displayed in the plot

6721:    Collective on TS

6723:    Input Parameter:
6724: .  ts - the TS context

6726:    Output Parameter:
6727: .  names - the names of the components, final string must be NULL

6729:    Level: intermediate

6731:    Notes:
6732:     If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored

6734: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables()
6735: @*/
6736: PetscErrorCode  TSMonitorLGGetVariableNames(TS ts,const char *const **names)
6737: {
6738:   PetscInt       i;

6741:   *names = NULL;
6742:   for (i=0; i<ts->numbermonitors; i++) {
6743:     if (ts->monitor[i] == TSMonitorLGSolution) {
6744:       TSMonitorLGCtx  ctx = (TSMonitorLGCtx) ts->monitorcontext[i];
6745:       *names = (const char *const *)ctx->names;
6746:       break;
6747:     }
6748:   }
6749:   return(0);
6750: }

6752: /*@C
6753:    TSMonitorLGCtxSetDisplayVariables - Sets the variables that are to be display in the monitor

6755:    Collective on TS

6757:    Input Parameters:
6758: +  ctx - the TSMonitorLG context
6759: -  displaynames - the names of the components, final string must be NULL

6761:    Level: intermediate

6763: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames()
6764: @*/
6765: PetscErrorCode  TSMonitorLGCtxSetDisplayVariables(TSMonitorLGCtx ctx,const char * const *displaynames)
6766: {
6767:   PetscInt          j = 0,k;
6768:   PetscErrorCode    ierr;

6771:   if (!ctx->names) return(0);
6772:   PetscStrArrayDestroy(&ctx->displaynames);
6773:   PetscStrArrayallocpy(displaynames,&ctx->displaynames);
6774:   while (displaynames[j]) j++;
6775:   ctx->ndisplayvariables = j;
6776:   PetscMalloc1(ctx->ndisplayvariables,&ctx->displayvariables);
6777:   PetscMalloc1(ctx->ndisplayvariables,&ctx->displayvalues);
6778:   j = 0;
6779:   while (displaynames[j]) {
6780:     k = 0;
6781:     while (ctx->names[k]) {
6782:       PetscBool flg;
6783:       PetscStrcmp(displaynames[j],ctx->names[k],&flg);
6784:       if (flg) {
6785:         ctx->displayvariables[j] = k;
6786:         break;
6787:       }
6788:       k++;
6789:     }
6790:     j++;
6791:   }
6792:   return(0);
6793: }

6795: /*@C
6796:    TSMonitorLGSetDisplayVariables - Sets the variables that are to be display in the monitor

6798:    Collective on TS

6800:    Input Parameters:
6801: +  ts - the TS context
6802: -  displaynames - the names of the components, final string must be NULL

6804:    Notes:
6805:     If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored

6807:    Level: intermediate

6809: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames()
6810: @*/
6811: PetscErrorCode  TSMonitorLGSetDisplayVariables(TS ts,const char * const *displaynames)
6812: {
6813:   PetscInt          i;
6814:   PetscErrorCode    ierr;

6817:   for (i=0; i<ts->numbermonitors; i++) {
6818:     if (ts->monitor[i] == TSMonitorLGSolution) {
6819:       TSMonitorLGCtxSetDisplayVariables((TSMonitorLGCtx)ts->monitorcontext[i],displaynames);
6820:       break;
6821:     }
6822:   }
6823:   return(0);
6824: }

6826: /*@C
6827:    TSMonitorLGSetTransform - Solution vector will be transformed by provided function before being displayed

6829:    Collective on TS

6831:    Input Parameters:
6832: +  ts - the TS context
6833: .  transform - the transform function
6834: .  destroy - function to destroy the optional context
6835: -  ctx - optional context used by transform function

6837:    Notes:
6838:     If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored

6840:    Level: intermediate

6842: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames(), TSMonitorLGCtxSetTransform()
6843: @*/
6844: PetscErrorCode  TSMonitorLGSetTransform(TS ts,PetscErrorCode (*transform)(void*,Vec,Vec*),PetscErrorCode (*destroy)(void*),void *tctx)
6845: {
6846:   PetscInt          i;
6847:   PetscErrorCode    ierr;

6850:   for (i=0; i<ts->numbermonitors; i++) {
6851:     if (ts->monitor[i] == TSMonitorLGSolution) {
6852:       TSMonitorLGCtxSetTransform((TSMonitorLGCtx)ts->monitorcontext[i],transform,destroy,tctx);
6853:     }
6854:   }
6855:   return(0);
6856: }

6858: /*@C
6859:    TSMonitorLGCtxSetTransform - Solution vector will be transformed by provided function before being displayed

6861:    Collective on TSLGCtx

6863:    Input Parameters:
6864: +  ts - the TS context
6865: .  transform - the transform function
6866: .  destroy - function to destroy the optional context
6867: -  ctx - optional context used by transform function

6869:    Level: intermediate

6871: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames(), TSMonitorLGSetTransform()
6872: @*/
6873: PetscErrorCode  TSMonitorLGCtxSetTransform(TSMonitorLGCtx ctx,PetscErrorCode (*transform)(void*,Vec,Vec*),PetscErrorCode (*destroy)(void*),void *tctx)
6874: {
6876:   ctx->transform    = transform;
6877:   ctx->transformdestroy = destroy;
6878:   ctx->transformctx = tctx;
6879:   return(0);
6880: }

6882: /*@C
6883:    TSMonitorLGError - Monitors progress of the TS solvers by plotting each component of the error
6884:        in a time based line graph

6886:    Collective on TS

6888:    Input Parameters:
6889: +  ts - the TS context
6890: .  step - current time-step
6891: .  ptime - current time
6892: .  u - current solution
6893: -  dctx - TSMonitorLGCtx object created with TSMonitorLGCtxCreate()

6895:    Level: intermediate

6897:    Notes:
6898:     Each process in a parallel run displays its component errors in a separate window

6900:    The user must provide the solution using TSSetSolutionFunction() to use this monitor.

6902:    Options Database Keys:
6903: .  -ts_monitor_lg_error - create a graphical monitor of error history

6905: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
6906: @*/
6907: PetscErrorCode  TSMonitorLGError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
6908: {
6909:   PetscErrorCode    ierr;
6910:   TSMonitorLGCtx    ctx = (TSMonitorLGCtx)dummy;
6911:   const PetscScalar *yy;
6912:   Vec               y;

6915:   if (!step) {
6916:     PetscDrawAxis axis;
6917:     PetscInt      dim;
6918:     PetscDrawLGGetAxis(ctx->lg,&axis);
6919:     PetscDrawAxisSetLabels(axis,"Error in solution as function of time","Time","Error");
6920:     VecGetLocalSize(u,&dim);
6921:     PetscDrawLGSetDimension(ctx->lg,dim);
6922:     PetscDrawLGReset(ctx->lg);
6923:   }
6924:   VecDuplicate(u,&y);
6925:   TSComputeSolutionFunction(ts,ptime,y);
6926:   VecAXPY(y,-1.0,u);
6927:   VecGetArrayRead(y,&yy);
6928: #if defined(PETSC_USE_COMPLEX)
6929:   {
6930:     PetscReal *yreal;
6931:     PetscInt  i,n;
6932:     VecGetLocalSize(y,&n);
6933:     PetscMalloc1(n,&yreal);
6934:     for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
6935:     PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
6936:     PetscFree(yreal);
6937:   }
6938: #else
6939:   PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
6940: #endif
6941:   VecRestoreArrayRead(y,&yy);
6942:   VecDestroy(&y);
6943:   if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
6944:     PetscDrawLGDraw(ctx->lg);
6945:     PetscDrawLGSave(ctx->lg);
6946:   }
6947:   return(0);
6948: }

6950: /*@C
6951:    TSMonitorSPSwarmSolution - Graphically displays phase plots of DMSwarm particles on a scatter plot

6953:    Input Parameters:
6954: +  ts - the TS context
6955: .  step - current time-step
6956: .  ptime - current time
6957: .  u - current solution
6958: -  dctx - the TSMonitorSPCtx object that contains all the options for the monitoring, this is created with TSMonitorSPCtxCreate()

6960:    Options Database:
6961: .   -ts_monitor_sp_swarm

6963:    Level: intermediate

6965: @*/
6966: PetscErrorCode TSMonitorSPSwarmSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
6967: {
6968:   PetscErrorCode    ierr;
6969:   TSMonitorSPCtx    ctx = (TSMonitorSPCtx)dctx;
6970:   const PetscScalar *yy;
6971:   PetscReal       *y,*x;
6972:   PetscInt          Np, p, dim=2;
6973:   DM                dm;


6977:   if (step < 0) return(0); /* -1 indicates interpolated solution */
6978:   if (!step) {
6979:     PetscDrawAxis axis;
6980:     PetscDrawSPGetAxis(ctx->sp,&axis);
6981:     PetscDrawAxisSetLabels(axis,"Particles","X","Y");
6982:     PetscDrawAxisSetLimits(axis, -5, 5, -5, 5);
6983:     PetscDrawAxisSetHoldLimits(axis, PETSC_TRUE);
6984:     TSGetDM(ts, &dm);
6985:     DMGetDimension(dm, &dim);
6986:     if (dim!=2) SETERRQ(PETSC_COMM_SELF, ierr, "Dimensions improper for monitor arguments! Current support: two dimensions.");
6987:     VecGetLocalSize(u, &Np);
6988:     Np /= 2*dim;
6989:     PetscDrawSPSetDimension(ctx->sp, Np);
6990:     PetscDrawSPReset(ctx->sp);
6991:   }

6993:   VecGetLocalSize(u, &Np);
6994:   Np /= 2*dim;
6995:   VecGetArrayRead(u,&yy);
6996:   PetscMalloc2(Np, &x, Np, &y);
6997:   /* get points from solution vector */
6998:   for (p=0; p<Np; ++p){
6999:     x[p] = PetscRealPart(yy[2*dim*p]);
7000:     y[p] = PetscRealPart(yy[2*dim*p+1]);
7001:   }
7002:   VecRestoreArrayRead(u,&yy);

7004:   if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
7005:     PetscDrawSPAddPoint(ctx->sp,x,y);
7006:     PetscDrawSPDraw(ctx->sp,PETSC_FALSE);
7007:     PetscDrawSPSave(ctx->sp);
7008:   }

7010:   PetscFree2(x, y);

7012:   return(0);
7013: }



7017: /*@C
7018:    TSMonitorError - Monitors progress of the TS solvers by printing the 2 norm of the error at each timestep

7020:    Collective on TS

7022:    Input Parameters:
7023: +  ts - the TS context
7024: .  step - current time-step
7025: .  ptime - current time
7026: .  u - current solution
7027: -  dctx - unused context

7029:    Level: intermediate

7031:    The user must provide the solution using TSSetSolutionFunction() to use this monitor.

7033:    Options Database Keys:
7034: .  -ts_monitor_error - create a graphical monitor of error history

7036: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
7037: @*/
7038: PetscErrorCode  TSMonitorError(TS ts,PetscInt step,PetscReal ptime,Vec u,PetscViewerAndFormat *vf)
7039: {
7040:   PetscErrorCode    ierr;
7041:   Vec               y;
7042:   PetscReal         nrm;
7043:   PetscBool         flg;

7046:   VecDuplicate(u,&y);
7047:   TSComputeSolutionFunction(ts,ptime,y);
7048:   VecAXPY(y,-1.0,u);
7049:   PetscObjectTypeCompare((PetscObject)vf->viewer,PETSCVIEWERASCII,&flg);
7050:   if (flg) {
7051:     VecNorm(y,NORM_2,&nrm);
7052:     PetscViewerASCIIPrintf(vf->viewer,"2-norm of error %g\n",(double)nrm);
7053:   }
7054:   PetscObjectTypeCompare((PetscObject)vf->viewer,PETSCVIEWERDRAW,&flg);
7055:   if (flg) {
7056:     VecView(y,vf->viewer);
7057:   }
7058:   VecDestroy(&y);
7059:   return(0);
7060: }

7062: PetscErrorCode TSMonitorLGSNESIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
7063: {
7064:   TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
7065:   PetscReal      x   = ptime,y;
7067:   PetscInt       its;

7070:   if (n < 0) return(0); /* -1 indicates interpolated solution */
7071:   if (!n) {
7072:     PetscDrawAxis axis;
7073:     PetscDrawLGGetAxis(ctx->lg,&axis);
7074:     PetscDrawAxisSetLabels(axis,"Nonlinear iterations as function of time","Time","SNES Iterations");
7075:     PetscDrawLGReset(ctx->lg);
7076:     ctx->snes_its = 0;
7077:   }
7078:   TSGetSNESIterations(ts,&its);
7079:   y    = its - ctx->snes_its;
7080:   PetscDrawLGAddPoint(ctx->lg,&x,&y);
7081:   if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
7082:     PetscDrawLGDraw(ctx->lg);
7083:     PetscDrawLGSave(ctx->lg);
7084:   }
7085:   ctx->snes_its = its;
7086:   return(0);
7087: }

7089: PetscErrorCode TSMonitorLGKSPIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
7090: {
7091:   TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
7092:   PetscReal      x   = ptime,y;
7094:   PetscInt       its;

7097:   if (n < 0) return(0); /* -1 indicates interpolated solution */
7098:   if (!n) {
7099:     PetscDrawAxis axis;
7100:     PetscDrawLGGetAxis(ctx->lg,&axis);
7101:     PetscDrawAxisSetLabels(axis,"Linear iterations as function of time","Time","KSP Iterations");
7102:     PetscDrawLGReset(ctx->lg);
7103:     ctx->ksp_its = 0;
7104:   }
7105:   TSGetKSPIterations(ts,&its);
7106:   y    = its - ctx->ksp_its;
7107:   PetscDrawLGAddPoint(ctx->lg,&x,&y);
7108:   if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
7109:     PetscDrawLGDraw(ctx->lg);
7110:     PetscDrawLGSave(ctx->lg);
7111:   }
7112:   ctx->ksp_its = its;
7113:   return(0);
7114: }

7116: /*@
7117:    TSComputeLinearStability - computes the linear stability function at a point

7119:    Collective on TS

7121:    Input Parameters:
7122: +  ts - the TS context
7123: -  xr,xi - real and imaginary part of input arguments

7125:    Output Parameters:
7126: .  yr,yi - real and imaginary part of function value

7128:    Level: developer

7130: .seealso: TSSetRHSFunction(), TSComputeIFunction()
7131: @*/
7132: PetscErrorCode TSComputeLinearStability(TS ts,PetscReal xr,PetscReal xi,PetscReal *yr,PetscReal *yi)
7133: {

7138:   if (!ts->ops->linearstability) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Linearized stability function not provided for this method");
7139:   (*ts->ops->linearstability)(ts,xr,xi,yr,yi);
7140:   return(0);
7141: }

7143: /* ------------------------------------------------------------------------*/
7144: /*@C
7145:    TSMonitorEnvelopeCtxCreate - Creates a context for use with TSMonitorEnvelope()

7147:    Collective on TS

7149:    Input Parameters:
7150: .  ts  - the ODE solver object

7152:    Output Parameter:
7153: .  ctx - the context

7155:    Level: intermediate

7157: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError()

7159: @*/
7160: PetscErrorCode  TSMonitorEnvelopeCtxCreate(TS ts,TSMonitorEnvelopeCtx *ctx)
7161: {

7165:   PetscNew(ctx);
7166:   return(0);
7167: }

7169: /*@C
7170:    TSMonitorEnvelope - Monitors the maximum and minimum value of each component of the solution

7172:    Collective on TS

7174:    Input Parameters:
7175: +  ts - the TS context
7176: .  step - current time-step
7177: .  ptime - current time
7178: .  u  - current solution
7179: -  dctx - the envelope context

7181:    Options Database:
7182: .  -ts_monitor_envelope

7184:    Level: intermediate

7186:    Notes:
7187:     after a solve you can use TSMonitorEnvelopeGetBounds() to access the envelope

7189: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxCreate()
7190: @*/
7191: PetscErrorCode  TSMonitorEnvelope(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
7192: {
7193:   PetscErrorCode       ierr;
7194:   TSMonitorEnvelopeCtx ctx = (TSMonitorEnvelopeCtx)dctx;

7197:   if (!ctx->max) {
7198:     VecDuplicate(u,&ctx->max);
7199:     VecDuplicate(u,&ctx->min);
7200:     VecCopy(u,ctx->max);
7201:     VecCopy(u,ctx->min);
7202:   } else {
7203:     VecPointwiseMax(ctx->max,u,ctx->max);
7204:     VecPointwiseMin(ctx->min,u,ctx->min);
7205:   }
7206:   return(0);
7207: }

7209: /*@C
7210:    TSMonitorEnvelopeGetBounds - Gets the bounds for the components of the solution

7212:    Collective on TS

7214:    Input Parameter:
7215: .  ts - the TS context

7217:    Output Parameter:
7218: +  max - the maximum values
7219: -  min - the minimum values

7221:    Notes:
7222:     If the TS does not have a TSMonitorEnvelopeCtx associated with it then this function is ignored

7224:    Level: intermediate

7226: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables()
7227: @*/
7228: PetscErrorCode  TSMonitorEnvelopeGetBounds(TS ts,Vec *max,Vec *min)
7229: {
7230:   PetscInt i;

7233:   if (max) *max = NULL;
7234:   if (min) *min = NULL;
7235:   for (i=0; i<ts->numbermonitors; i++) {
7236:     if (ts->monitor[i] == TSMonitorEnvelope) {
7237:       TSMonitorEnvelopeCtx  ctx = (TSMonitorEnvelopeCtx) ts->monitorcontext[i];
7238:       if (max) *max = ctx->max;
7239:       if (min) *min = ctx->min;
7240:       break;
7241:     }
7242:   }
7243:   return(0);
7244: }

7246: /*@C
7247:    TSMonitorEnvelopeCtxDestroy - Destroys a context that was created  with TSMonitorEnvelopeCtxCreate().

7249:    Collective on TSMonitorEnvelopeCtx

7251:    Input Parameter:
7252: .  ctx - the monitor context

7254:    Level: intermediate

7256: .seealso: TSMonitorLGCtxCreate(),  TSMonitorSet(), TSMonitorLGTimeStep()
7257: @*/
7258: PetscErrorCode  TSMonitorEnvelopeCtxDestroy(TSMonitorEnvelopeCtx *ctx)
7259: {

7263:   VecDestroy(&(*ctx)->min);
7264:   VecDestroy(&(*ctx)->max);
7265:   PetscFree(*ctx);
7266:   return(0);
7267: }

7269: /*@
7270:    TSRestartStep - Flags the solver to restart the next step

7272:    Collective on TS

7274:    Input Parameter:
7275: .  ts - the TS context obtained from TSCreate()

7277:    Level: advanced

7279:    Notes:
7280:    Multistep methods like BDF or Runge-Kutta methods with FSAL property require restarting the solver in the event of
7281:    discontinuities. These discontinuities may be introduced as a consequence of explicitly modifications to the solution
7282:    vector (which PETSc attempts to detect and handle) or problem coefficients (which PETSc is not able to detect). For
7283:    the sake of correctness and maximum safety, users are expected to call TSRestart() whenever they introduce
7284:    discontinuities in callback routines (e.g. prestep and poststep routines, or implicit/rhs function routines with
7285:    discontinuous source terms).

7287: .seealso: TSSolve(), TSSetPreStep(), TSSetPostStep()
7288: @*/
7289: PetscErrorCode TSRestartStep(TS ts)
7290: {
7293:   ts->steprestart = PETSC_TRUE;
7294:   return(0);
7295: }

7297: /*@
7298:    TSRollBack - Rolls back one time step

7300:    Collective on TS

7302:    Input Parameter:
7303: .  ts - the TS context obtained from TSCreate()

7305:    Level: advanced

7307: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSInterpolate()
7308: @*/
7309: PetscErrorCode  TSRollBack(TS ts)
7310: {

7315:   if (ts->steprollback) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"TSRollBack already called");
7316:   if (!ts->ops->rollback) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSRollBack not implemented for type '%s'",((PetscObject)ts)->type_name);
7317:   (*ts->ops->rollback)(ts);
7318:   ts->time_step = ts->ptime - ts->ptime_prev;
7319:   ts->ptime = ts->ptime_prev;
7320:   ts->ptime_prev = ts->ptime_prev_rollback;
7321:   ts->steps--;
7322:   ts->steprollback = PETSC_TRUE;
7323:   return(0);
7324: }

7326: /*@
7327:    TSGetStages - Get the number of stages and stage values

7329:    Input Parameter:
7330: .  ts - the TS context obtained from TSCreate()

7332:    Output Parameters:
7333: +  ns - the number of stages
7334: -  Y - the current stage vectors

7336:    Level: advanced

7338:    Notes: Both ns and Y can be NULL.

7340: .seealso: TSCreate()
7341: @*/
7342: PetscErrorCode  TSGetStages(TS ts,PetscInt *ns,Vec **Y)
7343: {

7350:   if (!ts->ops->getstages) {
7351:     if (ns) *ns = 0;
7352:     if (Y) *Y = NULL;
7353:   } else {
7354:     (*ts->ops->getstages)(ts,ns,Y);
7355:   }
7356:   return(0);
7357: }

7359: /*@C
7360:   TSComputeIJacobianDefaultColor - Computes the Jacobian using finite differences and coloring to exploit matrix sparsity.

7362:   Collective on SNES

7364:   Input Parameters:
7365: + ts - the TS context
7366: . t - current timestep
7367: . U - state vector
7368: . Udot - time derivative of state vector
7369: . shift - shift to apply, see note below
7370: - ctx - an optional user context

7372:   Output Parameters:
7373: + J - Jacobian matrix (not altered in this routine)
7374: - B - newly computed Jacobian matrix to use with preconditioner (generally the same as J)

7376:   Level: intermediate

7378:   Notes:
7379:   If F(t,U,Udot)=0 is the DAE, the required Jacobian is

7381:   dF/dU + shift*dF/dUdot

7383:   Most users should not need to explicitly call this routine, as it
7384:   is used internally within the nonlinear solvers.

7386:   This will first try to get the coloring from the DM.  If the DM type has no coloring
7387:   routine, then it will try to get the coloring from the matrix.  This requires that the
7388:   matrix have nonzero entries precomputed.

7390: .seealso: TSSetIJacobian(), MatFDColoringCreate(), MatFDColoringSetFunction()
7391: @*/
7392: PetscErrorCode TSComputeIJacobianDefaultColor(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat J,Mat B,void *ctx)
7393: {
7394:   SNES           snes;
7395:   MatFDColoring  color;
7396:   PetscBool      hascolor, matcolor = PETSC_FALSE;

7400:   PetscOptionsGetBool(((PetscObject)ts)->options,((PetscObject) ts)->prefix, "-ts_fd_color_use_mat", &matcolor, NULL);
7401:   PetscObjectQuery((PetscObject) B, "TSMatFDColoring", (PetscObject *) &color);
7402:   if (!color) {
7403:     DM         dm;
7404:     ISColoring iscoloring;

7406:     TSGetDM(ts, &dm);
7407:     DMHasColoring(dm, &hascolor);
7408:     if (hascolor && !matcolor) {
7409:       DMCreateColoring(dm, IS_COLORING_GLOBAL, &iscoloring);
7410:       MatFDColoringCreate(B, iscoloring, &color);
7411:       MatFDColoringSetFunction(color, (PetscErrorCode (*)(void)) SNESTSFormFunction, (void *) ts);
7412:       MatFDColoringSetFromOptions(color);
7413:       MatFDColoringSetUp(B, iscoloring, color);
7414:       ISColoringDestroy(&iscoloring);
7415:     } else {
7416:       MatColoring mc;

7418:       MatColoringCreate(B, &mc);
7419:       MatColoringSetDistance(mc, 2);
7420:       MatColoringSetType(mc, MATCOLORINGSL);
7421:       MatColoringSetFromOptions(mc);
7422:       MatColoringApply(mc, &iscoloring);
7423:       MatColoringDestroy(&mc);
7424:       MatFDColoringCreate(B, iscoloring, &color);
7425:       MatFDColoringSetFunction(color, (PetscErrorCode (*)(void)) SNESTSFormFunction, (void *) ts);
7426:       MatFDColoringSetFromOptions(color);
7427:       MatFDColoringSetUp(B, iscoloring, color);
7428:       ISColoringDestroy(&iscoloring);
7429:     }
7430:     PetscObjectCompose((PetscObject) B, "TSMatFDColoring", (PetscObject) color);
7431:     PetscObjectDereference((PetscObject) color);
7432:   }
7433:   TSGetSNES(ts, &snes);
7434:   MatFDColoringApply(B, color, U, snes);
7435:   if (J != B) {
7436:     MatAssemblyBegin(J, MAT_FINAL_ASSEMBLY);
7437:     MatAssemblyEnd(J, MAT_FINAL_ASSEMBLY);
7438:   }
7439:   return(0);
7440: }

7442: /*@
7443:     TSSetFunctionDomainError - Set a function that tests if the current state vector is valid

7445:     Input Parameters:
7446: +    ts - the TS context
7447: -    func - function called within TSFunctionDomainError

7449:     Calling sequence of func:
7450: $     PetscErrorCode func(TS ts,PetscReal time,Vec state,PetscBool reject)

7452: +   ts - the TS context
7453: .   time - the current time (of the stage)
7454: .   state - the state to check if it is valid
7455: -   reject - (output parameter) PETSC_FALSE if the state is acceptable, PETSC_TRUE if not acceptable

7457:     Level: intermediate

7459:     Notes:
7460:       If an implicit ODE solver is being used then, in addition to providing this routine, the
7461:       user's code should call SNESSetFunctionDomainError() when domain errors occur during
7462:       function evaluations where the functions are provided by TSSetIFunction() or TSSetRHSFunction().
7463:       Use TSGetSNES() to obtain the SNES object

7465:     Developer Notes:
7466:       The naming of this function is inconsistent with the SNESSetFunctionDomainError()
7467:       since one takes a function pointer and the other does not.

7469: .seealso: TSAdaptCheckStage(), TSFunctionDomainError(), SNESSetFunctionDomainError(), TSGetSNES()
7470: @*/

7472: PetscErrorCode TSSetFunctionDomainError(TS ts, PetscErrorCode (*func)(TS,PetscReal,Vec,PetscBool*))
7473: {
7476:   ts->functiondomainerror = func;
7477:   return(0);
7478: }

7480: /*@
7481:     TSFunctionDomainError - Checks if the current state is valid

7483:     Input Parameters:
7484: +    ts - the TS context
7485: .    stagetime - time of the simulation
7486: -    Y - state vector to check.

7488:     Output Parameter:
7489: .    accept - Set to PETSC_FALSE if the current state vector is valid.

7491:     Note:
7492:     This function is called by the TS integration routines and calls the user provided function (set with TSSetFunctionDomainError())
7493:     to check if the current state is valid.

7495:     Level: developer

7497: .seealso: TSSetFunctionDomainError()
7498: @*/
7499: PetscErrorCode TSFunctionDomainError(TS ts,PetscReal stagetime,Vec Y,PetscBool* accept)
7500: {
7503:   *accept = PETSC_TRUE;
7504:   if (ts->functiondomainerror) {
7505:     PetscStackCallStandard((*ts->functiondomainerror),(ts,stagetime,Y,accept));
7506:   }
7507:   return(0);
7508: }

7510: /*@C
7511:   TSClone - This function clones a time step object.

7513:   Collective

7515:   Input Parameter:
7516: . tsin    - The input TS

7518:   Output Parameter:
7519: . tsout   - The output TS (cloned)

7521:   Notes:
7522:   This function is used to create a clone of a TS object. It is used in ARKIMEX for initializing the slope for first stage explicit methods. It will likely be replaced in the future with a mechanism of switching methods on the fly.

7524:   When using TSDestroy() on a clone the user has to first reset the correct TS reference in the embedded SNES object: e.g.: by running SNES snes_dup=NULL; TSGetSNES(ts,&snes_dup); TSSetSNES(ts,snes_dup);

7526:   Level: developer

7528: .seealso: TSCreate(), TSSetType(), TSSetUp(), TSDestroy(), TSSetProblemType()
7529: @*/
7530: PetscErrorCode  TSClone(TS tsin, TS *tsout)
7531: {
7532:   TS             t;
7534:   SNES           snes_start;
7535:   DM             dm;
7536:   TSType         type;

7540:   *tsout = NULL;

7542:   PetscHeaderCreate(t, TS_CLASSID, "TS", "Time stepping", "TS", PetscObjectComm((PetscObject)tsin), TSDestroy, TSView);

7544:   /* General TS description */
7545:   t->numbermonitors    = 0;
7546:   t->setupcalled       = 0;
7547:   t->ksp_its           = 0;
7548:   t->snes_its          = 0;
7549:   t->nwork             = 0;
7550:   t->rhsjacobian.time  = PETSC_MIN_REAL;
7551:   t->rhsjacobian.scale = 1.;
7552:   t->ijacobian.shift   = 1.;

7554:   TSGetSNES(tsin,&snes_start);
7555:   TSSetSNES(t,snes_start);

7557:   TSGetDM(tsin,&dm);
7558:   TSSetDM(t,dm);

7560:   t->adapt = tsin->adapt;
7561:   PetscObjectReference((PetscObject)t->adapt);

7563:   t->trajectory = tsin->trajectory;
7564:   PetscObjectReference((PetscObject)t->trajectory);

7566:   t->event = tsin->event;
7567:   if (t->event) t->event->refct++;

7569:   t->problem_type      = tsin->problem_type;
7570:   t->ptime             = tsin->ptime;
7571:   t->ptime_prev        = tsin->ptime_prev;
7572:   t->time_step         = tsin->time_step;
7573:   t->max_time          = tsin->max_time;
7574:   t->steps             = tsin->steps;
7575:   t->max_steps         = tsin->max_steps;
7576:   t->equation_type     = tsin->equation_type;
7577:   t->atol              = tsin->atol;
7578:   t->rtol              = tsin->rtol;
7579:   t->max_snes_failures = tsin->max_snes_failures;
7580:   t->max_reject        = tsin->max_reject;
7581:   t->errorifstepfailed = tsin->errorifstepfailed;

7583:   TSGetType(tsin,&type);
7584:   TSSetType(t,type);

7586:   t->vec_sol           = NULL;

7588:   t->cfltime          = tsin->cfltime;
7589:   t->cfltime_local    = tsin->cfltime_local;
7590:   t->exact_final_time = tsin->exact_final_time;

7592:   PetscMemcpy(t->ops,tsin->ops,sizeof(struct _TSOps));

7594:   if (((PetscObject)tsin)->fortran_func_pointers) {
7595:     PetscInt i;
7596:     PetscMalloc((10)*sizeof(void(*)(void)),&((PetscObject)t)->fortran_func_pointers);
7597:     for (i=0; i<10; i++) {
7598:       ((PetscObject)t)->fortran_func_pointers[i] = ((PetscObject)tsin)->fortran_func_pointers[i];
7599:     }
7600:   }
7601:   *tsout = t;
7602:   return(0);
7603: }

7605: static PetscErrorCode RHSWrapperFunction_TSRHSJacobianTest(void* ctx,Vec x,Vec y)
7606: {
7608:   TS             ts = (TS) ctx;

7611:   TSComputeRHSFunction(ts,0,x,y);
7612:   return(0);
7613: }

7615: /*@
7616:     TSRHSJacobianTest - Compares the multiply routine provided to the MATSHELL with differencing on the TS given RHS function.

7618:    Logically Collective on TS

7620:     Input Parameters:
7621:     TS - the time stepping routine

7623:    Output Parameter:
7624: .   flg - PETSC_TRUE if the multiply is likely correct

7626:    Options Database:
7627:  .   -ts_rhs_jacobian_test_mult -mat_shell_test_mult_view - run the test at each timestep of the integrator

7629:    Level: advanced

7631:    Notes:
7632:     This only works for problems defined only the RHS function and Jacobian NOT IFunction and IJacobian

7634: .seealso: MatCreateShell(), MatShellGetContext(), MatShellGetOperation(), MatShellTestMultTranspose(), TSRHSJacobianTestTranspose()
7635: @*/
7636: PetscErrorCode  TSRHSJacobianTest(TS ts,PetscBool *flg)
7637: {
7638:   Mat            J,B;
7640:   TSRHSJacobian  func;
7641:   void*          ctx;

7644:   TSGetRHSJacobian(ts,&J,&B,&func,&ctx);
7645:   (*func)(ts,0.0,ts->vec_sol,J,B,ctx);
7646:   MatShellTestMult(J,RHSWrapperFunction_TSRHSJacobianTest,ts->vec_sol,ts,flg);
7647:   return(0);
7648: }

7650: /*@C
7651:     TSRHSJacobianTestTranspose - Compares the multiply transpose routine provided to the MATSHELL with differencing on the TS given RHS function.

7653:    Logically Collective on TS

7655:     Input Parameters:
7656:     TS - the time stepping routine

7658:    Output Parameter:
7659: .   flg - PETSC_TRUE if the multiply is likely correct

7661:    Options Database:
7662: .   -ts_rhs_jacobian_test_mult_transpose -mat_shell_test_mult_transpose_view - run the test at each timestep of the integrator

7664:    Notes:
7665:     This only works for problems defined only the RHS function and Jacobian NOT IFunction and IJacobian

7667:    Level: advanced

7669: .seealso: MatCreateShell(), MatShellGetContext(), MatShellGetOperation(), MatShellTestMultTranspose(), TSRHSJacobianTest()
7670: @*/
7671: PetscErrorCode  TSRHSJacobianTestTranspose(TS ts,PetscBool *flg)
7672: {
7673:   Mat            J,B;
7675:   void           *ctx;
7676:   TSRHSJacobian  func;

7679:   TSGetRHSJacobian(ts,&J,&B,&func,&ctx);
7680:   (*func)(ts,0.0,ts->vec_sol,J,B,ctx);
7681:   MatShellTestMultTranspose(J,RHSWrapperFunction_TSRHSJacobianTest,ts->vec_sol,ts,flg);
7682:   return(0);
7683: }

7685: /*@
7686:   TSSetUseSplitRHSFunction - Use the split RHSFunction when a multirate method is used.

7688:   Logically collective

7690:   Input Parameter:
7691: +  ts - timestepping context
7692: -  use_splitrhsfunction - PETSC_TRUE indicates that the split RHSFunction will be used

7694:   Options Database:
7695: .   -ts_use_splitrhsfunction - <true,false>

7697:   Notes:
7698:     This is only useful for multirate methods

7700:   Level: intermediate

7702: .seealso: TSGetUseSplitRHSFunction()
7703: @*/
7704: PetscErrorCode TSSetUseSplitRHSFunction(TS ts, PetscBool use_splitrhsfunction)
7705: {
7708:   ts->use_splitrhsfunction = use_splitrhsfunction;
7709:   return(0);
7710: }

7712: /*@
7713:   TSGetUseSplitRHSFunction - Gets whether to use the split RHSFunction when a multirate method is used.

7715:   Not collective

7717:   Input Parameter:
7718: .  ts - timestepping context

7720:   Output Parameter:
7721: .  use_splitrhsfunction - PETSC_TRUE indicates that the split RHSFunction will be used

7723:   Level: intermediate

7725: .seealso: TSSetUseSplitRHSFunction()
7726: @*/
7727: PetscErrorCode TSGetUseSplitRHSFunction(TS ts, PetscBool *use_splitrhsfunction)
7728: {
7731:   *use_splitrhsfunction = ts->use_splitrhsfunction;
7732:   return(0);
7733: }

7735: /*@
7736:     TSSetMatStructure - sets the relationship between the nonzero structure of the RHS Jacobian matrix to the IJacobian matrix.

7738:    Logically  Collective on ts

7740:    Input Parameters:
7741: +  ts - the time-stepper
7742: -  str - the structure (the default is UNKNOWN_NONZERO_PATTERN)

7744:    Level: intermediate

7746:    Notes:
7747:      When the relationship between the nonzero structures is known and supplied the solution process can be much faster

7749: .seealso: MatAXPY(), MatStructure
7750:  @*/
7751: PetscErrorCode TSSetMatStructure(TS ts,MatStructure str)
7752: {
7755:   ts->axpy_pattern = str;
7756:   return(0);
7757: }