Actual source code: ntr.c

  1: #include <../src/tao/unconstrained/impls/ntr/ntrimpl.h>

  3: #include <petscksp.h>

  5: #define NTR_INIT_CONSTANT         0
  6: #define NTR_INIT_DIRECTION        1
  7: #define NTR_INIT_INTERPOLATION    2
  8: #define NTR_INIT_TYPES            3

 10: #define NTR_UPDATE_REDUCTION      0
 11: #define NTR_UPDATE_INTERPOLATION  1
 12: #define NTR_UPDATE_TYPES          2

 14: static const char *NTR_INIT[64] = {"constant","direction","interpolation"};

 16: static const char *NTR_UPDATE[64] = {"reduction","interpolation"};

 18: /*
 19:    TaoSolve_NTR - Implements Newton's Method with a trust region approach
 20:    for solving unconstrained minimization problems.

 22:    The basic algorithm is taken from MINPACK-2 (dstrn).

 24:    TaoSolve_NTR computes a local minimizer of a twice differentiable function
 25:    f by applying a trust region variant of Newton's method.  At each stage
 26:    of the algorithm, we use the prconditioned conjugate gradient method to
 27:    determine an approximate minimizer of the quadratic equation

 29:         q(s) = <s, Hs + g>

 31:    subject to the trust region constraint

 33:         || s ||_M <= radius,

 35:    where radius is the trust region radius and M is a symmetric positive
 36:    definite matrix (the preconditioner).  Here g is the gradient and H
 37:    is the Hessian matrix.

 39:    Note:  TaoSolve_NTR MUST use the iterative solver KSPNASH, KSPSTCG,
 40:           or KSPGLTR.  Thus, we set KSPNASH, KSPSTCG, or KSPGLTR in this
 41:           routine regardless of what the user may have previously specified.
 42: */
 43: static PetscErrorCode TaoSolve_NTR(Tao tao)
 44: {
 45:   TAO_NTR            *tr = (TAO_NTR *)tao->data;
 46:   KSPType            ksp_type;
 47:   PetscBool          is_nash,is_stcg,is_gltr,is_bfgs,is_jacobi,is_symmetric,sym_set;
 48:   KSPConvergedReason ksp_reason;
 49:   PC                 pc;
 50:   PetscReal          fmin, ftrial, prered, actred, kappa, sigma, beta;
 51:   PetscReal          tau, tau_1, tau_2, tau_max, tau_min, max_radius;
 52:   PetscReal          f, gnorm;

 54:   PetscReal          norm_d;
 55:   PetscErrorCode     ierr;
 56:   PetscInt           bfgsUpdates = 0;
 57:   PetscInt           needH;

 59:   PetscInt           i_max = 5;
 60:   PetscInt           j_max = 1;
 61:   PetscInt           i, j, N, n, its;

 64:   if (tao->XL || tao->XU || tao->ops->computebounds) {
 65:     PetscInfo(tao,"WARNING: Variable bounds have been set but will be ignored by ntr algorithm\n");
 66:   }

 68:   KSPGetType(tao->ksp,&ksp_type);
 69:   PetscStrcmp(ksp_type,KSPNASH,&is_nash);
 70:   PetscStrcmp(ksp_type,KSPSTCG,&is_stcg);
 71:   PetscStrcmp(ksp_type,KSPGLTR,&is_gltr);
 72:   if (!is_nash && !is_stcg && !is_gltr) SETERRQ(PetscObjectComm((PetscObject)tao),PETSC_ERR_SUP,"TAO_NTR requires nash, stcg, or gltr for the KSP");

 74:   /* Initialize the radius and modify if it is too large or small */
 75:   tao->trust = tao->trust0;
 76:   tao->trust = PetscMax(tao->trust, tr->min_radius);
 77:   tao->trust = PetscMin(tao->trust, tr->max_radius);

 79:   /* Allocate the vectors needed for the BFGS approximation */
 80:   KSPGetPC(tao->ksp, &pc);
 81:   PetscObjectTypeCompare((PetscObject)pc, PCLMVM, &is_bfgs);
 82:   PetscObjectTypeCompare((PetscObject)pc, PCJACOBI, &is_jacobi);
 83:   if (is_bfgs) {
 84:     tr->bfgs_pre = pc;
 85:     PCLMVMGetMatLMVM(tr->bfgs_pre, &tr->M);
 86:     VecGetLocalSize(tao->solution, &n);
 87:     VecGetSize(tao->solution, &N);
 88:     MatSetSizes(tr->M, n, n, N, N);
 89:     MatLMVMAllocate(tr->M, tao->solution, tao->gradient);
 90:     MatIsSymmetricKnown(tr->M, &sym_set, &is_symmetric);
 91:     if (!sym_set || !is_symmetric) SETERRQ(PetscObjectComm((PetscObject)tao), PETSC_ERR_ARG_INCOMP, "LMVM matrix in the LMVM preconditioner must be symmetric.");
 92:   } else if (is_jacobi) {
 93:     PCJacobiSetUseAbs(pc,PETSC_TRUE);
 94:   }

 96:   /* Check convergence criteria */
 97:   TaoComputeObjectiveAndGradient(tao, tao->solution, &f, tao->gradient);
 98:   TaoGradientNorm(tao, tao->gradient,NORM_2,&gnorm);
 99:   if (PetscIsInfOrNanReal(f) || PetscIsInfOrNanReal(gnorm)) SETERRQ(PetscObjectComm((PetscObject)tao),PETSC_ERR_USER,"User provided compute function generated Inf or NaN");
100:   needH = 1;

102:   tao->reason = TAO_CONTINUE_ITERATING;
103:   TaoLogConvergenceHistory(tao,f,gnorm,0.0,tao->ksp_its);
104:   TaoMonitor(tao,tao->niter,f,gnorm,0.0,1.0);
105:   (*tao->ops->convergencetest)(tao,tao->cnvP);
106:   if (tao->reason != TAO_CONTINUE_ITERATING) return(0);

108:   /*  Initialize trust-region radius */
109:   switch (tr->init_type) {
110:   case NTR_INIT_CONSTANT:
111:     /*  Use the initial radius specified */
112:     break;

114:   case NTR_INIT_INTERPOLATION:
115:     /*  Use the initial radius specified */
116:     max_radius = 0.0;

118:     for (j = 0; j < j_max; ++j) {
119:       fmin = f;
120:       sigma = 0.0;

122:       if (needH) {
123:         TaoComputeHessian(tao,tao->solution,tao->hessian,tao->hessian_pre);
124:         needH = 0;
125:       }

127:       for (i = 0; i < i_max; ++i) {

129:         VecCopy(tao->solution, tr->W);
130:         VecAXPY(tr->W, -tao->trust/gnorm, tao->gradient);
131:         TaoComputeObjective(tao, tr->W, &ftrial);

133:         if (PetscIsInfOrNanReal(ftrial)) {
134:           tau = tr->gamma1_i;
135:         }
136:         else {
137:           if (ftrial < fmin) {
138:             fmin = ftrial;
139:             sigma = -tao->trust / gnorm;
140:           }

142:           MatMult(tao->hessian, tao->gradient, tao->stepdirection);
143:           VecDot(tao->gradient, tao->stepdirection, &prered);

145:           prered = tao->trust * (gnorm - 0.5 * tao->trust * prered / (gnorm * gnorm));
146:           actred = f - ftrial;
147:           if ((PetscAbsScalar(actred) <= tr->epsilon) &&
148:               (PetscAbsScalar(prered) <= tr->epsilon)) {
149:             kappa = 1.0;
150:           }
151:           else {
152:             kappa = actred / prered;
153:           }

155:           tau_1 = tr->theta_i * gnorm * tao->trust / (tr->theta_i * gnorm * tao->trust + (1.0 - tr->theta_i) * prered - actred);
156:           tau_2 = tr->theta_i * gnorm * tao->trust / (tr->theta_i * gnorm * tao->trust - (1.0 + tr->theta_i) * prered + actred);
157:           tau_min = PetscMin(tau_1, tau_2);
158:           tau_max = PetscMax(tau_1, tau_2);

160:           if (PetscAbsScalar(kappa - (PetscReal)1.0) <= tr->mu1_i) {
161:             /*  Great agreement */
162:             max_radius = PetscMax(max_radius, tao->trust);

164:             if (tau_max < 1.0) {
165:               tau = tr->gamma3_i;
166:             }
167:             else if (tau_max > tr->gamma4_i) {
168:               tau = tr->gamma4_i;
169:             }
170:             else {
171:               tau = tau_max;
172:             }
173:           }
174:           else if (PetscAbsScalar(kappa - (PetscReal)1.0) <= tr->mu2_i) {
175:             /*  Good agreement */
176:             max_radius = PetscMax(max_radius, tao->trust);

178:             if (tau_max < tr->gamma2_i) {
179:               tau = tr->gamma2_i;
180:             }
181:             else if (tau_max > tr->gamma3_i) {
182:               tau = tr->gamma3_i;
183:             }
184:             else {
185:               tau = tau_max;
186:             }
187:           }
188:           else {
189:             /*  Not good agreement */
190:             if (tau_min > 1.0) {
191:               tau = tr->gamma2_i;
192:             }
193:             else if (tau_max < tr->gamma1_i) {
194:               tau = tr->gamma1_i;
195:             }
196:             else if ((tau_min < tr->gamma1_i) && (tau_max >= 1.0)) {
197:               tau = tr->gamma1_i;
198:             }
199:             else if ((tau_1 >= tr->gamma1_i) && (tau_1 < 1.0) &&
200:                      ((tau_2 < tr->gamma1_i) || (tau_2 >= 1.0))) {
201:               tau = tau_1;
202:             }
203:             else if ((tau_2 >= tr->gamma1_i) && (tau_2 < 1.0) &&
204:                      ((tau_1 < tr->gamma1_i) || (tau_2 >= 1.0))) {
205:               tau = tau_2;
206:             }
207:             else {
208:               tau = tau_max;
209:             }
210:           }
211:         }
212:         tao->trust = tau * tao->trust;
213:       }

215:       if (fmin < f) {
216:         f = fmin;
217:         VecAXPY(tao->solution, sigma, tao->gradient);
218:         TaoComputeGradient(tao,tao->solution, tao->gradient);

220:         TaoGradientNorm(tao, tao->gradient,NORM_2,&gnorm);
221:         if (PetscIsInfOrNanReal(f) || PetscIsInfOrNanReal(gnorm)) SETERRQ(PetscObjectComm((PetscObject)tao),PETSC_ERR_USER, "User provided compute function generated Inf or NaN");
222:         needH = 1;

224:         TaoLogConvergenceHistory(tao,f,gnorm,0.0,tao->ksp_its);
225:         TaoMonitor(tao,tao->niter,f,gnorm,0.0,1.0);
226:         (*tao->ops->convergencetest)(tao,tao->cnvP);
227:         if (tao->reason != TAO_CONTINUE_ITERATING) {
228:           return(0);
229:         }
230:       }
231:     }
232:     tao->trust = PetscMax(tao->trust, max_radius);

234:     /*  Modify the radius if it is too large or small */
235:     tao->trust = PetscMax(tao->trust, tr->min_radius);
236:     tao->trust = PetscMin(tao->trust, tr->max_radius);
237:     break;

239:   default:
240:     /*  Norm of the first direction will initialize radius */
241:     tao->trust = 0.0;
242:     break;
243:   }

245:   /* Have not converged; continue with Newton method */
246:   while (tao->reason == TAO_CONTINUE_ITERATING) {
247:     /* Call general purpose update function */
248:     if (tao->ops->update) {
249:       (*tao->ops->update)(tao, tao->niter, tao->user_update);
250:     }
251:     ++tao->niter;
252:     tao->ksp_its=0;
253:     /* Compute the Hessian */
254:     if (needH) {
255:       TaoComputeHessian(tao,tao->solution,tao->hessian,tao->hessian_pre);
256:       needH = 0;
257:     }

259:     if (tr->bfgs_pre) {
260:       /* Update the limited memory preconditioner */
261:       MatLMVMUpdate(tr->M, tao->solution, tao->gradient);
262:       ++bfgsUpdates;
263:     }

265:     while (tao->reason == TAO_CONTINUE_ITERATING) {
266:       KSPSetOperators(tao->ksp, tao->hessian, tao->hessian_pre);

268:       /* Solve the trust region subproblem */
269:       KSPCGSetRadius(tao->ksp,tao->trust);
270:       KSPSolve(tao->ksp, tao->gradient, tao->stepdirection);
271:       KSPGetIterationNumber(tao->ksp,&its);
272:       tao->ksp_its+=its;
273:       tao->ksp_tot_its+=its;
274:       KSPCGGetNormD(tao->ksp, &norm_d);

276:       if (0.0 == tao->trust) {
277:         /* Radius was uninitialized; use the norm of the direction */
278:         if (norm_d > 0.0) {
279:           tao->trust = norm_d;

281:           /* Modify the radius if it is too large or small */
282:           tao->trust = PetscMax(tao->trust, tr->min_radius);
283:           tao->trust = PetscMin(tao->trust, tr->max_radius);
284:         }
285:         else {
286:           /* The direction was bad; set radius to default value and re-solve
287:              the trust-region subproblem to get a direction */
288:           tao->trust = tao->trust0;

290:           /* Modify the radius if it is too large or small */
291:           tao->trust = PetscMax(tao->trust, tr->min_radius);
292:           tao->trust = PetscMin(tao->trust, tr->max_radius);

294:           KSPCGSetRadius(tao->ksp,tao->trust);
295:           KSPSolve(tao->ksp, tao->gradient, tao->stepdirection);
296:           KSPGetIterationNumber(tao->ksp,&its);
297:           tao->ksp_its+=its;
298:           tao->ksp_tot_its+=its;
299:           KSPCGGetNormD(tao->ksp, &norm_d);

301:           if (norm_d == 0.0) SETERRQ(PetscObjectComm((PetscObject)tao),PETSC_ERR_PLIB, "Initial direction zero");
302:         }
303:       }
304:       VecScale(tao->stepdirection, -1.0);
305:       KSPGetConvergedReason(tao->ksp, &ksp_reason);
306:       if ((KSP_DIVERGED_INDEFINITE_PC == ksp_reason) && (tr->bfgs_pre)) {
307:         /* Preconditioner is numerically indefinite; reset the
308:            approximate if using BFGS preconditioning. */
309:         MatLMVMReset(tr->M, PETSC_FALSE);
310:         MatLMVMUpdate(tr->M, tao->solution, tao->gradient);
311:         bfgsUpdates = 1;
312:       }

314:       if (NTR_UPDATE_REDUCTION == tr->update_type) {
315:         /* Get predicted reduction */
316:         KSPCGGetObjFcn(tao->ksp,&prered);
317:         if (prered >= 0.0) {
318:           /* The predicted reduction has the wrong sign.  This cannot
319:              happen in infinite precision arithmetic.  Step should
320:              be rejected! */
321:           tao->trust = tr->alpha1 * PetscMin(tao->trust, norm_d);
322:         }
323:         else {
324:           /* Compute trial step and function value */
325:           VecCopy(tao->solution,tr->W);
326:           VecAXPY(tr->W, 1.0, tao->stepdirection);
327:           TaoComputeObjective(tao, tr->W, &ftrial);

329:           if (PetscIsInfOrNanReal(ftrial)) {
330:             tao->trust = tr->alpha1 * PetscMin(tao->trust, norm_d);
331:           } else {
332:             /* Compute and actual reduction */
333:             actred = f - ftrial;
334:             prered = -prered;
335:             if ((PetscAbsScalar(actred) <= tr->epsilon) &&
336:                 (PetscAbsScalar(prered) <= tr->epsilon)) {
337:               kappa = 1.0;
338:             }
339:             else {
340:               kappa = actred / prered;
341:             }

343:             /* Accept or reject the step and update radius */
344:             if (kappa < tr->eta1) {
345:               /* Reject the step */
346:               tao->trust = tr->alpha1 * PetscMin(tao->trust, norm_d);
347:             }
348:             else {
349:               /* Accept the step */
350:               if (kappa < tr->eta2) {
351:                 /* Marginal bad step */
352:                 tao->trust = tr->alpha2 * PetscMin(tao->trust, norm_d);
353:               }
354:               else if (kappa < tr->eta3) {
355:                 /* Reasonable step */
356:                 tao->trust = tr->alpha3 * tao->trust;
357:               }
358:               else if (kappa < tr->eta4) {
359:                 /* Good step */
360:                 tao->trust = PetscMax(tr->alpha4 * norm_d, tao->trust);
361:               }
362:               else {
363:                 /* Very good step */
364:                 tao->trust = PetscMax(tr->alpha5 * norm_d, tao->trust);
365:               }
366:               break;
367:             }
368:           }
369:         }
370:       }
371:       else {
372:         /* Get predicted reduction */
373:         KSPCGGetObjFcn(tao->ksp,&prered);
374:         if (prered >= 0.0) {
375:           /* The predicted reduction has the wrong sign.  This cannot
376:              happen in infinite precision arithmetic.  Step should
377:              be rejected! */
378:           tao->trust = tr->gamma1 * PetscMin(tao->trust, norm_d);
379:         }
380:         else {
381:           VecCopy(tao->solution, tr->W);
382:           VecAXPY(tr->W, 1.0, tao->stepdirection);
383:           TaoComputeObjective(tao, tr->W, &ftrial);
384:           if (PetscIsInfOrNanReal(ftrial)) {
385:             tao->trust = tr->gamma1 * PetscMin(tao->trust, norm_d);
386:           }
387:           else {
388:             VecDot(tao->gradient, tao->stepdirection, &beta);
389:             actred = f - ftrial;
390:             prered = -prered;
391:             if ((PetscAbsScalar(actred) <= tr->epsilon) &&
392:                 (PetscAbsScalar(prered) <= tr->epsilon)) {
393:               kappa = 1.0;
394:             }
395:             else {
396:               kappa = actred / prered;
397:             }

399:             tau_1 = tr->theta * beta / (tr->theta * beta - (1.0 - tr->theta) * prered + actred);
400:             tau_2 = tr->theta * beta / (tr->theta * beta + (1.0 + tr->theta) * prered - actred);
401:             tau_min = PetscMin(tau_1, tau_2);
402:             tau_max = PetscMax(tau_1, tau_2);

404:             if (kappa >= 1.0 - tr->mu1) {
405:               /* Great agreement; accept step and update radius */
406:               if (tau_max < 1.0) {
407:                 tao->trust = PetscMax(tao->trust, tr->gamma3 * norm_d);
408:               }
409:               else if (tau_max > tr->gamma4) {
410:                 tao->trust = PetscMax(tao->trust, tr->gamma4 * norm_d);
411:               }
412:               else {
413:                 tao->trust = PetscMax(tao->trust, tau_max * norm_d);
414:               }
415:               break;
416:             }
417:             else if (kappa >= 1.0 - tr->mu2) {
418:               /* Good agreement */

420:               if (tau_max < tr->gamma2) {
421:                 tao->trust = tr->gamma2 * PetscMin(tao->trust, norm_d);
422:               }
423:               else if (tau_max > tr->gamma3) {
424:                 tao->trust = PetscMax(tao->trust, tr->gamma3 * norm_d);
425:               }
426:               else if (tau_max < 1.0) {
427:                 tao->trust = tau_max * PetscMin(tao->trust, norm_d);
428:               }
429:               else {
430:                 tao->trust = PetscMax(tao->trust, tau_max * norm_d);
431:               }
432:               break;
433:             }
434:             else {
435:               /* Not good agreement */
436:               if (tau_min > 1.0) {
437:                 tao->trust = tr->gamma2 * PetscMin(tao->trust, norm_d);
438:               }
439:               else if (tau_max < tr->gamma1) {
440:                 tao->trust = tr->gamma1 * PetscMin(tao->trust, norm_d);
441:               }
442:               else if ((tau_min < tr->gamma1) && (tau_max >= 1.0)) {
443:                 tao->trust = tr->gamma1 * PetscMin(tao->trust, norm_d);
444:               }
445:               else if ((tau_1 >= tr->gamma1) && (tau_1 < 1.0) &&
446:                        ((tau_2 < tr->gamma1) || (tau_2 >= 1.0))) {
447:                 tao->trust = tau_1 * PetscMin(tao->trust, norm_d);
448:               }
449:               else if ((tau_2 >= tr->gamma1) && (tau_2 < 1.0) &&
450:                        ((tau_1 < tr->gamma1) || (tau_2 >= 1.0))) {
451:                 tao->trust = tau_2 * PetscMin(tao->trust, norm_d);
452:               }
453:               else {
454:                 tao->trust = tau_max * PetscMin(tao->trust, norm_d);
455:               }
456:             }
457:           }
458:         }
459:       }

461:       /* The step computed was not good and the radius was decreased.
462:          Monitor the radius to terminate. */
463:       TaoLogConvergenceHistory(tao,f,gnorm,0.0,tao->ksp_its);
464:       TaoMonitor(tao,tao->niter,f,gnorm,0.0,tao->trust);
465:       (*tao->ops->convergencetest)(tao,tao->cnvP);
466:     }

468:     /* The radius may have been increased; modify if it is too large */
469:     tao->trust = PetscMin(tao->trust, tr->max_radius);

471:     if (tao->reason == TAO_CONTINUE_ITERATING) {
472:       VecCopy(tr->W, tao->solution);
473:       f = ftrial;
474:       TaoComputeGradient(tao, tao->solution, tao->gradient);
475:       TaoGradientNorm(tao, tao->gradient,NORM_2,&gnorm);
476:       if (PetscIsInfOrNanReal(f) || PetscIsInfOrNanReal(gnorm)) SETERRQ(PetscObjectComm((PetscObject)tao),PETSC_ERR_USER, "User provided compute function generated Inf or NaN");
477:       needH = 1;
478:       TaoLogConvergenceHistory(tao,f,gnorm,0.0,tao->ksp_its);
479:       TaoMonitor(tao,tao->niter,f,gnorm,0.0,tao->trust);
480:       (*tao->ops->convergencetest)(tao,tao->cnvP);
481:     }
482:   }
483:   return(0);
484: }

486: /*------------------------------------------------------------*/
487: static PetscErrorCode TaoSetUp_NTR(Tao tao)
488: {
489:   TAO_NTR *tr = (TAO_NTR *)tao->data;

493:   if (!tao->gradient) {VecDuplicate(tao->solution, &tao->gradient);}
494:   if (!tao->stepdirection) {VecDuplicate(tao->solution, &tao->stepdirection);}
495:   if (!tr->W) {VecDuplicate(tao->solution, &tr->W);}

497:   tr->bfgs_pre = NULL;
498:   tr->M = NULL;
499:   return(0);
500: }

502: /*------------------------------------------------------------*/
503: static PetscErrorCode TaoDestroy_NTR(Tao tao)
504: {
505:   TAO_NTR        *tr = (TAO_NTR *)tao->data;

509:   if (tao->setupcalled) {
510:     VecDestroy(&tr->W);
511:   }
512:   PetscFree(tao->data);
513:   return(0);
514: }

516: /*------------------------------------------------------------*/
517: static PetscErrorCode TaoSetFromOptions_NTR(PetscOptionItems *PetscOptionsObject,Tao tao)
518: {
519:   TAO_NTR        *tr = (TAO_NTR *)tao->data;

523:   PetscOptionsHead(PetscOptionsObject,"Newton trust region method for unconstrained optimization");
524:   PetscOptionsEList("-tao_ntr_init_type", "tao->trust initialization type", "", NTR_INIT, NTR_INIT_TYPES, NTR_INIT[tr->init_type], &tr->init_type,NULL);
525:   PetscOptionsEList("-tao_ntr_update_type", "radius update type", "", NTR_UPDATE, NTR_UPDATE_TYPES, NTR_UPDATE[tr->update_type], &tr->update_type,NULL);
526:   PetscOptionsReal("-tao_ntr_eta1", "step is unsuccessful if actual reduction < eta1 * predicted reduction", "", tr->eta1, &tr->eta1,NULL);
527:   PetscOptionsReal("-tao_ntr_eta2", "", "", tr->eta2, &tr->eta2,NULL);
528:   PetscOptionsReal("-tao_ntr_eta3", "", "", tr->eta3, &tr->eta3,NULL);
529:   PetscOptionsReal("-tao_ntr_eta4", "", "", tr->eta4, &tr->eta4,NULL);
530:   PetscOptionsReal("-tao_ntr_alpha1", "", "", tr->alpha1, &tr->alpha1,NULL);
531:   PetscOptionsReal("-tao_ntr_alpha2", "", "", tr->alpha2, &tr->alpha2,NULL);
532:   PetscOptionsReal("-tao_ntr_alpha3", "", "", tr->alpha3, &tr->alpha3,NULL);
533:   PetscOptionsReal("-tao_ntr_alpha4", "", "", tr->alpha4, &tr->alpha4,NULL);
534:   PetscOptionsReal("-tao_ntr_alpha5", "", "", tr->alpha5, &tr->alpha5,NULL);
535:   PetscOptionsReal("-tao_ntr_mu1", "", "", tr->mu1, &tr->mu1,NULL);
536:   PetscOptionsReal("-tao_ntr_mu2", "", "", tr->mu2, &tr->mu2,NULL);
537:   PetscOptionsReal("-tao_ntr_gamma1", "", "", tr->gamma1, &tr->gamma1,NULL);
538:   PetscOptionsReal("-tao_ntr_gamma2", "", "", tr->gamma2, &tr->gamma2,NULL);
539:   PetscOptionsReal("-tao_ntr_gamma3", "", "", tr->gamma3, &tr->gamma3,NULL);
540:   PetscOptionsReal("-tao_ntr_gamma4", "", "", tr->gamma4, &tr->gamma4,NULL);
541:   PetscOptionsReal("-tao_ntr_theta", "", "", tr->theta, &tr->theta,NULL);
542:   PetscOptionsReal("-tao_ntr_mu1_i", "", "", tr->mu1_i, &tr->mu1_i,NULL);
543:   PetscOptionsReal("-tao_ntr_mu2_i", "", "", tr->mu2_i, &tr->mu2_i,NULL);
544:   PetscOptionsReal("-tao_ntr_gamma1_i", "", "", tr->gamma1_i, &tr->gamma1_i,NULL);
545:   PetscOptionsReal("-tao_ntr_gamma2_i", "", "", tr->gamma2_i, &tr->gamma2_i,NULL);
546:   PetscOptionsReal("-tao_ntr_gamma3_i", "", "", tr->gamma3_i, &tr->gamma3_i,NULL);
547:   PetscOptionsReal("-tao_ntr_gamma4_i", "", "", tr->gamma4_i, &tr->gamma4_i,NULL);
548:   PetscOptionsReal("-tao_ntr_theta_i", "", "", tr->theta_i, &tr->theta_i,NULL);
549:   PetscOptionsReal("-tao_ntr_min_radius", "lower bound on initial trust-region radius", "", tr->min_radius, &tr->min_radius,NULL);
550:   PetscOptionsReal("-tao_ntr_max_radius", "upper bound on trust-region radius", "", tr->max_radius, &tr->max_radius,NULL);
551:   PetscOptionsReal("-tao_ntr_epsilon", "tolerance used when computing actual and predicted reduction", "", tr->epsilon, &tr->epsilon,NULL);
552:   PetscOptionsTail();
553:   KSPSetFromOptions(tao->ksp);
554:   return(0);
555: }

557: /*------------------------------------------------------------*/
558: /*MC
559:   TAONTR - Newton's method with trust region for unconstrained minimization.
560:   At each iteration, the Newton trust region method solves the system.
561:   NTR expects a KSP solver with a trust region radius.
562:             min_d  .5 dT Hk d + gkT d,  s.t.   ||d|| < Delta_k

564:   Options Database Keys:
565: + -tao_ntr_init_type - "constant","direction","interpolation"
566: . -tao_ntr_update_type - "reduction","interpolation"
567: . -tao_ntr_min_radius - lower bound on trust region radius
568: . -tao_ntr_max_radius - upper bound on trust region radius
569: . -tao_ntr_epsilon - tolerance for accepting actual / predicted reduction
570: . -tao_ntr_mu1_i - mu1 interpolation init factor
571: . -tao_ntr_mu2_i - mu2 interpolation init factor
572: . -tao_ntr_gamma1_i - gamma1 interpolation init factor
573: . -tao_ntr_gamma2_i - gamma2 interpolation init factor
574: . -tao_ntr_gamma3_i - gamma3 interpolation init factor
575: . -tao_ntr_gamma4_i - gamma4 interpolation init factor
576: . -tao_ntr_theta_i - theta1 interpolation init factor
577: . -tao_ntr_eta1 - eta1 reduction update factor
578: . -tao_ntr_eta2 - eta2 reduction update factor
579: . -tao_ntr_eta3 - eta3 reduction update factor
580: . -tao_ntr_eta4 - eta4 reduction update factor
581: . -tao_ntr_alpha1 - alpha1 reduction update factor
582: . -tao_ntr_alpha2 - alpha2 reduction update factor
583: . -tao_ntr_alpha3 - alpha3 reduction update factor
584: . -tao_ntr_alpha4 - alpha4 reduction update factor
585: . -tao_ntr_alpha4 - alpha4 reduction update factor
586: . -tao_ntr_mu1 - mu1 interpolation update
587: . -tao_ntr_mu2 - mu2 interpolation update
588: . -tao_ntr_gamma1 - gamma1 interpolcation update
589: . -tao_ntr_gamma2 - gamma2 interpolcation update
590: . -tao_ntr_gamma3 - gamma3 interpolcation update
591: . -tao_ntr_gamma4 - gamma4 interpolation update
592: - -tao_ntr_theta - theta interpolation update

594:   Level: beginner
595: M*/

597: PETSC_EXTERN PetscErrorCode TaoCreate_NTR(Tao tao)
598: {
599:   TAO_NTR *tr;


604:   PetscNewLog(tao,&tr);

606:   tao->ops->setup = TaoSetUp_NTR;
607:   tao->ops->solve = TaoSolve_NTR;
608:   tao->ops->setfromoptions = TaoSetFromOptions_NTR;
609:   tao->ops->destroy = TaoDestroy_NTR;

611:   /* Override default settings (unless already changed) */
612:   if (!tao->max_it_changed) tao->max_it = 50;
613:   if (!tao->trust0_changed) tao->trust0 = 100.0;
614:   tao->data = (void*)tr;

616:   /*  Standard trust region update parameters */
617:   tr->eta1 = 1.0e-4;
618:   tr->eta2 = 0.25;
619:   tr->eta3 = 0.50;
620:   tr->eta4 = 0.90;

622:   tr->alpha1 = 0.25;
623:   tr->alpha2 = 0.50;
624:   tr->alpha3 = 1.00;
625:   tr->alpha4 = 2.00;
626:   tr->alpha5 = 4.00;

628:   /*  Interpolation trust region update parameters */
629:   tr->mu1 = 0.10;
630:   tr->mu2 = 0.50;

632:   tr->gamma1 = 0.25;
633:   tr->gamma2 = 0.50;
634:   tr->gamma3 = 2.00;
635:   tr->gamma4 = 4.00;

637:   tr->theta = 0.05;

639:   /*  Interpolation parameters for initialization */
640:   tr->mu1_i = 0.35;
641:   tr->mu2_i = 0.50;

643:   tr->gamma1_i = 0.0625;
644:   tr->gamma2_i = 0.50;
645:   tr->gamma3_i = 2.00;
646:   tr->gamma4_i = 5.00;

648:   tr->theta_i = 0.25;

650:   tr->min_radius = 1.0e-10;
651:   tr->max_radius = 1.0e10;
652:   tr->epsilon    = 1.0e-6;

654:   tr->init_type       = NTR_INIT_INTERPOLATION;
655:   tr->update_type     = NTR_UPDATE_REDUCTION;

657:   /* Set linear solver to default for trust region */
658:   KSPCreate(((PetscObject)tao)->comm,&tao->ksp);
659:   PetscObjectIncrementTabLevel((PetscObject)tao->ksp,(PetscObject)tao,1);
660:   KSPSetOptionsPrefix(tao->ksp,tao->hdr.prefix);
661:   KSPAppendOptionsPrefix(tao->ksp,"tao_ntr_");
662:   KSPSetType(tao->ksp,KSPSTCG);
663:   return(0);
664: }