Actual source code: bqnktl.c
1: #include <../src/tao/bound/impls/bqnk/bqnk.h>
3: static PetscErrorCode TaoSetUp_BQNKTL(Tao tao)
4: {
5: TAO_BNK *bnk = (TAO_BNK*)tao->data;
9: TaoSetUp_BQNK(tao);
10: if (!bnk->is_nash && !bnk->is_stcg && !bnk->is_gltr) SETERRQ(PetscObjectComm((PetscObject)tao),PETSC_ERR_SUP,"Must use a trust-region CG method for KSP (KSPNASH, KSPSTCG, KSPGLTR)");
11: return(0);
12: }
14: /*MC
15: TAOBQNKTL - Bounded Quasi-Newton-Krylov Trust-region with Line-search fallback, for nonlinear
16: minimization with bound constraints. This method approximates the Hessian-vector
17: product using a limited-memory quasi-Newton formula, and iteratively inverts the
18: Hessian with a Krylov solver. The quasi-Newton matrix and its settings can be
19: accessed via the prefix `-tao_bqnk_`
21: Options Database Keys:
22: + -tao_bqnk_max_cg_its - maximum number of bounded conjugate-gradient iterations taken in each Newton loop
23: . -tao_bqnk_init_type - trust radius initialization method ("constant", "direction", "interpolation")
24: . -tao_bqnk_update_type - trust radius update method ("step", "direction", "interpolation")
25: - -tao_bqnk_as_type - active-set estimation method ("none", "bertsekas")
27: Level: beginner
28: M*/
29: PETSC_EXTERN PetscErrorCode TaoCreate_BQNKTL(Tao tao)
30: {
31: TAO_BNK *bnk;
32: TAO_BQNK *bqnk;
36: TaoCreate_BQNK(tao);
37: tao->ops->setup = TaoSetUp_BQNKTL;
38: bnk = (TAO_BNK*)tao->data;
39: bqnk = (TAO_BQNK*)bnk->ctx;
40: bqnk->solve = TaoSolve_BNTL;
41: return(0);
42: }