Actual source code: sbaij.c


  2: /*
  3:     Defines the basic matrix operations for the SBAIJ (compressed row)
  4:   matrix storage format.
  5: */
  6: #include <../src/mat/impls/baij/seq/baij.h>
  7: #include <../src/mat/impls/sbaij/seq/sbaij.h>
  8: #include <petscblaslapack.h>

 10: #include <../src/mat/impls/sbaij/seq/relax.h>
 11: #define USESHORT
 12: #include <../src/mat/impls/sbaij/seq/relax.h>

 14: #if defined(PETSC_HAVE_ELEMENTAL)
 15: PETSC_INTERN PetscErrorCode MatConvert_SeqSBAIJ_Elemental(Mat,MatType,MatReuse,Mat*);
 16: #endif
 17: #if defined(PETSC_HAVE_SCALAPACK)
 18: PETSC_INTERN PetscErrorCode MatConvert_SBAIJ_ScaLAPACK(Mat,MatType,MatReuse,Mat*);
 19: #endif
 20: PETSC_INTERN PetscErrorCode MatConvert_MPISBAIJ_Basic(Mat,MatType,MatReuse,Mat*);

 22: /*
 23:      Checks for missing diagonals
 24: */
 25: PetscErrorCode MatMissingDiagonal_SeqSBAIJ(Mat A,PetscBool  *missing,PetscInt *dd)
 26: {
 27:   Mat_SeqSBAIJ   *a = (Mat_SeqSBAIJ*)A->data;
 29:   PetscInt       *diag,*ii = a->i,i;

 32:   MatMarkDiagonal_SeqSBAIJ(A);
 33:   *missing = PETSC_FALSE;
 34:   if (A->rmap->n > 0 && !ii) {
 35:     *missing = PETSC_TRUE;
 36:     if (dd) *dd = 0;
 37:     PetscInfo(A,"Matrix has no entries therefore is missing diagonal\n");
 38:   } else {
 39:     diag = a->diag;
 40:     for (i=0; i<a->mbs; i++) {
 41:       if (diag[i] >= ii[i+1]) {
 42:         *missing = PETSC_TRUE;
 43:         if (dd) *dd = i;
 44:         break;
 45:       }
 46:     }
 47:   }
 48:   return(0);
 49: }

 51: PetscErrorCode MatMarkDiagonal_SeqSBAIJ(Mat A)
 52: {
 53:   Mat_SeqSBAIJ   *a = (Mat_SeqSBAIJ*)A->data;
 55:   PetscInt       i,j;

 58:   if (!a->diag) {
 59:     PetscMalloc1(a->mbs,&a->diag);
 60:     PetscLogObjectMemory((PetscObject)A,a->mbs*sizeof(PetscInt));
 61:     a->free_diag = PETSC_TRUE;
 62:   }
 63:   for (i=0; i<a->mbs; i++) {
 64:     a->diag[i] = a->i[i+1];
 65:     for (j=a->i[i]; j<a->i[i+1]; j++) {
 66:       if (a->j[j] == i) {
 67:         a->diag[i] = j;
 68:         break;
 69:       }
 70:     }
 71:   }
 72:   return(0);
 73: }

 75: static PetscErrorCode MatGetRowIJ_SeqSBAIJ(Mat A,PetscInt oshift,PetscBool symmetric,PetscBool blockcompressed,PetscInt *nn,const PetscInt *inia[],const PetscInt *inja[],PetscBool  *done)
 76: {
 77:   Mat_SeqSBAIJ    *a = (Mat_SeqSBAIJ*)A->data;
 79:   PetscInt       i,j,n = a->mbs,nz = a->i[n],*tia,*tja,bs = A->rmap->bs,k,l,cnt;
 80:   PetscInt       **ia = (PetscInt**)inia,**ja = (PetscInt**)inja;

 83:   *nn = n;
 84:   if (!ia) return(0);
 85:   if (symmetric) {
 86:     MatToSymmetricIJ_SeqAIJ(n,a->i,a->j,PETSC_FALSE,0,0,&tia,&tja);
 87:     nz   = tia[n];
 88:   } else {
 89:     tia = a->i; tja = a->j;
 90:   }

 92:   if (!blockcompressed && bs > 1) {
 93:     (*nn) *= bs;
 94:     /* malloc & create the natural set of indices */
 95:     PetscMalloc1((n+1)*bs,ia);
 96:     if (n) {
 97:       (*ia)[0] = oshift;
 98:       for (j=1; j<bs; j++) {
 99:         (*ia)[j] = (tia[1]-tia[0])*bs+(*ia)[j-1];
100:       }
101:     }

103:     for (i=1; i<n; i++) {
104:       (*ia)[i*bs] = (tia[i]-tia[i-1])*bs + (*ia)[i*bs-1];
105:       for (j=1; j<bs; j++) {
106:         (*ia)[i*bs+j] = (tia[i+1]-tia[i])*bs + (*ia)[i*bs+j-1];
107:       }
108:     }
109:     if (n) {
110:       (*ia)[n*bs] = (tia[n]-tia[n-1])*bs + (*ia)[n*bs-1];
111:     }

113:     if (inja) {
114:       PetscMalloc1(nz*bs*bs,ja);
115:       cnt = 0;
116:       for (i=0; i<n; i++) {
117:         for (j=0; j<bs; j++) {
118:           for (k=tia[i]; k<tia[i+1]; k++) {
119:             for (l=0; l<bs; l++) {
120:               (*ja)[cnt++] = bs*tja[k] + l;
121:             }
122:           }
123:         }
124:       }
125:     }

127:     if (symmetric) { /* deallocate memory allocated in MatToSymmetricIJ_SeqAIJ() */
128:       PetscFree(tia);
129:       PetscFree(tja);
130:     }
131:   } else if (oshift == 1) {
132:     if (symmetric) {
133:       nz = tia[A->rmap->n/bs];
134:       /*  add 1 to i and j indices */
135:       for (i=0; i<A->rmap->n/bs+1; i++) tia[i] = tia[i] + 1;
136:       *ia = tia;
137:       if (ja) {
138:         for (i=0; i<nz; i++) tja[i] = tja[i] + 1;
139:         *ja = tja;
140:       }
141:     } else {
142:       nz = a->i[A->rmap->n/bs];
143:       /* malloc space and  add 1 to i and j indices */
144:       PetscMalloc1(A->rmap->n/bs+1,ia);
145:       for (i=0; i<A->rmap->n/bs+1; i++) (*ia)[i] = a->i[i] + 1;
146:       if (ja) {
147:         PetscMalloc1(nz,ja);
148:         for (i=0; i<nz; i++) (*ja)[i] = a->j[i] + 1;
149:       }
150:     }
151:   } else {
152:     *ia = tia;
153:     if (ja) *ja = tja;
154:   }
155:   return(0);
156: }

158: static PetscErrorCode MatRestoreRowIJ_SeqSBAIJ(Mat A,PetscInt oshift,PetscBool symmetric,PetscBool blockcompressed,PetscInt *nn,const PetscInt *ia[],const PetscInt *ja[],PetscBool  *done)
159: {

163:   if (!ia) return(0);
164:   if ((!blockcompressed && A->rmap->bs > 1) || (symmetric || oshift == 1)) {
165:     PetscFree(*ia);
166:     if (ja) {PetscFree(*ja);}
167:   }
168:   return(0);
169: }

171: PetscErrorCode MatDestroy_SeqSBAIJ(Mat A)
172: {
173:   Mat_SeqSBAIJ   *a = (Mat_SeqSBAIJ*)A->data;

177: #if defined(PETSC_USE_LOG)
178:   PetscLogObjectState((PetscObject)A,"Rows=%D, NZ=%D",A->rmap->N,a->nz);
179: #endif
180:   MatSeqXAIJFreeAIJ(A,&a->a,&a->j,&a->i);
181:   if (a->free_diag) {PetscFree(a->diag);}
182:   ISDestroy(&a->row);
183:   ISDestroy(&a->col);
184:   ISDestroy(&a->icol);
185:   PetscFree(a->idiag);
186:   PetscFree(a->inode.size);
187:   if (a->free_imax_ilen) {PetscFree2(a->imax,a->ilen);}
188:   PetscFree(a->solve_work);
189:   PetscFree(a->sor_work);
190:   PetscFree(a->solves_work);
191:   PetscFree(a->mult_work);
192:   PetscFree(a->saved_values);
193:   if (a->free_jshort) {PetscFree(a->jshort);}
194:   PetscFree(a->inew);
195:   MatDestroy(&a->parent);
196:   PetscFree(A->data);

198:   PetscObjectChangeTypeName((PetscObject)A,NULL);
199:   PetscObjectComposeFunction((PetscObject)A,"MatStoreValues_C",NULL);
200:   PetscObjectComposeFunction((PetscObject)A,"MatRetrieveValues_C",NULL);
201:   PetscObjectComposeFunction((PetscObject)A,"MatSeqSBAIJSetColumnIndices_C",NULL);
202:   PetscObjectComposeFunction((PetscObject)A,"MatConvert_seqsbaij_seqaij_C",NULL);
203:   PetscObjectComposeFunction((PetscObject)A,"MatConvert_seqsbaij_seqbaij_C",NULL);
204:   PetscObjectComposeFunction((PetscObject)A,"MatSeqSBAIJSetPreallocation_C",NULL);
205:   PetscObjectComposeFunction((PetscObject)A,"MatSeqSBAIJSetPreallocationCSR_C",NULL);
206: #if defined(PETSC_HAVE_ELEMENTAL)
207:   PetscObjectComposeFunction((PetscObject)A,"MatConvert_seqsbaij_elemental_C",NULL);
208: #endif
209: #if defined(PETSC_HAVE_SCALAPACK)
210:   PetscObjectComposeFunction((PetscObject)A,"MatConvert_seqsbaij_scalapack_C",NULL);
211: #endif
212:   return(0);
213: }

215: PetscErrorCode MatSetOption_SeqSBAIJ(Mat A,MatOption op,PetscBool flg)
216: {
217:   Mat_SeqSBAIJ   *a = (Mat_SeqSBAIJ*)A->data;
218: #if defined(PETSC_USE_COMPLEX)
219:   PetscInt       bs;
220: #endif

224: #if defined(PETSC_USE_COMPLEX)
225:   MatGetBlockSize(A,&bs);
226: #endif
227:   switch (op) {
228:   case MAT_ROW_ORIENTED:
229:     a->roworiented = flg;
230:     break;
231:   case MAT_KEEP_NONZERO_PATTERN:
232:     a->keepnonzeropattern = flg;
233:     break;
234:   case MAT_NEW_NONZERO_LOCATIONS:
235:     a->nonew = (flg ? 0 : 1);
236:     break;
237:   case MAT_NEW_NONZERO_LOCATION_ERR:
238:     a->nonew = (flg ? -1 : 0);
239:     break;
240:   case MAT_NEW_NONZERO_ALLOCATION_ERR:
241:     a->nonew = (flg ? -2 : 0);
242:     break;
243:   case MAT_UNUSED_NONZERO_LOCATION_ERR:
244:     a->nounused = (flg ? -1 : 0);
245:     break;
246:   case MAT_FORCE_DIAGONAL_ENTRIES:
247:   case MAT_IGNORE_OFF_PROC_ENTRIES:
248:   case MAT_USE_HASH_TABLE:
249:   case MAT_SORTED_FULL:
250:     PetscInfo1(A,"Option %s ignored\n",MatOptions[op]);
251:     break;
252:   case MAT_HERMITIAN:
253: #if defined(PETSC_USE_COMPLEX)
254:     if (flg) { /* disable transpose ops */
255:       if (bs > 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for Hermitian with block size greater than 1");
256:       A->ops->multtranspose    = NULL;
257:       A->ops->multtransposeadd = NULL;
258:       A->symmetric             = PETSC_FALSE;
259:     }
260: #endif
261:     break;
262:   case MAT_SYMMETRIC:
263:   case MAT_SPD:
264: #if defined(PETSC_USE_COMPLEX)
265:     if (flg) { /* An hermitian and symmetric matrix has zero imaginary part (restore back transpose ops) */
266:       A->ops->multtranspose    = A->ops->mult;
267:       A->ops->multtransposeadd = A->ops->multadd;
268:     }
269: #endif
270:     break;
271:     /* These options are handled directly by MatSetOption() */
272:   case MAT_STRUCTURALLY_SYMMETRIC:
273:   case MAT_SYMMETRY_ETERNAL:
274:   case MAT_STRUCTURE_ONLY:
275:     /* These options are handled directly by MatSetOption() */
276:     break;
277:   case MAT_IGNORE_LOWER_TRIANGULAR:
278:     a->ignore_ltriangular = flg;
279:     break;
280:   case MAT_ERROR_LOWER_TRIANGULAR:
281:     a->ignore_ltriangular = flg;
282:     break;
283:   case MAT_GETROW_UPPERTRIANGULAR:
284:     a->getrow_utriangular = flg;
285:     break;
286:   case MAT_SUBMAT_SINGLEIS:
287:     break;
288:   default:
289:     SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"unknown option %d",op);
290:   }
291:   return(0);
292: }

294: PetscErrorCode MatGetRow_SeqSBAIJ(Mat A,PetscInt row,PetscInt *nz,PetscInt **idx,PetscScalar **v)
295: {
296:   Mat_SeqSBAIJ   *a = (Mat_SeqSBAIJ*)A->data;

300:   if (A && !a->getrow_utriangular) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"MatGetRow is not supported for SBAIJ matrix format. Getting the upper triangular part of row, run with -mat_getrow_uppertriangular, call MatSetOption(mat,MAT_GETROW_UPPERTRIANGULAR,PETSC_TRUE) or MatGetRowUpperTriangular()");

302:   /* Get the upper triangular part of the row */
303:   MatGetRow_SeqBAIJ_private(A,row,nz,idx,v,a->i,a->j,a->a);
304:   return(0);
305: }

307: PetscErrorCode MatRestoreRow_SeqSBAIJ(Mat A,PetscInt row,PetscInt *nz,PetscInt **idx,PetscScalar **v)
308: {

312:   if (nz)  *nz = 0;
313:   if (idx) {PetscFree(*idx);}
314:   if (v)   {PetscFree(*v);}
315:   return(0);
316: }

318: PetscErrorCode MatGetRowUpperTriangular_SeqSBAIJ(Mat A)
319: {
320:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ*)A->data;

323:   a->getrow_utriangular = PETSC_TRUE;
324:   return(0);
325: }

327: PetscErrorCode MatRestoreRowUpperTriangular_SeqSBAIJ(Mat A)
328: {
329:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ*)A->data;

332:   a->getrow_utriangular = PETSC_FALSE;
333:   return(0);
334: }

336: PetscErrorCode MatTranspose_SeqSBAIJ(Mat A,MatReuse reuse,Mat *B)
337: {

341:   if (reuse == MAT_INITIAL_MATRIX) {
342:     MatDuplicate(A,MAT_COPY_VALUES,B);
343:   } else if (reuse == MAT_REUSE_MATRIX) {
344:     MatCopy(A,*B,SAME_NONZERO_PATTERN);
345:   }
346:   return(0);
347: }

349: PetscErrorCode MatView_SeqSBAIJ_ASCII(Mat A,PetscViewer viewer)
350: {
351:   Mat_SeqSBAIJ      *a = (Mat_SeqSBAIJ*)A->data;
352:   PetscErrorCode    ierr;
353:   PetscInt          i,j,bs = A->rmap->bs,k,l,bs2=a->bs2;
354:   PetscViewerFormat format;
355:   PetscInt          *diag;

358:   PetscViewerGetFormat(viewer,&format);
359:   if (format == PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
360:     PetscViewerASCIIPrintf(viewer,"  block size is %D\n",bs);
361:   } else if (format == PETSC_VIEWER_ASCII_MATLAB) {
362:     Mat        aij;
363:     const char *matname;

365:     if (A->factortype && bs>1) {
366:       PetscPrintf(PETSC_COMM_SELF,"Warning: matrix is factored with bs>1. MatView() with PETSC_VIEWER_ASCII_MATLAB is not supported and ignored!\n");
367:       return(0);
368:     }
369:     MatConvert(A,MATSEQAIJ,MAT_INITIAL_MATRIX,&aij);
370:     PetscObjectGetName((PetscObject)A,&matname);
371:     PetscObjectSetName((PetscObject)aij,matname);
372:     MatView(aij,viewer);
373:     MatDestroy(&aij);
374:   } else if (format == PETSC_VIEWER_ASCII_COMMON) {
375:     PetscViewerASCIIUseTabs(viewer,PETSC_FALSE);
376:     for (i=0; i<a->mbs; i++) {
377:       for (j=0; j<bs; j++) {
378:         PetscViewerASCIIPrintf(viewer,"row %D:",i*bs+j);
379:         for (k=a->i[i]; k<a->i[i+1]; k++) {
380:           for (l=0; l<bs; l++) {
381: #if defined(PETSC_USE_COMPLEX)
382:             if (PetscImaginaryPart(a->a[bs2*k + l*bs + j]) > 0.0 && PetscRealPart(a->a[bs2*k + l*bs + j]) != 0.0) {
383:               PetscViewerASCIIPrintf(viewer," (%D, %g + %g i) ",bs*a->j[k]+l,
384:                                             (double)PetscRealPart(a->a[bs2*k + l*bs + j]),(double)PetscImaginaryPart(a->a[bs2*k + l*bs + j]));
385:             } else if (PetscImaginaryPart(a->a[bs2*k + l*bs + j]) < 0.0 && PetscRealPart(a->a[bs2*k + l*bs + j]) != 0.0) {
386:               PetscViewerASCIIPrintf(viewer," (%D, %g - %g i) ",bs*a->j[k]+l,
387:                                             (double)PetscRealPart(a->a[bs2*k + l*bs + j]),-(double)PetscImaginaryPart(a->a[bs2*k + l*bs + j]));
388:             } else if (PetscRealPart(a->a[bs2*k + l*bs + j]) != 0.0) {
389:               PetscViewerASCIIPrintf(viewer," (%D, %g) ",bs*a->j[k]+l,(double)PetscRealPart(a->a[bs2*k + l*bs + j]));
390:             }
391: #else
392:             if (a->a[bs2*k + l*bs + j] != 0.0) {
393:               PetscViewerASCIIPrintf(viewer," (%D, %g) ",bs*a->j[k]+l,(double)a->a[bs2*k + l*bs + j]);
394:             }
395: #endif
396:           }
397:         }
398:         PetscViewerASCIIPrintf(viewer,"\n");
399:       }
400:     }
401:     PetscViewerASCIIUseTabs(viewer,PETSC_TRUE);
402:   } else if (format == PETSC_VIEWER_ASCII_FACTOR_INFO) {
403:     return(0);
404:   } else {
405:     PetscViewerASCIIUseTabs(viewer,PETSC_FALSE);
406:     if (A->factortype) { /* for factored matrix */
407:       if (bs>1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"matrix is factored with bs>1. Not implemented yet");

409:       diag=a->diag;
410:       for (i=0; i<a->mbs; i++) { /* for row block i */
411:         PetscViewerASCIIPrintf(viewer,"row %D:",i);
412:         /* diagonal entry */
413: #if defined(PETSC_USE_COMPLEX)
414:         if (PetscImaginaryPart(a->a[diag[i]]) > 0.0) {
415:           PetscViewerASCIIPrintf(viewer," (%D, %g + %g i) ",a->j[diag[i]],(double)PetscRealPart(1.0/a->a[diag[i]]),(double)PetscImaginaryPart(1.0/a->a[diag[i]]));
416:         } else if (PetscImaginaryPart(a->a[diag[i]]) < 0.0) {
417:           PetscViewerASCIIPrintf(viewer," (%D, %g - %g i) ",a->j[diag[i]],(double)PetscRealPart(1.0/a->a[diag[i]]),-(double)PetscImaginaryPart(1.0/a->a[diag[i]]));
418:         } else {
419:           PetscViewerASCIIPrintf(viewer," (%D, %g) ",a->j[diag[i]],(double)PetscRealPart(1.0/a->a[diag[i]]));
420:         }
421: #else
422:         PetscViewerASCIIPrintf(viewer," (%D, %g) ",a->j[diag[i]],(double)(1.0/a->a[diag[i]]));
423: #endif
424:         /* off-diagonal entries */
425:         for (k=a->i[i]; k<a->i[i+1]-1; k++) {
426: #if defined(PETSC_USE_COMPLEX)
427:           if (PetscImaginaryPart(a->a[k]) > 0.0) {
428:             PetscViewerASCIIPrintf(viewer," (%D, %g + %g i) ",bs*a->j[k],(double)PetscRealPart(a->a[k]),(double)PetscImaginaryPart(a->a[k]));
429:           } else if (PetscImaginaryPart(a->a[k]) < 0.0) {
430:             PetscViewerASCIIPrintf(viewer," (%D, %g - %g i) ",bs*a->j[k],(double)PetscRealPart(a->a[k]),-(double)PetscImaginaryPart(a->a[k]));
431:           } else {
432:             PetscViewerASCIIPrintf(viewer," (%D, %g) ",bs*a->j[k],(double)PetscRealPart(a->a[k]));
433:           }
434: #else
435:           PetscViewerASCIIPrintf(viewer," (%D, %g) ",a->j[k],(double)a->a[k]);
436: #endif
437:         }
438:         PetscViewerASCIIPrintf(viewer,"\n");
439:       }

441:     } else { /* for non-factored matrix */
442:       for (i=0; i<a->mbs; i++) { /* for row block i */
443:         for (j=0; j<bs; j++) {   /* for row bs*i + j */
444:           PetscViewerASCIIPrintf(viewer,"row %D:",i*bs+j);
445:           for (k=a->i[i]; k<a->i[i+1]; k++) { /* for column block */
446:             for (l=0; l<bs; l++) {            /* for column */
447: #if defined(PETSC_USE_COMPLEX)
448:               if (PetscImaginaryPart(a->a[bs2*k + l*bs + j]) > 0.0) {
449:                 PetscViewerASCIIPrintf(viewer," (%D, %g + %g i) ",bs*a->j[k]+l,
450:                                               (double)PetscRealPart(a->a[bs2*k + l*bs + j]),(double)PetscImaginaryPart(a->a[bs2*k + l*bs + j]));
451:               } else if (PetscImaginaryPart(a->a[bs2*k + l*bs + j]) < 0.0) {
452:                 PetscViewerASCIIPrintf(viewer," (%D, %g - %g i) ",bs*a->j[k]+l,
453:                                               (double)PetscRealPart(a->a[bs2*k + l*bs + j]),-(double)PetscImaginaryPart(a->a[bs2*k + l*bs + j]));
454:               } else {
455:                 PetscViewerASCIIPrintf(viewer," (%D, %g) ",bs*a->j[k]+l,(double)PetscRealPart(a->a[bs2*k + l*bs + j]));
456:               }
457: #else
458:               PetscViewerASCIIPrintf(viewer," (%D, %g) ",bs*a->j[k]+l,(double)a->a[bs2*k + l*bs + j]);
459: #endif
460:             }
461:           }
462:           PetscViewerASCIIPrintf(viewer,"\n");
463:         }
464:       }
465:     }
466:     PetscViewerASCIIUseTabs(viewer,PETSC_TRUE);
467:   }
468:   PetscViewerFlush(viewer);
469:   return(0);
470: }

472: #include <petscdraw.h>
473: static PetscErrorCode MatView_SeqSBAIJ_Draw_Zoom(PetscDraw draw,void *Aa)
474: {
475:   Mat            A = (Mat) Aa;
476:   Mat_SeqSBAIJ   *a=(Mat_SeqSBAIJ*)A->data;
478:   PetscInt       row,i,j,k,l,mbs=a->mbs,color,bs=A->rmap->bs,bs2=a->bs2;
479:   PetscReal      xl,yl,xr,yr,x_l,x_r,y_l,y_r;
480:   MatScalar      *aa;
481:   PetscViewer    viewer;

484:   PetscObjectQuery((PetscObject)A,"Zoomviewer",(PetscObject*)&viewer);
485:   PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);

487:   /* loop over matrix elements drawing boxes */

489:   PetscDrawCollectiveBegin(draw);
490:   PetscDrawString(draw, .3*(xl+xr), .3*(yl+yr), PETSC_DRAW_BLACK, "symmetric");
491:   /* Blue for negative, Cyan for zero and  Red for positive */
492:   color = PETSC_DRAW_BLUE;
493:   for (i=0,row=0; i<mbs; i++,row+=bs) {
494:     for (j=a->i[i]; j<a->i[i+1]; j++) {
495:       y_l = A->rmap->N - row - 1.0; y_r = y_l + 1.0;
496:       x_l = a->j[j]*bs; x_r = x_l + 1.0;
497:       aa  = a->a + j*bs2;
498:       for (k=0; k<bs; k++) {
499:         for (l=0; l<bs; l++) {
500:           if (PetscRealPart(*aa++) >=  0.) continue;
501:           PetscDrawRectangle(draw,x_l+k,y_l-l,x_r+k,y_r-l,color,color,color,color);
502:         }
503:       }
504:     }
505:   }
506:   color = PETSC_DRAW_CYAN;
507:   for (i=0,row=0; i<mbs; i++,row+=bs) {
508:     for (j=a->i[i]; j<a->i[i+1]; j++) {
509:       y_l = A->rmap->N - row - 1.0; y_r = y_l + 1.0;
510:       x_l = a->j[j]*bs; x_r = x_l + 1.0;
511:       aa = a->a + j*bs2;
512:       for (k=0; k<bs; k++) {
513:         for (l=0; l<bs; l++) {
514:           if (PetscRealPart(*aa++) != 0.) continue;
515:           PetscDrawRectangle(draw,x_l+k,y_l-l,x_r+k,y_r-l,color,color,color,color);
516:         }
517:       }
518:     }
519:   }
520:   color = PETSC_DRAW_RED;
521:   for (i=0,row=0; i<mbs; i++,row+=bs) {
522:     for (j=a->i[i]; j<a->i[i+1]; j++) {
523:       y_l = A->rmap->N - row - 1.0; y_r = y_l + 1.0;
524:       x_l = a->j[j]*bs; x_r = x_l + 1.0;
525:       aa = a->a + j*bs2;
526:       for (k=0; k<bs; k++) {
527:         for (l=0; l<bs; l++) {
528:           if (PetscRealPart(*aa++) <= 0.) continue;
529:           PetscDrawRectangle(draw,x_l+k,y_l-l,x_r+k,y_r-l,color,color,color,color);
530:         }
531:       }
532:     }
533:   }
534:   PetscDrawCollectiveEnd(draw);
535:   return(0);
536: }

538: static PetscErrorCode MatView_SeqSBAIJ_Draw(Mat A,PetscViewer viewer)
539: {
541:   PetscReal      xl,yl,xr,yr,w,h;
542:   PetscDraw      draw;
543:   PetscBool      isnull;

546:   PetscViewerDrawGetDraw(viewer,0,&draw);
547:   PetscDrawIsNull(draw,&isnull);
548:   if (isnull) return(0);

550:   xr   = A->rmap->N; yr = A->rmap->N; h = yr/10.0; w = xr/10.0;
551:   xr  += w;          yr += h;        xl = -w;     yl = -h;
552:   PetscDrawSetCoordinates(draw,xl,yl,xr,yr);
553:   PetscObjectCompose((PetscObject)A,"Zoomviewer",(PetscObject)viewer);
554:   PetscDrawZoom(draw,MatView_SeqSBAIJ_Draw_Zoom,A);
555:   PetscObjectCompose((PetscObject)A,"Zoomviewer",NULL);
556:   PetscDrawSave(draw);
557:   return(0);
558: }

560: /* Used for both MPIBAIJ and MPISBAIJ matrices */
561: #define MatView_SeqSBAIJ_Binary MatView_SeqBAIJ_Binary

563: PetscErrorCode MatView_SeqSBAIJ(Mat A,PetscViewer viewer)
564: {
566:   PetscBool      iascii,isbinary,isdraw;

569:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
570:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
571:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
572:   if (iascii) {
573:     MatView_SeqSBAIJ_ASCII(A,viewer);
574:   } else if (isbinary) {
575:     MatView_SeqSBAIJ_Binary(A,viewer);
576:   } else if (isdraw) {
577:     MatView_SeqSBAIJ_Draw(A,viewer);
578:   } else {
579:     Mat        B;
580:     const char *matname;
581:     MatConvert(A,MATSEQAIJ,MAT_INITIAL_MATRIX,&B);
582:     PetscObjectGetName((PetscObject)A,&matname);
583:     PetscObjectSetName((PetscObject)B,matname);
584:     MatView(B,viewer);
585:     MatDestroy(&B);
586:   }
587:   return(0);
588: }


591: PetscErrorCode MatGetValues_SeqSBAIJ(Mat A,PetscInt m,const PetscInt im[],PetscInt n,const PetscInt in[],PetscScalar v[])
592: {
593:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ*)A->data;
594:   PetscInt     *rp,k,low,high,t,row,nrow,i,col,l,*aj = a->j;
595:   PetscInt     *ai = a->i,*ailen = a->ilen;
596:   PetscInt     brow,bcol,ridx,cidx,bs=A->rmap->bs,bs2=a->bs2;
597:   MatScalar    *ap,*aa = a->a;

600:   for (k=0; k<m; k++) { /* loop over rows */
601:     row = im[k]; brow = row/bs;
602:     if (row < 0) {v += n; continue;} /* SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Negative row: %D",row); */
603:     if (row >= A->rmap->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Row too large: row %D max %D",row,A->rmap->N-1);
604:     rp   = aj + ai[brow]; ap = aa + bs2*ai[brow];
605:     nrow = ailen[brow];
606:     for (l=0; l<n; l++) { /* loop over columns */
607:       if (in[l] < 0) {v++; continue;} /* SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Negative column: %D",in[l]); */
608:       if (in[l] >= A->cmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Column too large: col %D max %D",in[l],A->cmap->n-1);
609:       col  = in[l];
610:       bcol = col/bs;
611:       cidx = col%bs;
612:       ridx = row%bs;
613:       high = nrow;
614:       low  = 0; /* assume unsorted */
615:       while (high-low > 5) {
616:         t = (low+high)/2;
617:         if (rp[t] > bcol) high = t;
618:         else              low  = t;
619:       }
620:       for (i=low; i<high; i++) {
621:         if (rp[i] > bcol) break;
622:         if (rp[i] == bcol) {
623:           *v++ = ap[bs2*i+bs*cidx+ridx];
624:           goto finished;
625:         }
626:       }
627:       *v++ = 0.0;
628: finished:;
629:     }
630:   }
631:   return(0);
632: }

634: PetscErrorCode MatPermute_SeqSBAIJ(Mat A,IS rowp,IS colp,Mat *B)
635: {
636:   Mat            C;

640:   MatConvert(A,MATSEQBAIJ,MAT_INITIAL_MATRIX,&C);
641:   MatPermute(C,rowp,colp,B);
642:   MatDestroy(&C);
643:   if (rowp == colp) {
644:     MatConvert(*B,MATSEQSBAIJ,MAT_INPLACE_MATRIX,B);
645:   }
646:   return(0);
647: }

649: PetscErrorCode MatSetValuesBlocked_SeqSBAIJ(Mat A,PetscInt m,const PetscInt im[],PetscInt n,const PetscInt in[],const PetscScalar v[],InsertMode is)
650: {
651:   Mat_SeqSBAIJ      *a = (Mat_SeqSBAIJ*)A->data;
652:   PetscErrorCode    ierr;
653:   PetscInt          *rp,k,low,high,t,ii,jj,row,nrow,i,col,l,rmax,N,lastcol = -1;
654:   PetscInt          *imax      =a->imax,*ai=a->i,*ailen=a->ilen;
655:   PetscInt          *aj        =a->j,nonew=a->nonew,bs2=a->bs2,bs=A->rmap->bs,stepval;
656:   PetscBool         roworiented=a->roworiented;
657:   const PetscScalar *value     = v;
658:   MatScalar         *ap,*aa = a->a,*bap;

661:   if (roworiented) stepval = (n-1)*bs;
662:   else stepval = (m-1)*bs;

664:   for (k=0; k<m; k++) { /* loop over added rows */
665:     row = im[k];
666:     if (row < 0) continue;
667:     if (PetscUnlikelyDebug(row >= a->mbs)) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Block index row too large %D max %D",row,a->mbs-1);
668:     rp   = aj + ai[row];
669:     ap   = aa + bs2*ai[row];
670:     rmax = imax[row];
671:     nrow = ailen[row];
672:     low  = 0;
673:     high = nrow;
674:     for (l=0; l<n; l++) { /* loop over added columns */
675:       if (in[l] < 0) continue;
676:       col = in[l];
677:       if (PetscUnlikelyDebug(col >= a->nbs)) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Block index column too large %D max %D",col,a->nbs-1);
678:       if (col < row) {
679:         if (a->ignore_ltriangular) continue; /* ignore lower triangular block */
680:         else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_USER,"Lower triangular value cannot be set for sbaij format. Ignoring these values, run with -mat_ignore_lower_triangular or call MatSetOption(mat,MAT_IGNORE_LOWER_TRIANGULAR,PETSC_TRUE)");
681:       }
682:       if (roworiented) value = v + k*(stepval+bs)*bs + l*bs;
683:       else value = v + l*(stepval+bs)*bs + k*bs;

685:       if (col <= lastcol) low = 0;
686:       else high = nrow;

688:       lastcol = col;
689:       while (high-low > 7) {
690:         t = (low+high)/2;
691:         if (rp[t] > col) high = t;
692:         else             low  = t;
693:       }
694:       for (i=low; i<high; i++) {
695:         if (rp[i] > col) break;
696:         if (rp[i] == col) {
697:           bap = ap +  bs2*i;
698:           if (roworiented) {
699:             if (is == ADD_VALUES) {
700:               for (ii=0; ii<bs; ii++,value+=stepval) {
701:                 for (jj=ii; jj<bs2; jj+=bs) {
702:                   bap[jj] += *value++;
703:                 }
704:               }
705:             } else {
706:               for (ii=0; ii<bs; ii++,value+=stepval) {
707:                 for (jj=ii; jj<bs2; jj+=bs) {
708:                   bap[jj] = *value++;
709:                 }
710:                }
711:             }
712:           } else {
713:             if (is == ADD_VALUES) {
714:               for (ii=0; ii<bs; ii++,value+=stepval) {
715:                 for (jj=0; jj<bs; jj++) {
716:                   *bap++ += *value++;
717:                 }
718:               }
719:             } else {
720:               for (ii=0; ii<bs; ii++,value+=stepval) {
721:                 for (jj=0; jj<bs; jj++) {
722:                   *bap++  = *value++;
723:                 }
724:               }
725:             }
726:           }
727:           goto noinsert2;
728:         }
729:       }
730:       if (nonew == 1) goto noinsert2;
731:       if (nonew == -1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Inserting a new block index nonzero block (%D, %D) in the matrix", row, col);
732:       MatSeqXAIJReallocateAIJ(A,a->mbs,bs2,nrow,row,col,rmax,aa,ai,aj,rp,ap,imax,nonew,MatScalar);
733:       N = nrow++ - 1; high++;
734:       /* shift up all the later entries in this row */
735:       PetscArraymove(rp+i+1,rp+i,N-i+1);
736:       PetscArraymove(ap+bs2*(i+1),ap+bs2*i,bs2*(N-i+1));
737:       PetscArrayzero(ap+bs2*i,bs2);
738:       rp[i] = col;
739:       bap   = ap +  bs2*i;
740:       if (roworiented) {
741:         for (ii=0; ii<bs; ii++,value+=stepval) {
742:           for (jj=ii; jj<bs2; jj+=bs) {
743:             bap[jj] = *value++;
744:           }
745:         }
746:       } else {
747:         for (ii=0; ii<bs; ii++,value+=stepval) {
748:           for (jj=0; jj<bs; jj++) {
749:             *bap++ = *value++;
750:           }
751:         }
752:        }
753:     noinsert2:;
754:       low = i;
755:     }
756:     ailen[row] = nrow;
757:   }
758:   return(0);
759: }

761: /*
762:     This is not yet used
763: */
764: PetscErrorCode MatAssemblyEnd_SeqSBAIJ_SeqAIJ_Inode(Mat A)
765: {
766:   Mat_SeqSBAIJ   *a = (Mat_SeqSBAIJ*)A->data;
768:   const PetscInt *ai = a->i, *aj = a->j,*cols;
769:   PetscInt       i   = 0,j,blk_size,m = A->rmap->n,node_count = 0,nzx,nzy,*ns,row,nz,cnt,cnt2,*counts;
770:   PetscBool      flag;

773:   PetscMalloc1(m,&ns);
774:   while (i < m) {
775:     nzx = ai[i+1] - ai[i];       /* Number of nonzeros */
776:     /* Limits the number of elements in a node to 'a->inode.limit' */
777:     for (j=i+1,blk_size=1; j<m && blk_size <a->inode.limit; ++j,++blk_size) {
778:       nzy = ai[j+1] - ai[j];
779:       if (nzy != (nzx - j + i)) break;
780:       PetscArraycmp(aj + ai[i] + j - i,aj + ai[j],nzy,&flag);
781:       if (!flag) break;
782:     }
783:     ns[node_count++] = blk_size;

785:     i = j;
786:   }
787:   if (!a->inode.size && m && node_count > .9*m) {
788:     PetscFree(ns);
789:     PetscInfo2(A,"Found %D nodes out of %D rows. Not using Inode routines\n",node_count,m);
790:   } else {
791:     a->inode.node_count = node_count;

793:     PetscMalloc1(node_count,&a->inode.size);
794:     PetscLogObjectMemory((PetscObject)A,node_count*sizeof(PetscInt));
795:     PetscArraycpy(a->inode.size,ns,node_count);
796:     PetscFree(ns);
797:     PetscInfo3(A,"Found %D nodes of %D. Limit used: %D. Using Inode routines\n",node_count,m,a->inode.limit);

799:     /* count collections of adjacent columns in each inode */
800:     row = 0;
801:     cnt = 0;
802:     for (i=0; i<node_count; i++) {
803:       cols = aj + ai[row] + a->inode.size[i];
804:       nz   = ai[row+1] - ai[row] - a->inode.size[i];
805:       for (j=1; j<nz; j++) {
806:         if (cols[j] != cols[j-1]+1) cnt++;
807:       }
808:       cnt++;
809:       row += a->inode.size[i];
810:     }
811:     PetscMalloc1(2*cnt,&counts);
812:     cnt  = 0;
813:     row  = 0;
814:     for (i=0; i<node_count; i++) {
815:       cols = aj + ai[row] + a->inode.size[i];
816:       counts[2*cnt] = cols[0];
817:       nz   = ai[row+1] - ai[row] - a->inode.size[i];
818:       cnt2 = 1;
819:       for (j=1; j<nz; j++) {
820:         if (cols[j] != cols[j-1]+1) {
821:           counts[2*(cnt++)+1] = cnt2;
822:           counts[2*cnt]       = cols[j];
823:           cnt2 = 1;
824:         } else cnt2++;
825:       }
826:       counts[2*(cnt++)+1] = cnt2;
827:       row += a->inode.size[i];
828:     }
829:     PetscIntView(2*cnt,counts,NULL);
830:   }
831:   return(0);
832: }

834: PetscErrorCode MatAssemblyEnd_SeqSBAIJ(Mat A,MatAssemblyType mode)
835: {
836:   Mat_SeqSBAIJ   *a = (Mat_SeqSBAIJ*)A->data;
838:   PetscInt       fshift = 0,i,*ai = a->i,*aj = a->j,*imax = a->imax;
839:   PetscInt       m      = A->rmap->N,*ip,N,*ailen = a->ilen;
840:   PetscInt       mbs    = a->mbs,bs2 = a->bs2,rmax = 0;
841:   MatScalar      *aa    = a->a,*ap;

844:   if (mode == MAT_FLUSH_ASSEMBLY) return(0);

846:   if (m) rmax = ailen[0];
847:   for (i=1; i<mbs; i++) {
848:     /* move each row back by the amount of empty slots (fshift) before it*/
849:     fshift += imax[i-1] - ailen[i-1];
850:     rmax    = PetscMax(rmax,ailen[i]);
851:     if (fshift) {
852:       ip = aj + ai[i];
853:       ap = aa + bs2*ai[i];
854:       N  = ailen[i];
855:       PetscArraymove(ip-fshift,ip,N);
856:       PetscArraymove(ap-bs2*fshift,ap,bs2*N);
857:     }
858:     ai[i] = ai[i-1] + ailen[i-1];
859:   }
860:   if (mbs) {
861:     fshift += imax[mbs-1] - ailen[mbs-1];
862:     ai[mbs] = ai[mbs-1] + ailen[mbs-1];
863:   }
864:   /* reset ilen and imax for each row */
865:   for (i=0; i<mbs; i++) {
866:     ailen[i] = imax[i] = ai[i+1] - ai[i];
867:   }
868:   a->nz = ai[mbs];

870:   /* diagonals may have moved, reset it */
871:   if (a->diag) {
872:     PetscArraycpy(a->diag,ai,mbs);
873:   }
874:   if (fshift && a->nounused == -1) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_PLIB, "Unused space detected in matrix: %D X %D block size %D, %D unneeded", m, A->cmap->n, A->rmap->bs, fshift*bs2);

876:   PetscInfo5(A,"Matrix size: %D X %D, block size %D; storage space: %D unneeded, %D used\n",m,A->rmap->N,A->rmap->bs,fshift*bs2,a->nz*bs2);
877:   PetscInfo1(A,"Number of mallocs during MatSetValues is %D\n",a->reallocs);
878:   PetscInfo1(A,"Most nonzeros blocks in any row is %D\n",rmax);

880:   A->info.mallocs    += a->reallocs;
881:   a->reallocs         = 0;
882:   A->info.nz_unneeded = (PetscReal)fshift*bs2;
883:   a->idiagvalid       = PETSC_FALSE;
884:   a->rmax             = rmax;

886:   if (A->cmap->n < 65536 && A->cmap->bs == 1) {
887:     if (a->jshort && a->free_jshort) {
888:       /* when matrix data structure is changed, previous jshort must be replaced */
889:       PetscFree(a->jshort);
890:     }
891:     PetscMalloc1(a->i[A->rmap->n],&a->jshort);
892:     PetscLogObjectMemory((PetscObject)A,a->i[A->rmap->n]*sizeof(unsigned short));
893:     for (i=0; i<a->i[A->rmap->n]; i++) a->jshort[i] = a->j[i];
894:     A->ops->mult   = MatMult_SeqSBAIJ_1_ushort;
895:     A->ops->sor    = MatSOR_SeqSBAIJ_ushort;
896:     a->free_jshort = PETSC_TRUE;
897:   }
898:   return(0);
899: }

901: /*
902:    This function returns an array of flags which indicate the locations of contiguous
903:    blocks that should be zeroed. for eg: if bs = 3  and is = [0,1,2,3,5,6,7,8,9]
904:    then the resulting sizes = [3,1,1,3,1] correspondig to sets [(0,1,2),(3),(5),(6,7,8),(9)]
905:    Assume: sizes should be long enough to hold all the values.
906: */
907: PetscErrorCode MatZeroRows_SeqSBAIJ_Check_Blocks(PetscInt idx[],PetscInt n,PetscInt bs,PetscInt sizes[], PetscInt *bs_max)
908: {
909:   PetscInt  i,j,k,row;
910:   PetscBool flg;

913:   for (i=0,j=0; i<n; j++) {
914:     row = idx[i];
915:     if (row%bs!=0) { /* Not the begining of a block */
916:       sizes[j] = 1;
917:       i++;
918:     } else if (i+bs > n) { /* Beginning of a block, but complete block doesn't exist (at idx end) */
919:       sizes[j] = 1;         /* Also makes sure atleast 'bs' values exist for next else */
920:       i++;
921:     } else { /* Begining of the block, so check if the complete block exists */
922:       flg = PETSC_TRUE;
923:       for (k=1; k<bs; k++) {
924:         if (row+k != idx[i+k]) { /* break in the block */
925:           flg = PETSC_FALSE;
926:           break;
927:         }
928:       }
929:       if (flg) { /* No break in the bs */
930:         sizes[j] = bs;
931:         i       += bs;
932:       } else {
933:         sizes[j] = 1;
934:         i++;
935:       }
936:     }
937:   }
938:   *bs_max = j;
939:   return(0);
940: }


943: /* Only add/insert a(i,j) with i<=j (blocks).
944:    Any a(i,j) with i>j input by user is ingored.
945: */

947: PetscErrorCode MatSetValues_SeqSBAIJ(Mat A,PetscInt m,const PetscInt im[],PetscInt n,const PetscInt in[],const PetscScalar v[],InsertMode is)
948: {
949:   Mat_SeqSBAIJ   *a = (Mat_SeqSBAIJ*)A->data;
951:   PetscInt       *rp,k,low,high,t,ii,row,nrow,i,col,l,rmax,N,lastcol = -1;
952:   PetscInt       *imax=a->imax,*ai=a->i,*ailen=a->ilen,roworiented=a->roworiented;
953:   PetscInt       *aj  =a->j,nonew=a->nonew,bs=A->rmap->bs,brow,bcol;
954:   PetscInt       ridx,cidx,bs2=a->bs2;
955:   MatScalar      *ap,value,*aa=a->a,*bap;

958:   for (k=0; k<m; k++) { /* loop over added rows */
959:     row  = im[k];       /* row number */
960:     brow = row/bs;      /* block row number */
961:     if (row < 0) continue;
962:     if (PetscUnlikelyDebug(row >= A->rmap->N)) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Row too large: row %D max %D",row,A->rmap->N-1);
963:     rp   = aj + ai[brow]; /*ptr to beginning of column value of the row block*/
964:     ap   = aa + bs2*ai[brow]; /*ptr to beginning of element value of the row block*/
965:     rmax = imax[brow];  /* maximum space allocated for this row */
966:     nrow = ailen[brow]; /* actual length of this row */
967:     low  = 0;
968:     high = nrow;
969:     for (l=0; l<n; l++) { /* loop over added columns */
970:       if (in[l] < 0) continue;
971:       if (PetscUnlikelyDebug(in[l] >= A->cmap->N)) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Column too large: col %D max %D",in[l],A->cmap->N-1);
972:       col  = in[l];
973:       bcol = col/bs;              /* block col number */

975:       if (brow > bcol) {
976:         if (a->ignore_ltriangular) continue; /* ignore lower triangular values */
977:         else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_USER,"Lower triangular value cannot be set for sbaij format. Ignoring these values, run with -mat_ignore_lower_triangular or call MatSetOption(mat,MAT_IGNORE_LOWER_TRIANGULAR,PETSC_TRUE)");
978:       }

980:       ridx = row % bs; cidx = col % bs; /*row and col index inside the block */
981:       if ((brow==bcol && ridx<=cidx) || (brow<bcol)) {
982:         /* element value a(k,l) */
983:         if (roworiented) value = v[l + k*n];
984:         else value = v[k + l*m];

986:         /* move pointer bap to a(k,l) quickly and add/insert value */
987:         if (col <= lastcol) low = 0;
988:         else high = nrow;

990:         lastcol = col;
991:         while (high-low > 7) {
992:           t = (low+high)/2;
993:           if (rp[t] > bcol) high = t;
994:           else              low  = t;
995:         }
996:         for (i=low; i<high; i++) {
997:           if (rp[i] > bcol) break;
998:           if (rp[i] == bcol) {
999:             bap = ap +  bs2*i + bs*cidx + ridx;
1000:             if (is == ADD_VALUES) *bap += value;
1001:             else                  *bap  = value;
1002:             /* for diag block, add/insert its symmetric element a(cidx,ridx) */
1003:             if (brow == bcol && ridx < cidx) {
1004:               bap = ap +  bs2*i + bs*ridx + cidx;
1005:               if (is == ADD_VALUES) *bap += value;
1006:               else                  *bap  = value;
1007:             }
1008:             goto noinsert1;
1009:           }
1010:         }

1012:         if (nonew == 1) goto noinsert1;
1013:         if (nonew == -1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Inserting a new nonzero (%D, %D) in the matrix", row, col);
1014:         MatSeqXAIJReallocateAIJ(A,a->mbs,bs2,nrow,brow,bcol,rmax,aa,ai,aj,rp,ap,imax,nonew,MatScalar);

1016:         N = nrow++ - 1; high++;
1017:         /* shift up all the later entries in this row */
1018:         PetscArraymove(rp+i+1,rp+i,N-i+1);
1019:         PetscArraymove(ap+bs2*(i+1),ap+bs2*i,bs2*(N-i+1));
1020:         PetscArrayzero(ap+bs2*i,bs2);
1021:         rp[i]                      = bcol;
1022:         ap[bs2*i + bs*cidx + ridx] = value;
1023:         /* for diag block, add/insert its symmetric element a(cidx,ridx) */
1024:         if (brow == bcol && ridx < cidx) {
1025:           ap[bs2*i + bs*ridx + cidx] = value;
1026:         }
1027:         A->nonzerostate++;
1028: noinsert1:;
1029:         low = i;
1030:       }
1031:     }   /* end of loop over added columns */
1032:     ailen[brow] = nrow;
1033:   }   /* end of loop over added rows */
1034:   return(0);
1035: }

1037: PetscErrorCode MatICCFactor_SeqSBAIJ(Mat inA,IS row,const MatFactorInfo *info)
1038: {
1039:   Mat_SeqSBAIJ   *a = (Mat_SeqSBAIJ*)inA->data;
1040:   Mat            outA;
1042:   PetscBool      row_identity;

1045:   if (info->levels != 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Only levels=0 is supported for in-place icc");
1046:   ISIdentity(row,&row_identity);
1047:   if (!row_identity) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Matrix reordering is not supported");
1048:   if (inA->rmap->bs != 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Matrix block size %D is not supported",inA->rmap->bs); /* Need to replace MatCholeskyFactorSymbolic_SeqSBAIJ_MSR()! */

1050:   outA            = inA;
1051:   inA->factortype = MAT_FACTOR_ICC;
1052:   PetscFree(inA->solvertype);
1053:   PetscStrallocpy(MATSOLVERPETSC,&inA->solvertype);

1055:   MatMarkDiagonal_SeqSBAIJ(inA);
1056:   MatSeqSBAIJSetNumericFactorization_inplace(inA,row_identity);

1058:   PetscObjectReference((PetscObject)row);
1059:   ISDestroy(&a->row);
1060:   a->row = row;
1061:   PetscObjectReference((PetscObject)row);
1062:   ISDestroy(&a->col);
1063:   a->col = row;

1065:   /* Create the invert permutation so that it can be used in MatCholeskyFactorNumeric() */
1066:   if (a->icol) {ISInvertPermutation(row,PETSC_DECIDE, &a->icol);}
1067:   PetscLogObjectParent((PetscObject)inA,(PetscObject)a->icol);

1069:   if (!a->solve_work) {
1070:     PetscMalloc1(inA->rmap->N+inA->rmap->bs,&a->solve_work);
1071:     PetscLogObjectMemory((PetscObject)inA,(inA->rmap->N+inA->rmap->bs)*sizeof(PetscScalar));
1072:   }

1074:   MatCholeskyFactorNumeric(outA,inA,info);
1075:   return(0);
1076: }

1078: PetscErrorCode  MatSeqSBAIJSetColumnIndices_SeqSBAIJ(Mat mat,PetscInt *indices)
1079: {
1080:   Mat_SeqSBAIJ   *baij = (Mat_SeqSBAIJ*)mat->data;
1081:   PetscInt       i,nz,n;

1085:   nz = baij->maxnz;
1086:   n  = mat->cmap->n;
1087:   for (i=0; i<nz; i++) baij->j[i] = indices[i];

1089:   baij->nz = nz;
1090:   for (i=0; i<n; i++) baij->ilen[i] = baij->imax[i];

1092:   MatSetOption(mat,MAT_NEW_NONZERO_LOCATION_ERR,PETSC_TRUE);
1093:   return(0);
1094: }

1096: /*@
1097:   MatSeqSBAIJSetColumnIndices - Set the column indices for all the rows
1098:   in the matrix.

1100:   Input Parameters:
1101:   +  mat     - the SeqSBAIJ matrix
1102:   -  indices - the column indices

1104:   Level: advanced

1106:   Notes:
1107:   This can be called if you have precomputed the nonzero structure of the
1108:   matrix and want to provide it to the matrix object to improve the performance
1109:   of the MatSetValues() operation.

1111:   You MUST have set the correct numbers of nonzeros per row in the call to
1112:   MatCreateSeqSBAIJ(), and the columns indices MUST be sorted.

1114:   MUST be called before any calls to MatSetValues()

1116:   .seealso: MatCreateSeqSBAIJ
1117: @*/
1118: PetscErrorCode  MatSeqSBAIJSetColumnIndices(Mat mat,PetscInt *indices)
1119: {

1125:   PetscUseMethod(mat,"MatSeqSBAIJSetColumnIndices_C",(Mat,PetscInt*),(mat,indices));
1126:   return(0);
1127: }

1129: PetscErrorCode MatCopy_SeqSBAIJ(Mat A,Mat B,MatStructure str)
1130: {
1132:   PetscBool      isbaij;

1135:   PetscObjectTypeCompareAny((PetscObject)B,&isbaij,MATSEQSBAIJ,MATMPISBAIJ,"");
1136:   if (!isbaij) SETERRQ1(PetscObjectComm((PetscObject)B),PETSC_ERR_SUP,"Not for matrix type %s",((PetscObject)B)->type_name);
1137:   /* If the two matrices have the same copy implementation and nonzero pattern, use fast copy. */
1138:   if (str == SAME_NONZERO_PATTERN && A->ops->copy == B->ops->copy) {
1139:     Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ*)A->data;
1140:     Mat_SeqSBAIJ *b = (Mat_SeqSBAIJ*)B->data;

1142:     if (a->i[a->mbs] != b->i[b->mbs]) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Number of nonzeros in two matrices are different");
1143:     if (a->mbs != b->mbs) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Number of rows in two matrices are different");
1144:     if (a->bs2 != b->bs2) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Different block size");
1145:     PetscArraycpy(b->a,a->a,a->bs2*a->i[a->mbs]);
1146:     PetscObjectStateIncrease((PetscObject)B);
1147:   } else {
1148:     MatGetRowUpperTriangular(A);
1149:     MatCopy_Basic(A,B,str);
1150:     MatRestoreRowUpperTriangular(A);
1151:   }
1152:   return(0);
1153: }

1155: PetscErrorCode MatSetUp_SeqSBAIJ(Mat A)
1156: {

1160:   MatSeqSBAIJSetPreallocation(A,A->rmap->bs,PETSC_DEFAULT,NULL);
1161:   return(0);
1162: }

1164: static PetscErrorCode MatSeqSBAIJGetArray_SeqSBAIJ(Mat A,PetscScalar *array[])
1165: {
1166:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ*)A->data;

1169:   *array = a->a;
1170:   return(0);
1171: }

1173: static PetscErrorCode MatSeqSBAIJRestoreArray_SeqSBAIJ(Mat A,PetscScalar *array[])
1174: {
1176:   *array = NULL;
1177:   return(0);
1178: }

1180: PetscErrorCode MatAXPYGetPreallocation_SeqSBAIJ(Mat Y,Mat X,PetscInt *nnz)
1181: {
1182:   PetscInt       bs = Y->rmap->bs,mbs = Y->rmap->N/bs;
1183:   Mat_SeqSBAIJ   *x = (Mat_SeqSBAIJ*)X->data;
1184:   Mat_SeqSBAIJ   *y = (Mat_SeqSBAIJ*)Y->data;

1188:   /* Set the number of nonzeros in the new matrix */
1189:   MatAXPYGetPreallocation_SeqX_private(mbs,x->i,x->j,y->i,y->j,nnz);
1190:   return(0);
1191: }

1193: PetscErrorCode MatAXPY_SeqSBAIJ(Mat Y,PetscScalar a,Mat X,MatStructure str)
1194: {
1195:   Mat_SeqSBAIJ   *x=(Mat_SeqSBAIJ*)X->data, *y=(Mat_SeqSBAIJ*)Y->data;
1197:   PetscInt       bs=Y->rmap->bs,bs2=bs*bs;
1198:   PetscBLASInt   one = 1;

1201:   if (str == SAME_NONZERO_PATTERN) {
1202:     PetscScalar  alpha = a;
1203:     PetscBLASInt bnz;
1204:     PetscBLASIntCast(x->nz*bs2,&bnz);
1205:     PetscStackCallBLAS("BLASaxpy",BLASaxpy_(&bnz,&alpha,x->a,&one,y->a,&one));
1206:     PetscObjectStateIncrease((PetscObject)Y);
1207:   } else if (str == SUBSET_NONZERO_PATTERN) { /* nonzeros of X is a subset of Y's */
1208:     MatSetOption(X,MAT_GETROW_UPPERTRIANGULAR,PETSC_TRUE);
1209:     MatAXPY_Basic(Y,a,X,str);
1210:     MatSetOption(X,MAT_GETROW_UPPERTRIANGULAR,PETSC_FALSE);
1211:   } else {
1212:     Mat      B;
1213:     PetscInt *nnz;
1214:     if (bs != X->rmap->bs) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Matrices must have same block size");
1215:     MatGetRowUpperTriangular(X);
1216:     MatGetRowUpperTriangular(Y);
1217:     PetscMalloc1(Y->rmap->N,&nnz);
1218:     MatCreate(PetscObjectComm((PetscObject)Y),&B);
1219:     PetscObjectSetName((PetscObject)B,((PetscObject)Y)->name);
1220:     MatSetSizes(B,Y->rmap->n,Y->cmap->n,Y->rmap->N,Y->cmap->N);
1221:     MatSetBlockSizesFromMats(B,Y,Y);
1222:     MatSetType(B,((PetscObject)Y)->type_name);
1223:     MatAXPYGetPreallocation_SeqSBAIJ(Y,X,nnz);
1224:     MatSeqSBAIJSetPreallocation(B,bs,0,nnz);

1226:     MatAXPY_BasicWithPreallocation(B,Y,a,X,str);

1228:     MatHeaderReplace(Y,&B);
1229:     PetscFree(nnz);
1230:     MatRestoreRowUpperTriangular(X);
1231:     MatRestoreRowUpperTriangular(Y);
1232:   }
1233:   return(0);
1234: }

1236: PetscErrorCode MatIsSymmetric_SeqSBAIJ(Mat A,PetscReal tol,PetscBool  *flg)
1237: {
1239:   *flg = PETSC_TRUE;
1240:   return(0);
1241: }

1243: PetscErrorCode MatIsStructurallySymmetric_SeqSBAIJ(Mat A,PetscBool  *flg)
1244: {
1246:   *flg = PETSC_TRUE;
1247:   return(0);
1248: }

1250: PetscErrorCode MatIsHermitian_SeqSBAIJ(Mat A,PetscReal tol,PetscBool  *flg)
1251: {
1253:   *flg = PETSC_FALSE;
1254:   return(0);
1255: }

1257: PetscErrorCode MatConjugate_SeqSBAIJ(Mat A)
1258: {
1259: #if defined(PETSC_USE_COMPLEX)
1260:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ*)A->data;
1261:   PetscInt     i,nz = a->bs2*a->i[a->mbs];
1262:   MatScalar    *aa = a->a;

1265:   for (i=0; i<nz; i++) aa[i] = PetscConj(aa[i]);
1266: #else
1268: #endif
1269:   return(0);
1270: }

1272: PetscErrorCode MatRealPart_SeqSBAIJ(Mat A)
1273: {
1274:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ*)A->data;
1275:   PetscInt     i,nz = a->bs2*a->i[a->mbs];
1276:   MatScalar    *aa = a->a;

1279:   for (i=0; i<nz; i++) aa[i] = PetscRealPart(aa[i]);
1280:   return(0);
1281: }

1283: PetscErrorCode MatImaginaryPart_SeqSBAIJ(Mat A)
1284: {
1285:   Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ*)A->data;
1286:   PetscInt     i,nz = a->bs2*a->i[a->mbs];
1287:   MatScalar    *aa = a->a;

1290:   for (i=0; i<nz; i++) aa[i] = PetscImaginaryPart(aa[i]);
1291:   return(0);
1292: }

1294: PetscErrorCode MatZeroRowsColumns_SeqSBAIJ(Mat A,PetscInt is_n,const PetscInt is_idx[],PetscScalar diag,Vec x, Vec b)
1295: {
1296:   Mat_SeqSBAIJ      *baij=(Mat_SeqSBAIJ*)A->data;
1297:   PetscErrorCode    ierr;
1298:   PetscInt          i,j,k,count;
1299:   PetscInt          bs   =A->rmap->bs,bs2=baij->bs2,row,col;
1300:   PetscScalar       zero = 0.0;
1301:   MatScalar         *aa;
1302:   const PetscScalar *xx;
1303:   PetscScalar       *bb;
1304:   PetscBool         *zeroed,vecs = PETSC_FALSE;

1307:   /* fix right hand side if needed */
1308:   if (x && b) {
1309:     VecGetArrayRead(x,&xx);
1310:     VecGetArray(b,&bb);
1311:     vecs = PETSC_TRUE;
1312:   }

1314:   /* zero the columns */
1315:   PetscCalloc1(A->rmap->n,&zeroed);
1316:   for (i=0; i<is_n; i++) {
1317:     if (is_idx[i] < 0 || is_idx[i] >= A->rmap->N) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"row %D out of range",is_idx[i]);
1318:     zeroed[is_idx[i]] = PETSC_TRUE;
1319:   }
1320:   if (vecs) {
1321:     for (i=0; i<A->rmap->N; i++) {
1322:       row = i/bs;
1323:       for (j=baij->i[row]; j<baij->i[row+1]; j++) {
1324:         for (k=0; k<bs; k++) {
1325:           col = bs*baij->j[j] + k;
1326:           if (col <= i) continue;
1327:           aa = ((MatScalar*)(baij->a)) + j*bs2 + (i%bs) + bs*k;
1328:           if (!zeroed[i] && zeroed[col]) bb[i]   -= aa[0]*xx[col];
1329:           if (zeroed[i] && !zeroed[col]) bb[col] -= aa[0]*xx[i];
1330:         }
1331:       }
1332:     }
1333:     for (i=0; i<is_n; i++) bb[is_idx[i]] = diag*xx[is_idx[i]];
1334:   }

1336:   for (i=0; i<A->rmap->N; i++) {
1337:     if (!zeroed[i]) {
1338:       row = i/bs;
1339:       for (j=baij->i[row]; j<baij->i[row+1]; j++) {
1340:         for (k=0; k<bs; k++) {
1341:           col = bs*baij->j[j] + k;
1342:           if (zeroed[col]) {
1343:             aa = ((MatScalar*)(baij->a)) + j*bs2 + (i%bs) + bs*k;
1344:             aa[0] = 0.0;
1345:           }
1346:         }
1347:       }
1348:     }
1349:   }
1350:   PetscFree(zeroed);
1351:   if (vecs) {
1352:     VecRestoreArrayRead(x,&xx);
1353:     VecRestoreArray(b,&bb);
1354:   }

1356:   /* zero the rows */
1357:   for (i=0; i<is_n; i++) {
1358:     row   = is_idx[i];
1359:     count = (baij->i[row/bs +1] - baij->i[row/bs])*bs;
1360:     aa    = ((MatScalar*)(baij->a)) + baij->i[row/bs]*bs2 + (row%bs);
1361:     for (k=0; k<count; k++) {
1362:       aa[0] =  zero;
1363:       aa   += bs;
1364:     }
1365:     if (diag != 0.0) {
1366:       (*A->ops->setvalues)(A,1,&row,1,&row,&diag,INSERT_VALUES);
1367:     }
1368:   }
1369:   MatAssemblyEnd_SeqSBAIJ(A,MAT_FINAL_ASSEMBLY);
1370:   return(0);
1371: }

1373: PetscErrorCode MatShift_SeqSBAIJ(Mat Y,PetscScalar a)
1374: {
1376:   Mat_SeqSBAIJ    *aij = (Mat_SeqSBAIJ*)Y->data;

1379:   if (!Y->preallocated || !aij->nz) {
1380:     MatSeqSBAIJSetPreallocation(Y,Y->rmap->bs,1,NULL);
1381:   }
1382:   MatShift_Basic(Y,a);
1383:   return(0);
1384: }

1386: /* -------------------------------------------------------------------*/
1387: static struct _MatOps MatOps_Values = {MatSetValues_SeqSBAIJ,
1388:                                        MatGetRow_SeqSBAIJ,
1389:                                        MatRestoreRow_SeqSBAIJ,
1390:                                        MatMult_SeqSBAIJ_N,
1391:                                /*  4*/ MatMultAdd_SeqSBAIJ_N,
1392:                                        MatMult_SeqSBAIJ_N,       /* transpose versions are same as non-transpose versions */
1393:                                        MatMultAdd_SeqSBAIJ_N,
1394:                                        NULL,
1395:                                        NULL,
1396:                                        NULL,
1397:                                /* 10*/ NULL,
1398:                                        NULL,
1399:                                        MatCholeskyFactor_SeqSBAIJ,
1400:                                        MatSOR_SeqSBAIJ,
1401:                                        MatTranspose_SeqSBAIJ,
1402:                                /* 15*/ MatGetInfo_SeqSBAIJ,
1403:                                        MatEqual_SeqSBAIJ,
1404:                                        MatGetDiagonal_SeqSBAIJ,
1405:                                        MatDiagonalScale_SeqSBAIJ,
1406:                                        MatNorm_SeqSBAIJ,
1407:                                /* 20*/ NULL,
1408:                                        MatAssemblyEnd_SeqSBAIJ,
1409:                                        MatSetOption_SeqSBAIJ,
1410:                                        MatZeroEntries_SeqSBAIJ,
1411:                                /* 24*/ NULL,
1412:                                        NULL,
1413:                                        NULL,
1414:                                        NULL,
1415:                                        NULL,
1416:                                /* 29*/ MatSetUp_SeqSBAIJ,
1417:                                        NULL,
1418:                                        NULL,
1419:                                        NULL,
1420:                                        NULL,
1421:                                /* 34*/ MatDuplicate_SeqSBAIJ,
1422:                                        NULL,
1423:                                        NULL,
1424:                                        NULL,
1425:                                        MatICCFactor_SeqSBAIJ,
1426:                                /* 39*/ MatAXPY_SeqSBAIJ,
1427:                                        MatCreateSubMatrices_SeqSBAIJ,
1428:                                        MatIncreaseOverlap_SeqSBAIJ,
1429:                                        MatGetValues_SeqSBAIJ,
1430:                                        MatCopy_SeqSBAIJ,
1431:                                /* 44*/ NULL,
1432:                                        MatScale_SeqSBAIJ,
1433:                                        MatShift_SeqSBAIJ,
1434:                                        NULL,
1435:                                        MatZeroRowsColumns_SeqSBAIJ,
1436:                                /* 49*/ NULL,
1437:                                        MatGetRowIJ_SeqSBAIJ,
1438:                                        MatRestoreRowIJ_SeqSBAIJ,
1439:                                        NULL,
1440:                                        NULL,
1441:                                /* 54*/ NULL,
1442:                                        NULL,
1443:                                        NULL,
1444:                                        MatPermute_SeqSBAIJ,
1445:                                        MatSetValuesBlocked_SeqSBAIJ,
1446:                                /* 59*/ MatCreateSubMatrix_SeqSBAIJ,
1447:                                        NULL,
1448:                                        NULL,
1449:                                        NULL,
1450:                                        NULL,
1451:                                /* 64*/ NULL,
1452:                                        NULL,
1453:                                        NULL,
1454:                                        NULL,
1455:                                        NULL,
1456:                                /* 69*/ MatGetRowMaxAbs_SeqSBAIJ,
1457:                                        NULL,
1458:                                        MatConvert_MPISBAIJ_Basic,
1459:                                        NULL,
1460:                                        NULL,
1461:                                /* 74*/ NULL,
1462:                                        NULL,
1463:                                        NULL,
1464:                                        NULL,
1465:                                        NULL,
1466:                                /* 79*/ NULL,
1467:                                        NULL,
1468:                                        NULL,
1469:                                        MatGetInertia_SeqSBAIJ,
1470:                                        MatLoad_SeqSBAIJ,
1471:                                /* 84*/ MatIsSymmetric_SeqSBAIJ,
1472:                                        MatIsHermitian_SeqSBAIJ,
1473:                                        MatIsStructurallySymmetric_SeqSBAIJ,
1474:                                        NULL,
1475:                                        NULL,
1476:                                /* 89*/ NULL,
1477:                                        NULL,
1478:                                        NULL,
1479:                                        NULL,
1480:                                        NULL,
1481:                                /* 94*/ NULL,
1482:                                        NULL,
1483:                                        NULL,
1484:                                        NULL,
1485:                                        NULL,
1486:                                /* 99*/ NULL,
1487:                                        NULL,
1488:                                        NULL,
1489:                                        MatConjugate_SeqSBAIJ,
1490:                                        NULL,
1491:                                /*104*/ NULL,
1492:                                        MatRealPart_SeqSBAIJ,
1493:                                        MatImaginaryPart_SeqSBAIJ,
1494:                                        MatGetRowUpperTriangular_SeqSBAIJ,
1495:                                        MatRestoreRowUpperTriangular_SeqSBAIJ,
1496:                                /*109*/ NULL,
1497:                                        NULL,
1498:                                        NULL,
1499:                                        NULL,
1500:                                        MatMissingDiagonal_SeqSBAIJ,
1501:                                /*114*/ NULL,
1502:                                        NULL,
1503:                                        NULL,
1504:                                        NULL,
1505:                                        NULL,
1506:                                /*119*/ NULL,
1507:                                        NULL,
1508:                                        NULL,
1509:                                        NULL,
1510:                                        NULL,
1511:                                /*124*/ NULL,
1512:                                        NULL,
1513:                                        NULL,
1514:                                        NULL,
1515:                                        NULL,
1516:                                /*129*/ NULL,
1517:                                        NULL,
1518:                                        NULL,
1519:                                        NULL,
1520:                                        NULL,
1521:                                /*134*/ NULL,
1522:                                        NULL,
1523:                                        NULL,
1524:                                        NULL,
1525:                                        NULL,
1526:                                /*139*/ MatSetBlockSizes_Default,
1527:                                        NULL,
1528:                                        NULL,
1529:                                        NULL,
1530:                                        NULL,
1531:                                 /*144*/MatCreateMPIMatConcatenateSeqMat_SeqSBAIJ
1532: };

1534: PetscErrorCode  MatStoreValues_SeqSBAIJ(Mat mat)
1535: {
1536:   Mat_SeqSBAIJ   *aij = (Mat_SeqSBAIJ*)mat->data;
1537:   PetscInt       nz   = aij->i[mat->rmap->N]*mat->rmap->bs*aij->bs2;

1541:   if (aij->nonew != 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ORDER,"Must call MatSetOption(A,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);first");

1543:   /* allocate space for values if not already there */
1544:   if (!aij->saved_values) {
1545:     PetscMalloc1(nz+1,&aij->saved_values);
1546:   }

1548:   /* copy values over */
1549:   PetscArraycpy(aij->saved_values,aij->a,nz);
1550:   return(0);
1551: }

1553: PetscErrorCode  MatRetrieveValues_SeqSBAIJ(Mat mat)
1554: {
1555:   Mat_SeqSBAIJ   *aij = (Mat_SeqSBAIJ*)mat->data;
1557:   PetscInt       nz = aij->i[mat->rmap->N]*mat->rmap->bs*aij->bs2;

1560:   if (aij->nonew != 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ORDER,"Must call MatSetOption(A,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);first");
1561:   if (!aij->saved_values) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ORDER,"Must call MatStoreValues(A);first");

1563:   /* copy values over */
1564:   PetscArraycpy(aij->a,aij->saved_values,nz);
1565:   return(0);
1566: }

1568: static PetscErrorCode  MatSeqSBAIJSetPreallocation_SeqSBAIJ(Mat B,PetscInt bs,PetscInt nz,PetscInt *nnz)
1569: {
1570:   Mat_SeqSBAIJ   *b = (Mat_SeqSBAIJ*)B->data;
1572:   PetscInt       i,mbs,nbs,bs2;
1573:   PetscBool      skipallocation = PETSC_FALSE,flg = PETSC_FALSE,realalloc = PETSC_FALSE;

1576:   if (nz >= 0 || nnz) realalloc = PETSC_TRUE;

1578:   MatSetBlockSize(B,PetscAbs(bs));
1579:   PetscLayoutSetUp(B->rmap);
1580:   PetscLayoutSetUp(B->cmap);
1581:   if (B->rmap->N > B->cmap->N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_SUP,"SEQSBAIJ matrix cannot have more rows %D than columns %D",B->rmap->N,B->cmap->N);
1582:   PetscLayoutGetBlockSize(B->rmap,&bs);

1584:   B->preallocated = PETSC_TRUE;

1586:   mbs = B->rmap->N/bs;
1587:   nbs = B->cmap->n/bs;
1588:   bs2 = bs*bs;

1590:   if (mbs*bs != B->rmap->N || nbs*bs!=B->cmap->n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Number rows, cols must be divisible by blocksize");

1592:   if (nz == MAT_SKIP_ALLOCATION) {
1593:     skipallocation = PETSC_TRUE;
1594:     nz             = 0;
1595:   }

1597:   if (nz == PETSC_DEFAULT || nz == PETSC_DECIDE) nz = 3;
1598:   if (nz < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"nz cannot be less than 0: value %D",nz);
1599:   if (nnz) {
1600:     for (i=0; i<mbs; i++) {
1601:       if (nnz[i] < 0) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"nnz cannot be less than 0: local row %D value %D",i,nnz[i]);
1602:       if (nnz[i] > nbs) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"nnz cannot be greater than block row length: local row %D value %D block rowlength %D",i,nnz[i],nbs);
1603:     }
1604:   }

1606:   B->ops->mult             = MatMult_SeqSBAIJ_N;
1607:   B->ops->multadd          = MatMultAdd_SeqSBAIJ_N;
1608:   B->ops->multtranspose    = MatMult_SeqSBAIJ_N;
1609:   B->ops->multtransposeadd = MatMultAdd_SeqSBAIJ_N;

1611:   PetscOptionsGetBool(((PetscObject)B)->options,((PetscObject)B)->prefix,"-mat_no_unroll",&flg,NULL);
1612:   if (!flg) {
1613:     switch (bs) {
1614:     case 1:
1615:       B->ops->mult             = MatMult_SeqSBAIJ_1;
1616:       B->ops->multadd          = MatMultAdd_SeqSBAIJ_1;
1617:       B->ops->multtranspose    = MatMult_SeqSBAIJ_1;
1618:       B->ops->multtransposeadd = MatMultAdd_SeqSBAIJ_1;
1619:       break;
1620:     case 2:
1621:       B->ops->mult             = MatMult_SeqSBAIJ_2;
1622:       B->ops->multadd          = MatMultAdd_SeqSBAIJ_2;
1623:       B->ops->multtranspose    = MatMult_SeqSBAIJ_2;
1624:       B->ops->multtransposeadd = MatMultAdd_SeqSBAIJ_2;
1625:       break;
1626:     case 3:
1627:       B->ops->mult             = MatMult_SeqSBAIJ_3;
1628:       B->ops->multadd          = MatMultAdd_SeqSBAIJ_3;
1629:       B->ops->multtranspose    = MatMult_SeqSBAIJ_3;
1630:       B->ops->multtransposeadd = MatMultAdd_SeqSBAIJ_3;
1631:       break;
1632:     case 4:
1633:       B->ops->mult             = MatMult_SeqSBAIJ_4;
1634:       B->ops->multadd          = MatMultAdd_SeqSBAIJ_4;
1635:       B->ops->multtranspose    = MatMult_SeqSBAIJ_4;
1636:       B->ops->multtransposeadd = MatMultAdd_SeqSBAIJ_4;
1637:       break;
1638:     case 5:
1639:       B->ops->mult             = MatMult_SeqSBAIJ_5;
1640:       B->ops->multadd          = MatMultAdd_SeqSBAIJ_5;
1641:       B->ops->multtranspose    = MatMult_SeqSBAIJ_5;
1642:       B->ops->multtransposeadd = MatMultAdd_SeqSBAIJ_5;
1643:       break;
1644:     case 6:
1645:       B->ops->mult             = MatMult_SeqSBAIJ_6;
1646:       B->ops->multadd          = MatMultAdd_SeqSBAIJ_6;
1647:       B->ops->multtranspose    = MatMult_SeqSBAIJ_6;
1648:       B->ops->multtransposeadd = MatMultAdd_SeqSBAIJ_6;
1649:       break;
1650:     case 7:
1651:       B->ops->mult             = MatMult_SeqSBAIJ_7;
1652:       B->ops->multadd          = MatMultAdd_SeqSBAIJ_7;
1653:       B->ops->multtranspose    = MatMult_SeqSBAIJ_7;
1654:       B->ops->multtransposeadd = MatMultAdd_SeqSBAIJ_7;
1655:       break;
1656:     }
1657:   }

1659:   b->mbs = mbs;
1660:   b->nbs = nbs;
1661:   if (!skipallocation) {
1662:     if (!b->imax) {
1663:       PetscMalloc2(mbs,&b->imax,mbs,&b->ilen);

1665:       b->free_imax_ilen = PETSC_TRUE;

1667:       PetscLogObjectMemory((PetscObject)B,2*mbs*sizeof(PetscInt));
1668:     }
1669:     if (!nnz) {
1670:       if (nz == PETSC_DEFAULT || nz == PETSC_DECIDE) nz = 5;
1671:       else if (nz <= 0) nz = 1;
1672:       nz = PetscMin(nbs,nz);
1673:       for (i=0; i<mbs; i++) b->imax[i] = nz;
1674:       PetscIntMultError(nz,mbs,&nz);
1675:     } else {
1676:       PetscInt64 nz64 = 0;
1677:       for (i=0; i<mbs; i++) {b->imax[i] = nnz[i]; nz64 += nnz[i];}
1678:       PetscIntCast(nz64,&nz);
1679:     }
1680:     /* b->ilen will count nonzeros in each block row so far. */
1681:     for (i=0; i<mbs; i++) b->ilen[i] = 0;
1682:     /* nz=(nz+mbs)/2; */ /* total diagonal and superdiagonal nonzero blocks */

1684:     /* allocate the matrix space */
1685:     MatSeqXAIJFreeAIJ(B,&b->a,&b->j,&b->i);
1686:     PetscMalloc3(bs2*nz,&b->a,nz,&b->j,B->rmap->N+1,&b->i);
1687:     PetscLogObjectMemory((PetscObject)B,(B->rmap->N+1)*sizeof(PetscInt)+nz*(bs2*sizeof(PetscScalar)+sizeof(PetscInt)));
1688:     PetscArrayzero(b->a,nz*bs2);
1689:     PetscArrayzero(b->j,nz);

1691:     b->singlemalloc = PETSC_TRUE;

1693:     /* pointer to beginning of each row */
1694:     b->i[0] = 0;
1695:     for (i=1; i<mbs+1; i++) b->i[i] = b->i[i-1] + b->imax[i-1];

1697:     b->free_a  = PETSC_TRUE;
1698:     b->free_ij = PETSC_TRUE;
1699:   } else {
1700:     b->free_a  = PETSC_FALSE;
1701:     b->free_ij = PETSC_FALSE;
1702:   }

1704:   b->bs2     = bs2;
1705:   b->nz      = 0;
1706:   b->maxnz   = nz;
1707:   b->inew    = NULL;
1708:   b->jnew    = NULL;
1709:   b->anew    = NULL;
1710:   b->a2anew  = NULL;
1711:   b->permute = PETSC_FALSE;

1713:   B->was_assembled = PETSC_FALSE;
1714:   B->assembled     = PETSC_FALSE;
1715:   if (realalloc) {MatSetOption(B,MAT_NEW_NONZERO_ALLOCATION_ERR,PETSC_TRUE);}
1716:   return(0);
1717: }

1719: PetscErrorCode MatSeqSBAIJSetPreallocationCSR_SeqSBAIJ(Mat B,PetscInt bs,const PetscInt ii[],const PetscInt jj[], const PetscScalar V[])
1720: {
1721:   PetscInt       i,j,m,nz,anz, nz_max=0,*nnz;
1722:   PetscScalar    *values=NULL;
1723:   PetscBool      roworiented = ((Mat_SeqSBAIJ*)B->data)->roworiented;

1727:   if (bs < 1) SETERRQ1(PetscObjectComm((PetscObject)B),PETSC_ERR_ARG_OUTOFRANGE,"Invalid block size specified, must be positive but it is %D",bs);
1728:   PetscLayoutSetBlockSize(B->rmap,bs);
1729:   PetscLayoutSetBlockSize(B->cmap,bs);
1730:   PetscLayoutSetUp(B->rmap);
1731:   PetscLayoutSetUp(B->cmap);
1732:   PetscLayoutGetBlockSize(B->rmap,&bs);
1733:   m      = B->rmap->n/bs;

1735:   if (ii[0]) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"ii[0] must be 0 but it is %D",ii[0]);
1736:   PetscMalloc1(m+1,&nnz);
1737:   for (i=0; i<m; i++) {
1738:     nz = ii[i+1] - ii[i];
1739:     if (nz < 0) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Row %D has a negative number of columns %D",i,nz);
1740:     anz = 0;
1741:     for (j=0; j<nz; j++) {
1742:       /* count only values on the diagonal or above */
1743:       if (jj[ii[i] + j] >= i) {
1744:         anz = nz - j;
1745:         break;
1746:       }
1747:     }
1748:     nz_max = PetscMax(nz_max,anz);
1749:     nnz[i] = anz;
1750:   }
1751:   MatSeqSBAIJSetPreallocation(B,bs,0,nnz);
1752:   PetscFree(nnz);

1754:   values = (PetscScalar*)V;
1755:   if (!values) {
1756:     PetscCalloc1(bs*bs*nz_max,&values);
1757:   }
1758:   for (i=0; i<m; i++) {
1759:     PetscInt          ncols  = ii[i+1] - ii[i];
1760:     const PetscInt    *icols = jj + ii[i];
1761:     if (!roworiented || bs == 1) {
1762:       const PetscScalar *svals = values + (V ? (bs*bs*ii[i]) : 0);
1763:       MatSetValuesBlocked_SeqSBAIJ(B,1,&i,ncols,icols,svals,INSERT_VALUES);
1764:     } else {
1765:       for (j=0; j<ncols; j++) {
1766:         const PetscScalar *svals = values + (V ? (bs*bs*(ii[i]+j)) : 0);
1767:         MatSetValuesBlocked_SeqSBAIJ(B,1,&i,1,&icols[j],svals,INSERT_VALUES);
1768:       }
1769:     }
1770:   }
1771:   if (!V) { PetscFree(values); }
1772:   MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
1773:   MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
1774:   MatSetOption(B,MAT_NEW_NONZERO_LOCATION_ERR,PETSC_TRUE);
1775:   return(0);
1776: }

1778: /*
1779:    This is used to set the numeric factorization for both Cholesky and ICC symbolic factorization
1780: */
1781: PetscErrorCode MatSeqSBAIJSetNumericFactorization_inplace(Mat B,PetscBool natural)
1782: {
1784:   PetscBool      flg = PETSC_FALSE;
1785:   PetscInt       bs  = B->rmap->bs;

1788:   PetscOptionsGetBool(((PetscObject)B)->options,((PetscObject)B)->prefix,"-mat_no_unroll",&flg,NULL);
1789:   if (flg) bs = 8;

1791:   if (!natural) {
1792:     switch (bs) {
1793:     case 1:
1794:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_1_inplace;
1795:       break;
1796:     case 2:
1797:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_2;
1798:       break;
1799:     case 3:
1800:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_3;
1801:       break;
1802:     case 4:
1803:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_4;
1804:       break;
1805:     case 5:
1806:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_5;
1807:       break;
1808:     case 6:
1809:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_6;
1810:       break;
1811:     case 7:
1812:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_7;
1813:       break;
1814:     default:
1815:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_N;
1816:       break;
1817:     }
1818:   } else {
1819:     switch (bs) {
1820:     case 1:
1821:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_1_NaturalOrdering_inplace;
1822:       break;
1823:     case 2:
1824:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_2_NaturalOrdering;
1825:       break;
1826:     case 3:
1827:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_3_NaturalOrdering;
1828:       break;
1829:     case 4:
1830:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_4_NaturalOrdering;
1831:       break;
1832:     case 5:
1833:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_5_NaturalOrdering;
1834:       break;
1835:     case 6:
1836:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_6_NaturalOrdering;
1837:       break;
1838:     case 7:
1839:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_7_NaturalOrdering;
1840:       break;
1841:     default:
1842:       B->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqSBAIJ_N_NaturalOrdering;
1843:       break;
1844:     }
1845:   }
1846:   return(0);
1847: }

1849: PETSC_INTERN PetscErrorCode MatConvert_SeqSBAIJ_SeqAIJ(Mat,MatType,MatReuse,Mat*);
1850: PETSC_INTERN PetscErrorCode MatConvert_SeqSBAIJ_SeqBAIJ(Mat,MatType,MatReuse,Mat*);

1852: PETSC_INTERN PetscErrorCode MatGetFactor_seqsbaij_petsc(Mat A,MatFactorType ftype,Mat *B)
1853: {
1854:   PetscInt       n = A->rmap->n;

1858: #if defined(PETSC_USE_COMPLEX)
1859:   if (A->hermitian && !A->symmetric && (ftype == MAT_FACTOR_CHOLESKY||ftype == MAT_FACTOR_ICC)) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Hermitian CHOLESKY or ICC Factor is not supported");
1860: #endif

1862:   MatCreate(PetscObjectComm((PetscObject)A),B);
1863:   MatSetSizes(*B,n,n,n,n);
1864:   if (ftype == MAT_FACTOR_CHOLESKY || ftype == MAT_FACTOR_ICC) {
1865:     MatSetType(*B,MATSEQSBAIJ);
1866:     MatSeqSBAIJSetPreallocation(*B,A->rmap->bs,MAT_SKIP_ALLOCATION,NULL);

1868:     (*B)->ops->choleskyfactorsymbolic = MatCholeskyFactorSymbolic_SeqSBAIJ;
1869:     (*B)->ops->iccfactorsymbolic      = MatICCFactorSymbolic_SeqSBAIJ;
1870:   } else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Factor type not supported");

1872:   (*B)->factortype = ftype;
1873:   (*B)->useordering = PETSC_TRUE;
1874:   PetscFree((*B)->solvertype);
1875:   PetscStrallocpy(MATSOLVERPETSC,&(*B)->solvertype);
1876:   return(0);
1877: }

1879: /*@C
1880:    MatSeqSBAIJGetArray - gives access to the array where the data for a MATSEQSBAIJ matrix is stored

1882:    Not Collective

1884:    Input Parameter:
1885: .  mat - a MATSEQSBAIJ matrix

1887:    Output Parameter:
1888: .   array - pointer to the data

1890:    Level: intermediate

1892: .seealso: MatSeqSBAIJRestoreArray(), MatSeqAIJGetArray(), MatSeqAIJRestoreArray()
1893: @*/
1894: PetscErrorCode  MatSeqSBAIJGetArray(Mat A,PetscScalar **array)
1895: {

1899:   PetscUseMethod(A,"MatSeqSBAIJGetArray_C",(Mat,PetscScalar**),(A,array));
1900:   return(0);
1901: }

1903: /*@C
1904:    MatSeqSBAIJRestoreArray - returns access to the array where the data for a MATSEQSBAIJ matrix is stored obtained by MatSeqSBAIJGetArray()

1906:    Not Collective

1908:    Input Parameters:
1909: +  mat - a MATSEQSBAIJ matrix
1910: -  array - pointer to the data

1912:    Level: intermediate

1914: .seealso: MatSeqSBAIJGetArray(), MatSeqAIJGetArray(), MatSeqAIJRestoreArray()
1915: @*/
1916: PetscErrorCode  MatSeqSBAIJRestoreArray(Mat A,PetscScalar **array)
1917: {

1921:   PetscUseMethod(A,"MatSeqSBAIJRestoreArray_C",(Mat,PetscScalar**),(A,array));
1922:   return(0);
1923: }

1925: /*MC
1926:   MATSEQSBAIJ - MATSEQSBAIJ = "seqsbaij" - A matrix type to be used for sequential symmetric block sparse matrices,
1927:   based on block compressed sparse row format.  Only the upper triangular portion of the matrix is stored.

1929:   For complex numbers by default this matrix is symmetric, NOT Hermitian symmetric. To make it Hermitian symmetric you
1930:   can call MatSetOption(Mat, MAT_HERMITIAN).

1932:   Options Database Keys:
1933:   . -mat_type seqsbaij - sets the matrix type to "seqsbaij" during a call to MatSetFromOptions()

1935:   Notes:
1936:     By default if you insert values into the lower triangular part of the matrix they are simply ignored (since they are not
1937:      stored and it is assumed they symmetric to the upper triangular). If you call MatSetOption(Mat,MAT_IGNORE_LOWER_TRIANGULAR,PETSC_FALSE) or use
1938:      the options database -mat_ignore_lower_triangular false it will generate an error if you try to set a value in the lower triangular portion.

1940:     The number of rows in the matrix must be less than or equal to the number of columns

1942:   Level: beginner

1944:   .seealso: MatCreateSeqSBAIJ(), MatType, MATMPISBAIJ
1945: M*/
1946: PETSC_EXTERN PetscErrorCode MatCreate_SeqSBAIJ(Mat B)
1947: {
1948:   Mat_SeqSBAIJ   *b;
1950:   PetscMPIInt    size;
1951:   PetscBool      no_unroll = PETSC_FALSE,no_inode = PETSC_FALSE;

1954:   MPI_Comm_size(PetscObjectComm((PetscObject)B),&size);
1955:   if (size > 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Comm must be of size 1");

1957:   PetscNewLog(B,&b);
1958:   B->data = (void*)b;
1959:   PetscMemcpy(B->ops,&MatOps_Values,sizeof(struct _MatOps));

1961:   B->ops->destroy    = MatDestroy_SeqSBAIJ;
1962:   B->ops->view       = MatView_SeqSBAIJ;
1963:   b->row             = NULL;
1964:   b->icol            = NULL;
1965:   b->reallocs        = 0;
1966:   b->saved_values    = NULL;
1967:   b->inode.limit     = 5;
1968:   b->inode.max_limit = 5;

1970:   b->roworiented        = PETSC_TRUE;
1971:   b->nonew              = 0;
1972:   b->diag               = NULL;
1973:   b->solve_work         = NULL;
1974:   b->mult_work          = NULL;
1975:   B->spptr              = NULL;
1976:   B->info.nz_unneeded   = (PetscReal)b->maxnz*b->bs2;
1977:   b->keepnonzeropattern = PETSC_FALSE;

1979:   b->inew    = NULL;
1980:   b->jnew    = NULL;
1981:   b->anew    = NULL;
1982:   b->a2anew  = NULL;
1983:   b->permute = PETSC_FALSE;

1985:   b->ignore_ltriangular = PETSC_TRUE;

1987:   PetscOptionsGetBool(((PetscObject)B)->options,((PetscObject)B)->prefix,"-mat_ignore_lower_triangular",&b->ignore_ltriangular,NULL);

1989:   b->getrow_utriangular = PETSC_FALSE;

1991:   PetscOptionsGetBool(((PetscObject)B)->options,((PetscObject)B)->prefix,"-mat_getrow_uppertriangular",&b->getrow_utriangular,NULL);

1993:   PetscObjectComposeFunction((PetscObject)B,"MatSeqSBAIJGetArray_C",MatSeqSBAIJGetArray_SeqSBAIJ);
1994:   PetscObjectComposeFunction((PetscObject)B,"MatSeqSBAIJRestoreArray_C",MatSeqSBAIJRestoreArray_SeqSBAIJ);
1995:   PetscObjectComposeFunction((PetscObject)B,"MatStoreValues_C",MatStoreValues_SeqSBAIJ);
1996:   PetscObjectComposeFunction((PetscObject)B,"MatRetrieveValues_C",MatRetrieveValues_SeqSBAIJ);
1997:   PetscObjectComposeFunction((PetscObject)B,"MatSeqSBAIJSetColumnIndices_C",MatSeqSBAIJSetColumnIndices_SeqSBAIJ);
1998:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_seqsbaij_seqaij_C",MatConvert_SeqSBAIJ_SeqAIJ);
1999:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_seqsbaij_seqbaij_C",MatConvert_SeqSBAIJ_SeqBAIJ);
2000:   PetscObjectComposeFunction((PetscObject)B,"MatSeqSBAIJSetPreallocation_C",MatSeqSBAIJSetPreallocation_SeqSBAIJ);
2001:   PetscObjectComposeFunction((PetscObject)B,"MatSeqSBAIJSetPreallocationCSR_C",MatSeqSBAIJSetPreallocationCSR_SeqSBAIJ);
2002: #if defined(PETSC_HAVE_ELEMENTAL)
2003:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_seqsbaij_elemental_C",MatConvert_SeqSBAIJ_Elemental);
2004: #endif
2005: #if defined(PETSC_HAVE_SCALAPACK)
2006:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_seqsbaij_scalapack_C",MatConvert_SBAIJ_ScaLAPACK);
2007: #endif

2009:   B->symmetric                  = PETSC_TRUE;
2010:   B->structurally_symmetric     = PETSC_TRUE;
2011:   B->symmetric_set              = PETSC_TRUE;
2012:   B->structurally_symmetric_set = PETSC_TRUE;
2013:   B->symmetric_eternal          = PETSC_TRUE;
2014: #if defined(PETSC_USE_COMPLEX)
2015:   B->hermitian                  = PETSC_FALSE;
2016:   B->hermitian_set              = PETSC_FALSE;
2017: #else
2018:   B->hermitian                  = PETSC_TRUE;
2019:   B->hermitian_set              = PETSC_TRUE;
2020: #endif

2022:   PetscObjectChangeTypeName((PetscObject)B,MATSEQSBAIJ);

2024:   PetscOptionsBegin(PetscObjectComm((PetscObject)B),((PetscObject)B)->prefix,"Options for SEQSBAIJ matrix","Mat");
2025:   PetscOptionsBool("-mat_no_unroll","Do not optimize for inodes (slower)",NULL,no_unroll,&no_unroll,NULL);
2026:   if (no_unroll) {
2027:     PetscInfo(B,"Not using Inode routines due to -mat_no_unroll\n");
2028:   }
2029:   PetscOptionsBool("-mat_no_inode","Do not optimize for inodes (slower)",NULL,no_inode,&no_inode,NULL);
2030:   if (no_inode) {
2031:     PetscInfo(B,"Not using Inode routines due to -mat_no_inode\n");
2032:   }
2033:   PetscOptionsInt("-mat_inode_limit","Do not use inodes larger then this value",NULL,b->inode.limit,&b->inode.limit,NULL);
2034:   PetscOptionsEnd();
2035:   b->inode.use = (PetscBool)(!(no_unroll || no_inode));
2036:   if (b->inode.limit > b->inode.max_limit) b->inode.limit = b->inode.max_limit;
2037:   return(0);
2038: }

2040: /*@C
2041:    MatSeqSBAIJSetPreallocation - Creates a sparse symmetric matrix in block AIJ (block
2042:    compressed row) format.  For good matrix assembly performance the
2043:    user should preallocate the matrix storage by setting the parameter nz
2044:    (or the array nnz).  By setting these parameters accurately, performance
2045:    during matrix assembly can be increased by more than a factor of 50.

2047:    Collective on Mat

2049:    Input Parameters:
2050: +  B - the symmetric matrix
2051: .  bs - size of block, the blocks are ALWAYS square. One can use MatSetBlockSizes() to set a different row and column blocksize but the row
2052:           blocksize always defines the size of the blocks. The column blocksize sets the blocksize of the vectors obtained with MatCreateVecs()
2053: .  nz - number of block nonzeros per block row (same for all rows)
2054: -  nnz - array containing the number of block nonzeros in the upper triangular plus
2055:          diagonal portion of each block (possibly different for each block row) or NULL

2057:    Options Database Keys:
2058: +   -mat_no_unroll - uses code that does not unroll the loops in the
2059:                      block calculations (much slower)
2060: -   -mat_block_size - size of the blocks to use (only works if a negative bs is passed in

2062:    Level: intermediate

2064:    Notes:
2065:    Specify the preallocated storage with either nz or nnz (not both).
2066:    Set nz=PETSC_DEFAULT and nnz=NULL for PETSc to control dynamic memory
2067:    allocation.  See Users-Manual: ch_mat for details.

2069:    You can call MatGetInfo() to get information on how effective the preallocation was;
2070:    for example the fields mallocs,nz_allocated,nz_used,nz_unneeded;
2071:    You can also run with the option -info and look for messages with the string
2072:    malloc in them to see if additional memory allocation was needed.

2074:    If the nnz parameter is given then the nz parameter is ignored


2077: .seealso: MatCreate(), MatCreateSeqAIJ(), MatSetValues(), MatCreateSBAIJ()
2078: @*/
2079: PetscErrorCode  MatSeqSBAIJSetPreallocation(Mat B,PetscInt bs,PetscInt nz,const PetscInt nnz[])
2080: {

2087:   PetscTryMethod(B,"MatSeqSBAIJSetPreallocation_C",(Mat,PetscInt,PetscInt,const PetscInt[]),(B,bs,nz,nnz));
2088:   return(0);
2089: }

2091: /*@C
2092:    MatSeqSBAIJSetPreallocationCSR - Creates a sparse parallel matrix in SBAIJ format using the given nonzero structure and (optional) numerical values

2094:    Input Parameters:
2095: +  B - the matrix
2096: .  bs - size of block, the blocks are ALWAYS square.
2097: .  i - the indices into j for the start of each local row (starts with zero)
2098: .  j - the column indices for each local row (starts with zero) these must be sorted for each row
2099: -  v - optional values in the matrix

2101:    Level: advanced

2103:    Notes:
2104:    The order of the entries in values is specified by the MatOption MAT_ROW_ORIENTED.  For example, C programs
2105:    may want to use the default MAT_ROW_ORIENTED=PETSC_TRUE and use an array v[nnz][bs][bs] where the second index is
2106:    over rows within a block and the last index is over columns within a block row.  Fortran programs will likely set
2107:    MAT_ROW_ORIENTED=PETSC_FALSE and use a Fortran array v(bs,bs,nnz) in which the first index is over rows within a
2108:    block column and the second index is over columns within a block.

2110:    Any entries below the diagonal are ignored

2112:    Though this routine has Preallocation() in the name it also sets the exact nonzero locations of the matrix entries
2113:    and usually the numerical values as well

2115: .seealso: MatCreate(), MatCreateSeqSBAIJ(), MatSetValuesBlocked(), MatSeqSBAIJSetPreallocation(), MATSEQSBAIJ
2116: @*/
2117: PetscErrorCode MatSeqSBAIJSetPreallocationCSR(Mat B,PetscInt bs,const PetscInt i[],const PetscInt j[], const PetscScalar v[])
2118: {

2125:   PetscTryMethod(B,"MatSeqSBAIJSetPreallocationCSR_C",(Mat,PetscInt,const PetscInt[],const PetscInt[],const PetscScalar[]),(B,bs,i,j,v));
2126:   return(0);
2127: }

2129: /*@C
2130:    MatCreateSeqSBAIJ - Creates a sparse symmetric matrix in block AIJ (block
2131:    compressed row) format.  For good matrix assembly performance the
2132:    user should preallocate the matrix storage by setting the parameter nz
2133:    (or the array nnz).  By setting these parameters accurately, performance
2134:    during matrix assembly can be increased by more than a factor of 50.

2136:    Collective

2138:    Input Parameters:
2139: +  comm - MPI communicator, set to PETSC_COMM_SELF
2140: .  bs - size of block, the blocks are ALWAYS square. One can use MatSetBlockSizes() to set a different row and column blocksize but the row
2141:           blocksize always defines the size of the blocks. The column blocksize sets the blocksize of the vectors obtained with MatCreateVecs()
2142: .  m - number of rows, or number of columns
2143: .  nz - number of block nonzeros per block row (same for all rows)
2144: -  nnz - array containing the number of block nonzeros in the upper triangular plus
2145:          diagonal portion of each block (possibly different for each block row) or NULL

2147:    Output Parameter:
2148: .  A - the symmetric matrix

2150:    Options Database Keys:
2151: +   -mat_no_unroll - uses code that does not unroll the loops in the
2152:                      block calculations (much slower)
2153: -   -mat_block_size - size of the blocks to use

2155:    Level: intermediate

2157:    It is recommended that one use the MatCreate(), MatSetType() and/or MatSetFromOptions(),
2158:    MatXXXXSetPreallocation() paradigm instead of this routine directly.
2159:    [MatXXXXSetPreallocation() is, for example, MatSeqAIJSetPreallocation]

2161:    Notes:
2162:    The number of rows and columns must be divisible by blocksize.
2163:    This matrix type does not support complex Hermitian operation.

2165:    Specify the preallocated storage with either nz or nnz (not both).
2166:    Set nz=PETSC_DEFAULT and nnz=NULL for PETSc to control dynamic memory
2167:    allocation.  See Users-Manual: ch_mat for details.

2169:    If the nnz parameter is given then the nz parameter is ignored

2171: .seealso: MatCreate(), MatCreateSeqAIJ(), MatSetValues(), MatCreateSBAIJ()
2172: @*/
2173: PetscErrorCode  MatCreateSeqSBAIJ(MPI_Comm comm,PetscInt bs,PetscInt m,PetscInt n,PetscInt nz,const PetscInt nnz[],Mat *A)
2174: {

2178:   MatCreate(comm,A);
2179:   MatSetSizes(*A,m,n,m,n);
2180:   MatSetType(*A,MATSEQSBAIJ);
2181:   MatSeqSBAIJSetPreallocation(*A,bs,nz,(PetscInt*)nnz);
2182:   return(0);
2183: }

2185: PetscErrorCode MatDuplicate_SeqSBAIJ(Mat A,MatDuplicateOption cpvalues,Mat *B)
2186: {
2187:   Mat            C;
2188:   Mat_SeqSBAIJ   *c,*a = (Mat_SeqSBAIJ*)A->data;
2190:   PetscInt       i,mbs = a->mbs,nz = a->nz,bs2 =a->bs2;

2193:   if (a->i[mbs] != nz) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Corrupt matrix");

2195:   *B   = NULL;
2196:   MatCreate(PetscObjectComm((PetscObject)A),&C);
2197:   MatSetSizes(C,A->rmap->N,A->cmap->n,A->rmap->N,A->cmap->n);
2198:   MatSetBlockSizesFromMats(C,A,A);
2199:   MatSetType(C,MATSEQSBAIJ);
2200:   c    = (Mat_SeqSBAIJ*)C->data;

2202:   C->preallocated       = PETSC_TRUE;
2203:   C->factortype         = A->factortype;
2204:   c->row                = NULL;
2205:   c->icol               = NULL;
2206:   c->saved_values       = NULL;
2207:   c->keepnonzeropattern = a->keepnonzeropattern;
2208:   C->assembled          = PETSC_TRUE;

2210:   PetscLayoutReference(A->rmap,&C->rmap);
2211:   PetscLayoutReference(A->cmap,&C->cmap);
2212:   c->bs2 = a->bs2;
2213:   c->mbs = a->mbs;
2214:   c->nbs = a->nbs;

2216:   if (cpvalues == MAT_SHARE_NONZERO_PATTERN) {
2217:     c->imax           = a->imax;
2218:     c->ilen           = a->ilen;
2219:     c->free_imax_ilen = PETSC_FALSE;
2220:   } else {
2221:     PetscMalloc2((mbs+1),&c->imax,(mbs+1),&c->ilen);
2222:     PetscLogObjectMemory((PetscObject)C,2*(mbs+1)*sizeof(PetscInt));
2223:     for (i=0; i<mbs; i++) {
2224:       c->imax[i] = a->imax[i];
2225:       c->ilen[i] = a->ilen[i];
2226:     }
2227:     c->free_imax_ilen = PETSC_TRUE;
2228:   }

2230:   /* allocate the matrix space */
2231:   if (cpvalues == MAT_SHARE_NONZERO_PATTERN) {
2232:     PetscMalloc1(bs2*nz,&c->a);
2233:     PetscLogObjectMemory((PetscObject)C,nz*bs2*sizeof(MatScalar));
2234:     c->i            = a->i;
2235:     c->j            = a->j;
2236:     c->singlemalloc = PETSC_FALSE;
2237:     c->free_a       = PETSC_TRUE;
2238:     c->free_ij      = PETSC_FALSE;
2239:     c->parent       = A;
2240:     PetscObjectReference((PetscObject)A);
2241:     MatSetOption(A,MAT_NEW_NONZERO_LOCATION_ERR,PETSC_TRUE);
2242:     MatSetOption(C,MAT_NEW_NONZERO_LOCATION_ERR,PETSC_TRUE);
2243:   } else {
2244:     PetscMalloc3(bs2*nz,&c->a,nz,&c->j,mbs+1,&c->i);
2245:     PetscArraycpy(c->i,a->i,mbs+1);
2246:     PetscLogObjectMemory((PetscObject)C,(mbs+1)*sizeof(PetscInt) + nz*(bs2*sizeof(MatScalar) + sizeof(PetscInt)));
2247:     c->singlemalloc = PETSC_TRUE;
2248:     c->free_a       = PETSC_TRUE;
2249:     c->free_ij      = PETSC_TRUE;
2250:   }
2251:   if (mbs > 0) {
2252:     if (cpvalues != MAT_SHARE_NONZERO_PATTERN) {
2253:       PetscArraycpy(c->j,a->j,nz);
2254:     }
2255:     if (cpvalues == MAT_COPY_VALUES) {
2256:       PetscArraycpy(c->a,a->a,bs2*nz);
2257:     } else {
2258:       PetscArrayzero(c->a,bs2*nz);
2259:     }
2260:     if (a->jshort) {
2261:       /* cannot share jshort, it is reallocated in MatAssemblyEnd_SeqSBAIJ() */
2262:       /* if the parent matrix is reassembled, this child matrix will never notice */
2263:       PetscMalloc1(nz,&c->jshort);
2264:       PetscLogObjectMemory((PetscObject)C,nz*sizeof(unsigned short));
2265:       PetscArraycpy(c->jshort,a->jshort,nz);

2267:       c->free_jshort = PETSC_TRUE;
2268:     }
2269:   }

2271:   c->roworiented = a->roworiented;
2272:   c->nonew       = a->nonew;

2274:   if (a->diag) {
2275:     if (cpvalues == MAT_SHARE_NONZERO_PATTERN) {
2276:       c->diag      = a->diag;
2277:       c->free_diag = PETSC_FALSE;
2278:     } else {
2279:       PetscMalloc1(mbs,&c->diag);
2280:       PetscLogObjectMemory((PetscObject)C,mbs*sizeof(PetscInt));
2281:       for (i=0; i<mbs; i++) c->diag[i] = a->diag[i];
2282:       c->free_diag = PETSC_TRUE;
2283:     }
2284:   }
2285:   c->nz         = a->nz;
2286:   c->maxnz      = a->nz; /* Since we allocate exactly the right amount */
2287:   c->solve_work = NULL;
2288:   c->mult_work  = NULL;

2290:   *B   = C;
2291:   PetscFunctionListDuplicate(((PetscObject)A)->qlist,&((PetscObject)C)->qlist);
2292:   return(0);
2293: }

2295: /* Used for both SeqBAIJ and SeqSBAIJ matrices */
2296: #define MatLoad_SeqSBAIJ_Binary MatLoad_SeqBAIJ_Binary

2298: PetscErrorCode MatLoad_SeqSBAIJ(Mat mat,PetscViewer viewer)
2299: {
2301:   PetscBool      isbinary;

2304:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
2305:   if (!isbinary) SETERRQ2(PetscObjectComm((PetscObject)viewer),PETSC_ERR_SUP,"Viewer type %s not yet supported for reading %s matrices",((PetscObject)viewer)->type_name,((PetscObject)mat)->type_name);
2306:   MatLoad_SeqSBAIJ_Binary(mat,viewer);
2307:   return(0);
2308: }

2310: /*@
2311:      MatCreateSeqSBAIJWithArrays - Creates an sequential SBAIJ matrix using matrix elements
2312:               (upper triangular entries in CSR format) provided by the user.

2314:      Collective

2316:    Input Parameters:
2317: +  comm - must be an MPI communicator of size 1
2318: .  bs - size of block
2319: .  m - number of rows
2320: .  n - number of columns
2321: .  i - row indices; that is i[0] = 0, i[row] = i[row-1] + number of block elements in that row block row of the matrix
2322: .  j - column indices
2323: -  a - matrix values

2325:    Output Parameter:
2326: .  mat - the matrix

2328:    Level: advanced

2330:    Notes:
2331:        The i, j, and a arrays are not copied by this routine, the user must free these arrays
2332:     once the matrix is destroyed

2334:        You cannot set new nonzero locations into this matrix, that will generate an error.

2336:        The i and j indices are 0 based

2338:        When block size is greater than 1 the matrix values must be stored using the SBAIJ storage format (see the SBAIJ code to determine this). For block size of 1
2339:        it is the regular CSR format excluding the lower triangular elements.

2341: .seealso: MatCreate(), MatCreateSBAIJ(), MatCreateSeqSBAIJ()

2343: @*/
2344: PetscErrorCode  MatCreateSeqSBAIJWithArrays(MPI_Comm comm,PetscInt bs,PetscInt m,PetscInt n,PetscInt i[],PetscInt j[],PetscScalar a[],Mat *mat)
2345: {
2347:   PetscInt       ii;
2348:   Mat_SeqSBAIJ   *sbaij;

2351:   if (bs != 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"block size %D > 1 is not supported yet",bs);
2352:   if (m > 0 && i[0]) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"i (row indices) must start with 0");

2354:   MatCreate(comm,mat);
2355:   MatSetSizes(*mat,m,n,m,n);
2356:   MatSetType(*mat,MATSEQSBAIJ);
2357:   MatSeqSBAIJSetPreallocation(*mat,bs,MAT_SKIP_ALLOCATION,NULL);
2358:   sbaij = (Mat_SeqSBAIJ*)(*mat)->data;
2359:   PetscMalloc2(m,&sbaij->imax,m,&sbaij->ilen);
2360:   PetscLogObjectMemory((PetscObject)*mat,2*m*sizeof(PetscInt));

2362:   sbaij->i = i;
2363:   sbaij->j = j;
2364:   sbaij->a = a;

2366:   sbaij->singlemalloc   = PETSC_FALSE;
2367:   sbaij->nonew          = -1;             /*this indicates that inserting a new value in the matrix that generates a new nonzero is an error*/
2368:   sbaij->free_a         = PETSC_FALSE;
2369:   sbaij->free_ij        = PETSC_FALSE;
2370:   sbaij->free_imax_ilen = PETSC_TRUE;

2372:   for (ii=0; ii<m; ii++) {
2373:     sbaij->ilen[ii] = sbaij->imax[ii] = i[ii+1] - i[ii];
2374:     if (PetscUnlikelyDebug(i[ii+1] - i[ii] < 0)) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Negative row length in i (row indices) row = %d length = %d",ii,i[ii+1] - i[ii]);
2375:   }
2376:   if (PetscDefined(USE_DEBUG)) {
2377:     for (ii=0; ii<sbaij->i[m]; ii++) {
2378:       if (j[ii] < 0) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Negative column index at location = %d index = %d",ii,j[ii]);
2379:       if (j[ii] > n - 1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Column index to large at location = %d index = %d",ii,j[ii]);
2380:     }
2381:   }

2383:   MatAssemblyBegin(*mat,MAT_FINAL_ASSEMBLY);
2384:   MatAssemblyEnd(*mat,MAT_FINAL_ASSEMBLY);
2385:   return(0);
2386: }

2388: PetscErrorCode MatCreateMPIMatConcatenateSeqMat_SeqSBAIJ(MPI_Comm comm,Mat inmat,PetscInt n,MatReuse scall,Mat *outmat)
2389: {
2391:   PetscMPIInt    size;

2394:   MPI_Comm_size(comm,&size);
2395:   if (size == 1 && scall == MAT_REUSE_MATRIX) {
2396:     MatCopy(inmat,*outmat,SAME_NONZERO_PATTERN);
2397:   } else {
2398:     MatCreateMPIMatConcatenateSeqMat_MPISBAIJ(comm,inmat,n,scall,outmat);
2399:   }
2400:   return(0);
2401: }