Actual source code: umfpack.c


  2: /*
  3:    Provides an interface to the UMFPACK sparse solver available through SuiteSparse version 4.2.1

  5:    When build with PETSC_USE_64BIT_INDICES this will use Suitesparse_long as the
  6:    integer type in UMFPACK, otherwise it will use int. This means
  7:    all integers in this file as simply declared as PetscInt. Also it means
  8:    that one cannot use 64BIT_INDICES on 32bit machines [as Suitesparse_long is 32bit only]

 10: */
 11: #include <../src/mat/impls/aij/seq/aij.h>

 13: #if defined(PETSC_USE_64BIT_INDICES)
 14: #if defined(PETSC_USE_COMPLEX)
 15: #define umfpack_UMF_free_symbolic                      umfpack_zl_free_symbolic
 16: #define umfpack_UMF_free_numeric                       umfpack_zl_free_numeric
 17: /* the type casts are needed because PetscInt is long long while SuiteSparse_long is long and compilers warn even when they are identical */
 18: #define umfpack_UMF_wsolve(a,b,c,d,e,f,g,h,i,j,k,l,m,n) umfpack_zl_wsolve(a,(SuiteSparse_long*)b,(SuiteSparse_long*)c,d,e,f,g,h,i,(SuiteSparse_long*)j,k,l,(SuiteSparse_long*)m,n)
 19: #define umfpack_UMF_numeric(a,b,c,d,e,f,g,h)          umfpack_zl_numeric((SuiteSparse_long*)a,(SuiteSparse_long*)b,c,d,e,f,g,h)
 20: #define umfpack_UMF_report_numeric                    umfpack_zl_report_numeric
 21: #define umfpack_UMF_report_control                    umfpack_zl_report_control
 22: #define umfpack_UMF_report_status                     umfpack_zl_report_status
 23: #define umfpack_UMF_report_info                       umfpack_zl_report_info
 24: #define umfpack_UMF_report_symbolic                   umfpack_zl_report_symbolic
 25: #define umfpack_UMF_qsymbolic(a,b,c,d,e,f,g,h,i,j)    umfpack_zl_qsymbolic(a,b,(SuiteSparse_long*)c,(SuiteSparse_long*)d,e,f,(SuiteSparse_long*)g,h,i,j)
 26: #define umfpack_UMF_symbolic(a,b,c,d,e,f,g,h,i)       umfpack_zl_symbolic(a,b,(SuiteSparse_long*)c,(SuiteSparse_long*)d,e,f,g,h,i)
 27: #define umfpack_UMF_defaults                          umfpack_zl_defaults

 29: #else
 30: #define umfpack_UMF_free_symbolic                  umfpack_dl_free_symbolic
 31: #define umfpack_UMF_free_numeric                   umfpack_dl_free_numeric
 32: #define umfpack_UMF_wsolve(a,b,c,d,e,f,g,h,i,j,k)  umfpack_dl_wsolve(a,(SuiteSparse_long*)b,(SuiteSparse_long*)c,d,e,f,g,h,i,(SuiteSparse_long*)j,k)
 33: #define umfpack_UMF_numeric(a,b,c,d,e,f,g)         umfpack_dl_numeric((SuiteSparse_long*)a,(SuiteSparse_long*)b,c,d,e,f,g)
 34: #define umfpack_UMF_report_numeric                 umfpack_dl_report_numeric
 35: #define umfpack_UMF_report_control                 umfpack_dl_report_control
 36: #define umfpack_UMF_report_status                  umfpack_dl_report_status
 37: #define umfpack_UMF_report_info                    umfpack_dl_report_info
 38: #define umfpack_UMF_report_symbolic                umfpack_dl_report_symbolic
 39: #define umfpack_UMF_qsymbolic(a,b,c,d,e,f,g,h,i)   umfpack_dl_qsymbolic(a,b,(SuiteSparse_long*)c,(SuiteSparse_long*)d,e,(SuiteSparse_long*)f,g,h,i)
 40: #define umfpack_UMF_symbolic(a,b,c,d,e,f,g,h)      umfpack_dl_symbolic(a,b,(SuiteSparse_long*)c,(SuiteSparse_long*)d,e,f,g,h)
 41: #define umfpack_UMF_defaults                       umfpack_dl_defaults
 42: #endif

 44: #else
 45: #if defined(PETSC_USE_COMPLEX)
 46: #define umfpack_UMF_free_symbolic   umfpack_zi_free_symbolic
 47: #define umfpack_UMF_free_numeric    umfpack_zi_free_numeric
 48: #define umfpack_UMF_wsolve          umfpack_zi_wsolve
 49: #define umfpack_UMF_numeric         umfpack_zi_numeric
 50: #define umfpack_UMF_report_numeric  umfpack_zi_report_numeric
 51: #define umfpack_UMF_report_control  umfpack_zi_report_control
 52: #define umfpack_UMF_report_status   umfpack_zi_report_status
 53: #define umfpack_UMF_report_info     umfpack_zi_report_info
 54: #define umfpack_UMF_report_symbolic umfpack_zi_report_symbolic
 55: #define umfpack_UMF_qsymbolic       umfpack_zi_qsymbolic
 56: #define umfpack_UMF_symbolic        umfpack_zi_symbolic
 57: #define umfpack_UMF_defaults        umfpack_zi_defaults

 59: #else
 60: #define umfpack_UMF_free_symbolic   umfpack_di_free_symbolic
 61: #define umfpack_UMF_free_numeric    umfpack_di_free_numeric
 62: #define umfpack_UMF_wsolve          umfpack_di_wsolve
 63: #define umfpack_UMF_numeric         umfpack_di_numeric
 64: #define umfpack_UMF_report_numeric  umfpack_di_report_numeric
 65: #define umfpack_UMF_report_control  umfpack_di_report_control
 66: #define umfpack_UMF_report_status   umfpack_di_report_status
 67: #define umfpack_UMF_report_info     umfpack_di_report_info
 68: #define umfpack_UMF_report_symbolic umfpack_di_report_symbolic
 69: #define umfpack_UMF_qsymbolic       umfpack_di_qsymbolic
 70: #define umfpack_UMF_symbolic        umfpack_di_symbolic
 71: #define umfpack_UMF_defaults        umfpack_di_defaults
 72: #endif
 73: #endif

 75: EXTERN_C_BEGIN
 76: #include <umfpack.h>
 77: EXTERN_C_END

 79: static const char *const UmfpackOrderingTypes[] = {"CHOLMOD","AMD","GIVEN","METIS","BEST","NONE","USER","UmfpackOrderingTypes","UMFPACK_ORDERING_",0};

 81: typedef struct {
 82:   void         *Symbolic, *Numeric;
 83:   double       Info[UMFPACK_INFO], Control[UMFPACK_CONTROL],*W;
 84:   PetscInt     *Wi,*perm_c;
 85:   Mat          A;               /* Matrix used for factorization */
 86:   MatStructure flg;

 88:   /* Flag to clean up UMFPACK objects during Destroy */
 89:   PetscBool CleanUpUMFPACK;
 90: } Mat_UMFPACK;

 92: static PetscErrorCode MatDestroy_UMFPACK(Mat A)
 93: {
 95:   Mat_UMFPACK    *lu=(Mat_UMFPACK*)A->data;

 98:   if (lu->CleanUpUMFPACK) {
 99:     umfpack_UMF_free_symbolic(&lu->Symbolic);
100:     umfpack_UMF_free_numeric(&lu->Numeric);
101:     PetscFree(lu->Wi);
102:     PetscFree(lu->W);
103:     PetscFree(lu->perm_c);
104:   }
105:   MatDestroy(&lu->A);
106:   PetscFree(A->data);
107:   return(0);
108: }

110: static PetscErrorCode MatSolve_UMFPACK_Private(Mat A,Vec b,Vec x,int uflag)
111: {
112:   Mat_UMFPACK       *lu = (Mat_UMFPACK*)A->data;
113:   Mat_SeqAIJ        *a  = (Mat_SeqAIJ*)lu->A->data;
114:   PetscScalar       *av = a->a,*xa;
115:   const PetscScalar *ba;
116:   PetscErrorCode    ierr;
117:   PetscInt          *ai = a->i,*aj = a->j,status;
118:   static PetscBool  cite = PETSC_FALSE;

121:   if (!A->rmap->n) return(0);
122:   PetscCitationsRegister("@article{davis2004algorithm,\n  title={Algorithm 832: {UMFPACK} V4.3---An Unsymmetric-Pattern Multifrontal Method},\n  author={Davis, Timothy A},\n  journal={ACM Transactions on Mathematical Software (TOMS)},\n  volume={30},\n  number={2},\n  pages={196--199},\n  year={2004},\n  publisher={ACM}\n}\n",&cite);
123:   /* solve Ax = b by umfpack_*_wsolve */
124:   /* ----------------------------------*/

126:   if (!lu->Wi) {  /* first time, allocate working space for wsolve */
127:     PetscMalloc1(A->rmap->n,&lu->Wi);
128:     PetscMalloc1(5*A->rmap->n,&lu->W);
129:   }

131:   VecGetArrayRead(b,&ba);
132:   VecGetArray(x,&xa);
133: #if defined(PETSC_USE_COMPLEX)
134:   status = umfpack_UMF_wsolve(uflag,ai,aj,(PetscReal*)av,NULL,(PetscReal*)xa,NULL,(PetscReal*)ba,NULL,lu->Numeric,lu->Control,lu->Info,lu->Wi,lu->W);
135: #else
136:   status = umfpack_UMF_wsolve(uflag,ai,aj,av,xa,ba,lu->Numeric,lu->Control,lu->Info,lu->Wi,lu->W);
137: #endif
138:   umfpack_UMF_report_info(lu->Control, lu->Info);
139:   if (status < 0) {
140:     umfpack_UMF_report_status(lu->Control, status);
141:     SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"umfpack_UMF_wsolve failed");
142:   }

144:   VecRestoreArrayRead(b,&ba);
145:   VecRestoreArray(x,&xa);
146:   return(0);
147: }

149: static PetscErrorCode MatSolve_UMFPACK(Mat A,Vec b,Vec x)
150: {

154:   /* We gave UMFPACK the algebraic transpose (because it assumes column alignment) */
155:   MatSolve_UMFPACK_Private(A,b,x,UMFPACK_Aat);
156:   return(0);
157: }

159: static PetscErrorCode MatSolveTranspose_UMFPACK(Mat A,Vec b,Vec x)
160: {

164:   /* We gave UMFPACK the algebraic transpose (because it assumes column alignment) */
165:   MatSolve_UMFPACK_Private(A,b,x,UMFPACK_A);
166:   return(0);
167: }

169: static PetscErrorCode MatLUFactorNumeric_UMFPACK(Mat F,Mat A,const MatFactorInfo *info)
170: {
171:   Mat_UMFPACK    *lu = (Mat_UMFPACK*)(F)->data;
172:   Mat_SeqAIJ     *a  = (Mat_SeqAIJ*)A->data;
173:   PetscInt       *ai = a->i,*aj=a->j,status;
174:   PetscScalar    *av = a->a;

178:   if (!A->rmap->n) return(0);
179:   /* numeric factorization of A' */
180:   /* ----------------------------*/

182:   if (lu->flg == SAME_NONZERO_PATTERN && lu->Numeric) {
183:     umfpack_UMF_free_numeric(&lu->Numeric);
184:   }
185: #if defined(PETSC_USE_COMPLEX)
186:   status = umfpack_UMF_numeric(ai,aj,(double*)av,NULL,lu->Symbolic,&lu->Numeric,lu->Control,lu->Info);
187: #else
188:   status = umfpack_UMF_numeric(ai,aj,av,lu->Symbolic,&lu->Numeric,lu->Control,lu->Info);
189: #endif
190:   if (status < 0) {
191:     umfpack_UMF_report_status(lu->Control, status);
192:     SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"umfpack_UMF_numeric failed");
193:   }
194:   /* report numeric factorization of A' when Control[PRL] > 3 */
195:   (void) umfpack_UMF_report_numeric(lu->Numeric, lu->Control);

197:   PetscObjectReference((PetscObject)A);
198:   MatDestroy(&lu->A);

200:   lu->A                  = A;
201:   lu->flg                = SAME_NONZERO_PATTERN;
202:   lu->CleanUpUMFPACK     = PETSC_TRUE;
203:   F->ops->solve          = MatSolve_UMFPACK;
204:   F->ops->solvetranspose = MatSolveTranspose_UMFPACK;
205:   return(0);
206: }

208: /*
209:    Note the r permutation is ignored
210: */
211: static PetscErrorCode MatLUFactorSymbolic_UMFPACK(Mat F,Mat A,IS r,IS c,const MatFactorInfo *info)
212: {
213:   Mat_SeqAIJ     *a  = (Mat_SeqAIJ*)A->data;
214:   Mat_UMFPACK    *lu = (Mat_UMFPACK*)(F->data);
216:   PetscInt       i,*ai = a->i,*aj = a->j,m=A->rmap->n,n=A->cmap->n;
217: #if !defined(PETSC_USE_COMPLEX)
218:   PetscScalar    *av = a->a;
219: #endif
220:   const PetscInt *ra;
221:   PetscInt       status;

224:   (F)->ops->lufactornumeric = MatLUFactorNumeric_UMFPACK;
225:   if (!n) return(0);
226:   if (r) {
227:     ISGetIndices(r,&ra);
228:     PetscMalloc1(m,&lu->perm_c);
229:     /* we cannot simply memcpy on 64 bit archs */
230:     for (i = 0; i < m; i++) lu->perm_c[i] = ra[i];
231:     ISRestoreIndices(r,&ra);
232:   }

234:   /* print the control parameters */
235:   if (lu->Control[UMFPACK_PRL] > 1) umfpack_UMF_report_control(lu->Control);

237:   /* symbolic factorization of A' */
238:   /* ---------------------------------------------------------------------- */
239:   if (r) { /* use Petsc row ordering */
240: #if !defined(PETSC_USE_COMPLEX)
241:     status = umfpack_UMF_qsymbolic(n,m,ai,aj,av,lu->perm_c,&lu->Symbolic,lu->Control,lu->Info);
242: #else
243:     status = umfpack_UMF_qsymbolic(n,m,ai,aj,NULL,NULL,lu->perm_c,&lu->Symbolic,lu->Control,lu->Info);
244: #endif
245:   } else { /* use Umfpack col ordering */
246: #if !defined(PETSC_USE_COMPLEX)
247:     status = umfpack_UMF_symbolic(n,m,ai,aj,av,&lu->Symbolic,lu->Control,lu->Info);
248: #else
249:     status = umfpack_UMF_symbolic(n,m,ai,aj,NULL,NULL,&lu->Symbolic,lu->Control,lu->Info);
250: #endif
251:   }
252:   if (status < 0) {
253:     umfpack_UMF_report_info(lu->Control, lu->Info);
254:     umfpack_UMF_report_status(lu->Control, status);
255:     SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"umfpack_UMF_symbolic failed");
256:   }
257:   /* report sumbolic factorization of A' when Control[PRL] > 3 */
258:   (void) umfpack_UMF_report_symbolic(lu->Symbolic, lu->Control);

260:   lu->flg                   = DIFFERENT_NONZERO_PATTERN;
261:   lu->CleanUpUMFPACK        = PETSC_TRUE;
262:   return(0);
263: }

265: static PetscErrorCode MatView_Info_UMFPACK(Mat A,PetscViewer viewer)
266: {
267:   Mat_UMFPACK    *lu= (Mat_UMFPACK*)A->data;

271:   /* check if matrix is UMFPACK type */
272:   if (A->ops->solve != MatSolve_UMFPACK) return(0);

274:   PetscViewerASCIIPrintf(viewer,"UMFPACK run parameters:\n");
275:   /* Control parameters used by reporting routiones */
276:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_PRL]: %g\n",lu->Control[UMFPACK_PRL]);

278:   /* Control parameters used by symbolic factorization */
279:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_STRATEGY]: %g\n",lu->Control[UMFPACK_STRATEGY]);
280:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_DENSE_COL]: %g\n",lu->Control[UMFPACK_DENSE_COL]);
281:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_DENSE_ROW]: %g\n",lu->Control[UMFPACK_DENSE_ROW]);
282:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_AMD_DENSE]: %g\n",lu->Control[UMFPACK_AMD_DENSE]);
283:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_BLOCK_SIZE]: %g\n",lu->Control[UMFPACK_BLOCK_SIZE]);
284:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_FIXQ]: %g\n",lu->Control[UMFPACK_FIXQ]);
285:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_AGGRESSIVE]: %g\n",lu->Control[UMFPACK_AGGRESSIVE]);

287:   /* Control parameters used by numeric factorization */
288:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_PIVOT_TOLERANCE]: %g\n",lu->Control[UMFPACK_PIVOT_TOLERANCE]);
289:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_SYM_PIVOT_TOLERANCE]: %g\n",lu->Control[UMFPACK_SYM_PIVOT_TOLERANCE]);
290:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_SCALE]: %g\n",lu->Control[UMFPACK_SCALE]);
291:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_ALLOC_INIT]: %g\n",lu->Control[UMFPACK_ALLOC_INIT]);
292:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_DROPTOL]: %g\n",lu->Control[UMFPACK_DROPTOL]);

294:   /* Control parameters used by solve */
295:   PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_IRSTEP]: %g\n",lu->Control[UMFPACK_IRSTEP]);

297:   /* mat ordering */
298:   if (!lu->perm_c) {
299:     PetscViewerASCIIPrintf(viewer,"  Control[UMFPACK_ORDERING]: AMD (not using the PETSc ordering)\n",UmfpackOrderingTypes[(int)lu->Control[UMFPACK_ORDERING]]);
300:   }
301:   return(0);
302: }

304: static PetscErrorCode MatView_UMFPACK(Mat A,PetscViewer viewer)
305: {
306:   PetscErrorCode    ierr;
307:   PetscBool         iascii;
308:   PetscViewerFormat format;

311:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
312:   if (iascii) {
313:     PetscViewerGetFormat(viewer,&format);
314:     if (format == PETSC_VIEWER_ASCII_INFO) {
315:       MatView_Info_UMFPACK(A,viewer);
316:     }
317:   }
318:   return(0);
319: }

321: PetscErrorCode MatFactorGetSolverType_seqaij_umfpack(Mat A,MatSolverType *type)
322: {
324:   *type = MATSOLVERUMFPACK;
325:   return(0);
326: }


329: /*MC
330:   MATSOLVERUMFPACK = "umfpack" - A matrix type providing direct solvers (LU) for sequential matrices
331:   via the external package UMFPACK.

333:   Use ./configure --download-suitesparse to install PETSc to use UMFPACK

335:   Use -pc_type lu -pc_factor_mat_solver_type umfpack to use this direct solver

337:   Consult UMFPACK documentation for more information about the Control parameters
338:   which correspond to the options database keys below.

340:   Options Database Keys:
341: + -mat_umfpack_ordering                - CHOLMOD, AMD, GIVEN, METIS, BEST, NONE
342: . -mat_umfpack_prl                     - UMFPACK print level: Control[UMFPACK_PRL]
343: . -mat_umfpack_strategy <AUTO>         - (choose one of) AUTO UNSYMMETRIC SYMMETRIC 2BY2
344: . -mat_umfpack_dense_col <alpha_c>     - UMFPACK dense column threshold: Control[UMFPACK_DENSE_COL]
345: . -mat_umfpack_dense_row <0.2>         - Control[UMFPACK_DENSE_ROW]
346: . -mat_umfpack_amd_dense <10>          - Control[UMFPACK_AMD_DENSE]
347: . -mat_umfpack_block_size <bs>         - UMFPACK block size for BLAS-Level 3 calls: Control[UMFPACK_BLOCK_SIZE]
348: . -mat_umfpack_2by2_tolerance <0.01>   - Control[UMFPACK_2BY2_TOLERANCE]
349: . -mat_umfpack_fixq <0>                - Control[UMFPACK_FIXQ]
350: . -mat_umfpack_aggressive <1>          - Control[UMFPACK_AGGRESSIVE]
351: . -mat_umfpack_pivot_tolerance <delta> - UMFPACK partial pivot tolerance: Control[UMFPACK_PIVOT_TOLERANCE]
352: . -mat_umfpack_sym_pivot_tolerance <0.001> - Control[UMFPACK_SYM_PIVOT_TOLERANCE]
353: . -mat_umfpack_scale <NONE>           - (choose one of) NONE SUM MAX
354: . -mat_umfpack_alloc_init <delta>      - UMFPACK factorized matrix allocation modifier: Control[UMFPACK_ALLOC_INIT]
355: . -mat_umfpack_droptol <0>            - Control[UMFPACK_DROPTOL]
356: - -mat_umfpack_irstep <maxit>          - UMFPACK maximum number of iterative refinement steps: Control[UMFPACK_IRSTEP]

358:    Level: beginner

360:    Note: UMFPACK is part of SuiteSparse http://faculty.cse.tamu.edu/davis/suitesparse.html

362: .seealso: PCLU, MATSOLVERSUPERLU, MATSOLVERMUMPS, PCFactorSetMatSolverType(), MatSolverType
363: M*/

365: PETSC_EXTERN PetscErrorCode MatGetFactor_seqaij_umfpack(Mat A,MatFactorType ftype,Mat *F)
366: {
367:   Mat            B;
368:   Mat_UMFPACK    *lu;
370:   PetscInt       m=A->rmap->n,n=A->cmap->n,idx;

372:   const char *strategy[]={"AUTO","UNSYMMETRIC","SYMMETRIC"};
373:   const char *scale[]   ={"NONE","SUM","MAX"};
374:   PetscBool  flg;

377:   /* Create the factorization matrix F */
378:   MatCreate(PetscObjectComm((PetscObject)A),&B);
379:   MatSetSizes(B,PETSC_DECIDE,PETSC_DECIDE,m,n);
380:   PetscStrallocpy("umfpack",&((PetscObject)B)->type_name);
381:   MatSetUp(B);

383:   PetscNewLog(B,&lu);

385:   B->data                   = lu;
386:   B->ops->getinfo          = MatGetInfo_External;
387:   B->ops->lufactorsymbolic = MatLUFactorSymbolic_UMFPACK;
388:   B->ops->destroy          = MatDestroy_UMFPACK;
389:   B->ops->view             = MatView_UMFPACK;
390:   B->ops->matsolve         = NULL;

392:   PetscObjectComposeFunction((PetscObject)B,"MatFactorGetSolverType_C",MatFactorGetSolverType_seqaij_umfpack);

394:   B->factortype   = MAT_FACTOR_LU;
395:   B->assembled    = PETSC_TRUE;           /* required by -ksp_view */
396:   B->preallocated = PETSC_TRUE;

398:   PetscFree(B->solvertype);
399:   PetscStrallocpy(MATSOLVERUMFPACK,&B->solvertype);
400:   B->useordering = PETSC_FALSE;

402:   /* initializations */
403:   /* ------------------------------------------------*/
404:   /* get the default control parameters */
405:   umfpack_UMF_defaults(lu->Control);
406:   lu->perm_c                  = NULL; /* use defaul UMFPACK col permutation */
407:   lu->Control[UMFPACK_IRSTEP] = 0;          /* max num of iterative refinement steps to attempt */

409:   PetscOptionsBegin(PetscObjectComm((PetscObject)A),((PetscObject)A)->prefix,"UMFPACK Options","Mat");
410:   /* Control parameters used by reporting routiones */
411:   PetscOptionsReal("-mat_umfpack_prl","Control[UMFPACK_PRL]","None",lu->Control[UMFPACK_PRL],&lu->Control[UMFPACK_PRL],NULL);

413:   /* Control parameters for symbolic factorization */
414:   PetscOptionsEList("-mat_umfpack_strategy","ordering and pivoting strategy","None",strategy,3,strategy[0],&idx,&flg);
415:   if (flg) {
416:     switch (idx) {
417:     case 0: lu->Control[UMFPACK_STRATEGY] = UMFPACK_STRATEGY_AUTO; break;
418:     case 1: lu->Control[UMFPACK_STRATEGY] = UMFPACK_STRATEGY_UNSYMMETRIC; break;
419:     case 2: lu->Control[UMFPACK_STRATEGY] = UMFPACK_STRATEGY_SYMMETRIC; break;
420:     }
421:   }
422:   PetscOptionsEList("-mat_umfpack_ordering","Internal ordering method","None",UmfpackOrderingTypes,sizeof(UmfpackOrderingTypes)/sizeof(UmfpackOrderingTypes[0]),UmfpackOrderingTypes[(int)lu->Control[UMFPACK_ORDERING]],&idx,&flg);
423:   if (flg) lu->Control[UMFPACK_ORDERING] = (int)idx;
424:   PetscOptionsReal("-mat_umfpack_dense_col","Control[UMFPACK_DENSE_COL]","None",lu->Control[UMFPACK_DENSE_COL],&lu->Control[UMFPACK_DENSE_COL],NULL);
425:   PetscOptionsReal("-mat_umfpack_dense_row","Control[UMFPACK_DENSE_ROW]","None",lu->Control[UMFPACK_DENSE_ROW],&lu->Control[UMFPACK_DENSE_ROW],NULL);
426:   PetscOptionsReal("-mat_umfpack_amd_dense","Control[UMFPACK_AMD_DENSE]","None",lu->Control[UMFPACK_AMD_DENSE],&lu->Control[UMFPACK_AMD_DENSE],NULL);
427:   PetscOptionsReal("-mat_umfpack_block_size","Control[UMFPACK_BLOCK_SIZE]","None",lu->Control[UMFPACK_BLOCK_SIZE],&lu->Control[UMFPACK_BLOCK_SIZE],NULL);
428:   PetscOptionsReal("-mat_umfpack_fixq","Control[UMFPACK_FIXQ]","None",lu->Control[UMFPACK_FIXQ],&lu->Control[UMFPACK_FIXQ],NULL);
429:   PetscOptionsReal("-mat_umfpack_aggressive","Control[UMFPACK_AGGRESSIVE]","None",lu->Control[UMFPACK_AGGRESSIVE],&lu->Control[UMFPACK_AGGRESSIVE],NULL);

431:   /* Control parameters used by numeric factorization */
432:   PetscOptionsReal("-mat_umfpack_pivot_tolerance","Control[UMFPACK_PIVOT_TOLERANCE]","None",lu->Control[UMFPACK_PIVOT_TOLERANCE],&lu->Control[UMFPACK_PIVOT_TOLERANCE],NULL);
433:   PetscOptionsReal("-mat_umfpack_sym_pivot_tolerance","Control[UMFPACK_SYM_PIVOT_TOLERANCE]","None",lu->Control[UMFPACK_SYM_PIVOT_TOLERANCE],&lu->Control[UMFPACK_SYM_PIVOT_TOLERANCE],NULL);
434:   PetscOptionsEList("-mat_umfpack_scale","Control[UMFPACK_SCALE]","None",scale,3,scale[0],&idx,&flg);
435:   if (flg) {
436:     switch (idx) {
437:     case 0: lu->Control[UMFPACK_SCALE] = UMFPACK_SCALE_NONE; break;
438:     case 1: lu->Control[UMFPACK_SCALE] = UMFPACK_SCALE_SUM; break;
439:     case 2: lu->Control[UMFPACK_SCALE] = UMFPACK_SCALE_MAX; break;
440:     }
441:   }
442:   PetscOptionsReal("-mat_umfpack_alloc_init","Control[UMFPACK_ALLOC_INIT]","None",lu->Control[UMFPACK_ALLOC_INIT],&lu->Control[UMFPACK_ALLOC_INIT],NULL);
443:   PetscOptionsReal("-mat_umfpack_front_alloc_init","Control[UMFPACK_FRONT_ALLOC_INIT]","None",lu->Control[UMFPACK_FRONT_ALLOC_INIT],&lu->Control[UMFPACK_ALLOC_INIT],NULL);
444:   PetscOptionsReal("-mat_umfpack_droptol","Control[UMFPACK_DROPTOL]","None",lu->Control[UMFPACK_DROPTOL],&lu->Control[UMFPACK_DROPTOL],NULL);

446:   /* Control parameters used by solve */
447:   PetscOptionsReal("-mat_umfpack_irstep","Control[UMFPACK_IRSTEP]","None",lu->Control[UMFPACK_IRSTEP],&lu->Control[UMFPACK_IRSTEP],NULL);
448:   PetscOptionsEnd();
449:   *F = B;
450:   return(0);
451: }

453: PETSC_INTERN PetscErrorCode MatGetFactor_seqaij_cholmod(Mat,MatFactorType,Mat*);
454: PETSC_INTERN PetscErrorCode MatGetFactor_seqsbaij_cholmod(Mat,MatFactorType,Mat*);
455: PETSC_INTERN PetscErrorCode MatGetFactor_seqaij_klu(Mat,MatFactorType,Mat*);

457: PETSC_EXTERN PetscErrorCode MatSolverTypeRegister_SuiteSparse(void)
458: {

462:   MatSolverTypeRegister(MATSOLVERUMFPACK,MATSEQAIJ,  MAT_FACTOR_LU,MatGetFactor_seqaij_umfpack);
463:   MatSolverTypeRegister(MATSOLVERCHOLMOD,MATSEQAIJ,  MAT_FACTOR_CHOLESKY,MatGetFactor_seqaij_cholmod);
464:   MatSolverTypeRegister(MATSOLVERCHOLMOD,MATSEQSBAIJ,MAT_FACTOR_CHOLESKY,MatGetFactor_seqsbaij_cholmod);
465:   MatSolverTypeRegister(MATSOLVERKLU,MATSEQAIJ,      MAT_FACTOR_LU,MatGetFactor_seqaij_klu);
466:   return(0);
467: }