Actual source code: dualspace.c
1: #include <petsc/private/petscfeimpl.h>
2: #include <petscdmplex.h>
4: PetscClassId PETSCDUALSPACE_CLASSID = 0;
6: PetscLogEvent PETSCDUALSPACE_SetUp;
8: PetscFunctionList PetscDualSpaceList = NULL;
9: PetscBool PetscDualSpaceRegisterAllCalled = PETSC_FALSE;
11: const char *const PetscDualSpaceReferenceCells[] = {"SIMPLEX", "TENSOR", "PetscDualSpaceReferenceCell", "PETSCDUALSPACE_REFCELL_", NULL};
13: /*
14: PetscDualSpaceLatticePointLexicographic_Internal - Returns all tuples of size 'len' with nonnegative integers that sum up to at most 'max'.
15: Ordering is lexicographic with lowest index as least significant in ordering.
16: e.g. for len == 2 and max == 2, this will return, in order, {0,0}, {1,0}, {2,0}, {0,1}, {1,1}, {0,2}.
18: Input Parameters:
19: + len - The length of the tuple
20: . max - The maximum sum
21: - tup - A tuple of length len+1: tup[len] > 0 indicates a stopping condition
23: Output Parameter:
24: . tup - A tuple of len integers whos sum is at most 'max'
26: Level: developer
28: .seealso: PetscDualSpaceTensorPointLexicographic_Internal()
29: */
30: PetscErrorCode PetscDualSpaceLatticePointLexicographic_Internal(PetscInt len, PetscInt max, PetscInt tup[])
31: {
33: while (len--) {
34: max -= tup[len];
35: if (!max) {
36: tup[len] = 0;
37: break;
38: }
39: }
40: tup[++len]++;
41: return(0);
42: }
44: /*
45: PetscDualSpaceTensorPointLexicographic_Internal - Returns all tuples of size 'len' with nonnegative integers that are all less than or equal to 'max'.
46: Ordering is lexicographic with lowest index as least significant in ordering.
47: e.g. for len == 2 and max == 2, this will return, in order, {0,0}, {1,0}, {2,0}, {0,1}, {1,1}, {2,1}, {0,2}, {1,2}, {2,2}.
49: Input Parameters:
50: + len - The length of the tuple
51: . max - The maximum value
52: - tup - A tuple of length len+1: tup[len] > 0 indicates a stopping condition
54: Output Parameter:
55: . tup - A tuple of len integers whos sum is at most 'max'
57: Level: developer
59: .seealso: PetscDualSpaceLatticePointLexicographic_Internal()
60: */
61: PetscErrorCode PetscDualSpaceTensorPointLexicographic_Internal(PetscInt len, PetscInt max, PetscInt tup[])
62: {
63: PetscInt i;
66: for (i = 0; i < len; i++) {
67: if (tup[i] < max) {
68: break;
69: } else {
70: tup[i] = 0;
71: }
72: }
73: tup[i]++;
74: return(0);
75: }
77: /*@C
78: PetscDualSpaceRegister - Adds a new PetscDualSpace implementation
80: Not Collective
82: Input Parameters:
83: + name - The name of a new user-defined creation routine
84: - create_func - The creation routine itself
86: Notes:
87: PetscDualSpaceRegister() may be called multiple times to add several user-defined PetscDualSpaces
89: Sample usage:
90: .vb
91: PetscDualSpaceRegister("my_space", MyPetscDualSpaceCreate);
92: .ve
94: Then, your PetscDualSpace type can be chosen with the procedural interface via
95: .vb
96: PetscDualSpaceCreate(MPI_Comm, PetscDualSpace *);
97: PetscDualSpaceSetType(PetscDualSpace, "my_dual_space");
98: .ve
99: or at runtime via the option
100: .vb
101: -petscdualspace_type my_dual_space
102: .ve
104: Level: advanced
106: .seealso: PetscDualSpaceRegisterAll(), PetscDualSpaceRegisterDestroy()
108: @*/
109: PetscErrorCode PetscDualSpaceRegister(const char sname[], PetscErrorCode (*function)(PetscDualSpace))
110: {
114: PetscFunctionListAdd(&PetscDualSpaceList, sname, function);
115: return(0);
116: }
118: /*@C
119: PetscDualSpaceSetType - Builds a particular PetscDualSpace
121: Collective on sp
123: Input Parameters:
124: + sp - The PetscDualSpace object
125: - name - The kind of space
127: Options Database Key:
128: . -petscdualspace_type <type> - Sets the PetscDualSpace type; use -help for a list of available types
130: Level: intermediate
132: .seealso: PetscDualSpaceGetType(), PetscDualSpaceCreate()
133: @*/
134: PetscErrorCode PetscDualSpaceSetType(PetscDualSpace sp, PetscDualSpaceType name)
135: {
136: PetscErrorCode (*r)(PetscDualSpace);
137: PetscBool match;
142: PetscObjectTypeCompare((PetscObject) sp, name, &match);
143: if (match) return(0);
145: if (!PetscDualSpaceRegisterAllCalled) {PetscDualSpaceRegisterAll();}
146: PetscFunctionListFind(PetscDualSpaceList, name, &r);
147: if (!r) SETERRQ1(PetscObjectComm((PetscObject) sp), PETSC_ERR_ARG_UNKNOWN_TYPE, "Unknown PetscDualSpace type: %s", name);
149: if (sp->ops->destroy) {
150: (*sp->ops->destroy)(sp);
151: sp->ops->destroy = NULL;
152: }
153: (*r)(sp);
154: PetscObjectChangeTypeName((PetscObject) sp, name);
155: return(0);
156: }
158: /*@C
159: PetscDualSpaceGetType - Gets the PetscDualSpace type name (as a string) from the object.
161: Not Collective
163: Input Parameter:
164: . sp - The PetscDualSpace
166: Output Parameter:
167: . name - The PetscDualSpace type name
169: Level: intermediate
171: .seealso: PetscDualSpaceSetType(), PetscDualSpaceCreate()
172: @*/
173: PetscErrorCode PetscDualSpaceGetType(PetscDualSpace sp, PetscDualSpaceType *name)
174: {
180: if (!PetscDualSpaceRegisterAllCalled) {
181: PetscDualSpaceRegisterAll();
182: }
183: *name = ((PetscObject) sp)->type_name;
184: return(0);
185: }
187: static PetscErrorCode PetscDualSpaceView_ASCII(PetscDualSpace sp, PetscViewer v)
188: {
189: PetscViewerFormat format;
190: PetscInt pdim, f;
191: PetscErrorCode ierr;
194: PetscDualSpaceGetDimension(sp, &pdim);
195: PetscObjectPrintClassNamePrefixType((PetscObject) sp, v);
196: PetscViewerASCIIPushTab(v);
197: if (sp->k) {
198: PetscViewerASCIIPrintf(v, "Dual space for %D-forms %swith %D components, size %D\n", PetscAbsInt(sp->k), sp->k < 0 ? "(stored in dual form) ": "", sp->Nc, pdim);
199: } else {
200: PetscViewerASCIIPrintf(v, "Dual space with %D components, size %D\n", sp->Nc, pdim);
201: }
202: if (sp->ops->view) {(*sp->ops->view)(sp, v);}
203: PetscViewerGetFormat(v, &format);
204: if (format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
205: PetscViewerASCIIPushTab(v);
206: for (f = 0; f < pdim; ++f) {
207: PetscViewerASCIIPrintf(v, "Dual basis vector %D\n", f);
208: PetscViewerASCIIPushTab(v);
209: PetscQuadratureView(sp->functional[f], v);
210: PetscViewerASCIIPopTab(v);
211: }
212: PetscViewerASCIIPopTab(v);
213: }
214: PetscViewerASCIIPopTab(v);
215: return(0);
216: }
218: /*@C
219: PetscDualSpaceViewFromOptions - View from Options
221: Collective on PetscDualSpace
223: Input Parameters:
224: + A - the PetscDualSpace object
225: . obj - Optional object, proivides prefix
226: - name - command line option
228: Level: intermediate
229: .seealso: PetscDualSpace, PetscDualSpaceView(), PetscObjectViewFromOptions(), PetscDualSpaceCreate()
230: @*/
231: PetscErrorCode PetscDualSpaceViewFromOptions(PetscDualSpace A,PetscObject obj,const char name[])
232: {
237: PetscObjectViewFromOptions((PetscObject)A,obj,name);
238: return(0);
239: }
241: /*@
242: PetscDualSpaceView - Views a PetscDualSpace
244: Collective on sp
246: Input Parameter:
247: + sp - the PetscDualSpace object to view
248: - v - the viewer
250: Level: beginner
252: .seealso PetscDualSpaceDestroy(), PetscDualSpace
253: @*/
254: PetscErrorCode PetscDualSpaceView(PetscDualSpace sp, PetscViewer v)
255: {
256: PetscBool iascii;
262: if (!v) {PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject) sp), &v);}
263: PetscObjectTypeCompare((PetscObject) v, PETSCVIEWERASCII, &iascii);
264: if (iascii) {PetscDualSpaceView_ASCII(sp, v);}
265: return(0);
266: }
268: /*@
269: PetscDualSpaceSetFromOptions - sets parameters in a PetscDualSpace from the options database
271: Collective on sp
273: Input Parameter:
274: . sp - the PetscDualSpace object to set options for
276: Options Database:
277: + -petscdualspace_order <order> - the approximation order of the space
278: . -petscdualspace_form_degree <deg> - the form degree, say 0 for point evaluations, or 2 for area integrals
279: . -petscdualspace_components <c> - the number of components, say d for a vector field
280: . -petscdualspace_refdim <d> - The spatial dimension of the reference cell
281: - -petscdualspace_refcell <celltype> - Reference cell type name
283: Level: intermediate
285: .seealso PetscDualSpaceView(), PetscDualSpace, PetscObjectSetFromOptions()
286: @*/
287: PetscErrorCode PetscDualSpaceSetFromOptions(PetscDualSpace sp)
288: {
289: PetscDualSpaceReferenceCell refCell = PETSCDUALSPACE_REFCELL_SIMPLEX;
290: PetscInt refDim = 0;
291: PetscBool flg;
292: const char *defaultType;
293: char name[256];
294: PetscErrorCode ierr;
298: if (!((PetscObject) sp)->type_name) {
299: defaultType = PETSCDUALSPACELAGRANGE;
300: } else {
301: defaultType = ((PetscObject) sp)->type_name;
302: }
303: if (!PetscSpaceRegisterAllCalled) {PetscSpaceRegisterAll();}
305: PetscObjectOptionsBegin((PetscObject) sp);
306: PetscOptionsFList("-petscdualspace_type", "Dual space", "PetscDualSpaceSetType", PetscDualSpaceList, defaultType, name, 256, &flg);
307: if (flg) {
308: PetscDualSpaceSetType(sp, name);
309: } else if (!((PetscObject) sp)->type_name) {
310: PetscDualSpaceSetType(sp, defaultType);
311: }
312: PetscOptionsBoundedInt("-petscdualspace_order", "The approximation order", "PetscDualSpaceSetOrder", sp->order, &sp->order, NULL,0);
313: PetscOptionsInt("-petscdualspace_form_degree", "The form degree of the dofs", "PetscDualSpaceSetFormDegree", sp->k, &sp->k, NULL);
314: PetscOptionsBoundedInt("-petscdualspace_components", "The number of components", "PetscDualSpaceSetNumComponents", sp->Nc, &sp->Nc, NULL,1);
315: if (sp->ops->setfromoptions) {
316: (*sp->ops->setfromoptions)(PetscOptionsObject,sp);
317: }
318: PetscOptionsBoundedInt("-petscdualspace_refdim", "The spatial dimension of the reference cell", "PetscDualSpaceSetReferenceCell", refDim, &refDim, NULL,0);
319: PetscOptionsEnum("-petscdualspace_refcell", "Reference cell", "PetscDualSpaceSetReferenceCell", PetscDualSpaceReferenceCells, (PetscEnum) refCell, (PetscEnum *) &refCell, &flg);
320: if (flg) {
321: DM K;
323: if (!refDim) SETERRQ(PetscObjectComm((PetscObject) sp), PETSC_ERR_ARG_INCOMP, "Reference cell specified without a dimension. Use -petscdualspace_refdim.");
324: PetscDualSpaceCreateReferenceCell(sp, refDim, refCell == PETSCDUALSPACE_REFCELL_SIMPLEX ? PETSC_TRUE : PETSC_FALSE, &K);
325: PetscDualSpaceSetDM(sp, K);
326: DMDestroy(&K);
327: }
329: /* process any options handlers added with PetscObjectAddOptionsHandler() */
330: PetscObjectProcessOptionsHandlers(PetscOptionsObject,(PetscObject) sp);
331: PetscOptionsEnd();
332: sp->setfromoptionscalled = PETSC_TRUE;
333: return(0);
334: }
336: /*@
337: PetscDualSpaceSetUp - Construct a basis for the PetscDualSpace
339: Collective on sp
341: Input Parameter:
342: . sp - the PetscDualSpace object to setup
344: Level: intermediate
346: .seealso PetscDualSpaceView(), PetscDualSpaceDestroy(), PetscDualSpace
347: @*/
348: PetscErrorCode PetscDualSpaceSetUp(PetscDualSpace sp)
349: {
354: if (sp->setupcalled) return(0);
355: PetscLogEventBegin(PETSCDUALSPACE_SetUp, sp, 0, 0, 0);
356: sp->setupcalled = PETSC_TRUE;
357: if (sp->ops->setup) {(*sp->ops->setup)(sp);}
358: PetscLogEventEnd(PETSCDUALSPACE_SetUp, sp, 0, 0, 0);
359: if (sp->setfromoptionscalled) {PetscDualSpaceViewFromOptions(sp, NULL, "-petscdualspace_view");}
360: return(0);
361: }
363: static PetscErrorCode PetscDualSpaceClearDMData_Internal(PetscDualSpace sp, DM dm)
364: {
365: PetscInt pStart = -1, pEnd = -1, depth = -1;
369: if (!dm) return(0);
370: DMPlexGetChart(dm, &pStart, &pEnd);
371: DMPlexGetDepth(dm, &depth);
373: if (sp->pointSpaces) {
374: PetscInt i;
376: for (i = 0; i < pEnd - pStart; i++) {
377: PetscDualSpaceDestroy(&(sp->pointSpaces[i]));
378: }
379: }
380: PetscFree(sp->pointSpaces);
382: if (sp->heightSpaces) {
383: PetscInt i;
385: for (i = 0; i <= depth; i++) {
386: PetscDualSpaceDestroy(&(sp->heightSpaces[i]));
387: }
388: }
389: PetscFree(sp->heightSpaces);
391: PetscSectionDestroy(&(sp->pointSection));
392: PetscQuadratureDestroy(&(sp->intNodes));
393: VecDestroy(&(sp->intDofValues));
394: VecDestroy(&(sp->intNodeValues));
395: MatDestroy(&(sp->intMat));
396: PetscQuadratureDestroy(&(sp->allNodes));
397: VecDestroy(&(sp->allDofValues));
398: VecDestroy(&(sp->allNodeValues));
399: MatDestroy(&(sp->allMat));
400: PetscFree(sp->numDof);
401: return(0);
402: }
405: /*@
406: PetscDualSpaceDestroy - Destroys a PetscDualSpace object
408: Collective on sp
410: Input Parameter:
411: . sp - the PetscDualSpace object to destroy
413: Level: beginner
415: .seealso PetscDualSpaceView(), PetscDualSpace(), PetscDualSpaceCreate()
416: @*/
417: PetscErrorCode PetscDualSpaceDestroy(PetscDualSpace *sp)
418: {
419: PetscInt dim, f;
420: DM dm;
424: if (!*sp) return(0);
427: if (--((PetscObject)(*sp))->refct > 0) {*sp = NULL; return(0);}
428: ((PetscObject) (*sp))->refct = 0;
430: PetscDualSpaceGetDimension(*sp, &dim);
431: dm = (*sp)->dm;
433: if ((*sp)->ops->destroy) {(*(*sp)->ops->destroy)(*sp);}
434: PetscDualSpaceClearDMData_Internal(*sp, dm);
436: for (f = 0; f < dim; ++f) {
437: PetscQuadratureDestroy(&(*sp)->functional[f]);
438: }
439: PetscFree((*sp)->functional);
440: DMDestroy(&(*sp)->dm);
441: PetscHeaderDestroy(sp);
442: return(0);
443: }
445: /*@
446: PetscDualSpaceCreate - Creates an empty PetscDualSpace object. The type can then be set with PetscDualSpaceSetType().
448: Collective
450: Input Parameter:
451: . comm - The communicator for the PetscDualSpace object
453: Output Parameter:
454: . sp - The PetscDualSpace object
456: Level: beginner
458: .seealso: PetscDualSpaceSetType(), PETSCDUALSPACELAGRANGE
459: @*/
460: PetscErrorCode PetscDualSpaceCreate(MPI_Comm comm, PetscDualSpace *sp)
461: {
462: PetscDualSpace s;
467: PetscCitationsRegister(FECitation,&FEcite);
468: *sp = NULL;
469: PetscFEInitializePackage();
471: PetscHeaderCreate(s, PETSCDUALSPACE_CLASSID, "PetscDualSpace", "Dual Space", "PetscDualSpace", comm, PetscDualSpaceDestroy, PetscDualSpaceView);
473: s->order = 0;
474: s->Nc = 1;
475: s->k = 0;
476: s->spdim = -1;
477: s->spintdim = -1;
478: s->uniform = PETSC_TRUE;
479: s->setupcalled = PETSC_FALSE;
481: *sp = s;
482: return(0);
483: }
485: /*@
486: PetscDualSpaceDuplicate - Creates a duplicate PetscDualSpace object, however it is not setup.
488: Collective on sp
490: Input Parameter:
491: . sp - The original PetscDualSpace
493: Output Parameter:
494: . spNew - The duplicate PetscDualSpace
496: Level: beginner
498: .seealso: PetscDualSpaceCreate(), PetscDualSpaceSetType()
499: @*/
500: PetscErrorCode PetscDualSpaceDuplicate(PetscDualSpace sp, PetscDualSpace *spNew)
501: {
502: DM dm;
503: PetscDualSpaceType type;
504: const char *name;
510: PetscDualSpaceCreate(PetscObjectComm((PetscObject)sp), spNew);
511: PetscObjectGetName((PetscObject) sp, &name);
512: PetscObjectSetName((PetscObject) *spNew, name);
513: PetscDualSpaceGetType(sp, &type);
514: PetscDualSpaceSetType(*spNew, type);
515: PetscDualSpaceGetDM(sp, &dm);
516: PetscDualSpaceSetDM(*spNew, dm);
518: (*spNew)->order = sp->order;
519: (*spNew)->k = sp->k;
520: (*spNew)->Nc = sp->Nc;
521: (*spNew)->uniform = sp->uniform;
522: if (sp->ops->duplicate) {(*sp->ops->duplicate)(sp, *spNew);}
523: return(0);
524: }
526: /*@
527: PetscDualSpaceGetDM - Get the DM representing the reference cell
529: Not collective
531: Input Parameter:
532: . sp - The PetscDualSpace
534: Output Parameter:
535: . dm - The reference cell
537: Level: intermediate
539: .seealso: PetscDualSpaceSetDM(), PetscDualSpaceCreate()
540: @*/
541: PetscErrorCode PetscDualSpaceGetDM(PetscDualSpace sp, DM *dm)
542: {
546: *dm = sp->dm;
547: return(0);
548: }
550: /*@
551: PetscDualSpaceSetDM - Get the DM representing the reference cell
553: Not collective
555: Input Parameters:
556: + sp - The PetscDualSpace
557: - dm - The reference cell
559: Level: intermediate
561: .seealso: PetscDualSpaceGetDM(), PetscDualSpaceCreate()
562: @*/
563: PetscErrorCode PetscDualSpaceSetDM(PetscDualSpace sp, DM dm)
564: {
570: if (sp->setupcalled) SETERRQ(PetscObjectComm((PetscObject)sp), PETSC_ERR_ARG_WRONGSTATE, "Cannot change DM after dualspace is set up");
571: PetscObjectReference((PetscObject) dm);
572: if (sp->dm && sp->dm != dm) {
573: PetscDualSpaceClearDMData_Internal(sp, sp->dm);
574: }
575: DMDestroy(&sp->dm);
576: sp->dm = dm;
577: return(0);
578: }
580: /*@
581: PetscDualSpaceGetOrder - Get the order of the dual space
583: Not collective
585: Input Parameter:
586: . sp - The PetscDualSpace
588: Output Parameter:
589: . order - The order
591: Level: intermediate
593: .seealso: PetscDualSpaceSetOrder(), PetscDualSpaceCreate()
594: @*/
595: PetscErrorCode PetscDualSpaceGetOrder(PetscDualSpace sp, PetscInt *order)
596: {
600: *order = sp->order;
601: return(0);
602: }
604: /*@
605: PetscDualSpaceSetOrder - Set the order of the dual space
607: Not collective
609: Input Parameters:
610: + sp - The PetscDualSpace
611: - order - The order
613: Level: intermediate
615: .seealso: PetscDualSpaceGetOrder(), PetscDualSpaceCreate()
616: @*/
617: PetscErrorCode PetscDualSpaceSetOrder(PetscDualSpace sp, PetscInt order)
618: {
621: if (sp->setupcalled) SETERRQ(PetscObjectComm((PetscObject)sp), PETSC_ERR_ARG_WRONGSTATE, "Cannot change order after dualspace is set up");
622: sp->order = order;
623: return(0);
624: }
626: /*@
627: PetscDualSpaceGetNumComponents - Return the number of components for this space
629: Input Parameter:
630: . sp - The PetscDualSpace
632: Output Parameter:
633: . Nc - The number of components
635: Note: A vector space, for example, will have d components, where d is the spatial dimension
637: Level: intermediate
639: .seealso: PetscDualSpaceSetNumComponents(), PetscDualSpaceGetDimension(), PetscDualSpaceCreate(), PetscDualSpace
640: @*/
641: PetscErrorCode PetscDualSpaceGetNumComponents(PetscDualSpace sp, PetscInt *Nc)
642: {
646: *Nc = sp->Nc;
647: return(0);
648: }
650: /*@
651: PetscDualSpaceSetNumComponents - Set the number of components for this space
653: Input Parameters:
654: + sp - The PetscDualSpace
655: - order - The number of components
657: Level: intermediate
659: .seealso: PetscDualSpaceGetNumComponents(), PetscDualSpaceCreate(), PetscDualSpace
660: @*/
661: PetscErrorCode PetscDualSpaceSetNumComponents(PetscDualSpace sp, PetscInt Nc)
662: {
665: if (sp->setupcalled) SETERRQ(PetscObjectComm((PetscObject)sp), PETSC_ERR_ARG_WRONGSTATE, "Cannot change number of components after dualspace is set up");
666: sp->Nc = Nc;
667: return(0);
668: }
670: /*@
671: PetscDualSpaceGetFunctional - Get the i-th basis functional in the dual space
673: Not collective
675: Input Parameters:
676: + sp - The PetscDualSpace
677: - i - The basis number
679: Output Parameter:
680: . functional - The basis functional
682: Level: intermediate
684: .seealso: PetscDualSpaceGetDimension(), PetscDualSpaceCreate()
685: @*/
686: PetscErrorCode PetscDualSpaceGetFunctional(PetscDualSpace sp, PetscInt i, PetscQuadrature *functional)
687: {
688: PetscInt dim;
694: PetscDualSpaceGetDimension(sp, &dim);
695: if ((i < 0) || (i >= dim)) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Functional index %d must be in [0, %d)", i, dim);
696: *functional = sp->functional[i];
697: return(0);
698: }
700: /*@
701: PetscDualSpaceGetDimension - Get the dimension of the dual space, i.e. the number of basis functionals
703: Not collective
705: Input Parameter:
706: . sp - The PetscDualSpace
708: Output Parameter:
709: . dim - The dimension
711: Level: intermediate
713: .seealso: PetscDualSpaceGetFunctional(), PetscDualSpaceCreate()
714: @*/
715: PetscErrorCode PetscDualSpaceGetDimension(PetscDualSpace sp, PetscInt *dim)
716: {
722: if (sp->spdim < 0) {
723: PetscSection section;
725: PetscDualSpaceGetSection(sp, §ion);
726: if (section) {
727: PetscSectionGetStorageSize(section, &(sp->spdim));
728: } else sp->spdim = 0;
729: }
730: *dim = sp->spdim;
731: return(0);
732: }
734: /*@
735: PetscDualSpaceGetInteriorDimension - Get the interior dimension of the dual space, i.e. the number of basis functionals assigned to the interior of the reference domain
737: Not collective
739: Input Parameter:
740: . sp - The PetscDualSpace
742: Output Parameter:
743: . dim - The dimension
745: Level: intermediate
747: .seealso: PetscDualSpaceGetFunctional(), PetscDualSpaceCreate()
748: @*/
749: PetscErrorCode PetscDualSpaceGetInteriorDimension(PetscDualSpace sp, PetscInt *intdim)
750: {
756: if (sp->spintdim < 0) {
757: PetscSection section;
759: PetscDualSpaceGetSection(sp, §ion);
760: if (section) {
761: PetscSectionGetConstrainedStorageSize(section, &(sp->spintdim));
762: } else sp->spintdim = 0;
763: }
764: *intdim = sp->spintdim;
765: return(0);
766: }
768: /*@
769: PetscDualSpaceGetUniform - Whether this dual space is uniform
771: Not collective
773: Input Parameters:
774: . sp - A dual space
776: Output Parameters:
777: . uniform - PETSC_TRUE if (a) the dual space is the same for each point in a stratum of the reference DMPlex, and
778: (b) every symmetry of each point in the reference DMPlex is also a symmetry of the point's dual space.
781: Level: advanced
783: Note: all of the usual spaces on simplex or tensor-product elements will be uniform, only reference cells
784: with non-uniform strata (like trianguar-prisms) or anisotropic hp dual spaces will not be uniform.
786: .seealso: PetscDualSpaceGetPointSubspace(), PetscDualSpaceGetSymmetries()
787: @*/
788: PetscErrorCode PetscDualSpaceGetUniform(PetscDualSpace sp, PetscBool *uniform)
789: {
793: *uniform = sp->uniform;
794: return(0);
795: }
798: /*@C
799: PetscDualSpaceGetNumDof - Get the number of degrees of freedom for each spatial (topological) dimension
801: Not collective
803: Input Parameter:
804: . sp - The PetscDualSpace
806: Output Parameter:
807: . numDof - An array of length dim+1 which holds the number of dofs for each dimension
809: Level: intermediate
811: .seealso: PetscDualSpaceGetFunctional(), PetscDualSpaceCreate()
812: @*/
813: PetscErrorCode PetscDualSpaceGetNumDof(PetscDualSpace sp, const PetscInt **numDof)
814: {
820: if (!sp->uniform) SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "A non-uniform space does not have a fixed number of dofs for each height");
821: if (!sp->numDof) {
822: DM dm;
823: PetscInt depth, d;
824: PetscSection section;
826: PetscDualSpaceGetDM(sp, &dm);
827: DMPlexGetDepth(dm, &depth);
828: PetscCalloc1(depth+1,&(sp->numDof));
829: PetscDualSpaceGetSection(sp, §ion);
830: for (d = 0; d <= depth; d++) {
831: PetscInt dStart, dEnd;
833: DMPlexGetDepthStratum(dm, d, &dStart, &dEnd);
834: if (dEnd <= dStart) continue;
835: PetscSectionGetDof(section, dStart, &(sp->numDof[d]));
837: }
838: }
839: *numDof = sp->numDof;
840: if (!*numDof) SETERRQ(PetscObjectComm((PetscObject) sp), PETSC_ERR_LIB, "Empty numDof[] returned from dual space implementation");
841: return(0);
842: }
844: /* create the section of the right size and set a permutation for topological ordering */
845: PetscErrorCode PetscDualSpaceSectionCreate_Internal(PetscDualSpace sp, PetscSection *topSection)
846: {
847: DM dm;
848: PetscInt pStart, pEnd, cStart, cEnd, c, depth, count, i;
849: PetscInt *seen, *perm;
850: PetscSection section;
854: dm = sp->dm;
855: PetscSectionCreate(PETSC_COMM_SELF, §ion);
856: DMPlexGetChart(dm, &pStart, &pEnd);
857: PetscSectionSetChart(section, pStart, pEnd);
858: PetscCalloc1(pEnd - pStart, &seen);
859: PetscMalloc1(pEnd - pStart, &perm);
860: DMPlexGetDepth(dm, &depth);
861: DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd);
862: for (c = cStart, count = 0; c < cEnd; c++) {
863: PetscInt closureSize = -1, e;
864: PetscInt *closure = NULL;
866: perm[count++] = c;
867: seen[c-pStart] = 1;
868: DMPlexGetTransitiveClosure(dm, c, PETSC_TRUE, &closureSize, &closure);
869: for (e = 0; e < closureSize; e++) {
870: PetscInt point = closure[2*e];
872: if (seen[point-pStart]) continue;
873: perm[count++] = point;
874: seen[point-pStart] = 1;
875: }
876: DMPlexRestoreTransitiveClosure(dm, c, PETSC_TRUE, &closureSize, &closure);
877: }
878: if (count != pEnd - pStart) SETERRQ(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Bad topological ordering");
879: for (i = 0; i < pEnd - pStart; i++) if (perm[i] != i) break;
880: if (i < pEnd - pStart) {
881: IS permIS;
883: ISCreateGeneral(PETSC_COMM_SELF, pEnd - pStart, perm, PETSC_OWN_POINTER, &permIS);
884: ISSetPermutation(permIS);
885: PetscSectionSetPermutation(section, permIS);
886: ISDestroy(&permIS);
887: } else {
888: PetscFree(perm);
889: }
890: PetscFree(seen);
891: *topSection = section;
892: return(0);
893: }
895: /* mark boundary points and set up */
896: PetscErrorCode PetscDualSpaceSectionSetUp_Internal(PetscDualSpace sp, PetscSection section)
897: {
898: DM dm;
899: DMLabel boundary;
900: PetscInt pStart, pEnd, p;
904: dm = sp->dm;
905: DMLabelCreate(PETSC_COMM_SELF,"boundary",&boundary);
906: PetscDualSpaceGetDM(sp,&dm);
907: DMPlexMarkBoundaryFaces(dm,1,boundary);
908: DMPlexLabelComplete(dm,boundary);
909: DMPlexGetChart(dm, &pStart, &pEnd);
910: for (p = pStart; p < pEnd; p++) {
911: PetscInt bval;
913: DMLabelGetValue(boundary, p, &bval);
914: if (bval == 1) {
915: PetscInt dof;
917: PetscSectionGetDof(section, p, &dof);
918: PetscSectionSetConstraintDof(section, p, dof);
919: }
920: }
921: DMLabelDestroy(&boundary);
922: PetscSectionSetUp(section);
923: return(0);
924: }
926: /*@
927: PetscDualSpaceGetSection - Create a PetscSection over the reference cell with the layout from this space
929: Collective on sp
931: Input Parameters:
932: . sp - The PetscDualSpace
934: Output Parameter:
935: . section - The section
937: Level: advanced
939: .seealso: PetscDualSpaceCreate(), DMPLEX
940: @*/
941: PetscErrorCode PetscDualSpaceGetSection(PetscDualSpace sp, PetscSection *section)
942: {
943: PetscInt pStart, pEnd, p;
947: if (!sp->pointSection) {
948: /* mark the boundary */
949: PetscDualSpaceSectionCreate_Internal(sp, &(sp->pointSection));
950: DMPlexGetChart(sp->dm,&pStart,&pEnd);
951: for (p = pStart; p < pEnd; p++) {
952: PetscDualSpace psp;
954: PetscDualSpaceGetPointSubspace(sp, p, &psp);
955: if (psp) {
956: PetscInt dof;
958: PetscDualSpaceGetInteriorDimension(psp, &dof);
959: PetscSectionSetDof(sp->pointSection,p,dof);
960: }
961: }
962: PetscDualSpaceSectionSetUp_Internal(sp,sp->pointSection);
963: }
964: *section = sp->pointSection;
965: return(0);
966: }
968: /* this assumes that all of the point dual spaces store their interior dofs first, which is true when the point DMs
969: * have one cell */
970: PetscErrorCode PetscDualSpacePushForwardSubspaces_Internal(PetscDualSpace sp, PetscInt sStart, PetscInt sEnd)
971: {
972: PetscReal *sv0, *v0, *J;
973: PetscSection section;
974: PetscInt dim, s, k;
975: DM dm;
979: PetscDualSpaceGetDM(sp, &dm);
980: DMGetDimension(dm, &dim);
981: PetscDualSpaceGetSection(sp, §ion);
982: PetscMalloc3(dim, &v0, dim, &sv0, dim*dim, &J);
983: PetscDualSpaceGetFormDegree(sp, &k);
984: for (s = sStart; s < sEnd; s++) {
985: PetscReal detJ, hdetJ;
986: PetscDualSpace ssp;
987: PetscInt dof, off, f, sdim;
988: PetscInt i, j;
989: DM sdm;
991: PetscDualSpaceGetPointSubspace(sp, s, &ssp);
992: if (!ssp) continue;
993: PetscSectionGetDof(section, s, &dof);
994: PetscSectionGetOffset(section, s, &off);
995: /* get the first vertex of the reference cell */
996: PetscDualSpaceGetDM(ssp, &sdm);
997: DMGetDimension(sdm, &sdim);
998: DMPlexComputeCellGeometryAffineFEM(sdm, 0, sv0, NULL, NULL, &hdetJ);
999: DMPlexComputeCellGeometryAffineFEM(dm, s, v0, J, NULL, &detJ);
1000: /* compactify Jacobian */
1001: for (i = 0; i < dim; i++) for (j = 0; j < sdim; j++) J[i* sdim + j] = J[i * dim + j];
1002: for (f = 0; f < dof; f++) {
1003: PetscQuadrature fn;
1005: PetscDualSpaceGetFunctional(ssp, f, &fn);
1006: PetscQuadraturePushForward(fn, dim, sv0, v0, J, k, &(sp->functional[off+f]));
1007: }
1008: }
1009: PetscFree3(v0, sv0, J);
1010: return(0);
1011: }
1013: /*@
1014: PetscDualSpaceCreateReferenceCell - Create a DMPLEX with the appropriate FEM reference cell
1016: Collective on sp
1018: Input Parameters:
1019: + sp - The PetscDualSpace
1020: . dim - The spatial dimension
1021: - simplex - Flag for simplex, otherwise use a tensor-product cell
1023: Output Parameter:
1024: . refdm - The reference cell
1026: Level: intermediate
1028: .seealso: PetscDualSpaceCreate(), DMPLEX
1029: @*/
1030: PetscErrorCode PetscDualSpaceCreateReferenceCell(PetscDualSpace sp, PetscInt dim, PetscBool simplex, DM *refdm)
1031: {
1035: DMPlexCreateReferenceCell(PetscObjectComm((PetscObject) sp), dim, simplex, refdm);
1036: return(0);
1037: }
1039: /*@C
1040: PetscDualSpaceApply - Apply a functional from the dual space basis to an input function
1042: Input Parameters:
1043: + sp - The PetscDualSpace object
1044: . f - The basis functional index
1045: . time - The time
1046: . cgeom - A context with geometric information for this cell, we use v0 (the initial vertex) and J (the Jacobian) (or evaluated at the coordinates of the functional)
1047: . numComp - The number of components for the function
1048: . func - The input function
1049: - ctx - A context for the function
1051: Output Parameter:
1052: . value - numComp output values
1054: Note: The calling sequence for the callback func is given by:
1056: $ func(PetscInt dim, PetscReal time, const PetscReal x[],
1057: $ PetscInt numComponents, PetscScalar values[], void *ctx)
1059: Level: beginner
1061: .seealso: PetscDualSpaceCreate()
1062: @*/
1063: PetscErrorCode PetscDualSpaceApply(PetscDualSpace sp, PetscInt f, PetscReal time, PetscFEGeom *cgeom, PetscInt numComp, PetscErrorCode (*func)(PetscInt, PetscReal, const PetscReal [], PetscInt, PetscScalar *, void *), void *ctx, PetscScalar *value)
1064: {
1071: (*sp->ops->apply)(sp, f, time, cgeom, numComp, func, ctx, value);
1072: return(0);
1073: }
1075: /*@C
1076: PetscDualSpaceApplyAll - Apply all functionals from the dual space basis to the result of an evaluation at the points returned by PetscDualSpaceGetAllData()
1078: Input Parameters:
1079: + sp - The PetscDualSpace object
1080: - pointEval - Evaluation at the points returned by PetscDualSpaceGetAllData()
1082: Output Parameter:
1083: . spValue - The values of all dual space functionals
1085: Level: beginner
1087: .seealso: PetscDualSpaceCreate()
1088: @*/
1089: PetscErrorCode PetscDualSpaceApplyAll(PetscDualSpace sp, const PetscScalar *pointEval, PetscScalar *spValue)
1090: {
1095: (*sp->ops->applyall)(sp, pointEval, spValue);
1096: return(0);
1097: }
1099: /*@C
1100: PetscDualSpaceApplyInterior - Apply interior functionals from the dual space basis to the result of an evaluation at the points returned by PetscDualSpaceGetInteriorData()
1102: Input Parameters:
1103: + sp - The PetscDualSpace object
1104: - pointEval - Evaluation at the points returned by PetscDualSpaceGetInteriorData()
1106: Output Parameter:
1107: . spValue - The values of interior dual space functionals
1109: Level: beginner
1111: .seealso: PetscDualSpaceCreate()
1112: @*/
1113: PetscErrorCode PetscDualSpaceApplyInterior(PetscDualSpace sp, const PetscScalar *pointEval, PetscScalar *spValue)
1114: {
1119: (*sp->ops->applyint)(sp, pointEval, spValue);
1120: return(0);
1121: }
1123: /*@C
1124: PetscDualSpaceApplyDefault - Apply a functional from the dual space basis to an input function by assuming a point evaluation functional.
1126: Input Parameters:
1127: + sp - The PetscDualSpace object
1128: . f - The basis functional index
1129: . time - The time
1130: . cgeom - A context with geometric information for this cell, we use v0 (the initial vertex) and J (the Jacobian)
1131: . Nc - The number of components for the function
1132: . func - The input function
1133: - ctx - A context for the function
1135: Output Parameter:
1136: . value - The output value
1138: Note: The calling sequence for the callback func is given by:
1140: $ func(PetscInt dim, PetscReal time, const PetscReal x[],
1141: $ PetscInt numComponents, PetscScalar values[], void *ctx)
1143: and the idea is to evaluate the functional as an integral
1145: $ n(f) = int dx n(x) . f(x)
1147: where both n and f have Nc components.
1149: Level: beginner
1151: .seealso: PetscDualSpaceCreate()
1152: @*/
1153: PetscErrorCode PetscDualSpaceApplyDefault(PetscDualSpace sp, PetscInt f, PetscReal time, PetscFEGeom *cgeom, PetscInt Nc, PetscErrorCode (*func)(PetscInt, PetscReal, const PetscReal [], PetscInt, PetscScalar *, void *), void *ctx, PetscScalar *value)
1154: {
1155: DM dm;
1156: PetscQuadrature n;
1157: const PetscReal *points, *weights;
1158: PetscReal x[3];
1159: PetscScalar *val;
1160: PetscInt dim, dE, qNc, c, Nq, q;
1161: PetscBool isAffine;
1162: PetscErrorCode ierr;
1167: PetscDualSpaceGetDM(sp, &dm);
1168: PetscDualSpaceGetFunctional(sp, f, &n);
1169: PetscQuadratureGetData(n, &dim, &qNc, &Nq, &points, &weights);
1170: if (dim != cgeom->dim) SETERRQ2(PetscObjectComm((PetscObject) sp), PETSC_ERR_ARG_SIZ, "The quadrature spatial dimension %D != cell geometry dimension %D", dim, cgeom->dim);
1171: if (qNc != Nc) SETERRQ2(PetscObjectComm((PetscObject) sp), PETSC_ERR_ARG_SIZ, "The quadrature components %D != function components %D", qNc, Nc);
1172: DMGetWorkArray(dm, Nc, MPIU_SCALAR, &val);
1173: *value = 0.0;
1174: isAffine = cgeom->isAffine;
1175: dE = cgeom->dimEmbed;
1176: for (q = 0; q < Nq; ++q) {
1177: if (isAffine) {
1178: CoordinatesRefToReal(dE, cgeom->dim, cgeom->xi, cgeom->v, cgeom->J, &points[q*dim], x);
1179: (*func)(dE, time, x, Nc, val, ctx);
1180: } else {
1181: (*func)(dE, time, &cgeom->v[dE*q], Nc, val, ctx);
1182: }
1183: for (c = 0; c < Nc; ++c) {
1184: *value += val[c]*weights[q*Nc+c];
1185: }
1186: }
1187: DMRestoreWorkArray(dm, Nc, MPIU_SCALAR, &val);
1188: return(0);
1189: }
1191: /*@C
1192: PetscDualSpaceApplyAllDefault - Apply all functionals from the dual space basis to the result of an evaluation at the points returned by PetscDualSpaceGetAllData()
1194: Input Parameters:
1195: + sp - The PetscDualSpace object
1196: - pointEval - Evaluation at the points returned by PetscDualSpaceGetAllData()
1198: Output Parameter:
1199: . spValue - The values of all dual space functionals
1201: Level: beginner
1203: .seealso: PetscDualSpaceCreate()
1204: @*/
1205: PetscErrorCode PetscDualSpaceApplyAllDefault(PetscDualSpace sp, const PetscScalar *pointEval, PetscScalar *spValue)
1206: {
1207: Vec pointValues, dofValues;
1208: Mat allMat;
1209: PetscErrorCode ierr;
1215: PetscDualSpaceGetAllData(sp, NULL, &allMat);
1216: if (!(sp->allNodeValues)) {
1217: MatCreateVecs(allMat, &(sp->allNodeValues), NULL);
1218: }
1219: pointValues = sp->allNodeValues;
1220: if (!(sp->allDofValues)) {
1221: MatCreateVecs(allMat, NULL, &(sp->allDofValues));
1222: }
1223: dofValues = sp->allDofValues;
1224: VecPlaceArray(pointValues, pointEval);
1225: VecPlaceArray(dofValues, spValue);
1226: MatMult(allMat, pointValues, dofValues);
1227: VecResetArray(dofValues);
1228: VecResetArray(pointValues);
1229: return(0);
1230: }
1232: /*@C
1233: PetscDualSpaceApplyInteriorDefault - Apply interior functionals from the dual space basis to the result of an evaluation at the points returned by PetscDualSpaceGetInteriorData()
1235: Input Parameters:
1236: + sp - The PetscDualSpace object
1237: - pointEval - Evaluation at the points returned by PetscDualSpaceGetInteriorData()
1239: Output Parameter:
1240: . spValue - The values of interior dual space functionals
1242: Level: beginner
1244: .seealso: PetscDualSpaceCreate()
1245: @*/
1246: PetscErrorCode PetscDualSpaceApplyInteriorDefault(PetscDualSpace sp, const PetscScalar *pointEval, PetscScalar *spValue)
1247: {
1248: Vec pointValues, dofValues;
1249: Mat intMat;
1250: PetscErrorCode ierr;
1256: PetscDualSpaceGetInteriorData(sp, NULL, &intMat);
1257: if (!(sp->intNodeValues)) {
1258: MatCreateVecs(intMat, &(sp->intNodeValues), NULL);
1259: }
1260: pointValues = sp->intNodeValues;
1261: if (!(sp->intDofValues)) {
1262: MatCreateVecs(intMat, NULL, &(sp->intDofValues));
1263: }
1264: dofValues = sp->intDofValues;
1265: VecPlaceArray(pointValues, pointEval);
1266: VecPlaceArray(dofValues, spValue);
1267: MatMult(intMat, pointValues, dofValues);
1268: VecResetArray(dofValues);
1269: VecResetArray(pointValues);
1270: return(0);
1271: }
1273: /*@
1274: PetscDualSpaceGetAllData - Get all quadrature nodes from this space, and the matrix that sends quadrature node values to degree-of-freedom values
1276: Input Parameter:
1277: . sp - The dualspace
1279: Output Parameter:
1280: + allNodes - A PetscQuadrature object containing all evaluation nodes
1281: - allMat - A Mat for the node-to-dof transformation
1283: Level: advanced
1285: .seealso: PetscDualSpaceCreate()
1286: @*/
1287: PetscErrorCode PetscDualSpaceGetAllData(PetscDualSpace sp, PetscQuadrature *allNodes, Mat *allMat)
1288: {
1295: if ((!sp->allNodes || !sp->allMat) && sp->ops->createalldata) {
1296: PetscQuadrature qpoints;
1297: Mat amat;
1299: (*sp->ops->createalldata)(sp,&qpoints,&amat);
1300: PetscQuadratureDestroy(&(sp->allNodes));
1301: MatDestroy(&(sp->allMat));
1302: sp->allNodes = qpoints;
1303: sp->allMat = amat;
1304: }
1305: if (allNodes) *allNodes = sp->allNodes;
1306: if (allMat) *allMat = sp->allMat;
1307: return(0);
1308: }
1310: /*@
1311: PetscDualSpaceCreateAllDataDefault - Create all evaluation nodes and the node-to-dof matrix by examining functionals
1313: Input Parameter:
1314: . sp - The dualspace
1316: Output Parameter:
1317: + allNodes - A PetscQuadrature object containing all evaluation nodes
1318: - allMat - A Mat for the node-to-dof transformation
1320: Level: advanced
1322: .seealso: PetscDualSpaceCreate()
1323: @*/
1324: PetscErrorCode PetscDualSpaceCreateAllDataDefault(PetscDualSpace sp, PetscQuadrature *allNodes, Mat *allMat)
1325: {
1326: PetscInt spdim;
1327: PetscInt numPoints, offset;
1328: PetscReal *points;
1329: PetscInt f, dim;
1330: PetscInt Nc, nrows, ncols;
1331: PetscInt maxNumPoints;
1332: PetscQuadrature q;
1333: Mat A;
1334: PetscErrorCode ierr;
1337: PetscDualSpaceGetNumComponents(sp, &Nc);
1338: PetscDualSpaceGetDimension(sp,&spdim);
1339: if (!spdim) {
1340: PetscQuadratureCreate(PETSC_COMM_SELF,allNodes);
1341: PetscQuadratureSetData(*allNodes,0,0,0,NULL,NULL);
1342: }
1343: nrows = spdim;
1344: PetscDualSpaceGetFunctional(sp,0,&q);
1345: PetscQuadratureGetData(q,&dim,NULL,&numPoints,NULL,NULL);
1346: maxNumPoints = numPoints;
1347: for (f = 1; f < spdim; f++) {
1348: PetscInt Np;
1350: PetscDualSpaceGetFunctional(sp,f,&q);
1351: PetscQuadratureGetData(q,NULL,NULL,&Np,NULL,NULL);
1352: numPoints += Np;
1353: maxNumPoints = PetscMax(maxNumPoints,Np);
1354: }
1355: ncols = numPoints * Nc;
1356: PetscMalloc1(dim*numPoints,&points);
1357: MatCreateSeqAIJ(PETSC_COMM_SELF, nrows, ncols, maxNumPoints * Nc, NULL, &A);
1358: for (f = 0, offset = 0; f < spdim; f++) {
1359: const PetscReal *p, *w;
1360: PetscInt Np, i;
1361: PetscInt fnc;
1363: PetscDualSpaceGetFunctional(sp,f,&q);
1364: PetscQuadratureGetData(q,NULL,&fnc,&Np,&p,&w);
1365: if (fnc != Nc) SETERRQ(PETSC_COMM_SELF, PETSC_ERR_PLIB, "functional component mismatch");
1366: for (i = 0; i < Np * dim; i++) {
1367: points[offset* dim + i] = p[i];
1368: }
1369: for (i = 0; i < Np * Nc; i++) {
1370: MatSetValue(A, f, offset * Nc, w[i], INSERT_VALUES);
1371: }
1372: offset += Np;
1373: }
1374: MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);
1375: MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);
1376: PetscQuadratureCreate(PETSC_COMM_SELF,allNodes);
1377: PetscQuadratureSetData(*allNodes,dim,0,numPoints,points,NULL);
1378: *allMat = A;
1379: return(0);
1380: }
1382: /*@
1383: PetscDualSpaceGetInteriorData - Get all quadrature points necessary to compute the interior degrees of freedom from
1384: this space, as well as the matrix that computes the degrees of freedom from the quadrature values. Degrees of
1385: freedom are interior degrees of freedom if they belong (by PetscDualSpaceGetSection()) to interior points in the
1386: reference DMPlex: complementary boundary degrees of freedom are marked as constrained in the section returned by
1387: PetscDualSpaceGetSection()).
1389: Input Parameter:
1390: . sp - The dualspace
1392: Output Parameter:
1393: + intNodes - A PetscQuadrature object containing all evaluation points needed to evaluate interior degrees of freedom
1394: - intMat - A matrix that computes dual space values from point values: size [spdim0 x (npoints * nc)], where spdim0 is
1395: the size of the constrained layout (PetscSectionGetConstrainStorageSize()) of the dual space section,
1396: npoints is the number of points in intNodes and nc is PetscDualSpaceGetNumComponents().
1398: Level: advanced
1400: .seealso: PetscDualSpaceCreate(), PetscDualSpaceGetDimension(), PetscDualSpaceGetNumComponents(), PetscQuadratureGetData()
1401: @*/
1402: PetscErrorCode PetscDualSpaceGetInteriorData(PetscDualSpace sp, PetscQuadrature *intNodes, Mat *intMat)
1403: {
1410: if ((!sp->intNodes || !sp->intMat) && sp->ops->createintdata) {
1411: PetscQuadrature qpoints;
1412: Mat imat;
1414: (*sp->ops->createintdata)(sp,&qpoints,&imat);
1415: PetscQuadratureDestroy(&(sp->intNodes));
1416: MatDestroy(&(sp->intMat));
1417: sp->intNodes = qpoints;
1418: sp->intMat = imat;
1419: }
1420: if (intNodes) *intNodes = sp->intNodes;
1421: if (intMat) *intMat = sp->intMat;
1422: return(0);
1423: }
1425: /*@
1426: PetscDualSpaceCreateInteriorDataDefault - Create quadrature points by examining interior functionals and create the matrix mapping quadrature point values to interior dual space values
1428: Input Parameter:
1429: . sp - The dualspace
1431: Output Parameter:
1432: + intNodes - A PetscQuadrature object containing all evaluation points needed to evaluate interior degrees of freedom
1433: - intMat - A matrix that computes dual space values from point values: size [spdim0 x (npoints * nc)], where spdim0 is
1434: the size of the constrained layout (PetscSectionGetConstrainStorageSize()) of the dual space section,
1435: npoints is the number of points in allNodes and nc is PetscDualSpaceGetNumComponents().
1437: Level: advanced
1439: .seealso: PetscDualSpaceCreate(), PetscDualSpaceGetInteriorData()
1440: @*/
1441: PetscErrorCode PetscDualSpaceCreateInteriorDataDefault(PetscDualSpace sp, PetscQuadrature *intNodes, Mat *intMat)
1442: {
1443: DM dm;
1444: PetscInt spdim0;
1445: PetscInt Nc;
1446: PetscInt pStart, pEnd, p, f;
1447: PetscSection section;
1448: PetscInt numPoints, offset, matoffset;
1449: PetscReal *points;
1450: PetscInt dim;
1451: PetscInt *nnz;
1452: PetscQuadrature q;
1453: Mat imat;
1454: PetscErrorCode ierr;
1458: PetscDualSpaceGetSection(sp, §ion);
1459: PetscSectionGetConstrainedStorageSize(section, &spdim0);
1460: if (!spdim0) {
1461: *intNodes = NULL;
1462: *intMat = NULL;
1463: return(0);
1464: }
1465: PetscDualSpaceGetNumComponents(sp, &Nc);
1466: PetscSectionGetChart(section, &pStart, &pEnd);
1467: PetscDualSpaceGetDM(sp, &dm);
1468: DMGetDimension(dm, &dim);
1469: PetscMalloc1(spdim0, &nnz);
1470: for (p = pStart, f = 0, numPoints = 0; p < pEnd; p++) {
1471: PetscInt dof, cdof, off, d;
1473: PetscSectionGetDof(section, p, &dof);
1474: PetscSectionGetConstraintDof(section, p, &cdof);
1475: if (!(dof - cdof)) continue;
1476: PetscSectionGetOffset(section, p, &off);
1477: for (d = 0; d < dof; d++, off++, f++) {
1478: PetscInt Np;
1480: PetscDualSpaceGetFunctional(sp,off,&q);
1481: PetscQuadratureGetData(q,NULL,NULL,&Np,NULL,NULL);
1482: nnz[f] = Np * Nc;
1483: numPoints += Np;
1484: }
1485: }
1486: MatCreateSeqAIJ(PETSC_COMM_SELF, spdim0, numPoints * Nc, 0, nnz, &imat);
1487: PetscFree(nnz);
1488: PetscMalloc1(dim*numPoints,&points);
1489: for (p = pStart, f = 0, offset = 0, matoffset = 0; p < pEnd; p++) {
1490: PetscInt dof, cdof, off, d;
1492: PetscSectionGetDof(section, p, &dof);
1493: PetscSectionGetConstraintDof(section, p, &cdof);
1494: if (!(dof - cdof)) continue;
1495: PetscSectionGetOffset(section, p, &off);
1496: for (d = 0; d < dof; d++, off++, f++) {
1497: const PetscReal *p;
1498: const PetscReal *w;
1499: PetscInt Np, i;
1501: PetscDualSpaceGetFunctional(sp,off,&q);
1502: PetscQuadratureGetData(q,NULL,NULL,&Np,&p,&w);
1503: for (i = 0; i < Np * dim; i++) {
1504: points[offset + i] = p[i];
1505: }
1506: for (i = 0; i < Np * Nc; i++) {
1507: MatSetValue(imat, f, matoffset + i, w[i],INSERT_VALUES);
1508: }
1509: offset += Np * dim;
1510: matoffset += Np * Nc;
1511: }
1512: }
1513: PetscQuadratureCreate(PETSC_COMM_SELF,intNodes);
1514: PetscQuadratureSetData(*intNodes,dim,0,numPoints,points,NULL);
1515: MatAssemblyBegin(imat, MAT_FINAL_ASSEMBLY);
1516: MatAssemblyEnd(imat, MAT_FINAL_ASSEMBLY);
1517: *intMat = imat;
1518: return(0);
1519: }
1521: /*@C
1522: PetscDualSpaceApplyFVM - Apply a functional from the dual space basis to an input function by assuming a point evaluation functional at the cell centroid.
1524: Input Parameters:
1525: + sp - The PetscDualSpace object
1526: . f - The basis functional index
1527: . time - The time
1528: . cgeom - A context with geometric information for this cell, we currently just use the centroid
1529: . Nc - The number of components for the function
1530: . func - The input function
1531: - ctx - A context for the function
1533: Output Parameter:
1534: . value - The output value (scalar)
1536: Note: The calling sequence for the callback func is given by:
1538: $ func(PetscInt dim, PetscReal time, const PetscReal x[],
1539: $ PetscInt numComponents, PetscScalar values[], void *ctx)
1541: and the idea is to evaluate the functional as an integral
1543: $ n(f) = int dx n(x) . f(x)
1545: where both n and f have Nc components.
1547: Level: beginner
1549: .seealso: PetscDualSpaceCreate()
1550: @*/
1551: PetscErrorCode PetscDualSpaceApplyFVM(PetscDualSpace sp, PetscInt f, PetscReal time, PetscFVCellGeom *cgeom, PetscInt Nc, PetscErrorCode (*func)(PetscInt, PetscReal, const PetscReal [], PetscInt, PetscScalar *, void *), void *ctx, PetscScalar *value)
1552: {
1553: DM dm;
1554: PetscQuadrature n;
1555: const PetscReal *points, *weights;
1556: PetscScalar *val;
1557: PetscInt dimEmbed, qNc, c, Nq, q;
1558: PetscErrorCode ierr;
1563: PetscDualSpaceGetDM(sp, &dm);
1564: DMGetCoordinateDim(dm, &dimEmbed);
1565: PetscDualSpaceGetFunctional(sp, f, &n);
1566: PetscQuadratureGetData(n, NULL, &qNc, &Nq, &points, &weights);
1567: if (qNc != Nc) SETERRQ2(PetscObjectComm((PetscObject) sp), PETSC_ERR_ARG_SIZ, "The quadrature components %D != function components %D", qNc, Nc);
1568: DMGetWorkArray(dm, Nc, MPIU_SCALAR, &val);
1569: *value = 0.;
1570: for (q = 0; q < Nq; ++q) {
1571: (*func)(dimEmbed, time, cgeom->centroid, Nc, val, ctx);
1572: for (c = 0; c < Nc; ++c) {
1573: *value += val[c]*weights[q*Nc+c];
1574: }
1575: }
1576: DMRestoreWorkArray(dm, Nc, MPIU_SCALAR, &val);
1577: return(0);
1578: }
1580: /*@
1581: PetscDualSpaceGetHeightSubspace - Get the subset of the dual space basis that is supported on a mesh point of a
1582: given height. This assumes that the reference cell is symmetric over points of this height.
1584: If the dual space is not defined on mesh points of the given height (e.g. if the space is discontinuous and
1585: pointwise values are not defined on the element boundaries), or if the implementation of PetscDualSpace does not
1586: support extracting subspaces, then NULL is returned.
1588: This does not increment the reference count on the returned dual space, and the user should not destroy it.
1590: Not collective
1592: Input Parameters:
1593: + sp - the PetscDualSpace object
1594: - height - the height of the mesh point for which the subspace is desired
1596: Output Parameter:
1597: . subsp - the subspace. Note that the functionals in the subspace are with respect to the intrinsic geometry of the
1598: point, which will be of lesser dimension if height > 0.
1600: Level: advanced
1602: .seealso: PetscSpaceGetHeightSubspace(), PetscDualSpace
1603: @*/
1604: PetscErrorCode PetscDualSpaceGetHeightSubspace(PetscDualSpace sp, PetscInt height, PetscDualSpace *subsp)
1605: {
1606: PetscInt depth = -1, cStart, cEnd;
1607: DM dm;
1613: if (!(sp->uniform)) SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "A non-uniform dual space does not have a single dual space at each height");
1614: *subsp = NULL;
1615: dm = sp->dm;
1616: DMPlexGetDepth(dm, &depth);
1617: if (height < 0 || height > depth) SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid height");
1618: DMPlexGetHeightStratum(dm,0,&cStart,&cEnd);
1619: if (height == 0 && cEnd == cStart + 1) {
1620: *subsp = sp;
1621: return(0);
1622: }
1623: if (!sp->heightSpaces) {
1624: PetscInt h;
1625: PetscCalloc1(depth+1, &(sp->heightSpaces));
1627: for (h = 0; h <= depth; h++) {
1628: if (h == 0 && cEnd == cStart + 1) continue;
1629: if (sp->ops->createheightsubspace) {(*sp->ops->createheightsubspace)(sp,height,&(sp->heightSpaces[h]));}
1630: else if (sp->pointSpaces) {
1631: PetscInt hStart, hEnd;
1633: DMPlexGetHeightStratum(dm,h,&hStart,&hEnd);
1634: if (hEnd > hStart) {
1635: const char *name;
1637: PetscObjectReference((PetscObject)(sp->pointSpaces[hStart]));
1638: if (sp->pointSpaces[hStart]) {
1639: PetscObjectGetName((PetscObject) sp, &name);
1640: PetscObjectSetName((PetscObject) sp->pointSpaces[hStart], name);
1641: }
1642: sp->heightSpaces[h] = sp->pointSpaces[hStart];
1643: }
1644: }
1645: }
1646: }
1647: *subsp = sp->heightSpaces[height];
1648: return(0);
1649: }
1651: /*@
1652: PetscDualSpaceGetPointSubspace - Get the subset of the dual space basis that is supported on a particular mesh point.
1654: If the dual space is not defined on the mesh point (e.g. if the space is discontinuous and pointwise values are not
1655: defined on the element boundaries), or if the implementation of PetscDualSpace does not support extracting
1656: subspaces, then NULL is returned.
1658: This does not increment the reference count on the returned dual space, and the user should not destroy it.
1660: Not collective
1662: Input Parameters:
1663: + sp - the PetscDualSpace object
1664: - point - the point (in the dual space's DM) for which the subspace is desired
1666: Output Parameters:
1667: bdsp - the subspace. Note that the functionals in the subspace are with respect to the intrinsic geometry of the
1668: point, which will be of lesser dimension if height > 0.
1670: Level: advanced
1672: .seealso: PetscDualSpace
1673: @*/
1674: PetscErrorCode PetscDualSpaceGetPointSubspace(PetscDualSpace sp, PetscInt point, PetscDualSpace *bdsp)
1675: {
1676: PetscInt pStart = 0, pEnd = 0, cStart, cEnd;
1677: DM dm;
1683: *bdsp = NULL;
1684: dm = sp->dm;
1685: DMPlexGetChart(dm, &pStart, &pEnd);
1686: if (point < pStart || point > pEnd) SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid point");
1687: DMPlexGetHeightStratum(dm,0,&cStart,&cEnd);
1688: if (point == cStart && cEnd == cStart + 1) { /* the dual space is only equivalent to the dual space on a cell if the reference mesh has just one cell */
1689: *bdsp = sp;
1690: return(0);
1691: }
1692: if (!sp->pointSpaces) {
1693: PetscInt p;
1694: PetscCalloc1(pEnd - pStart, &(sp->pointSpaces));
1696: for (p = 0; p < pEnd - pStart; p++) {
1697: if (p + pStart == cStart && cEnd == cStart + 1) continue;
1698: if (sp->ops->createpointsubspace) {(*sp->ops->createpointsubspace)(sp,p+pStart,&(sp->pointSpaces[p]));}
1699: else if (sp->heightSpaces || sp->ops->createheightsubspace) {
1700: PetscInt dim, depth, height;
1701: DMLabel label;
1703: DMPlexGetDepth(dm,&dim);
1704: DMPlexGetDepthLabel(dm,&label);
1705: DMLabelGetValue(label,p+pStart,&depth);
1706: height = dim - depth;
1707: PetscDualSpaceGetHeightSubspace(sp, height, &(sp->pointSpaces[p]));
1708: PetscObjectReference((PetscObject)sp->pointSpaces[p]);
1709: }
1710: }
1711: }
1712: *bdsp = sp->pointSpaces[point - pStart];
1713: return(0);
1714: }
1716: /*@C
1717: PetscDualSpaceGetSymmetries - Returns a description of the symmetries of this basis
1719: Not collective
1721: Input Parameter:
1722: . sp - the PetscDualSpace object
1724: Output Parameters:
1725: + perms - Permutations of the interior degrees of freedom, parameterized by the point orientation
1726: - flips - Sign reversal of the interior degrees of freedom, parameterized by the point orientation
1728: Note: The permutation and flip arrays are organized in the following way
1729: $ perms[p][ornt][dof # on point] = new local dof #
1730: $ flips[p][ornt][dof # on point] = reversal or not
1732: Level: developer
1734: @*/
1735: PetscErrorCode PetscDualSpaceGetSymmetries(PetscDualSpace sp, const PetscInt ****perms, const PetscScalar ****flips)
1736: {
1743: if (sp->ops->getsymmetries) {(sp->ops->getsymmetries)(sp,perms,flips);}
1744: return(0);
1745: }
1747: /*@
1748: PetscDualSpaceGetFormDegree - Get the form degree k for the k-form the describes the pushforwards/pullbacks of this
1749: dual space's functionals.
1751: Input Parameter:
1752: . dsp - The PetscDualSpace
1754: Output Parameter:
1755: . k - The *signed* degree k of the k. If k >= 0, this means that the degrees of freedom are k-forms, and are stored
1756: in lexicographic order according to the basis of k-forms constructed from the wedge product of 1-forms. So for example,
1757: the 1-form basis in 3-D is (dx, dy, dz), and the 2-form basis in 3-D is (dx wedge dy, dx wedge dz, dy wedge dz).
1758: If k < 0, this means that the degrees transform as k-forms, but are stored as (N-k) forms according to the
1759: Hodge star map. So for example if k = -2 and N = 3, this means that the degrees of freedom transform as 2-forms
1760: but are stored as 1-forms.
1762: Level: developer
1764: .seealso: PetscDTAltV, PetscDualSpacePullback(), PetscDualSpacePushforward(), PetscDualSpaceTransform(), PetscDualSpaceTransformType
1765: @*/
1766: PetscErrorCode PetscDualSpaceGetFormDegree(PetscDualSpace dsp, PetscInt *k)
1767: {
1771: *k = dsp->k;
1772: return(0);
1773: }
1775: /*@
1776: PetscDualSpaceSetFormDegree - Set the form degree k for the k-form the describes the pushforwards/pullbacks of this
1777: dual space's functionals.
1779: Input Parameter:
1780: + dsp - The PetscDualSpace
1781: - k - The *signed* degree k of the k. If k >= 0, this means that the degrees of freedom are k-forms, and are stored
1782: in lexicographic order according to the basis of k-forms constructed from the wedge product of 1-forms. So for example,
1783: the 1-form basis in 3-D is (dx, dy, dz), and the 2-form basis in 3-D is (dx wedge dy, dx wedge dz, dy wedge dz).
1784: If k < 0, this means that the degrees transform as k-forms, but are stored as (N-k) forms according to the
1785: Hodge star map. So for example if k = -2 and N = 3, this means that the degrees of freedom transform as 2-forms
1786: but are stored as 1-forms.
1788: Level: developer
1790: .seealso: PetscDTAltV, PetscDualSpacePullback(), PetscDualSpacePushforward(), PetscDualSpaceTransform(), PetscDualSpaceTransformType
1791: @*/
1792: PetscErrorCode PetscDualSpaceSetFormDegree(PetscDualSpace dsp, PetscInt k)
1793: {
1794: PetscInt dim;
1798: if (dsp->setupcalled) SETERRQ(PetscObjectComm((PetscObject)dsp), PETSC_ERR_ARG_WRONGSTATE, "Cannot change number of components after dualspace is set up");
1799: dim = dsp->dm->dim;
1800: if (k < -dim || k > dim) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Unsupported %D-form on %D-dimensional reference cell", PetscAbsInt(k), dim);
1801: dsp->k = k;
1802: return(0);
1803: }
1805: /*@
1806: PetscDualSpaceGetDeRahm - Get the k-simplex associated with the functionals in this dual space
1808: Input Parameter:
1809: . dsp - The PetscDualSpace
1811: Output Parameter:
1812: . k - The simplex dimension
1814: Level: developer
1816: Note: Currently supported values are
1817: $ 0: These are H_1 methods that only transform coordinates
1818: $ 1: These are Hcurl methods that transform functions using the covariant Piola transform (COVARIANT_PIOLA_TRANSFORM)
1819: $ 2: These are the same as 1
1820: $ 3: These are Hdiv methods that transform functions using the contravariant Piola transform (CONTRAVARIANT_PIOLA_TRANSFORM)
1822: .seealso: PetscDualSpacePullback(), PetscDualSpacePushforward(), PetscDualSpaceTransform(), PetscDualSpaceTransformType
1823: @*/
1824: PetscErrorCode PetscDualSpaceGetDeRahm(PetscDualSpace dsp, PetscInt *k)
1825: {
1826: PetscInt dim;
1831: dim = dsp->dm->dim;
1832: if (!dsp->k) *k = IDENTITY_TRANSFORM;
1833: else if (dsp->k == 1) *k = COVARIANT_PIOLA_TRANSFORM;
1834: else if (dsp->k == -(dim - 1)) *k = CONTRAVARIANT_PIOLA_TRANSFORM;
1835: else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Unsupported transformation");
1836: return(0);
1837: }
1839: /*@C
1840: PetscDualSpaceTransform - Transform the function values
1842: Input Parameters:
1843: + dsp - The PetscDualSpace
1844: . trans - The type of transform
1845: . isInverse - Flag to invert the transform
1846: . fegeom - The cell geometry
1847: . Nv - The number of function samples
1848: . Nc - The number of function components
1849: - vals - The function values
1851: Output Parameter:
1852: . vals - The transformed function values
1854: Level: intermediate
1856: Note: This only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
1858: .seealso: PetscDualSpaceTransformGradient(), PetscDualSpaceTransformHessian(), PetscDualSpacePullback(), PetscDualSpacePushforward(), PetscDualSpaceTransformType
1859: @*/
1860: PetscErrorCode PetscDualSpaceTransform(PetscDualSpace dsp, PetscDualSpaceTransformType trans, PetscBool isInverse, PetscFEGeom *fegeom, PetscInt Nv, PetscInt Nc, PetscScalar vals[])
1861: {
1862: PetscReal Jstar[9] = {0};
1863: PetscInt dim, v, c, Nk;
1870: /* TODO: not handling dimEmbed != dim right now */
1871: dim = dsp->dm->dim;
1872: /* No change needed for 0-forms */
1873: if (!dsp->k) return(0);
1874: PetscDTBinomialInt(dim, PetscAbsInt(dsp->k), &Nk);
1875: /* TODO: use fegeom->isAffine */
1876: PetscDTAltVPullbackMatrix(dim, dim, isInverse ? fegeom->J : fegeom->invJ, dsp->k, Jstar);
1877: for (v = 0; v < Nv; ++v) {
1878: switch (Nk) {
1879: case 1:
1880: for (c = 0; c < Nc; c++) vals[v*Nc + c] *= Jstar[0];
1881: break;
1882: case 2:
1883: for (c = 0; c < Nc; c += 2) DMPlex_Mult2DReal_Internal(Jstar, 1, &vals[v*Nc + c], &vals[v*Nc + c]);
1884: break;
1885: case 3:
1886: for (c = 0; c < Nc; c += 3) DMPlex_Mult3DReal_Internal(Jstar, 1, &vals[v*Nc + c], &vals[v*Nc + c]);
1887: break;
1888: default: SETERRQ1(PetscObjectComm((PetscObject) dsp), PETSC_ERR_ARG_OUTOFRANGE, "Unsupported form size %D for transformation", Nk);
1889: }
1890: }
1891: return(0);
1892: }
1894: /*@C
1895: PetscDualSpaceTransformGradient - Transform the function gradient values
1897: Input Parameters:
1898: + dsp - The PetscDualSpace
1899: . trans - The type of transform
1900: . isInverse - Flag to invert the transform
1901: . fegeom - The cell geometry
1902: . Nv - The number of function gradient samples
1903: . Nc - The number of function components
1904: - vals - The function gradient values
1906: Output Parameter:
1907: . vals - The transformed function gradient values
1909: Level: intermediate
1911: Note: This only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
1913: .seealso: PetscDualSpaceTransform(), PetscDualSpacePullback(), PetscDualSpacePushforward(), PetscDualSpaceTransformType
1914: @*/
1915: PetscErrorCode PetscDualSpaceTransformGradient(PetscDualSpace dsp, PetscDualSpaceTransformType trans, PetscBool isInverse, PetscFEGeom *fegeom, PetscInt Nv, PetscInt Nc, PetscScalar vals[])
1916: {
1917: const PetscInt dim = dsp->dm->dim, dE = fegeom->dimEmbed;
1918: PetscInt v, c, d;
1924: #ifdef PETSC_USE_DEBUG
1925: if (dE <= 0) SETERRQ1(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid embedding dimension %D", dE);
1926: #endif
1927: /* Transform gradient */
1928: if (dim == dE) {
1929: for (v = 0; v < Nv; ++v) {
1930: for (c = 0; c < Nc; ++c) {
1931: switch (dim)
1932: {
1933: case 1: vals[(v*Nc+c)*dim] *= fegeom->invJ[0];break;
1934: case 2: DMPlex_MultTranspose2DReal_Internal(fegeom->invJ, 1, &vals[(v*Nc+c)*dim], &vals[(v*Nc+c)*dim]);break;
1935: case 3: DMPlex_MultTranspose3DReal_Internal(fegeom->invJ, 1, &vals[(v*Nc+c)*dim], &vals[(v*Nc+c)*dim]);break;
1936: default: SETERRQ1(PetscObjectComm((PetscObject) dsp), PETSC_ERR_ARG_OUTOFRANGE, "Unsupported dim %D for transformation", dim);
1937: }
1938: }
1939: }
1940: } else {
1941: for (v = 0; v < Nv; ++v) {
1942: for (c = 0; c < Nc; ++c) {
1943: DMPlex_MultTransposeReal_Internal(fegeom->invJ, dim, dE, 1, &vals[(v*Nc+c)*dE], &vals[(v*Nc+c)*dE]);
1944: }
1945: }
1946: }
1947: /* Assume its a vector, otherwise assume its a bunch of scalars */
1948: if (Nc == 1 || Nc != dim) return(0);
1949: switch (trans) {
1950: case IDENTITY_TRANSFORM: break;
1951: case COVARIANT_PIOLA_TRANSFORM: /* Covariant Piola mapping $\sigma^*(F) = J^{-T} F \circ \phi^{-1)$ */
1952: if (isInverse) {
1953: for (v = 0; v < Nv; ++v) {
1954: for (d = 0; d < dim; ++d) {
1955: switch (dim)
1956: {
1957: case 2: DMPlex_MultTranspose2DReal_Internal(fegeom->J, dim, &vals[v*Nc*dim+d], &vals[v*Nc*dim+d]);break;
1958: case 3: DMPlex_MultTranspose3DReal_Internal(fegeom->J, dim, &vals[v*Nc*dim+d], &vals[v*Nc*dim+d]);break;
1959: default: SETERRQ1(PetscObjectComm((PetscObject) dsp), PETSC_ERR_ARG_OUTOFRANGE, "Unsupported dim %D for transformation", dim);
1960: }
1961: }
1962: }
1963: } else {
1964: for (v = 0; v < Nv; ++v) {
1965: for (d = 0; d < dim; ++d) {
1966: switch (dim)
1967: {
1968: case 2: DMPlex_MultTranspose2DReal_Internal(fegeom->invJ, dim, &vals[v*Nc*dim+d], &vals[v*Nc*dim+d]);break;
1969: case 3: DMPlex_MultTranspose3DReal_Internal(fegeom->invJ, dim, &vals[v*Nc*dim+d], &vals[v*Nc*dim+d]);break;
1970: default: SETERRQ1(PetscObjectComm((PetscObject) dsp), PETSC_ERR_ARG_OUTOFRANGE, "Unsupported dim %D for transformation", dim);
1971: }
1972: }
1973: }
1974: }
1975: break;
1976: case CONTRAVARIANT_PIOLA_TRANSFORM: /* Contravariant Piola mapping $\sigma^*(F) = \frac{1}{|\det J|} J F \circ \phi^{-1}$ */
1977: if (isInverse) {
1978: for (v = 0; v < Nv; ++v) {
1979: for (d = 0; d < dim; ++d) {
1980: switch (dim)
1981: {
1982: case 2: DMPlex_Mult2DReal_Internal(fegeom->invJ, dim, &vals[v*Nc*dim+d], &vals[v*Nc*dim+d]);break;
1983: case 3: DMPlex_Mult3DReal_Internal(fegeom->invJ, dim, &vals[v*Nc*dim+d], &vals[v*Nc*dim+d]);break;
1984: default: SETERRQ1(PetscObjectComm((PetscObject) dsp), PETSC_ERR_ARG_OUTOFRANGE, "Unsupported dim %D for transformation", dim);
1985: }
1986: for (c = 0; c < Nc; ++c) vals[(v*Nc+c)*dim+d] *= fegeom->detJ[0];
1987: }
1988: }
1989: } else {
1990: for (v = 0; v < Nv; ++v) {
1991: for (d = 0; d < dim; ++d) {
1992: switch (dim)
1993: {
1994: case 2: DMPlex_Mult2DReal_Internal(fegeom->J, dim, &vals[v*Nc*dim+d], &vals[v*Nc*dim+d]);break;
1995: case 3: DMPlex_Mult3DReal_Internal(fegeom->J, dim, &vals[v*Nc*dim+d], &vals[v*Nc*dim+d]);break;
1996: default: SETERRQ1(PetscObjectComm((PetscObject) dsp), PETSC_ERR_ARG_OUTOFRANGE, "Unsupported dim %D for transformation", dim);
1997: }
1998: for (c = 0; c < Nc; ++c) vals[(v*Nc+c)*dim+d] /= fegeom->detJ[0];
1999: }
2000: }
2001: }
2002: break;
2003: }
2004: return(0);
2005: }
2007: /*@C
2008: PetscDualSpaceTransformHessian - Transform the function Hessian values
2010: Input Parameters:
2011: + dsp - The PetscDualSpace
2012: . trans - The type of transform
2013: . isInverse - Flag to invert the transform
2014: . fegeom - The cell geometry
2015: . Nv - The number of function Hessian samples
2016: . Nc - The number of function components
2017: - vals - The function gradient values
2019: Output Parameter:
2020: . vals - The transformed function Hessian values
2022: Level: intermediate
2024: Note: This only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
2026: .seealso: PetscDualSpaceTransform(), PetscDualSpacePullback(), PetscDualSpacePushforward(), PetscDualSpaceTransformType
2027: @*/
2028: PetscErrorCode PetscDualSpaceTransformHessian(PetscDualSpace dsp, PetscDualSpaceTransformType trans, PetscBool isInverse, PetscFEGeom *fegeom, PetscInt Nv, PetscInt Nc, PetscScalar vals[])
2029: {
2030: const PetscInt dim = dsp->dm->dim, dE = fegeom->dimEmbed;
2031: PetscInt v, c;
2037: #ifdef PETSC_USE_DEBUG
2038: if (dE <= 0) SETERRQ1(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid embedding dimension %D", dE);
2039: #endif
2040: /* Transform Hessian: J^{-T}_{ik} J^{-T}_{jl} H(f)_{kl} = J^{-T}_{ik} H(f)_{kl} J^{-1}_{lj} */
2041: if (dim == dE) {
2042: for (v = 0; v < Nv; ++v) {
2043: for (c = 0; c < Nc; ++c) {
2044: switch (dim)
2045: {
2046: case 1: vals[(v*Nc+c)*dim*dim] *= PetscSqr(fegeom->invJ[0]);break;
2047: case 2: DMPlex_PTAP2DReal_Internal(fegeom->invJ, &vals[(v*Nc+c)*dim*dim], &vals[(v*Nc+c)*dim*dim]);break;
2048: case 3: DMPlex_PTAP3DReal_Internal(fegeom->invJ, &vals[(v*Nc+c)*dim*dim], &vals[(v*Nc+c)*dim*dim]);break;
2049: default: SETERRQ1(PetscObjectComm((PetscObject) dsp), PETSC_ERR_ARG_OUTOFRANGE, "Unsupported dim %D for transformation", dim);
2050: }
2051: }
2052: }
2053: } else {
2054: for (v = 0; v < Nv; ++v) {
2055: for (c = 0; c < Nc; ++c) {
2056: DMPlex_PTAPReal_Internal(fegeom->invJ, dim, dE, &vals[(v*Nc+c)*dE*dE], &vals[(v*Nc+c)*dE*dE]);
2057: }
2058: }
2059: }
2060: /* Assume its a vector, otherwise assume its a bunch of scalars */
2061: if (Nc == 1 || Nc != dim) return(0);
2062: switch (trans) {
2063: case IDENTITY_TRANSFORM: break;
2064: case COVARIANT_PIOLA_TRANSFORM: /* Covariant Piola mapping $\sigma^*(F) = J^{-T} F \circ \phi^{-1)$ */
2065: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "Piola mapping for Hessians not yet supported");
2066: case CONTRAVARIANT_PIOLA_TRANSFORM: /* Contravariant Piola mapping $\sigma^*(F) = \frac{1}{|\det J|} J F \circ \phi^{-1}$ */
2067: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "Piola mapping for Hessians not yet supported");
2068: }
2069: return(0);
2070: }
2072: /*@C
2073: PetscDualSpacePullback - Transform the given functional so that it operates on real space, rather than the reference element. Operationally, this means that we map the function evaluations depending on continuity requirements of our finite element method.
2075: Input Parameters:
2076: + dsp - The PetscDualSpace
2077: . fegeom - The geometry for this cell
2078: . Nq - The number of function samples
2079: . Nc - The number of function components
2080: - pointEval - The function values
2082: Output Parameter:
2083: . pointEval - The transformed function values
2085: Level: advanced
2087: Note: Functions transform in a complementary way (pushforward) to functionals, so that the scalar product is invariant. The type of transform is dependent on the associated k-simplex from the DeRahm complex.
2089: Note: This only handles tranformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
2091: .seealso: PetscDualSpacePushforward(), PetscDualSpaceTransform(), PetscDualSpaceGetDeRahm()
2092: @*/
2093: PetscErrorCode PetscDualSpacePullback(PetscDualSpace dsp, PetscFEGeom *fegeom, PetscInt Nq, PetscInt Nc, PetscScalar pointEval[])
2094: {
2095: PetscDualSpaceTransformType trans;
2096: PetscInt k;
2097: PetscErrorCode ierr;
2103: /* The dualspace dofs correspond to some simplex in the DeRahm complex, which we label by k.
2104: This determines their transformation properties. */
2105: PetscDualSpaceGetDeRahm(dsp, &k);
2106: switch (k)
2107: {
2108: case 0: /* H^1 point evaluations */
2109: trans = IDENTITY_TRANSFORM;break;
2110: case 1: /* Hcurl preserves tangential edge traces */
2111: trans = COVARIANT_PIOLA_TRANSFORM;break;
2112: case 2:
2113: case 3: /* Hdiv preserve normal traces */
2114: trans = CONTRAVARIANT_PIOLA_TRANSFORM;break;
2115: default: SETERRQ1(PetscObjectComm((PetscObject) dsp), PETSC_ERR_ARG_OUTOFRANGE, "Unsupported simplex dim %D for transformation", k);
2116: }
2117: PetscDualSpaceTransform(dsp, trans, PETSC_TRUE, fegeom, Nq, Nc, pointEval);
2118: return(0);
2119: }
2121: /*@C
2122: PetscDualSpacePushforward - Transform the given function so that it operates on real space, rather than the reference element. Operationally, this means that we map the function evaluations depending on continuity requirements of our finite element method.
2124: Input Parameters:
2125: + dsp - The PetscDualSpace
2126: . fegeom - The geometry for this cell
2127: . Nq - The number of function samples
2128: . Nc - The number of function components
2129: - pointEval - The function values
2131: Output Parameter:
2132: . pointEval - The transformed function values
2134: Level: advanced
2136: Note: Functionals transform in a complementary way (pullback) to functions, so that the scalar product is invariant. The type of transform is dependent on the associated k-simplex from the DeRahm complex.
2138: Note: This only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
2140: .seealso: PetscDualSpacePullback(), PetscDualSpaceTransform(), PetscDualSpaceGetDeRahm()
2141: @*/
2142: PetscErrorCode PetscDualSpacePushforward(PetscDualSpace dsp, PetscFEGeom *fegeom, PetscInt Nq, PetscInt Nc, PetscScalar pointEval[])
2143: {
2144: PetscDualSpaceTransformType trans;
2145: PetscInt k;
2146: PetscErrorCode ierr;
2152: /* The dualspace dofs correspond to some simplex in the DeRahm complex, which we label by k.
2153: This determines their transformation properties. */
2154: PetscDualSpaceGetDeRahm(dsp, &k);
2155: switch (k)
2156: {
2157: case 0: /* H^1 point evaluations */
2158: trans = IDENTITY_TRANSFORM;break;
2159: case 1: /* Hcurl preserves tangential edge traces */
2160: trans = COVARIANT_PIOLA_TRANSFORM;break;
2161: case 2:
2162: case 3: /* Hdiv preserve normal traces */
2163: trans = CONTRAVARIANT_PIOLA_TRANSFORM;break;
2164: default: SETERRQ1(PetscObjectComm((PetscObject) dsp), PETSC_ERR_ARG_OUTOFRANGE, "Unsupported simplex dim %D for transformation", k);
2165: }
2166: PetscDualSpaceTransform(dsp, trans, PETSC_FALSE, fegeom, Nq, Nc, pointEval);
2167: return(0);
2168: }
2170: /*@C
2171: PetscDualSpacePushforwardGradient - Transform the given function gradient so that it operates on real space, rather than the reference element. Operationally, this means that we map the function evaluations depending on continuity requirements of our finite element method.
2173: Input Parameters:
2174: + dsp - The PetscDualSpace
2175: . fegeom - The geometry for this cell
2176: . Nq - The number of function gradient samples
2177: . Nc - The number of function components
2178: - pointEval - The function gradient values
2180: Output Parameter:
2181: . pointEval - The transformed function gradient values
2183: Level: advanced
2185: Note: Functionals transform in a complementary way (pullback) to functions, so that the scalar product is invariant. The type of transform is dependent on the associated k-simplex from the DeRahm complex.
2187: Note: This only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
2189: .seealso: PetscDualSpacePushforward(), PPetscDualSpacePullback(), PetscDualSpaceTransform(), PetscDualSpaceGetDeRahm()
2190: @*/
2191: PetscErrorCode PetscDualSpacePushforwardGradient(PetscDualSpace dsp, PetscFEGeom *fegeom, PetscInt Nq, PetscInt Nc, PetscScalar pointEval[])
2192: {
2193: PetscDualSpaceTransformType trans;
2194: PetscInt k;
2195: PetscErrorCode ierr;
2201: /* The dualspace dofs correspond to some simplex in the DeRahm complex, which we label by k.
2202: This determines their transformation properties. */
2203: PetscDualSpaceGetDeRahm(dsp, &k);
2204: switch (k)
2205: {
2206: case 0: /* H^1 point evaluations */
2207: trans = IDENTITY_TRANSFORM;break;
2208: case 1: /* Hcurl preserves tangential edge traces */
2209: trans = COVARIANT_PIOLA_TRANSFORM;break;
2210: case 2:
2211: case 3: /* Hdiv preserve normal traces */
2212: trans = CONTRAVARIANT_PIOLA_TRANSFORM;break;
2213: default: SETERRQ1(PetscObjectComm((PetscObject) dsp), PETSC_ERR_ARG_OUTOFRANGE, "Unsupported simplex dim %D for transformation", k);
2214: }
2215: PetscDualSpaceTransformGradient(dsp, trans, PETSC_FALSE, fegeom, Nq, Nc, pointEval);
2216: return(0);
2217: }
2219: /*@C
2220: PetscDualSpacePushforwardHessian - Transform the given function Hessian so that it operates on real space, rather than the reference element. Operationally, this means that we map the function evaluations depending on continuity requirements of our finite element method.
2222: Input Parameters:
2223: + dsp - The PetscDualSpace
2224: . fegeom - The geometry for this cell
2225: . Nq - The number of function Hessian samples
2226: . Nc - The number of function components
2227: - pointEval - The function gradient values
2229: Output Parameter:
2230: . pointEval - The transformed function Hessian values
2232: Level: advanced
2234: Note: Functionals transform in a complementary way (pullback) to functions, so that the scalar product is invariant. The type of transform is dependent on the associated k-simplex from the DeRahm complex.
2236: Note: This only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
2238: .seealso: PetscDualSpacePushforward(), PPetscDualSpacePullback(), PetscDualSpaceTransform(), PetscDualSpaceGetDeRahm()
2239: @*/
2240: PetscErrorCode PetscDualSpacePushforwardHessian(PetscDualSpace dsp, PetscFEGeom *fegeom, PetscInt Nq, PetscInt Nc, PetscScalar pointEval[])
2241: {
2242: PetscDualSpaceTransformType trans;
2243: PetscInt k;
2244: PetscErrorCode ierr;
2250: /* The dualspace dofs correspond to some simplex in the DeRahm complex, which we label by k.
2251: This determines their transformation properties. */
2252: PetscDualSpaceGetDeRahm(dsp, &k);
2253: switch (k)
2254: {
2255: case 0: /* H^1 point evaluations */
2256: trans = IDENTITY_TRANSFORM;break;
2257: case 1: /* Hcurl preserves tangential edge traces */
2258: trans = COVARIANT_PIOLA_TRANSFORM;break;
2259: case 2:
2260: case 3: /* Hdiv preserve normal traces */
2261: trans = CONTRAVARIANT_PIOLA_TRANSFORM;break;
2262: default: SETERRQ1(PetscObjectComm((PetscObject) dsp), PETSC_ERR_ARG_OUTOFRANGE, "Unsupported simplex dim %D for transformation", k);
2263: }
2264: PetscDualSpaceTransformHessian(dsp, trans, PETSC_FALSE, fegeom, Nq, Nc, pointEval);
2265: return(0);
2266: }