Actual source code: ts.c
1: #include <petsc/private/tsimpl.h>
2: #include <petscdmshell.h>
3: #include <petscdmda.h>
4: #include <petscviewer.h>
5: #include <petscdraw.h>
6: #include <petscconvest.h>
8: #define SkipSmallValue(a,b,tol) if (PetscAbsScalar(a)< tol || PetscAbsScalar(b)< tol) continue;
10: /* Logging support */
11: PetscClassId TS_CLASSID, DMTS_CLASSID;
12: PetscLogEvent TS_Step, TS_PseudoComputeTimeStep, TS_FunctionEval, TS_JacobianEval;
14: const char *const TSExactFinalTimeOptions[] = {"UNSPECIFIED","STEPOVER","INTERPOLATE","MATCHSTEP","TSExactFinalTimeOption","TS_EXACTFINALTIME_",NULL};
17: /*@C
18: TSMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type indicated by the user
20: Collective on TS
22: Input Parameters:
23: + ts - TS object you wish to monitor
24: . name - the monitor type one is seeking
25: . help - message indicating what monitoring is done
26: . manual - manual page for the monitor
27: . monitor - the monitor function
28: - monitorsetup - a function that is called once ONLY if the user selected this monitor that may set additional features of the TS or PetscViewer objects
30: Level: developer
32: .seealso: PetscOptionsGetViewer(), PetscOptionsGetReal(), PetscOptionsHasName(), PetscOptionsGetString(),
33: PetscOptionsGetIntArray(), PetscOptionsGetRealArray(), PetscOptionsBool()
34: PetscOptionsInt(), PetscOptionsString(), PetscOptionsReal(), PetscOptionsBool(),
35: PetscOptionsName(), PetscOptionsBegin(), PetscOptionsEnd(), PetscOptionsHead(),
36: PetscOptionsStringArray(),PetscOptionsRealArray(), PetscOptionsScalar(),
37: PetscOptionsBoolGroupBegin(), PetscOptionsBoolGroup(), PetscOptionsBoolGroupEnd(),
38: PetscOptionsFList(), PetscOptionsEList()
39: @*/
40: PetscErrorCode TSMonitorSetFromOptions(TS ts,const char name[],const char help[], const char manual[],PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,PetscViewerAndFormat*),PetscErrorCode (*monitorsetup)(TS,PetscViewerAndFormat*))
41: {
42: PetscErrorCode ierr;
43: PetscViewer viewer;
44: PetscViewerFormat format;
45: PetscBool flg;
48: PetscOptionsGetViewer(PetscObjectComm((PetscObject)ts),((PetscObject) ts)->options,((PetscObject)ts)->prefix,name,&viewer,&format,&flg);
49: if (flg) {
50: PetscViewerAndFormat *vf;
51: PetscViewerAndFormatCreate(viewer,format,&vf);
52: PetscObjectDereference((PetscObject)viewer);
53: if (monitorsetup) {
54: (*monitorsetup)(ts,vf);
55: }
56: TSMonitorSet(ts,(PetscErrorCode (*)(TS,PetscInt,PetscReal,Vec,void*))monitor,vf,(PetscErrorCode (*)(void**))PetscViewerAndFormatDestroy);
57: }
58: return(0);
59: }
61: static PetscErrorCode TSAdaptSetDefaultType(TSAdapt adapt,TSAdaptType default_type)
62: {
68: if (!((PetscObject)adapt)->type_name) {
69: TSAdaptSetType(adapt,default_type);
70: }
71: return(0);
72: }
74: /*@
75: TSSetFromOptions - Sets various TS parameters from user options.
77: Collective on TS
79: Input Parameter:
80: . ts - the TS context obtained from TSCreate()
82: Options Database Keys:
83: + -ts_type <type> - TSEULER, TSBEULER, TSSUNDIALS, TSPSEUDO, TSCN, TSRK, TSTHETA, TSALPHA, TSGLLE, TSSSP, TSGLEE, TSBSYMP
84: . -ts_save_trajectory - checkpoint the solution at each time-step
85: . -ts_max_time <time> - maximum time to compute to
86: . -ts_max_steps <steps> - maximum number of time-steps to take
87: . -ts_init_time <time> - initial time to start computation
88: . -ts_final_time <time> - final time to compute to (deprecated: use -ts_max_time)
89: . -ts_dt <dt> - initial time step
90: . -ts_exact_final_time <stepover,interpolate,matchstep> - whether to stop at the exact given final time and how to compute the solution at that time
91: . -ts_max_snes_failures <maxfailures> - Maximum number of nonlinear solve failures allowed
92: . -ts_max_reject <maxrejects> - Maximum number of step rejections before step fails
93: . -ts_error_if_step_fails <true,false> - Error if no step succeeds
94: . -ts_rtol <rtol> - relative tolerance for local truncation error
95: . -ts_atol <atol> Absolute tolerance for local truncation error
96: . -ts_rhs_jacobian_test_mult -mat_shell_test_mult_view - test the Jacobian at each iteration against finite difference with RHS function
97: . -ts_rhs_jacobian_test_mult_transpose -mat_shell_test_mult_transpose_view - test the Jacobian at each iteration against finite difference with RHS function
98: . -ts_adjoint_solve <yes,no> After solving the ODE/DAE solve the adjoint problem (requires -ts_save_trajectory)
99: . -ts_fd_color - Use finite differences with coloring to compute IJacobian
100: . -ts_monitor - print information at each timestep
101: . -ts_monitor_cancel - Cancel all monitors
102: . -ts_monitor_lg_solution - Monitor solution graphically
103: . -ts_monitor_lg_error - Monitor error graphically
104: . -ts_monitor_error - Monitors norm of error
105: . -ts_monitor_lg_timestep - Monitor timestep size graphically
106: . -ts_monitor_lg_timestep_log - Monitor log timestep size graphically
107: . -ts_monitor_lg_snes_iterations - Monitor number nonlinear iterations for each timestep graphically
108: . -ts_monitor_lg_ksp_iterations - Monitor number nonlinear iterations for each timestep graphically
109: . -ts_monitor_sp_eig - Monitor eigenvalues of linearized operator graphically
110: . -ts_monitor_draw_solution - Monitor solution graphically
111: . -ts_monitor_draw_solution_phase <xleft,yleft,xright,yright> - Monitor solution graphically with phase diagram, requires problem with exactly 2 degrees of freedom
112: . -ts_monitor_draw_error - Monitor error graphically, requires use to have provided TSSetSolutionFunction()
113: . -ts_monitor_solution [ascii binary draw][:filename][:viewerformat] - monitors the solution at each timestep
114: . -ts_monitor_solution_vtk <filename.vts,filename.vtu> - Save each time step to a binary file, use filename-%%03D.vts (filename-%%03D.vtu)
115: - -ts_monitor_envelope - determine maximum and minimum value of each component of the solution over the solution time
117: Notes:
118: See SNESSetFromOptions() and KSPSetFromOptions() for how to control the nonlinear and linear solves used by the time-stepper.
120: Certain SNES options get reset for each new nonlinear solver, for example -snes_lag_jacobian <its> and -snes_lag_preconditioner <its>, in order
121: to retain them over the multiple nonlinear solves that TS uses you mush also provide -snes_lag_jacobian_persists true and
122: -snes_lag_preconditioner_persists true
124: Developer Note:
125: We should unify all the -ts_monitor options in the way that -xxx_view has been unified
127: Level: beginner
129: .seealso: TSGetType()
130: @*/
131: PetscErrorCode TSSetFromOptions(TS ts)
132: {
133: PetscBool opt,flg,tflg;
134: PetscErrorCode ierr;
135: char monfilename[PETSC_MAX_PATH_LEN];
136: PetscReal time_step;
137: TSExactFinalTimeOption eftopt;
138: char dir[16];
139: TSIFunction ifun;
140: const char *defaultType;
141: char typeName[256];
146: TSRegisterAll();
147: TSGetIFunction(ts,NULL,&ifun,NULL);
149: PetscObjectOptionsBegin((PetscObject)ts);
150: if (((PetscObject)ts)->type_name) defaultType = ((PetscObject)ts)->type_name;
151: else defaultType = ifun ? TSBEULER : TSEULER;
152: PetscOptionsFList("-ts_type","TS method","TSSetType",TSList,defaultType,typeName,256,&opt);
153: if (opt) {
154: TSSetType(ts,typeName);
155: } else {
156: TSSetType(ts,defaultType);
157: }
159: /* Handle generic TS options */
160: PetscOptionsDeprecated("-ts_final_time","-ts_max_time","3.10",NULL);
161: PetscOptionsReal("-ts_max_time","Maximum time to run to","TSSetMaxTime",ts->max_time,&ts->max_time,NULL);
162: PetscOptionsInt("-ts_max_steps","Maximum number of time steps","TSSetMaxSteps",ts->max_steps,&ts->max_steps,NULL);
163: PetscOptionsReal("-ts_init_time","Initial time","TSSetTime",ts->ptime,&ts->ptime,NULL);
164: PetscOptionsReal("-ts_dt","Initial time step","TSSetTimeStep",ts->time_step,&time_step,&flg);
165: if (flg) {TSSetTimeStep(ts,time_step);}
166: PetscOptionsEnum("-ts_exact_final_time","Option for handling of final time step","TSSetExactFinalTime",TSExactFinalTimeOptions,(PetscEnum)ts->exact_final_time,(PetscEnum*)&eftopt,&flg);
167: if (flg) {TSSetExactFinalTime(ts,eftopt);}
168: PetscOptionsInt("-ts_max_snes_failures","Maximum number of nonlinear solve failures","TSSetMaxSNESFailures",ts->max_snes_failures,&ts->max_snes_failures,NULL);
169: PetscOptionsInt("-ts_max_reject","Maximum number of step rejections before step fails","TSSetMaxStepRejections",ts->max_reject,&ts->max_reject,NULL);
170: PetscOptionsBool("-ts_error_if_step_fails","Error if no step succeeds","TSSetErrorIfStepFails",ts->errorifstepfailed,&ts->errorifstepfailed,NULL);
171: PetscOptionsReal("-ts_rtol","Relative tolerance for local truncation error","TSSetTolerances",ts->rtol,&ts->rtol,NULL);
172: PetscOptionsReal("-ts_atol","Absolute tolerance for local truncation error","TSSetTolerances",ts->atol,&ts->atol,NULL);
174: PetscOptionsBool("-ts_rhs_jacobian_test_mult","Test the RHS Jacobian for consistency with RHS at each solve ","None",ts->testjacobian,&ts->testjacobian,NULL);
175: PetscOptionsBool("-ts_rhs_jacobian_test_mult_transpose","Test the RHS Jacobian transpose for consistency with RHS at each solve ","None",ts->testjacobiantranspose,&ts->testjacobiantranspose,NULL);
176: PetscOptionsBool("-ts_use_splitrhsfunction","Use the split RHS function for multirate solvers ","TSSetUseSplitRHSFunction",ts->use_splitrhsfunction,&ts->use_splitrhsfunction,NULL);
177: #if defined(PETSC_HAVE_SAWS)
178: {
179: PetscBool set;
180: flg = PETSC_FALSE;
181: PetscOptionsBool("-ts_saws_block","Block for SAWs memory snooper at end of TSSolve","PetscObjectSAWsBlock",((PetscObject)ts)->amspublishblock,&flg,&set);
182: if (set) {
183: PetscObjectSAWsSetBlock((PetscObject)ts,flg);
184: }
185: }
186: #endif
188: /* Monitor options */
189: TSMonitorSetFromOptions(ts,"-ts_monitor","Monitor time and timestep size","TSMonitorDefault",TSMonitorDefault,NULL);
190: TSMonitorSetFromOptions(ts,"-ts_monitor_extreme","Monitor extreme values of the solution","TSMonitorExtreme",TSMonitorExtreme,NULL);
191: TSMonitorSetFromOptions(ts,"-ts_monitor_solution","View the solution at each timestep","TSMonitorSolution",TSMonitorSolution,NULL);
193: PetscOptionsString("-ts_monitor_python","Use Python function","TSMonitorSet",NULL,monfilename,sizeof(monfilename),&flg);
194: if (flg) {PetscPythonMonitorSet((PetscObject)ts,monfilename);}
196: PetscOptionsName("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",&opt);
197: if (opt) {
198: PetscInt howoften = 1;
199: DM dm;
200: PetscBool net;
202: PetscOptionsInt("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",howoften,&howoften,NULL);
203: TSGetDM(ts,&dm);
204: PetscObjectTypeCompare((PetscObject)dm,DMNETWORK,&net);
205: if (net) {
206: TSMonitorLGCtxNetwork ctx;
207: TSMonitorLGCtxNetworkCreate(ts,NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
208: TSMonitorSet(ts,TSMonitorLGCtxNetworkSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxNetworkDestroy);
209: PetscOptionsBool("-ts_monitor_lg_solution_semilogy","Plot the solution with a semi-log axis","",ctx->semilogy,&ctx->semilogy,NULL);
210: } else {
211: TSMonitorLGCtx ctx;
212: TSMonitorLGCtxCreate(PETSC_COMM_SELF,NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
213: TSMonitorSet(ts,TSMonitorLGSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
214: }
215: }
217: PetscOptionsName("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",&opt);
218: if (opt) {
219: TSMonitorLGCtx ctx;
220: PetscInt howoften = 1;
222: PetscOptionsInt("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",howoften,&howoften,NULL);
223: TSMonitorLGCtxCreate(PETSC_COMM_SELF,NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
224: TSMonitorSet(ts,TSMonitorLGError,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
225: }
226: TSMonitorSetFromOptions(ts,"-ts_monitor_error","View the error at each timestep","TSMonitorError",TSMonitorError,NULL);
228: PetscOptionsName("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",&opt);
229: if (opt) {
230: TSMonitorLGCtx ctx;
231: PetscInt howoften = 1;
233: PetscOptionsInt("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
234: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
235: TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
236: }
237: PetscOptionsName("-ts_monitor_lg_timestep_log","Monitor log timestep size graphically","TSMonitorLGTimeStep",&opt);
238: if (opt) {
239: TSMonitorLGCtx ctx;
240: PetscInt howoften = 1;
242: PetscOptionsInt("-ts_monitor_lg_timestep_log","Monitor log timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
243: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
244: TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
245: ctx->semilogy = PETSC_TRUE;
246: }
248: PetscOptionsName("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",&opt);
249: if (opt) {
250: TSMonitorLGCtx ctx;
251: PetscInt howoften = 1;
253: PetscOptionsInt("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",howoften,&howoften,NULL);
254: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
255: TSMonitorSet(ts,TSMonitorLGSNESIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
256: }
257: PetscOptionsName("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",&opt);
258: if (opt) {
259: TSMonitorLGCtx ctx;
260: PetscInt howoften = 1;
262: PetscOptionsInt("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",howoften,&howoften,NULL);
263: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
264: TSMonitorSet(ts,TSMonitorLGKSPIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
265: }
266: PetscOptionsName("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",&opt);
267: if (opt) {
268: TSMonitorSPEigCtx ctx;
269: PetscInt howoften = 1;
271: PetscOptionsInt("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",howoften,&howoften,NULL);
272: TSMonitorSPEigCtxCreate(PETSC_COMM_SELF,NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
273: TSMonitorSet(ts,TSMonitorSPEig,ctx,(PetscErrorCode (*)(void**))TSMonitorSPEigCtxDestroy);
274: }
275: PetscOptionsName("-ts_monitor_sp_swarm","Display particle phase from the DMSwarm","TSMonitorSPSwarm",&opt);
276: if (opt) {
277: TSMonitorSPCtx ctx;
278: PetscInt howoften = 1;
279: PetscOptionsInt("-ts_monitor_sp_swarm","Display particles phase from the DMSwarm","TSMonitorSPSwarm",howoften,&howoften,NULL);
280: TSMonitorSPCtxCreate(PETSC_COMM_SELF, NULL, NULL, PETSC_DECIDE, PETSC_DECIDE, 300, 300, howoften, &ctx);
281: TSMonitorSet(ts, TSMonitorSPSwarmSolution, ctx, (PetscErrorCode (*)(void**))TSMonitorSPCtxDestroy);
282: }
283: opt = PETSC_FALSE;
284: PetscOptionsName("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",&opt);
285: if (opt) {
286: TSMonitorDrawCtx ctx;
287: PetscInt howoften = 1;
289: PetscOptionsInt("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",howoften,&howoften,NULL);
290: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),NULL,"Computed Solution",PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
291: TSMonitorSet(ts,TSMonitorDrawSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
292: }
293: opt = PETSC_FALSE;
294: PetscOptionsName("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",&opt);
295: if (opt) {
296: TSMonitorDrawCtx ctx;
297: PetscReal bounds[4];
298: PetscInt n = 4;
299: PetscDraw draw;
300: PetscDrawAxis axis;
302: PetscOptionsRealArray("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",bounds,&n,NULL);
303: if (n != 4) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Must provide bounding box of phase field");
304: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,300,300,1,&ctx);
305: PetscViewerDrawGetDraw(ctx->viewer,0,&draw);
306: PetscViewerDrawGetDrawAxis(ctx->viewer,0,&axis);
307: PetscDrawAxisSetLimits(axis,bounds[0],bounds[2],bounds[1],bounds[3]);
308: PetscDrawAxisSetLabels(axis,"Phase Diagram","Variable 1","Variable 2");
309: TSMonitorSet(ts,TSMonitorDrawSolutionPhase,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
310: }
311: opt = PETSC_FALSE;
312: PetscOptionsName("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",&opt);
313: if (opt) {
314: TSMonitorDrawCtx ctx;
315: PetscInt howoften = 1;
317: PetscOptionsInt("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",howoften,&howoften,NULL);
318: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),NULL,"Error",PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
319: TSMonitorSet(ts,TSMonitorDrawError,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
320: }
321: opt = PETSC_FALSE;
322: PetscOptionsName("-ts_monitor_draw_solution_function","Monitor solution provided by TSMonitorSetSolutionFunction() graphically","TSMonitorDrawSolutionFunction",&opt);
323: if (opt) {
324: TSMonitorDrawCtx ctx;
325: PetscInt howoften = 1;
327: PetscOptionsInt("-ts_monitor_draw_solution_function","Monitor solution provided by TSMonitorSetSolutionFunction() graphically","TSMonitorDrawSolutionFunction",howoften,&howoften,NULL);
328: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),NULL,"Solution provided by user function",PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
329: TSMonitorSet(ts,TSMonitorDrawSolutionFunction,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
330: }
332: opt = PETSC_FALSE;
333: PetscOptionsString("-ts_monitor_solution_vtk","Save each time step to a binary file, use filename-%%03D.vts","TSMonitorSolutionVTK",NULL,monfilename,sizeof(monfilename),&flg);
334: if (flg) {
335: const char *ptr,*ptr2;
336: char *filetemplate;
337: if (!monfilename[0]) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
338: /* Do some cursory validation of the input. */
339: PetscStrstr(monfilename,"%",(char**)&ptr);
340: if (!ptr) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
341: for (ptr++; ptr && *ptr; ptr++) {
342: PetscStrchr("DdiouxX",*ptr,(char**)&ptr2);
343: if (!ptr2 && (*ptr < '0' || '9' < *ptr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Invalid file template argument to -ts_monitor_solution_vtk, should look like filename-%%03D.vts");
344: if (ptr2) break;
345: }
346: PetscStrallocpy(monfilename,&filetemplate);
347: TSMonitorSet(ts,TSMonitorSolutionVTK,filetemplate,(PetscErrorCode (*)(void**))TSMonitorSolutionVTKDestroy);
348: }
350: PetscOptionsString("-ts_monitor_dmda_ray","Display a ray of the solution","None","y=0",dir,sizeof(dir),&flg);
351: if (flg) {
352: TSMonitorDMDARayCtx *rayctx;
353: int ray = 0;
354: DMDirection ddir;
355: DM da;
356: PetscMPIInt rank;
358: if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
359: if (dir[0] == 'x') ddir = DM_X;
360: else if (dir[0] == 'y') ddir = DM_Y;
361: else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
362: sscanf(dir+2,"%d",&ray);
364: PetscInfo2(((PetscObject)ts),"Displaying DMDA ray %c = %d\n",dir[0],ray);
365: PetscNew(&rayctx);
366: TSGetDM(ts,&da);
367: DMDAGetRay(da,ddir,ray,&rayctx->ray,&rayctx->scatter);
368: MPI_Comm_rank(PetscObjectComm((PetscObject)ts),&rank);
369: if (!rank) {
370: PetscViewerDrawOpen(PETSC_COMM_SELF,NULL,NULL,0,0,600,300,&rayctx->viewer);
371: }
372: rayctx->lgctx = NULL;
373: TSMonitorSet(ts,TSMonitorDMDARay,rayctx,TSMonitorDMDARayDestroy);
374: }
375: PetscOptionsString("-ts_monitor_lg_dmda_ray","Display a ray of the solution","None","x=0",dir,sizeof(dir),&flg);
376: if (flg) {
377: TSMonitorDMDARayCtx *rayctx;
378: int ray = 0;
379: DMDirection ddir;
380: DM da;
381: PetscInt howoften = 1;
383: if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Malformed ray %s", dir);
384: if (dir[0] == 'x') ddir = DM_X;
385: else if (dir[0] == 'y') ddir = DM_Y;
386: else SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Unknown ray direction %s", dir);
387: sscanf(dir+2, "%d", &ray);
389: PetscInfo2(((PetscObject) ts),"Displaying LG DMDA ray %c = %d\n", dir[0], ray);
390: PetscNew(&rayctx);
391: TSGetDM(ts, &da);
392: DMDAGetRay(da, ddir, ray, &rayctx->ray, &rayctx->scatter);
393: TSMonitorLGCtxCreate(PETSC_COMM_SELF,NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&rayctx->lgctx);
394: TSMonitorSet(ts, TSMonitorLGDMDARay, rayctx, TSMonitorDMDARayDestroy);
395: }
397: PetscOptionsName("-ts_monitor_envelope","Monitor maximum and minimum value of each component of the solution","TSMonitorEnvelope",&opt);
398: if (opt) {
399: TSMonitorEnvelopeCtx ctx;
401: TSMonitorEnvelopeCtxCreate(ts,&ctx);
402: TSMonitorSet(ts,TSMonitorEnvelope,ctx,(PetscErrorCode (*)(void**))TSMonitorEnvelopeCtxDestroy);
403: }
404: flg = PETSC_FALSE;
405: PetscOptionsBool("-ts_monitor_cancel","Remove all monitors","TSMonitorCancel",flg,&flg,&opt);
406: if (opt && flg) {TSMonitorCancel(ts);}
408: flg = PETSC_FALSE;
409: PetscOptionsBool("-ts_fd_color", "Use finite differences with coloring to compute IJacobian", "TSComputeJacobianDefaultColor", flg, &flg, NULL);
410: if (flg) {
411: DM dm;
412: DMTS tdm;
414: TSGetDM(ts, &dm);
415: DMGetDMTS(dm, &tdm);
416: tdm->ijacobianctx = NULL;
417: TSSetIJacobian(ts, NULL, NULL, TSComputeIJacobianDefaultColor, NULL);
418: PetscInfo(ts, "Setting default finite difference coloring Jacobian matrix\n");
419: }
421: /* Handle specific TS options */
422: if (ts->ops->setfromoptions) {
423: (*ts->ops->setfromoptions)(PetscOptionsObject,ts);
424: }
426: /* Handle TSAdapt options */
427: TSGetAdapt(ts,&ts->adapt);
428: TSAdaptSetDefaultType(ts->adapt,ts->default_adapt_type);
429: TSAdaptSetFromOptions(PetscOptionsObject,ts->adapt);
431: /* TS trajectory must be set after TS, since it may use some TS options above */
432: tflg = ts->trajectory ? PETSC_TRUE : PETSC_FALSE;
433: PetscOptionsBool("-ts_save_trajectory","Save the solution at each timestep","TSSetSaveTrajectory",tflg,&tflg,NULL);
434: if (tflg) {
435: TSSetSaveTrajectory(ts);
436: }
438: TSAdjointSetFromOptions(PetscOptionsObject,ts);
440: /* process any options handlers added with PetscObjectAddOptionsHandler() */
441: PetscObjectProcessOptionsHandlers(PetscOptionsObject,(PetscObject)ts);
442: PetscOptionsEnd();
444: if (ts->trajectory) {
445: TSTrajectorySetFromOptions(ts->trajectory,ts);
446: }
448: /* why do we have to do this here and not during TSSetUp? */
449: TSGetSNES(ts,&ts->snes);
450: if (ts->problem_type == TS_LINEAR) {
451: PetscObjectTypeCompareAny((PetscObject)ts->snes,&flg,SNESKSPONLY,SNESKSPTRANSPOSEONLY,"");
452: if (!flg) { SNESSetType(ts->snes,SNESKSPONLY); }
453: }
454: SNESSetFromOptions(ts->snes);
455: return(0);
456: }
458: /*@
459: TSGetTrajectory - Gets the trajectory from a TS if it exists
461: Collective on TS
463: Input Parameters:
464: . ts - the TS context obtained from TSCreate()
466: Output Parameters:
467: . tr - the TSTrajectory object, if it exists
469: Note: This routine should be called after all TS options have been set
471: Level: advanced
473: .seealso: TSGetTrajectory(), TSAdjointSolve(), TSTrajectory, TSTrajectoryCreate()
475: @*/
476: PetscErrorCode TSGetTrajectory(TS ts,TSTrajectory *tr)
477: {
480: *tr = ts->trajectory;
481: return(0);
482: }
484: /*@
485: TSSetSaveTrajectory - Causes the TS to save its solutions as it iterates forward in time in a TSTrajectory object
487: Collective on TS
489: Input Parameters:
490: . ts - the TS context obtained from TSCreate()
492: Options Database:
493: + -ts_save_trajectory - saves the trajectory to a file
494: - -ts_trajectory_type type
496: Note: This routine should be called after all TS options have been set
498: The TSTRAJECTORYVISUALIZATION files can be loaded into Python with $PETSC_DIR/lib/petsc/bin/PetscBinaryIOTrajectory.py and
499: MATLAB with $PETSC_DIR/share/petsc/matlab/PetscReadBinaryTrajectory.m
501: Level: intermediate
503: .seealso: TSGetTrajectory(), TSAdjointSolve()
505: @*/
506: PetscErrorCode TSSetSaveTrajectory(TS ts)
507: {
512: if (!ts->trajectory) {
513: TSTrajectoryCreate(PetscObjectComm((PetscObject)ts),&ts->trajectory);
514: }
515: return(0);
516: }
518: /*@
519: TSResetTrajectory - Destroys and recreates the internal TSTrajectory object
521: Collective on TS
523: Input Parameters:
524: . ts - the TS context obtained from TSCreate()
526: Level: intermediate
528: .seealso: TSGetTrajectory(), TSAdjointSolve()
530: @*/
531: PetscErrorCode TSResetTrajectory(TS ts)
532: {
537: if (ts->trajectory) {
538: TSTrajectoryDestroy(&ts->trajectory);
539: TSTrajectoryCreate(PetscObjectComm((PetscObject)ts),&ts->trajectory);
540: }
541: return(0);
542: }
544: /*@
545: TSComputeRHSJacobian - Computes the Jacobian matrix that has been
546: set with TSSetRHSJacobian().
548: Collective on TS
550: Input Parameters:
551: + ts - the TS context
552: . t - current timestep
553: - U - input vector
555: Output Parameters:
556: + A - Jacobian matrix
557: . B - optional preconditioning matrix
558: - flag - flag indicating matrix structure
560: Notes:
561: Most users should not need to explicitly call this routine, as it
562: is used internally within the nonlinear solvers.
564: See KSPSetOperators() for important information about setting the
565: flag parameter.
567: Level: developer
569: .seealso: TSSetRHSJacobian(), KSPSetOperators()
570: @*/
571: PetscErrorCode TSComputeRHSJacobian(TS ts,PetscReal t,Vec U,Mat A,Mat B)
572: {
573: PetscErrorCode ierr;
574: PetscObjectState Ustate;
575: PetscObjectId Uid;
576: DM dm;
577: DMTS tsdm;
578: TSRHSJacobian rhsjacobianfunc;
579: void *ctx;
580: TSRHSFunction rhsfunction;
586: TSGetDM(ts,&dm);
587: DMGetDMTS(dm,&tsdm);
588: DMTSGetRHSFunction(dm,&rhsfunction,NULL);
589: DMTSGetRHSJacobian(dm,&rhsjacobianfunc,&ctx);
590: PetscObjectStateGet((PetscObject)U,&Ustate);
591: PetscObjectGetId((PetscObject)U,&Uid);
593: if (ts->rhsjacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->rhsjacobian.Xid == Uid && ts->rhsjacobian.Xstate == Ustate)) && (rhsfunction != TSComputeRHSFunctionLinear)) return(0);
595: if (ts->rhsjacobian.shift && ts->rhsjacobian.reuse) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Should not call TSComputeRHSJacobian() on a shifted matrix (shift=%lf) when RHSJacobian is reusable.",ts->rhsjacobian.shift);
596: if (rhsjacobianfunc) {
597: PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
598: PetscStackPush("TS user Jacobian function");
599: (*rhsjacobianfunc)(ts,t,U,A,B,ctx);
600: PetscStackPop;
601: ts->rhsjacs++;
602: PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
603: } else {
604: MatZeroEntries(A);
605: if (B && A != B) {MatZeroEntries(B);}
606: }
607: ts->rhsjacobian.time = t;
608: ts->rhsjacobian.shift = 0;
609: ts->rhsjacobian.scale = 1.;
610: PetscObjectGetId((PetscObject)U,&ts->rhsjacobian.Xid);
611: PetscObjectStateGet((PetscObject)U,&ts->rhsjacobian.Xstate);
612: return(0);
613: }
615: /*@
616: TSComputeRHSFunction - Evaluates the right-hand-side function.
618: Collective on TS
620: Input Parameters:
621: + ts - the TS context
622: . t - current time
623: - U - state vector
625: Output Parameter:
626: . y - right hand side
628: Note:
629: Most users should not need to explicitly call this routine, as it
630: is used internally within the nonlinear solvers.
632: Level: developer
634: .seealso: TSSetRHSFunction(), TSComputeIFunction()
635: @*/
636: PetscErrorCode TSComputeRHSFunction(TS ts,PetscReal t,Vec U,Vec y)
637: {
639: TSRHSFunction rhsfunction;
640: TSIFunction ifunction;
641: void *ctx;
642: DM dm;
648: TSGetDM(ts,&dm);
649: DMTSGetRHSFunction(dm,&rhsfunction,&ctx);
650: DMTSGetIFunction(dm,&ifunction,NULL);
652: if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");
654: if (rhsfunction) {
655: PetscLogEventBegin(TS_FunctionEval,ts,U,y,0);
656: VecLockReadPush(U);
657: PetscStackPush("TS user right-hand-side function");
658: (*rhsfunction)(ts,t,U,y,ctx);
659: PetscStackPop;
660: VecLockReadPop(U);
661: ts->rhsfuncs++;
662: PetscLogEventEnd(TS_FunctionEval,ts,U,y,0);
663: } else {
664: VecZeroEntries(y);
665: }
666: return(0);
667: }
669: /*@
670: TSComputeSolutionFunction - Evaluates the solution function.
672: Collective on TS
674: Input Parameters:
675: + ts - the TS context
676: - t - current time
678: Output Parameter:
679: . U - the solution
681: Note:
682: Most users should not need to explicitly call this routine, as it
683: is used internally within the nonlinear solvers.
685: Level: developer
687: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
688: @*/
689: PetscErrorCode TSComputeSolutionFunction(TS ts,PetscReal t,Vec U)
690: {
691: PetscErrorCode ierr;
692: TSSolutionFunction solutionfunction;
693: void *ctx;
694: DM dm;
699: TSGetDM(ts,&dm);
700: DMTSGetSolutionFunction(dm,&solutionfunction,&ctx);
702: if (solutionfunction) {
703: PetscStackPush("TS user solution function");
704: (*solutionfunction)(ts,t,U,ctx);
705: PetscStackPop;
706: }
707: return(0);
708: }
709: /*@
710: TSComputeForcingFunction - Evaluates the forcing function.
712: Collective on TS
714: Input Parameters:
715: + ts - the TS context
716: - t - current time
718: Output Parameter:
719: . U - the function value
721: Note:
722: Most users should not need to explicitly call this routine, as it
723: is used internally within the nonlinear solvers.
725: Level: developer
727: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
728: @*/
729: PetscErrorCode TSComputeForcingFunction(TS ts,PetscReal t,Vec U)
730: {
731: PetscErrorCode ierr, (*forcing)(TS,PetscReal,Vec,void*);
732: void *ctx;
733: DM dm;
738: TSGetDM(ts,&dm);
739: DMTSGetForcingFunction(dm,&forcing,&ctx);
741: if (forcing) {
742: PetscStackPush("TS user forcing function");
743: (*forcing)(ts,t,U,ctx);
744: PetscStackPop;
745: }
746: return(0);
747: }
749: static PetscErrorCode TSGetRHSVec_Private(TS ts,Vec *Frhs)
750: {
751: Vec F;
755: *Frhs = NULL;
756: TSGetIFunction(ts,&F,NULL,NULL);
757: if (!ts->Frhs) {
758: VecDuplicate(F,&ts->Frhs);
759: }
760: *Frhs = ts->Frhs;
761: return(0);
762: }
764: PetscErrorCode TSGetRHSMats_Private(TS ts,Mat *Arhs,Mat *Brhs)
765: {
766: Mat A,B;
768: TSIJacobian ijacobian;
771: if (Arhs) *Arhs = NULL;
772: if (Brhs) *Brhs = NULL;
773: TSGetIJacobian(ts,&A,&B,&ijacobian,NULL);
774: if (Arhs) {
775: if (!ts->Arhs) {
776: if (ijacobian) {
777: MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&ts->Arhs);
778: TSSetMatStructure(ts,SAME_NONZERO_PATTERN);
779: } else {
780: ts->Arhs = A;
781: PetscObjectReference((PetscObject)A);
782: }
783: } else {
784: PetscBool flg;
785: SNESGetUseMatrixFree(ts->snes,NULL,&flg);
786: /* Handle case where user provided only RHSJacobian and used -snes_mf_operator */
787: if (flg && !ijacobian && ts->Arhs == ts->Brhs){
788: PetscObjectDereference((PetscObject)ts->Arhs);
789: ts->Arhs = A;
790: PetscObjectReference((PetscObject)A);
791: }
792: }
793: *Arhs = ts->Arhs;
794: }
795: if (Brhs) {
796: if (!ts->Brhs) {
797: if (A != B) {
798: if (ijacobian) {
799: MatDuplicate(B,MAT_DO_NOT_COPY_VALUES,&ts->Brhs);
800: } else {
801: ts->Brhs = B;
802: PetscObjectReference((PetscObject)B);
803: }
804: } else {
805: PetscObjectReference((PetscObject)ts->Arhs);
806: ts->Brhs = ts->Arhs;
807: }
808: }
809: *Brhs = ts->Brhs;
810: }
811: return(0);
812: }
814: /*@
815: TSComputeIFunction - Evaluates the DAE residual written in implicit form F(t,U,Udot)=0
817: Collective on TS
819: Input Parameters:
820: + ts - the TS context
821: . t - current time
822: . U - state vector
823: . Udot - time derivative of state vector
824: - imex - flag indicates if the method is IMEX so that the RHSFunction should be kept separate
826: Output Parameter:
827: . Y - right hand side
829: Note:
830: Most users should not need to explicitly call this routine, as it
831: is used internally within the nonlinear solvers.
833: If the user did did not write their equations in implicit form, this
834: function recasts them in implicit form.
836: Level: developer
838: .seealso: TSSetIFunction(), TSComputeRHSFunction()
839: @*/
840: PetscErrorCode TSComputeIFunction(TS ts,PetscReal t,Vec U,Vec Udot,Vec Y,PetscBool imex)
841: {
843: TSIFunction ifunction;
844: TSRHSFunction rhsfunction;
845: void *ctx;
846: DM dm;
854: TSGetDM(ts,&dm);
855: DMTSGetIFunction(dm,&ifunction,&ctx);
856: DMTSGetRHSFunction(dm,&rhsfunction,NULL);
858: if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");
860: PetscLogEventBegin(TS_FunctionEval,ts,U,Udot,Y);
861: if (ifunction) {
862: PetscStackPush("TS user implicit function");
863: (*ifunction)(ts,t,U,Udot,Y,ctx);
864: PetscStackPop;
865: ts->ifuncs++;
866: }
867: if (imex) {
868: if (!ifunction) {
869: VecCopy(Udot,Y);
870: }
871: } else if (rhsfunction) {
872: if (ifunction) {
873: Vec Frhs;
874: TSGetRHSVec_Private(ts,&Frhs);
875: TSComputeRHSFunction(ts,t,U,Frhs);
876: VecAXPY(Y,-1,Frhs);
877: } else {
878: TSComputeRHSFunction(ts,t,U,Y);
879: VecAYPX(Y,-1,Udot);
880: }
881: }
882: PetscLogEventEnd(TS_FunctionEval,ts,U,Udot,Y);
883: return(0);
884: }
886: /*
887: TSRecoverRHSJacobian - Recover the Jacobian matrix so that one can call TSComputeRHSJacobian() on it.
889: Note:
890: This routine is needed when one switches from TSComputeIJacobian() to TSComputeRHSJacobian() because the Jacobian matrix may be shifted or scaled in TSComputeIJacobian().
892: */
893: static PetscErrorCode TSRecoverRHSJacobian(TS ts,Mat A,Mat B)
894: {
895: PetscErrorCode ierr;
899: if (A != ts->Arhs) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Invalid Amat");
900: if (B != ts->Brhs) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Invalid Bmat");
902: if (ts->rhsjacobian.shift) {
903: MatShift(A,-ts->rhsjacobian.shift);
904: }
905: if (ts->rhsjacobian.scale == -1.) {
906: MatScale(A,-1);
907: }
908: if (B && B == ts->Brhs && A != B) {
909: if (ts->rhsjacobian.shift) {
910: MatShift(B,-ts->rhsjacobian.shift);
911: }
912: if (ts->rhsjacobian.scale == -1.) {
913: MatScale(B,-1);
914: }
915: }
916: ts->rhsjacobian.shift = 0;
917: ts->rhsjacobian.scale = 1.;
918: return(0);
919: }
921: /*@
922: TSComputeIJacobian - Evaluates the Jacobian of the DAE
924: Collective on TS
926: Input
927: Input Parameters:
928: + ts - the TS context
929: . t - current timestep
930: . U - state vector
931: . Udot - time derivative of state vector
932: . shift - shift to apply, see note below
933: - imex - flag indicates if the method is IMEX so that the RHSJacobian should be kept separate
935: Output Parameters:
936: + A - Jacobian matrix
937: - B - matrix from which the preconditioner is constructed; often the same as A
939: Notes:
940: If F(t,U,Udot)=0 is the DAE, the required Jacobian is
942: dF/dU + shift*dF/dUdot
944: Most users should not need to explicitly call this routine, as it
945: is used internally within the nonlinear solvers.
947: Level: developer
949: .seealso: TSSetIJacobian()
950: @*/
951: PetscErrorCode TSComputeIJacobian(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat A,Mat B,PetscBool imex)
952: {
954: TSIJacobian ijacobian;
955: TSRHSJacobian rhsjacobian;
956: DM dm;
957: void *ctx;
968: TSGetDM(ts,&dm);
969: DMTSGetIJacobian(dm,&ijacobian,&ctx);
970: DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);
972: if (!rhsjacobian && !ijacobian) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");
974: PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
975: if (ijacobian) {
976: PetscStackPush("TS user implicit Jacobian");
977: (*ijacobian)(ts,t,U,Udot,shift,A,B,ctx);
978: ts->ijacs++;
979: PetscStackPop;
980: }
981: if (imex) {
982: if (!ijacobian) { /* system was written as Udot = G(t,U) */
983: PetscBool assembled;
984: if (rhsjacobian) {
985: Mat Arhs = NULL;
986: TSGetRHSMats_Private(ts,&Arhs,NULL);
987: if (A == Arhs) {
988: if (rhsjacobian == TSComputeRHSJacobianConstant) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Unsupported operation! cannot use TSComputeRHSJacobianConstant"); /* there is no way to reconstruct shift*M-J since J cannot be reevaluated */
989: ts->rhsjacobian.time = PETSC_MIN_REAL;
990: }
991: }
992: MatZeroEntries(A);
993: MatAssembled(A,&assembled);
994: if (!assembled) {
995: MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
996: MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
997: }
998: MatShift(A,shift);
999: if (A != B) {
1000: MatZeroEntries(B);
1001: MatAssembled(B,&assembled);
1002: if (!assembled) {
1003: MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
1004: MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
1005: }
1006: MatShift(B,shift);
1007: }
1008: }
1009: } else {
1010: Mat Arhs = NULL,Brhs = NULL;
1011: if (rhsjacobian) { /* RHSJacobian needs to be converted to part of IJacobian if exists */
1012: TSGetRHSMats_Private(ts,&Arhs,&Brhs);
1013: }
1014: if (Arhs == A) { /* No IJacobian matrix, so we only have the RHS matrix */
1015: PetscObjectState Ustate;
1016: PetscObjectId Uid;
1017: TSRHSFunction rhsfunction;
1019: DMTSGetRHSFunction(dm,&rhsfunction,NULL);
1020: PetscObjectStateGet((PetscObject)U,&Ustate);
1021: PetscObjectGetId((PetscObject)U,&Uid);
1022: if ((rhsjacobian == TSComputeRHSJacobianConstant || (ts->rhsjacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->rhsjacobian.Xid == Uid && ts->rhsjacobian.Xstate == Ustate)) && rhsfunction != TSComputeRHSFunctionLinear)) && ts->rhsjacobian.scale == -1.) { /* No need to recompute RHSJacobian */
1023: MatShift(A,shift-ts->rhsjacobian.shift); /* revert the old shift and add the new shift with a single call to MatShift */
1024: if (A != B) {
1025: MatShift(B,shift-ts->rhsjacobian.shift);
1026: }
1027: } else {
1028: PetscBool flg;
1030: if (ts->rhsjacobian.reuse) { /* Undo the damage */
1031: /* MatScale has a short path for this case.
1032: However, this code path is taken the first time TSComputeRHSJacobian is called
1033: and the matrices have not been assembled yet */
1034: TSRecoverRHSJacobian(ts,A,B);
1035: }
1036: TSComputeRHSJacobian(ts,t,U,A,B);
1037: SNESGetUseMatrixFree(ts->snes,NULL,&flg);
1038: /* since -snes_mf_operator uses the full SNES function it does not need to be shifted or scaled here */
1039: if (!flg) {
1040: MatScale(A,-1);
1041: MatShift(A,shift);
1042: }
1043: if (A != B) {
1044: MatScale(B,-1);
1045: MatShift(B,shift);
1046: }
1047: }
1048: ts->rhsjacobian.scale = -1;
1049: ts->rhsjacobian.shift = shift;
1050: } else if (Arhs) { /* Both IJacobian and RHSJacobian */
1051: if (!ijacobian) { /* No IJacobian provided, but we have a separate RHS matrix */
1052: MatZeroEntries(A);
1053: MatShift(A,shift);
1054: if (A != B) {
1055: MatZeroEntries(B);
1056: MatShift(B,shift);
1057: }
1058: }
1059: TSComputeRHSJacobian(ts,t,U,Arhs,Brhs);
1060: MatAXPY(A,-1,Arhs,ts->axpy_pattern);
1061: if (A != B) {
1062: MatAXPY(B,-1,Brhs,ts->axpy_pattern);
1063: }
1064: }
1065: }
1066: PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
1067: return(0);
1068: }
1070: /*@C
1071: TSSetRHSFunction - Sets the routine for evaluating the function,
1072: where U_t = G(t,u).
1074: Logically Collective on TS
1076: Input Parameters:
1077: + ts - the TS context obtained from TSCreate()
1078: . r - vector to put the computed right hand side (or NULL to have it created)
1079: . f - routine for evaluating the right-hand-side function
1080: - ctx - [optional] user-defined context for private data for the
1081: function evaluation routine (may be NULL)
1083: Calling sequence of f:
1084: $ PetscErrorCode f(TS ts,PetscReal t,Vec u,Vec F,void *ctx);
1086: + ts - timestep context
1087: . t - current timestep
1088: . u - input vector
1089: . F - function vector
1090: - ctx - [optional] user-defined function context
1092: Level: beginner
1094: Notes:
1095: You must call this function or TSSetIFunction() to define your ODE. You cannot use this function when solving a DAE.
1097: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSSetIFunction()
1098: @*/
1099: PetscErrorCode TSSetRHSFunction(TS ts,Vec r,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,void*),void *ctx)
1100: {
1102: SNES snes;
1103: Vec ralloc = NULL;
1104: DM dm;
1110: TSGetDM(ts,&dm);
1111: DMTSSetRHSFunction(dm,f,ctx);
1112: TSGetSNES(ts,&snes);
1113: if (!r && !ts->dm && ts->vec_sol) {
1114: VecDuplicate(ts->vec_sol,&ralloc);
1115: r = ralloc;
1116: }
1117: SNESSetFunction(snes,r,SNESTSFormFunction,ts);
1118: VecDestroy(&ralloc);
1119: return(0);
1120: }
1122: /*@C
1123: TSSetSolutionFunction - Provide a function that computes the solution of the ODE or DAE
1125: Logically Collective on TS
1127: Input Parameters:
1128: + ts - the TS context obtained from TSCreate()
1129: . f - routine for evaluating the solution
1130: - ctx - [optional] user-defined context for private data for the
1131: function evaluation routine (may be NULL)
1133: Calling sequence of f:
1134: $ PetscErrorCode f(TS ts,PetscReal t,Vec u,void *ctx);
1136: + t - current timestep
1137: . u - output vector
1138: - ctx - [optional] user-defined function context
1140: Options Database:
1141: + -ts_monitor_lg_error - create a graphical monitor of error history, requires user to have provided TSSetSolutionFunction()
1142: - -ts_monitor_draw_error - Monitor error graphically, requires user to have provided TSSetSolutionFunction()
1144: Notes:
1145: This routine is used for testing accuracy of time integration schemes when you already know the solution.
1146: If analytic solutions are not known for your system, consider using the Method of Manufactured Solutions to
1147: create closed-form solutions with non-physical forcing terms.
1149: For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.
1151: Level: beginner
1153: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetForcingFunction(), TSSetSolution(), TSGetSolution(), TSMonitorLGError(), TSMonitorDrawError()
1154: @*/
1155: PetscErrorCode TSSetSolutionFunction(TS ts,PetscErrorCode (*f)(TS,PetscReal,Vec,void*),void *ctx)
1156: {
1158: DM dm;
1162: TSGetDM(ts,&dm);
1163: DMTSSetSolutionFunction(dm,f,ctx);
1164: return(0);
1165: }
1167: /*@C
1168: TSSetForcingFunction - Provide a function that computes a forcing term for a ODE or PDE
1170: Logically Collective on TS
1172: Input Parameters:
1173: + ts - the TS context obtained from TSCreate()
1174: . func - routine for evaluating the forcing function
1175: - ctx - [optional] user-defined context for private data for the
1176: function evaluation routine (may be NULL)
1178: Calling sequence of func:
1179: $ PetscErrorCode func (TS ts,PetscReal t,Vec f,void *ctx);
1181: + t - current timestep
1182: . f - output vector
1183: - ctx - [optional] user-defined function context
1185: Notes:
1186: This routine is useful for testing accuracy of time integration schemes when using the Method of Manufactured Solutions to
1187: create closed-form solutions with a non-physical forcing term. It allows you to use the Method of Manufactored Solution without directly editing the
1188: definition of the problem you are solving and hence possibly introducing bugs.
1190: This replaces the ODE F(u,u_t,t) = 0 the TS is solving with F(u,u_t,t) - func(t) = 0
1192: This forcing function does not depend on the solution to the equations, it can only depend on spatial location, time, and possibly parameters, the
1193: parameters can be passed in the ctx variable.
1195: For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.
1197: Level: beginner
1199: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetSolutionFunction()
1200: @*/
1201: PetscErrorCode TSSetForcingFunction(TS ts,TSForcingFunction func,void *ctx)
1202: {
1204: DM dm;
1208: TSGetDM(ts,&dm);
1209: DMTSSetForcingFunction(dm,func,ctx);
1210: return(0);
1211: }
1213: /*@C
1214: TSSetRHSJacobian - Sets the function to compute the Jacobian of G,
1215: where U_t = G(U,t), as well as the location to store the matrix.
1217: Logically Collective on TS
1219: Input Parameters:
1220: + ts - the TS context obtained from TSCreate()
1221: . Amat - (approximate) Jacobian matrix
1222: . Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1223: . f - the Jacobian evaluation routine
1224: - ctx - [optional] user-defined context for private data for the
1225: Jacobian evaluation routine (may be NULL)
1227: Calling sequence of f:
1228: $ PetscErrorCode f(TS ts,PetscReal t,Vec u,Mat A,Mat B,void *ctx);
1230: + t - current timestep
1231: . u - input vector
1232: . Amat - (approximate) Jacobian matrix
1233: . Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1234: - ctx - [optional] user-defined context for matrix evaluation routine
1236: Notes:
1237: You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value
1239: The TS solver may modify the nonzero structure and the entries of the matrices Amat and Pmat between the calls to f()
1240: You should not assume the values are the same in the next call to f() as you set them in the previous call.
1242: Level: beginner
1244: .seealso: SNESComputeJacobianDefaultColor(), TSSetRHSFunction(), TSRHSJacobianSetReuse(), TSSetIJacobian()
1246: @*/
1247: PetscErrorCode TSSetRHSJacobian(TS ts,Mat Amat,Mat Pmat,TSRHSJacobian f,void *ctx)
1248: {
1250: SNES snes;
1251: DM dm;
1252: TSIJacobian ijacobian;
1261: TSGetDM(ts,&dm);
1262: DMTSSetRHSJacobian(dm,f,ctx);
1263: DMTSGetIJacobian(dm,&ijacobian,NULL);
1264: TSGetSNES(ts,&snes);
1265: if (!ijacobian) {
1266: SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1267: }
1268: if (Amat) {
1269: PetscObjectReference((PetscObject)Amat);
1270: MatDestroy(&ts->Arhs);
1271: ts->Arhs = Amat;
1272: }
1273: if (Pmat) {
1274: PetscObjectReference((PetscObject)Pmat);
1275: MatDestroy(&ts->Brhs);
1276: ts->Brhs = Pmat;
1277: }
1278: return(0);
1279: }
1281: /*@C
1282: TSSetIFunction - Set the function to compute F(t,U,U_t) where F() = 0 is the DAE to be solved.
1284: Logically Collective on TS
1286: Input Parameters:
1287: + ts - the TS context obtained from TSCreate()
1288: . r - vector to hold the residual (or NULL to have it created internally)
1289: . f - the function evaluation routine
1290: - ctx - user-defined context for private data for the function evaluation routine (may be NULL)
1292: Calling sequence of f:
1293: $ PetscErrorCode f(TS ts,PetscReal t,Vec u,Vec u_t,Vec F,ctx);
1295: + t - time at step/stage being solved
1296: . u - state vector
1297: . u_t - time derivative of state vector
1298: . F - function vector
1299: - ctx - [optional] user-defined context for matrix evaluation routine
1301: Important:
1302: The user MUST call either this routine or TSSetRHSFunction() to define the ODE. When solving DAEs you must use this function.
1304: Level: beginner
1306: .seealso: TSSetRHSJacobian(), TSSetRHSFunction(), TSSetIJacobian()
1307: @*/
1308: PetscErrorCode TSSetIFunction(TS ts,Vec r,TSIFunction f,void *ctx)
1309: {
1311: SNES snes;
1312: Vec ralloc = NULL;
1313: DM dm;
1319: TSGetDM(ts,&dm);
1320: DMTSSetIFunction(dm,f,ctx);
1322: TSGetSNES(ts,&snes);
1323: if (!r && !ts->dm && ts->vec_sol) {
1324: VecDuplicate(ts->vec_sol,&ralloc);
1325: r = ralloc;
1326: }
1327: SNESSetFunction(snes,r,SNESTSFormFunction,ts);
1328: VecDestroy(&ralloc);
1329: return(0);
1330: }
1332: /*@C
1333: TSGetIFunction - Returns the vector where the implicit residual is stored and the function/contex to compute it.
1335: Not Collective
1337: Input Parameter:
1338: . ts - the TS context
1340: Output Parameter:
1341: + r - vector to hold residual (or NULL)
1342: . func - the function to compute residual (or NULL)
1343: - ctx - the function context (or NULL)
1345: Level: advanced
1347: .seealso: TSSetIFunction(), SNESGetFunction()
1348: @*/
1349: PetscErrorCode TSGetIFunction(TS ts,Vec *r,TSIFunction *func,void **ctx)
1350: {
1352: SNES snes;
1353: DM dm;
1357: TSGetSNES(ts,&snes);
1358: SNESGetFunction(snes,r,NULL,NULL);
1359: TSGetDM(ts,&dm);
1360: DMTSGetIFunction(dm,func,ctx);
1361: return(0);
1362: }
1364: /*@C
1365: TSGetRHSFunction - Returns the vector where the right hand side is stored and the function/context to compute it.
1367: Not Collective
1369: Input Parameter:
1370: . ts - the TS context
1372: Output Parameter:
1373: + r - vector to hold computed right hand side (or NULL)
1374: . func - the function to compute right hand side (or NULL)
1375: - ctx - the function context (or NULL)
1377: Level: advanced
1379: .seealso: TSSetRHSFunction(), SNESGetFunction()
1380: @*/
1381: PetscErrorCode TSGetRHSFunction(TS ts,Vec *r,TSRHSFunction *func,void **ctx)
1382: {
1384: SNES snes;
1385: DM dm;
1389: TSGetSNES(ts,&snes);
1390: SNESGetFunction(snes,r,NULL,NULL);
1391: TSGetDM(ts,&dm);
1392: DMTSGetRHSFunction(dm,func,ctx);
1393: return(0);
1394: }
1396: /*@C
1397: TSSetIJacobian - Set the function to compute the matrix dF/dU + a*dF/dU_t where F(t,U,U_t) is the function
1398: provided with TSSetIFunction().
1400: Logically Collective on TS
1402: Input Parameters:
1403: + ts - the TS context obtained from TSCreate()
1404: . Amat - (approximate) Jacobian matrix
1405: . Pmat - matrix used to compute preconditioner (usually the same as Amat)
1406: . f - the Jacobian evaluation routine
1407: - ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)
1409: Calling sequence of f:
1410: $ PetscErrorCode f(TS ts,PetscReal t,Vec U,Vec U_t,PetscReal a,Mat Amat,Mat Pmat,void *ctx);
1412: + t - time at step/stage being solved
1413: . U - state vector
1414: . U_t - time derivative of state vector
1415: . a - shift
1416: . Amat - (approximate) Jacobian of F(t,U,W+a*U), equivalent to dF/dU + a*dF/dU_t
1417: . Pmat - matrix used for constructing preconditioner, usually the same as Amat
1418: - ctx - [optional] user-defined context for matrix evaluation routine
1420: Notes:
1421: The matrices Amat and Pmat are exactly the matrices that are used by SNES for the nonlinear solve.
1423: If you know the operator Amat has a null space you can use MatSetNullSpace() and MatSetTransposeNullSpace() to supply the null
1424: space to Amat and the KSP solvers will automatically use that null space as needed during the solution process.
1426: The matrix dF/dU + a*dF/dU_t you provide turns out to be
1427: the Jacobian of F(t,U,W+a*U) where F(t,U,U_t) = 0 is the DAE to be solved.
1428: The time integrator internally approximates U_t by W+a*U where the positive "shift"
1429: a and vector W depend on the integration method, step size, and past states. For example with
1430: the backward Euler method a = 1/dt and W = -a*U(previous timestep) so
1431: W + a*U = a*(U - U(previous timestep)) = (U - U(previous timestep))/dt
1433: You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value
1435: The TS solver may modify the nonzero structure and the entries of the matrices Amat and Pmat between the calls to f()
1436: You should not assume the values are the same in the next call to f() as you set them in the previous call.
1438: Level: beginner
1440: .seealso: TSSetIFunction(), TSSetRHSJacobian(), SNESComputeJacobianDefaultColor(), SNESComputeJacobianDefault(), TSSetRHSFunction()
1442: @*/
1443: PetscErrorCode TSSetIJacobian(TS ts,Mat Amat,Mat Pmat,TSIJacobian f,void *ctx)
1444: {
1446: SNES snes;
1447: DM dm;
1456: TSGetDM(ts,&dm);
1457: DMTSSetIJacobian(dm,f,ctx);
1459: TSGetSNES(ts,&snes);
1460: SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1461: return(0);
1462: }
1464: /*@
1465: TSRHSJacobianSetReuse - restore RHS Jacobian before re-evaluating. Without this flag, TS will change the sign and
1466: shift the RHS Jacobian for a finite-time-step implicit solve, in which case the user function will need to recompute
1467: the entire Jacobian. The reuse flag must be set if the evaluation function will assume that the matrix entries have
1468: not been changed by the TS.
1470: Logically Collective
1472: Input Arguments:
1473: + ts - TS context obtained from TSCreate()
1474: - reuse - PETSC_TRUE if the RHS Jacobian
1476: Level: intermediate
1478: .seealso: TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
1479: @*/
1480: PetscErrorCode TSRHSJacobianSetReuse(TS ts,PetscBool reuse)
1481: {
1483: ts->rhsjacobian.reuse = reuse;
1484: return(0);
1485: }
1487: /*@C
1488: TSSetI2Function - Set the function to compute F(t,U,U_t,U_tt) where F = 0 is the DAE to be solved.
1490: Logically Collective on TS
1492: Input Parameters:
1493: + ts - the TS context obtained from TSCreate()
1494: . F - vector to hold the residual (or NULL to have it created internally)
1495: . fun - the function evaluation routine
1496: - ctx - user-defined context for private data for the function evaluation routine (may be NULL)
1498: Calling sequence of fun:
1499: $ PetscErrorCode fun(TS ts,PetscReal t,Vec U,Vec U_t,Vec U_tt,Vec F,ctx);
1501: + t - time at step/stage being solved
1502: . U - state vector
1503: . U_t - time derivative of state vector
1504: . U_tt - second time derivative of state vector
1505: . F - function vector
1506: - ctx - [optional] user-defined context for matrix evaluation routine (may be NULL)
1508: Level: beginner
1510: .seealso: TSSetI2Jacobian(), TSSetIFunction(), TSCreate(), TSSetRHSFunction()
1511: @*/
1512: PetscErrorCode TSSetI2Function(TS ts,Vec F,TSI2Function fun,void *ctx)
1513: {
1514: DM dm;
1520: TSSetIFunction(ts,F,NULL,NULL);
1521: TSGetDM(ts,&dm);
1522: DMTSSetI2Function(dm,fun,ctx);
1523: return(0);
1524: }
1526: /*@C
1527: TSGetI2Function - Returns the vector where the implicit residual is stored and the function/contex to compute it.
1529: Not Collective
1531: Input Parameter:
1532: . ts - the TS context
1534: Output Parameter:
1535: + r - vector to hold residual (or NULL)
1536: . fun - the function to compute residual (or NULL)
1537: - ctx - the function context (or NULL)
1539: Level: advanced
1541: .seealso: TSSetIFunction(), SNESGetFunction(), TSCreate()
1542: @*/
1543: PetscErrorCode TSGetI2Function(TS ts,Vec *r,TSI2Function *fun,void **ctx)
1544: {
1546: SNES snes;
1547: DM dm;
1551: TSGetSNES(ts,&snes);
1552: SNESGetFunction(snes,r,NULL,NULL);
1553: TSGetDM(ts,&dm);
1554: DMTSGetI2Function(dm,fun,ctx);
1555: return(0);
1556: }
1558: /*@C
1559: TSSetI2Jacobian - Set the function to compute the matrix dF/dU + v*dF/dU_t + a*dF/dU_tt
1560: where F(t,U,U_t,U_tt) is the function you provided with TSSetI2Function().
1562: Logically Collective on TS
1564: Input Parameters:
1565: + ts - the TS context obtained from TSCreate()
1566: . J - Jacobian matrix
1567: . P - preconditioning matrix for J (may be same as J)
1568: . jac - the Jacobian evaluation routine
1569: - ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)
1571: Calling sequence of jac:
1572: $ PetscErrorCode jac(TS ts,PetscReal t,Vec U,Vec U_t,Vec U_tt,PetscReal v,PetscReal a,Mat J,Mat P,void *ctx);
1574: + t - time at step/stage being solved
1575: . U - state vector
1576: . U_t - time derivative of state vector
1577: . U_tt - second time derivative of state vector
1578: . v - shift for U_t
1579: . a - shift for U_tt
1580: . J - Jacobian of G(U) = F(t,U,W+v*U,W'+a*U), equivalent to dF/dU + v*dF/dU_t + a*dF/dU_tt
1581: . P - preconditioning matrix for J, may be same as J
1582: - ctx - [optional] user-defined context for matrix evaluation routine
1584: Notes:
1585: The matrices J and P are exactly the matrices that are used by SNES for the nonlinear solve.
1587: The matrix dF/dU + v*dF/dU_t + a*dF/dU_tt you provide turns out to be
1588: the Jacobian of G(U) = F(t,U,W+v*U,W'+a*U) where F(t,U,U_t,U_tt) = 0 is the DAE to be solved.
1589: The time integrator internally approximates U_t by W+v*U and U_tt by W'+a*U where the positive "shift"
1590: parameters 'v' and 'a' and vectors W, W' depend on the integration method, step size, and past states.
1592: Level: beginner
1594: .seealso: TSSetI2Function(), TSGetI2Jacobian()
1595: @*/
1596: PetscErrorCode TSSetI2Jacobian(TS ts,Mat J,Mat P,TSI2Jacobian jac,void *ctx)
1597: {
1598: DM dm;
1605: TSSetIJacobian(ts,J,P,NULL,NULL);
1606: TSGetDM(ts,&dm);
1607: DMTSSetI2Jacobian(dm,jac,ctx);
1608: return(0);
1609: }
1611: /*@C
1612: TSGetI2Jacobian - Returns the implicit Jacobian at the present timestep.
1614: Not Collective, but parallel objects are returned if TS is parallel
1616: Input Parameter:
1617: . ts - The TS context obtained from TSCreate()
1619: Output Parameters:
1620: + J - The (approximate) Jacobian of F(t,U,U_t,U_tt)
1621: . P - The matrix from which the preconditioner is constructed, often the same as J
1622: . jac - The function to compute the Jacobian matrices
1623: - ctx - User-defined context for Jacobian evaluation routine
1625: Notes:
1626: You can pass in NULL for any return argument you do not need.
1628: Level: advanced
1630: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetStepNumber(), TSSetI2Jacobian(), TSGetI2Function(), TSCreate()
1632: @*/
1633: PetscErrorCode TSGetI2Jacobian(TS ts,Mat *J,Mat *P,TSI2Jacobian *jac,void **ctx)
1634: {
1636: SNES snes;
1637: DM dm;
1640: TSGetSNES(ts,&snes);
1641: SNESSetUpMatrices(snes);
1642: SNESGetJacobian(snes,J,P,NULL,NULL);
1643: TSGetDM(ts,&dm);
1644: DMTSGetI2Jacobian(dm,jac,ctx);
1645: return(0);
1646: }
1648: /*@
1649: TSComputeI2Function - Evaluates the DAE residual written in implicit form F(t,U,U_t,U_tt) = 0
1651: Collective on TS
1653: Input Parameters:
1654: + ts - the TS context
1655: . t - current time
1656: . U - state vector
1657: . V - time derivative of state vector (U_t)
1658: - A - second time derivative of state vector (U_tt)
1660: Output Parameter:
1661: . F - the residual vector
1663: Note:
1664: Most users should not need to explicitly call this routine, as it
1665: is used internally within the nonlinear solvers.
1667: Level: developer
1669: .seealso: TSSetI2Function(), TSGetI2Function()
1670: @*/
1671: PetscErrorCode TSComputeI2Function(TS ts,PetscReal t,Vec U,Vec V,Vec A,Vec F)
1672: {
1673: DM dm;
1674: TSI2Function I2Function;
1675: void *ctx;
1676: TSRHSFunction rhsfunction;
1686: TSGetDM(ts,&dm);
1687: DMTSGetI2Function(dm,&I2Function,&ctx);
1688: DMTSGetRHSFunction(dm,&rhsfunction,NULL);
1690: if (!I2Function) {
1691: TSComputeIFunction(ts,t,U,A,F,PETSC_FALSE);
1692: return(0);
1693: }
1695: PetscLogEventBegin(TS_FunctionEval,ts,U,V,F);
1697: PetscStackPush("TS user implicit function");
1698: I2Function(ts,t,U,V,A,F,ctx);
1699: PetscStackPop;
1701: if (rhsfunction) {
1702: Vec Frhs;
1703: TSGetRHSVec_Private(ts,&Frhs);
1704: TSComputeRHSFunction(ts,t,U,Frhs);
1705: VecAXPY(F,-1,Frhs);
1706: }
1708: PetscLogEventEnd(TS_FunctionEval,ts,U,V,F);
1709: return(0);
1710: }
1712: /*@
1713: TSComputeI2Jacobian - Evaluates the Jacobian of the DAE
1715: Collective on TS
1717: Input Parameters:
1718: + ts - the TS context
1719: . t - current timestep
1720: . U - state vector
1721: . V - time derivative of state vector
1722: . A - second time derivative of state vector
1723: . shiftV - shift to apply, see note below
1724: - shiftA - shift to apply, see note below
1726: Output Parameters:
1727: + J - Jacobian matrix
1728: - P - optional preconditioning matrix
1730: Notes:
1731: If F(t,U,V,A)=0 is the DAE, the required Jacobian is
1733: dF/dU + shiftV*dF/dV + shiftA*dF/dA
1735: Most users should not need to explicitly call this routine, as it
1736: is used internally within the nonlinear solvers.
1738: Level: developer
1740: .seealso: TSSetI2Jacobian()
1741: @*/
1742: PetscErrorCode TSComputeI2Jacobian(TS ts,PetscReal t,Vec U,Vec V,Vec A,PetscReal shiftV,PetscReal shiftA,Mat J,Mat P)
1743: {
1744: DM dm;
1745: TSI2Jacobian I2Jacobian;
1746: void *ctx;
1747: TSRHSJacobian rhsjacobian;
1758: TSGetDM(ts,&dm);
1759: DMTSGetI2Jacobian(dm,&I2Jacobian,&ctx);
1760: DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);
1762: if (!I2Jacobian) {
1763: TSComputeIJacobian(ts,t,U,A,shiftA,J,P,PETSC_FALSE);
1764: return(0);
1765: }
1767: PetscLogEventBegin(TS_JacobianEval,ts,U,J,P);
1769: PetscStackPush("TS user implicit Jacobian");
1770: I2Jacobian(ts,t,U,V,A,shiftV,shiftA,J,P,ctx);
1771: PetscStackPop;
1773: if (rhsjacobian) {
1774: Mat Jrhs,Prhs;
1775: TSGetRHSMats_Private(ts,&Jrhs,&Prhs);
1776: TSComputeRHSJacobian(ts,t,U,Jrhs,Prhs);
1777: MatAXPY(J,-1,Jrhs,ts->axpy_pattern);
1778: if (P != J) {MatAXPY(P,-1,Prhs,ts->axpy_pattern);}
1779: }
1781: PetscLogEventEnd(TS_JacobianEval,ts,U,J,P);
1782: return(0);
1783: }
1785: /*@C
1786: TSSetTransientVariable - sets function to transform from state to transient variables
1788: Logically Collective
1790: Input Arguments:
1791: + ts - time stepping context on which to change the transient variable
1792: . tvar - a function that transforms to transient variables
1793: - ctx - a context for tvar
1795: Calling sequence of tvar:
1796: $ PetscErrorCode tvar(TS ts,Vec p,Vec c,void *ctx);
1798: + ts - timestep context
1799: . p - input vector (primative form)
1800: . c - output vector, transient variables (conservative form)
1801: - ctx - [optional] user-defined function context
1803: Level: advanced
1805: Notes:
1806: This is typically used to transform from primitive to conservative variables so that a time integrator (e.g., TSBDF)
1807: can be conservative. In this context, primitive variables P are used to model the state (e.g., because they lead to
1808: well-conditioned formulations even in limiting cases such as low-Mach or zero porosity). The transient variable is
1809: C(P), specified by calling this function. An IFunction thus receives arguments (P, Cdot) and the IJacobian must be
1810: evaluated via the chain rule, as in
1812: dF/dP + shift * dF/dCdot dC/dP.
1814: .seealso: DMTSSetTransientVariable(), DMTSGetTransientVariable(), TSSetIFunction(), TSSetIJacobian()
1815: @*/
1816: PetscErrorCode TSSetTransientVariable(TS ts,TSTransientVariable tvar,void *ctx)
1817: {
1819: DM dm;
1823: TSGetDM(ts,&dm);
1824: DMTSSetTransientVariable(dm,tvar,ctx);
1825: return(0);
1826: }
1828: /*@
1829: TSComputeTransientVariable - transforms state (primitive) variables to transient (conservative) variables
1831: Logically Collective
1833: Input Parameters:
1834: + ts - TS on which to compute
1835: - U - state vector to be transformed to transient variables
1837: Output Parameters:
1838: . C - transient (conservative) variable
1840: Developer Notes:
1841: If DMTSSetTransientVariable() has not been called, then C is not modified in this routine and C=NULL is allowed.
1842: This makes it safe to call without a guard. One can use TSHasTransientVariable() to check if transient variables are
1843: being used.
1845: Level: developer
1847: .seealso: DMTSSetTransientVariable(), TSComputeIFunction(), TSComputeIJacobian()
1848: @*/
1849: PetscErrorCode TSComputeTransientVariable(TS ts,Vec U,Vec C)
1850: {
1852: DM dm;
1853: DMTS dmts;
1858: TSGetDM(ts,&dm);
1859: DMGetDMTS(dm,&dmts);
1860: if (dmts->ops->transientvar) {
1862: (*dmts->ops->transientvar)(ts,U,C,dmts->transientvarctx);
1863: }
1864: return(0);
1865: }
1867: /*@
1868: TSHasTransientVariable - determine whether transient variables have been set
1870: Logically Collective
1872: Input Parameters:
1873: . ts - TS on which to compute
1875: Output Parameters:
1876: . has - PETSC_TRUE if transient variables have been set
1878: Level: developer
1880: .seealso: DMTSSetTransientVariable(), TSComputeTransientVariable()
1881: @*/
1882: PetscErrorCode TSHasTransientVariable(TS ts,PetscBool *has)
1883: {
1885: DM dm;
1886: DMTS dmts;
1890: TSGetDM(ts,&dm);
1891: DMGetDMTS(dm,&dmts);
1892: *has = dmts->ops->transientvar ? PETSC_TRUE : PETSC_FALSE;
1893: return(0);
1894: }
1896: /*@
1897: TS2SetSolution - Sets the initial solution and time derivative vectors
1898: for use by the TS routines handling second order equations.
1900: Logically Collective on TS
1902: Input Parameters:
1903: + ts - the TS context obtained from TSCreate()
1904: . u - the solution vector
1905: - v - the time derivative vector
1907: Level: beginner
1909: @*/
1910: PetscErrorCode TS2SetSolution(TS ts,Vec u,Vec v)
1911: {
1918: TSSetSolution(ts,u);
1919: PetscObjectReference((PetscObject)v);
1920: VecDestroy(&ts->vec_dot);
1921: ts->vec_dot = v;
1922: return(0);
1923: }
1925: /*@
1926: TS2GetSolution - Returns the solution and time derivative at the present timestep
1927: for second order equations. It is valid to call this routine inside the function
1928: that you are evaluating in order to move to the new timestep. This vector not
1929: changed until the solution at the next timestep has been calculated.
1931: Not Collective, but Vec returned is parallel if TS is parallel
1933: Input Parameter:
1934: . ts - the TS context obtained from TSCreate()
1936: Output Parameter:
1937: + u - the vector containing the solution
1938: - v - the vector containing the time derivative
1940: Level: intermediate
1942: .seealso: TS2SetSolution(), TSGetTimeStep(), TSGetTime()
1944: @*/
1945: PetscErrorCode TS2GetSolution(TS ts,Vec *u,Vec *v)
1946: {
1951: if (u) *u = ts->vec_sol;
1952: if (v) *v = ts->vec_dot;
1953: return(0);
1954: }
1956: /*@C
1957: TSLoad - Loads a KSP that has been stored in binary with KSPView().
1959: Collective on PetscViewer
1961: Input Parameters:
1962: + newdm - the newly loaded TS, this needs to have been created with TSCreate() or
1963: some related function before a call to TSLoad().
1964: - viewer - binary file viewer, obtained from PetscViewerBinaryOpen()
1966: Level: intermediate
1968: Notes:
1969: The type is determined by the data in the file, any type set into the TS before this call is ignored.
1971: Notes for advanced users:
1972: Most users should not need to know the details of the binary storage
1973: format, since TSLoad() and TSView() completely hide these details.
1974: But for anyone who's interested, the standard binary matrix storage
1975: format is
1976: .vb
1977: has not yet been determined
1978: .ve
1980: .seealso: PetscViewerBinaryOpen(), TSView(), MatLoad(), VecLoad()
1981: @*/
1982: PetscErrorCode TSLoad(TS ts, PetscViewer viewer)
1983: {
1985: PetscBool isbinary;
1986: PetscInt classid;
1987: char type[256];
1988: DMTS sdm;
1989: DM dm;
1994: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1995: if (!isbinary) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Invalid viewer; open viewer with PetscViewerBinaryOpen()");
1997: PetscViewerBinaryRead(viewer,&classid,1,NULL,PETSC_INT);
1998: if (classid != TS_FILE_CLASSID) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Not TS next in file");
1999: PetscViewerBinaryRead(viewer,type,256,NULL,PETSC_CHAR);
2000: TSSetType(ts, type);
2001: if (ts->ops->load) {
2002: (*ts->ops->load)(ts,viewer);
2003: }
2004: DMCreate(PetscObjectComm((PetscObject)ts),&dm);
2005: DMLoad(dm,viewer);
2006: TSSetDM(ts,dm);
2007: DMCreateGlobalVector(ts->dm,&ts->vec_sol);
2008: VecLoad(ts->vec_sol,viewer);
2009: DMGetDMTS(ts->dm,&sdm);
2010: DMTSLoad(sdm,viewer);
2011: return(0);
2012: }
2014: #include <petscdraw.h>
2015: #if defined(PETSC_HAVE_SAWS)
2016: #include <petscviewersaws.h>
2017: #endif
2019: /*@C
2020: TSViewFromOptions - View from Options
2022: Collective on TS
2024: Input Parameters:
2025: + A - the application ordering context
2026: . obj - Optional object
2027: - name - command line option
2029: Level: intermediate
2030: .seealso: TS, TSView, PetscObjectViewFromOptions(), TSCreate()
2031: @*/
2032: PetscErrorCode TSViewFromOptions(TS A,PetscObject obj,const char name[])
2033: {
2038: PetscObjectViewFromOptions((PetscObject)A,obj,name);
2039: return(0);
2040: }
2042: /*@C
2043: TSView - Prints the TS data structure.
2045: Collective on TS
2047: Input Parameters:
2048: + ts - the TS context obtained from TSCreate()
2049: - viewer - visualization context
2051: Options Database Key:
2052: . -ts_view - calls TSView() at end of TSStep()
2054: Notes:
2055: The available visualization contexts include
2056: + PETSC_VIEWER_STDOUT_SELF - standard output (default)
2057: - PETSC_VIEWER_STDOUT_WORLD - synchronized standard
2058: output where only the first processor opens
2059: the file. All other processors send their
2060: data to the first processor to print.
2062: The user can open an alternative visualization context with
2063: PetscViewerASCIIOpen() - output to a specified file.
2065: In the debugger you can do "call TSView(ts,0)" to display the TS solver. (The same holds for any PETSc object viewer).
2067: Level: beginner
2069: .seealso: PetscViewerASCIIOpen()
2070: @*/
2071: PetscErrorCode TSView(TS ts,PetscViewer viewer)
2072: {
2074: TSType type;
2075: PetscBool iascii,isstring,isundials,isbinary,isdraw;
2076: DMTS sdm;
2077: #if defined(PETSC_HAVE_SAWS)
2078: PetscBool issaws;
2079: #endif
2083: if (!viewer) {
2084: PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)ts),&viewer);
2085: }
2089: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
2090: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSTRING,&isstring);
2091: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
2092: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
2093: #if defined(PETSC_HAVE_SAWS)
2094: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSAWS,&issaws);
2095: #endif
2096: if (iascii) {
2097: PetscObjectPrintClassNamePrefixType((PetscObject)ts,viewer);
2098: if (ts->ops->view) {
2099: PetscViewerASCIIPushTab(viewer);
2100: (*ts->ops->view)(ts,viewer);
2101: PetscViewerASCIIPopTab(viewer);
2102: }
2103: if (ts->max_steps < PETSC_MAX_INT) {
2104: PetscViewerASCIIPrintf(viewer," maximum steps=%D\n",ts->max_steps);
2105: }
2106: if (ts->max_time < PETSC_MAX_REAL) {
2107: PetscViewerASCIIPrintf(viewer," maximum time=%g\n",(double)ts->max_time);
2108: }
2109: if (ts->ifuncs) {
2110: PetscViewerASCIIPrintf(viewer," total number of I function evaluations=%D\n",ts->ifuncs);
2111: }
2112: if (ts->ijacs) {
2113: PetscViewerASCIIPrintf(viewer," total number of I Jacobian evaluations=%D\n",ts->ijacs);
2114: }
2115: if (ts->rhsfuncs) {
2116: PetscViewerASCIIPrintf(viewer," total number of RHS function evaluations=%D\n",ts->rhsfuncs);
2117: }
2118: if (ts->rhsjacs) {
2119: PetscViewerASCIIPrintf(viewer," total number of RHS Jacobian evaluations=%D\n",ts->rhsjacs);
2120: }
2121: if (ts->usessnes) {
2122: PetscBool lin;
2123: if (ts->problem_type == TS_NONLINEAR) {
2124: PetscViewerASCIIPrintf(viewer," total number of nonlinear solver iterations=%D\n",ts->snes_its);
2125: }
2126: PetscViewerASCIIPrintf(viewer," total number of linear solver iterations=%D\n",ts->ksp_its);
2127: PetscObjectTypeCompareAny((PetscObject)ts->snes,&lin,SNESKSPONLY,SNESKSPTRANSPOSEONLY,"");
2128: PetscViewerASCIIPrintf(viewer," total number of %slinear solve failures=%D\n",lin ? "" : "non",ts->num_snes_failures);
2129: }
2130: PetscViewerASCIIPrintf(viewer," total number of rejected steps=%D\n",ts->reject);
2131: if (ts->vrtol) {
2132: PetscViewerASCIIPrintf(viewer," using vector of relative error tolerances, ");
2133: } else {
2134: PetscViewerASCIIPrintf(viewer," using relative error tolerance of %g, ",(double)ts->rtol);
2135: }
2136: if (ts->vatol) {
2137: PetscViewerASCIIPrintf(viewer," using vector of absolute error tolerances\n");
2138: } else {
2139: PetscViewerASCIIPrintf(viewer," using absolute error tolerance of %g\n",(double)ts->atol);
2140: }
2141: PetscViewerASCIIPushTab(viewer);
2142: TSAdaptView(ts->adapt,viewer);
2143: PetscViewerASCIIPopTab(viewer);
2144: } else if (isstring) {
2145: TSGetType(ts,&type);
2146: PetscViewerStringSPrintf(viewer," TSType: %-7.7s",type);
2147: if (ts->ops->view) {(*ts->ops->view)(ts,viewer);}
2148: } else if (isbinary) {
2149: PetscInt classid = TS_FILE_CLASSID;
2150: MPI_Comm comm;
2151: PetscMPIInt rank;
2152: char type[256];
2154: PetscObjectGetComm((PetscObject)ts,&comm);
2155: MPI_Comm_rank(comm,&rank);
2156: if (!rank) {
2157: PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT);
2158: PetscStrncpy(type,((PetscObject)ts)->type_name,256);
2159: PetscViewerBinaryWrite(viewer,type,256,PETSC_CHAR);
2160: }
2161: if (ts->ops->view) {
2162: (*ts->ops->view)(ts,viewer);
2163: }
2164: if (ts->adapt) {TSAdaptView(ts->adapt,viewer);}
2165: DMView(ts->dm,viewer);
2166: VecView(ts->vec_sol,viewer);
2167: DMGetDMTS(ts->dm,&sdm);
2168: DMTSView(sdm,viewer);
2169: } else if (isdraw) {
2170: PetscDraw draw;
2171: char str[36];
2172: PetscReal x,y,bottom,h;
2174: PetscViewerDrawGetDraw(viewer,0,&draw);
2175: PetscDrawGetCurrentPoint(draw,&x,&y);
2176: PetscStrcpy(str,"TS: ");
2177: PetscStrcat(str,((PetscObject)ts)->type_name);
2178: PetscDrawStringBoxed(draw,x,y,PETSC_DRAW_BLACK,PETSC_DRAW_BLACK,str,NULL,&h);
2179: bottom = y - h;
2180: PetscDrawPushCurrentPoint(draw,x,bottom);
2181: if (ts->ops->view) {
2182: (*ts->ops->view)(ts,viewer);
2183: }
2184: if (ts->adapt) {TSAdaptView(ts->adapt,viewer);}
2185: if (ts->snes) {SNESView(ts->snes,viewer);}
2186: PetscDrawPopCurrentPoint(draw);
2187: #if defined(PETSC_HAVE_SAWS)
2188: } else if (issaws) {
2189: PetscMPIInt rank;
2190: const char *name;
2192: PetscObjectGetName((PetscObject)ts,&name);
2193: MPI_Comm_rank(PETSC_COMM_WORLD,&rank);
2194: if (!((PetscObject)ts)->amsmem && !rank) {
2195: char dir[1024];
2197: PetscObjectViewSAWs((PetscObject)ts,viewer);
2198: PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time_step",name);
2199: PetscStackCallSAWs(SAWs_Register,(dir,&ts->steps,1,SAWs_READ,SAWs_INT));
2200: PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time",name);
2201: PetscStackCallSAWs(SAWs_Register,(dir,&ts->ptime,1,SAWs_READ,SAWs_DOUBLE));
2202: }
2203: if (ts->ops->view) {
2204: (*ts->ops->view)(ts,viewer);
2205: }
2206: #endif
2207: }
2208: if (ts->snes && ts->usessnes) {
2209: PetscViewerASCIIPushTab(viewer);
2210: SNESView(ts->snes,viewer);
2211: PetscViewerASCIIPopTab(viewer);
2212: }
2213: DMGetDMTS(ts->dm,&sdm);
2214: DMTSView(sdm,viewer);
2216: PetscViewerASCIIPushTab(viewer);
2217: PetscObjectTypeCompare((PetscObject)ts,TSSUNDIALS,&isundials);
2218: PetscViewerASCIIPopTab(viewer);
2219: return(0);
2220: }
2222: /*@
2223: TSSetApplicationContext - Sets an optional user-defined context for
2224: the timesteppers.
2226: Logically Collective on TS
2228: Input Parameters:
2229: + ts - the TS context obtained from TSCreate()
2230: - usrP - optional user context
2232: Fortran Notes:
2233: To use this from Fortran you must write a Fortran interface definition for this
2234: function that tells Fortran the Fortran derived data type that you are passing in as the ctx argument.
2236: Level: intermediate
2238: .seealso: TSGetApplicationContext()
2239: @*/
2240: PetscErrorCode TSSetApplicationContext(TS ts,void *usrP)
2241: {
2244: ts->user = usrP;
2245: return(0);
2246: }
2248: /*@
2249: TSGetApplicationContext - Gets the user-defined context for the
2250: timestepper.
2252: Not Collective
2254: Input Parameter:
2255: . ts - the TS context obtained from TSCreate()
2257: Output Parameter:
2258: . usrP - user context
2260: Fortran Notes:
2261: To use this from Fortran you must write a Fortran interface definition for this
2262: function that tells Fortran the Fortran derived data type that you are passing in as the ctx argument.
2264: Level: intermediate
2266: .seealso: TSSetApplicationContext()
2267: @*/
2268: PetscErrorCode TSGetApplicationContext(TS ts,void *usrP)
2269: {
2272: *(void**)usrP = ts->user;
2273: return(0);
2274: }
2276: /*@
2277: TSGetStepNumber - Gets the number of steps completed.
2279: Not Collective
2281: Input Parameter:
2282: . ts - the TS context obtained from TSCreate()
2284: Output Parameter:
2285: . steps - number of steps completed so far
2287: Level: intermediate
2289: .seealso: TSGetTime(), TSGetTimeStep(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSSetPostStep()
2290: @*/
2291: PetscErrorCode TSGetStepNumber(TS ts,PetscInt *steps)
2292: {
2296: *steps = ts->steps;
2297: return(0);
2298: }
2300: /*@
2301: TSSetStepNumber - Sets the number of steps completed.
2303: Logically Collective on TS
2305: Input Parameters:
2306: + ts - the TS context
2307: - steps - number of steps completed so far
2309: Notes:
2310: For most uses of the TS solvers the user need not explicitly call
2311: TSSetStepNumber(), as the step counter is appropriately updated in
2312: TSSolve()/TSStep()/TSRollBack(). Power users may call this routine to
2313: reinitialize timestepping by setting the step counter to zero (and time
2314: to the initial time) to solve a similar problem with different initial
2315: conditions or parameters. Other possible use case is to continue
2316: timestepping from a previously interrupted run in such a way that TS
2317: monitors will be called with a initial nonzero step counter.
2319: Level: advanced
2321: .seealso: TSGetStepNumber(), TSSetTime(), TSSetTimeStep(), TSSetSolution()
2322: @*/
2323: PetscErrorCode TSSetStepNumber(TS ts,PetscInt steps)
2324: {
2328: if (steps < 0) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Step number must be non-negative");
2329: ts->steps = steps;
2330: return(0);
2331: }
2333: /*@
2334: TSSetTimeStep - Allows one to reset the timestep at any time,
2335: useful for simple pseudo-timestepping codes.
2337: Logically Collective on TS
2339: Input Parameters:
2340: + ts - the TS context obtained from TSCreate()
2341: - time_step - the size of the timestep
2343: Level: intermediate
2345: .seealso: TSGetTimeStep(), TSSetTime()
2347: @*/
2348: PetscErrorCode TSSetTimeStep(TS ts,PetscReal time_step)
2349: {
2353: ts->time_step = time_step;
2354: return(0);
2355: }
2357: /*@
2358: TSSetExactFinalTime - Determines whether to adapt the final time step to
2359: match the exact final time, interpolate solution to the exact final time,
2360: or just return at the final time TS computed.
2362: Logically Collective on TS
2364: Input Parameter:
2365: + ts - the time-step context
2366: - eftopt - exact final time option
2368: $ TS_EXACTFINALTIME_STEPOVER - Don't do anything if final time is exceeded
2369: $ TS_EXACTFINALTIME_INTERPOLATE - Interpolate back to final time
2370: $ TS_EXACTFINALTIME_MATCHSTEP - Adapt final time step to match the final time
2372: Options Database:
2373: . -ts_exact_final_time <stepover,interpolate,matchstep> - select the final step at runtime
2375: Warning: If you use the option TS_EXACTFINALTIME_STEPOVER the solution may be at a very different time
2376: then the final time you selected.
2378: Level: beginner
2380: .seealso: TSExactFinalTimeOption, TSGetExactFinalTime()
2381: @*/
2382: PetscErrorCode TSSetExactFinalTime(TS ts,TSExactFinalTimeOption eftopt)
2383: {
2387: ts->exact_final_time = eftopt;
2388: return(0);
2389: }
2391: /*@
2392: TSGetExactFinalTime - Gets the exact final time option.
2394: Not Collective
2396: Input Parameter:
2397: . ts - the TS context
2399: Output Parameter:
2400: . eftopt - exact final time option
2402: Level: beginner
2404: .seealso: TSExactFinalTimeOption, TSSetExactFinalTime()
2405: @*/
2406: PetscErrorCode TSGetExactFinalTime(TS ts,TSExactFinalTimeOption *eftopt)
2407: {
2411: *eftopt = ts->exact_final_time;
2412: return(0);
2413: }
2415: /*@
2416: TSGetTimeStep - Gets the current timestep size.
2418: Not Collective
2420: Input Parameter:
2421: . ts - the TS context obtained from TSCreate()
2423: Output Parameter:
2424: . dt - the current timestep size
2426: Level: intermediate
2428: .seealso: TSSetTimeStep(), TSGetTime()
2430: @*/
2431: PetscErrorCode TSGetTimeStep(TS ts,PetscReal *dt)
2432: {
2436: *dt = ts->time_step;
2437: return(0);
2438: }
2440: /*@
2441: TSGetSolution - Returns the solution at the present timestep. It
2442: is valid to call this routine inside the function that you are evaluating
2443: in order to move to the new timestep. This vector not changed until
2444: the solution at the next timestep has been calculated.
2446: Not Collective, but Vec returned is parallel if TS is parallel
2448: Input Parameter:
2449: . ts - the TS context obtained from TSCreate()
2451: Output Parameter:
2452: . v - the vector containing the solution
2454: Note: If you used TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP); this does not return the solution at the requested
2455: final time. It returns the solution at the next timestep.
2457: Level: intermediate
2459: .seealso: TSGetTimeStep(), TSGetTime(), TSGetSolveTime(), TSGetSolutionComponents(), TSSetSolutionFunction()
2461: @*/
2462: PetscErrorCode TSGetSolution(TS ts,Vec *v)
2463: {
2467: *v = ts->vec_sol;
2468: return(0);
2469: }
2471: /*@
2472: TSGetSolutionComponents - Returns any solution components at the present
2473: timestep, if available for the time integration method being used.
2474: Solution components are quantities that share the same size and
2475: structure as the solution vector.
2477: Not Collective, but Vec returned is parallel if TS is parallel
2479: Parameters :
2480: + ts - the TS context obtained from TSCreate() (input parameter).
2481: . n - If v is PETSC_NULL, then the number of solution components is
2482: returned through n, else the n-th solution component is
2483: returned in v.
2484: - v - the vector containing the n-th solution component
2485: (may be PETSC_NULL to use this function to find out
2486: the number of solutions components).
2488: Level: advanced
2490: .seealso: TSGetSolution()
2492: @*/
2493: PetscErrorCode TSGetSolutionComponents(TS ts,PetscInt *n,Vec *v)
2494: {
2499: if (!ts->ops->getsolutioncomponents) *n = 0;
2500: else {
2501: (*ts->ops->getsolutioncomponents)(ts,n,v);
2502: }
2503: return(0);
2504: }
2506: /*@
2507: TSGetAuxSolution - Returns an auxiliary solution at the present
2508: timestep, if available for the time integration method being used.
2510: Not Collective, but Vec returned is parallel if TS is parallel
2512: Parameters :
2513: + ts - the TS context obtained from TSCreate() (input parameter).
2514: - v - the vector containing the auxiliary solution
2516: Level: intermediate
2518: .seealso: TSGetSolution()
2520: @*/
2521: PetscErrorCode TSGetAuxSolution(TS ts,Vec *v)
2522: {
2527: if (ts->ops->getauxsolution) {
2528: (*ts->ops->getauxsolution)(ts,v);
2529: } else {
2530: VecZeroEntries(*v);
2531: }
2532: return(0);
2533: }
2535: /*@
2536: TSGetTimeError - Returns the estimated error vector, if the chosen
2537: TSType has an error estimation functionality.
2539: Not Collective, but Vec returned is parallel if TS is parallel
2541: Note: MUST call after TSSetUp()
2543: Parameters :
2544: + ts - the TS context obtained from TSCreate() (input parameter).
2545: . n - current estimate (n=0) or previous one (n=-1)
2546: - v - the vector containing the error (same size as the solution).
2548: Level: intermediate
2550: .seealso: TSGetSolution(), TSSetTimeError()
2552: @*/
2553: PetscErrorCode TSGetTimeError(TS ts,PetscInt n,Vec *v)
2554: {
2559: if (ts->ops->gettimeerror) {
2560: (*ts->ops->gettimeerror)(ts,n,v);
2561: } else {
2562: VecZeroEntries(*v);
2563: }
2564: return(0);
2565: }
2567: /*@
2568: TSSetTimeError - Sets the estimated error vector, if the chosen
2569: TSType has an error estimation functionality. This can be used
2570: to restart such a time integrator with a given error vector.
2572: Not Collective, but Vec returned is parallel if TS is parallel
2574: Parameters :
2575: + ts - the TS context obtained from TSCreate() (input parameter).
2576: - v - the vector containing the error (same size as the solution).
2578: Level: intermediate
2580: .seealso: TSSetSolution(), TSGetTimeError)
2582: @*/
2583: PetscErrorCode TSSetTimeError(TS ts,Vec v)
2584: {
2589: if (!ts->setupcalled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetUp() first");
2590: if (ts->ops->settimeerror) {
2591: (*ts->ops->settimeerror)(ts,v);
2592: }
2593: return(0);
2594: }
2596: /* ----- Routines to initialize and destroy a timestepper ---- */
2597: /*@
2598: TSSetProblemType - Sets the type of problem to be solved.
2600: Not collective
2602: Input Parameters:
2603: + ts - The TS
2604: - type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
2605: .vb
2606: U_t - A U = 0 (linear)
2607: U_t - A(t) U = 0 (linear)
2608: F(t,U,U_t) = 0 (nonlinear)
2609: .ve
2611: Level: beginner
2613: .seealso: TSSetUp(), TSProblemType, TS
2614: @*/
2615: PetscErrorCode TSSetProblemType(TS ts, TSProblemType type)
2616: {
2621: ts->problem_type = type;
2622: if (type == TS_LINEAR) {
2623: SNES snes;
2624: TSGetSNES(ts,&snes);
2625: SNESSetType(snes,SNESKSPONLY);
2626: }
2627: return(0);
2628: }
2630: /*@C
2631: TSGetProblemType - Gets the type of problem to be solved.
2633: Not collective
2635: Input Parameter:
2636: . ts - The TS
2638: Output Parameter:
2639: . type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
2640: .vb
2641: M U_t = A U
2642: M(t) U_t = A(t) U
2643: F(t,U,U_t)
2644: .ve
2646: Level: beginner
2648: .seealso: TSSetUp(), TSProblemType, TS
2649: @*/
2650: PetscErrorCode TSGetProblemType(TS ts, TSProblemType *type)
2651: {
2655: *type = ts->problem_type;
2656: return(0);
2657: }
2659: /*
2660: Attempt to check/preset a default value for the exact final time option. This is needed at the beginning of TSSolve() and in TSSetUp()
2661: */
2662: static PetscErrorCode TSSetExactFinalTimeDefault(TS ts)
2663: {
2665: PetscBool isnone;
2668: TSGetAdapt(ts,&ts->adapt);
2669: TSAdaptSetDefaultType(ts->adapt,ts->default_adapt_type);
2671: PetscObjectTypeCompare((PetscObject)ts->adapt,TSADAPTNONE,&isnone);
2672: if (!isnone && ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) {
2673: ts->exact_final_time = TS_EXACTFINALTIME_MATCHSTEP;
2674: } else if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) {
2675: ts->exact_final_time = TS_EXACTFINALTIME_INTERPOLATE;
2676: }
2677: return(0);
2678: }
2681: /*@
2682: TSSetUp - Sets up the internal data structures for the later use of a timestepper.
2684: Collective on TS
2686: Input Parameter:
2687: . ts - the TS context obtained from TSCreate()
2689: Notes:
2690: For basic use of the TS solvers the user need not explicitly call
2691: TSSetUp(), since these actions will automatically occur during
2692: the call to TSStep() or TSSolve(). However, if one wishes to control this
2693: phase separately, TSSetUp() should be called after TSCreate()
2694: and optional routines of the form TSSetXXX(), but before TSStep() and TSSolve().
2696: Level: advanced
2698: .seealso: TSCreate(), TSStep(), TSDestroy(), TSSolve()
2699: @*/
2700: PetscErrorCode TSSetUp(TS ts)
2701: {
2703: DM dm;
2704: PetscErrorCode (*func)(SNES,Vec,Vec,void*);
2705: PetscErrorCode (*jac)(SNES,Vec,Mat,Mat,void*);
2706: TSIFunction ifun;
2707: TSIJacobian ijac;
2708: TSI2Jacobian i2jac;
2709: TSRHSJacobian rhsjac;
2713: if (ts->setupcalled) return(0);
2715: if (!((PetscObject)ts)->type_name) {
2716: TSGetIFunction(ts,NULL,&ifun,NULL);
2717: TSSetType(ts,ifun ? TSBEULER : TSEULER);
2718: }
2720: if (!ts->vec_sol) {
2721: if (ts->dm) {
2722: DMCreateGlobalVector(ts->dm,&ts->vec_sol);
2723: } else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetSolution() first");
2724: }
2726: if (!ts->Jacp && ts->Jacprhs) { /* IJacobianP shares the same matrix with RHSJacobianP if only RHSJacobianP is provided */
2727: PetscObjectReference((PetscObject)ts->Jacprhs);
2728: ts->Jacp = ts->Jacprhs;
2729: }
2731: if (ts->quadraturets) {
2732: TSSetUp(ts->quadraturets);
2733: VecDestroy(&ts->vec_costintegrand);
2734: VecDuplicate(ts->quadraturets->vec_sol,&ts->vec_costintegrand);
2735: }
2737: TSGetRHSJacobian(ts,NULL,NULL,&rhsjac,NULL);
2738: if (rhsjac == TSComputeRHSJacobianConstant) {
2739: Mat Amat,Pmat;
2740: SNES snes;
2741: TSGetSNES(ts,&snes);
2742: SNESGetJacobian(snes,&Amat,&Pmat,NULL,NULL);
2743: /* Matching matrices implies that an IJacobian is NOT set, because if it had been set, the IJacobian's matrix would
2744: * have displaced the RHS matrix */
2745: if (Amat && Amat == ts->Arhs) {
2746: /* we need to copy the values of the matrix because for the constant Jacobian case the user will never set the numerical values in this new location */
2747: MatDuplicate(ts->Arhs,MAT_COPY_VALUES,&Amat);
2748: SNESSetJacobian(snes,Amat,NULL,NULL,NULL);
2749: MatDestroy(&Amat);
2750: }
2751: if (Pmat && Pmat == ts->Brhs) {
2752: MatDuplicate(ts->Brhs,MAT_COPY_VALUES,&Pmat);
2753: SNESSetJacobian(snes,NULL,Pmat,NULL,NULL);
2754: MatDestroy(&Pmat);
2755: }
2756: }
2758: TSGetAdapt(ts,&ts->adapt);
2759: TSAdaptSetDefaultType(ts->adapt,ts->default_adapt_type);
2761: if (ts->ops->setup) {
2762: (*ts->ops->setup)(ts);
2763: }
2765: TSSetExactFinalTimeDefault(ts);
2767: /* In the case where we've set a DMTSFunction or what have you, we need the default SNESFunction
2768: to be set right but can't do it elsewhere due to the overreliance on ctx=ts.
2769: */
2770: TSGetDM(ts,&dm);
2771: DMSNESGetFunction(dm,&func,NULL);
2772: if (!func) {
2773: DMSNESSetFunction(dm,SNESTSFormFunction,ts);
2774: }
2775: /* If the SNES doesn't have a jacobian set and the TS has an ijacobian or rhsjacobian set, set the SNES to use it.
2776: Otherwise, the SNES will use coloring internally to form the Jacobian.
2777: */
2778: DMSNESGetJacobian(dm,&jac,NULL);
2779: DMTSGetIJacobian(dm,&ijac,NULL);
2780: DMTSGetI2Jacobian(dm,&i2jac,NULL);
2781: DMTSGetRHSJacobian(dm,&rhsjac,NULL);
2782: if (!jac && (ijac || i2jac || rhsjac)) {
2783: DMSNESSetJacobian(dm,SNESTSFormJacobian,ts);
2784: }
2786: /* if time integration scheme has a starting method, call it */
2787: if (ts->ops->startingmethod) {
2788: (*ts->ops->startingmethod)(ts);
2789: }
2791: ts->setupcalled = PETSC_TRUE;
2792: return(0);
2793: }
2795: /*@
2796: TSReset - Resets a TS context and removes any allocated Vecs and Mats.
2798: Collective on TS
2800: Input Parameter:
2801: . ts - the TS context obtained from TSCreate()
2803: Level: beginner
2805: .seealso: TSCreate(), TSSetup(), TSDestroy()
2806: @*/
2807: PetscErrorCode TSReset(TS ts)
2808: {
2809: TS_RHSSplitLink ilink = ts->tsrhssplit,next;
2810: PetscErrorCode ierr;
2815: if (ts->ops->reset) {
2816: (*ts->ops->reset)(ts);
2817: }
2818: if (ts->snes) {SNESReset(ts->snes);}
2819: if (ts->adapt) {TSAdaptReset(ts->adapt);}
2821: MatDestroy(&ts->Arhs);
2822: MatDestroy(&ts->Brhs);
2823: VecDestroy(&ts->Frhs);
2824: VecDestroy(&ts->vec_sol);
2825: VecDestroy(&ts->vec_dot);
2826: VecDestroy(&ts->vatol);
2827: VecDestroy(&ts->vrtol);
2828: VecDestroyVecs(ts->nwork,&ts->work);
2830: MatDestroy(&ts->Jacprhs);
2831: MatDestroy(&ts->Jacp);
2832: if (ts->forward_solve) {
2833: TSForwardReset(ts);
2834: }
2835: if (ts->quadraturets) {
2836: TSReset(ts->quadraturets);
2837: VecDestroy(&ts->vec_costintegrand);
2838: }
2839: while (ilink) {
2840: next = ilink->next;
2841: TSDestroy(&ilink->ts);
2842: PetscFree(ilink->splitname);
2843: ISDestroy(&ilink->is);
2844: PetscFree(ilink);
2845: ilink = next;
2846: }
2847: ts->num_rhs_splits = 0;
2848: ts->setupcalled = PETSC_FALSE;
2849: return(0);
2850: }
2852: /*@C
2853: TSDestroy - Destroys the timestepper context that was created
2854: with TSCreate().
2856: Collective on TS
2858: Input Parameter:
2859: . ts - the TS context obtained from TSCreate()
2861: Level: beginner
2863: .seealso: TSCreate(), TSSetUp(), TSSolve()
2864: @*/
2865: PetscErrorCode TSDestroy(TS *ts)
2866: {
2870: if (!*ts) return(0);
2872: if (--((PetscObject)(*ts))->refct > 0) {*ts = NULL; return(0);}
2874: TSReset(*ts);
2875: TSAdjointReset(*ts);
2876: if ((*ts)->forward_solve) {
2877: TSForwardReset(*ts);
2878: }
2879: /* if memory was published with SAWs then destroy it */
2880: PetscObjectSAWsViewOff((PetscObject)*ts);
2881: if ((*ts)->ops->destroy) {(*(*ts)->ops->destroy)((*ts));}
2883: TSTrajectoryDestroy(&(*ts)->trajectory);
2885: TSAdaptDestroy(&(*ts)->adapt);
2886: TSEventDestroy(&(*ts)->event);
2888: SNESDestroy(&(*ts)->snes);
2889: DMDestroy(&(*ts)->dm);
2890: TSMonitorCancel((*ts));
2891: TSAdjointMonitorCancel((*ts));
2893: TSDestroy(&(*ts)->quadraturets);
2894: PetscHeaderDestroy(ts);
2895: return(0);
2896: }
2898: /*@
2899: TSGetSNES - Returns the SNES (nonlinear solver) associated with
2900: a TS (timestepper) context. Valid only for nonlinear problems.
2902: Not Collective, but SNES is parallel if TS is parallel
2904: Input Parameter:
2905: . ts - the TS context obtained from TSCreate()
2907: Output Parameter:
2908: . snes - the nonlinear solver context
2910: Notes:
2911: The user can then directly manipulate the SNES context to set various
2912: options, etc. Likewise, the user can then extract and manipulate the
2913: KSP, KSP, and PC contexts as well.
2915: TSGetSNES() does not work for integrators that do not use SNES; in
2916: this case TSGetSNES() returns NULL in snes.
2918: Level: beginner
2920: @*/
2921: PetscErrorCode TSGetSNES(TS ts,SNES *snes)
2922: {
2928: if (!ts->snes) {
2929: SNESCreate(PetscObjectComm((PetscObject)ts),&ts->snes);
2930: PetscObjectSetOptions((PetscObject)ts->snes,((PetscObject)ts)->options);
2931: SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2932: PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->snes);
2933: PetscObjectIncrementTabLevel((PetscObject)ts->snes,(PetscObject)ts,1);
2934: if (ts->dm) {SNESSetDM(ts->snes,ts->dm);}
2935: if (ts->problem_type == TS_LINEAR) {
2936: SNESSetType(ts->snes,SNESKSPONLY);
2937: }
2938: }
2939: *snes = ts->snes;
2940: return(0);
2941: }
2943: /*@
2944: TSSetSNES - Set the SNES (nonlinear solver) to be used by the timestepping context
2946: Collective
2948: Input Parameter:
2949: + ts - the TS context obtained from TSCreate()
2950: - snes - the nonlinear solver context
2952: Notes:
2953: Most users should have the TS created by calling TSGetSNES()
2955: Level: developer
2957: @*/
2958: PetscErrorCode TSSetSNES(TS ts,SNES snes)
2959: {
2961: PetscErrorCode (*func)(SNES,Vec,Mat,Mat,void*);
2966: PetscObjectReference((PetscObject)snes);
2967: SNESDestroy(&ts->snes);
2969: ts->snes = snes;
2971: SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2972: SNESGetJacobian(ts->snes,NULL,NULL,&func,NULL);
2973: if (func == SNESTSFormJacobian) {
2974: SNESSetJacobian(ts->snes,NULL,NULL,SNESTSFormJacobian,ts);
2975: }
2976: return(0);
2977: }
2979: /*@
2980: TSGetKSP - Returns the KSP (linear solver) associated with
2981: a TS (timestepper) context.
2983: Not Collective, but KSP is parallel if TS is parallel
2985: Input Parameter:
2986: . ts - the TS context obtained from TSCreate()
2988: Output Parameter:
2989: . ksp - the nonlinear solver context
2991: Notes:
2992: The user can then directly manipulate the KSP context to set various
2993: options, etc. Likewise, the user can then extract and manipulate the
2994: KSP and PC contexts as well.
2996: TSGetKSP() does not work for integrators that do not use KSP;
2997: in this case TSGetKSP() returns NULL in ksp.
2999: Level: beginner
3001: @*/
3002: PetscErrorCode TSGetKSP(TS ts,KSP *ksp)
3003: {
3005: SNES snes;
3010: if (!((PetscObject)ts)->type_name) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NULL,"KSP is not created yet. Call TSSetType() first");
3011: if (ts->problem_type != TS_LINEAR) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Linear only; use TSGetSNES()");
3012: TSGetSNES(ts,&snes);
3013: SNESGetKSP(snes,ksp);
3014: return(0);
3015: }
3017: /* ----------- Routines to set solver parameters ---------- */
3019: /*@
3020: TSSetMaxSteps - Sets the maximum number of steps to use.
3022: Logically Collective on TS
3024: Input Parameters:
3025: + ts - the TS context obtained from TSCreate()
3026: - maxsteps - maximum number of steps to use
3028: Options Database Keys:
3029: . -ts_max_steps <maxsteps> - Sets maxsteps
3031: Notes:
3032: The default maximum number of steps is 5000
3034: Level: intermediate
3036: .seealso: TSGetMaxSteps(), TSSetMaxTime(), TSSetExactFinalTime()
3037: @*/
3038: PetscErrorCode TSSetMaxSteps(TS ts,PetscInt maxsteps)
3039: {
3043: if (maxsteps < 0) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Maximum number of steps must be non-negative");
3044: ts->max_steps = maxsteps;
3045: return(0);
3046: }
3048: /*@
3049: TSGetMaxSteps - Gets the maximum number of steps to use.
3051: Not Collective
3053: Input Parameters:
3054: . ts - the TS context obtained from TSCreate()
3056: Output Parameter:
3057: . maxsteps - maximum number of steps to use
3059: Level: advanced
3061: .seealso: TSSetMaxSteps(), TSGetMaxTime(), TSSetMaxTime()
3062: @*/
3063: PetscErrorCode TSGetMaxSteps(TS ts,PetscInt *maxsteps)
3064: {
3068: *maxsteps = ts->max_steps;
3069: return(0);
3070: }
3072: /*@
3073: TSSetMaxTime - Sets the maximum (or final) time for timestepping.
3075: Logically Collective on TS
3077: Input Parameters:
3078: + ts - the TS context obtained from TSCreate()
3079: - maxtime - final time to step to
3081: Options Database Keys:
3082: . -ts_max_time <maxtime> - Sets maxtime
3084: Notes:
3085: The default maximum time is 5.0
3087: Level: intermediate
3089: .seealso: TSGetMaxTime(), TSSetMaxSteps(), TSSetExactFinalTime()
3090: @*/
3091: PetscErrorCode TSSetMaxTime(TS ts,PetscReal maxtime)
3092: {
3096: ts->max_time = maxtime;
3097: return(0);
3098: }
3100: /*@
3101: TSGetMaxTime - Gets the maximum (or final) time for timestepping.
3103: Not Collective
3105: Input Parameters:
3106: . ts - the TS context obtained from TSCreate()
3108: Output Parameter:
3109: . maxtime - final time to step to
3111: Level: advanced
3113: .seealso: TSSetMaxTime(), TSGetMaxSteps(), TSSetMaxSteps()
3114: @*/
3115: PetscErrorCode TSGetMaxTime(TS ts,PetscReal *maxtime)
3116: {
3120: *maxtime = ts->max_time;
3121: return(0);
3122: }
3124: /*@
3125: TSSetInitialTimeStep - Deprecated, use TSSetTime() and TSSetTimeStep().
3127: Level: deprecated
3129: @*/
3130: PetscErrorCode TSSetInitialTimeStep(TS ts,PetscReal initial_time,PetscReal time_step)
3131: {
3135: TSSetTime(ts,initial_time);
3136: TSSetTimeStep(ts,time_step);
3137: return(0);
3138: }
3140: /*@
3141: TSGetDuration - Deprecated, use TSGetMaxSteps() and TSGetMaxTime().
3143: Level: deprecated
3145: @*/
3146: PetscErrorCode TSGetDuration(TS ts, PetscInt *maxsteps, PetscReal *maxtime)
3147: {
3150: if (maxsteps) {
3152: *maxsteps = ts->max_steps;
3153: }
3154: if (maxtime) {
3156: *maxtime = ts->max_time;
3157: }
3158: return(0);
3159: }
3161: /*@
3162: TSSetDuration - Deprecated, use TSSetMaxSteps() and TSSetMaxTime().
3164: Level: deprecated
3166: @*/
3167: PetscErrorCode TSSetDuration(TS ts,PetscInt maxsteps,PetscReal maxtime)
3168: {
3173: if (maxsteps >= 0) ts->max_steps = maxsteps;
3174: if (maxtime != PETSC_DEFAULT) ts->max_time = maxtime;
3175: return(0);
3176: }
3178: /*@
3179: TSGetTimeStepNumber - Deprecated, use TSGetStepNumber().
3181: Level: deprecated
3183: @*/
3184: PetscErrorCode TSGetTimeStepNumber(TS ts,PetscInt *steps) { return TSGetStepNumber(ts,steps); }
3186: /*@
3187: TSGetTotalSteps - Deprecated, use TSGetStepNumber().
3189: Level: deprecated
3191: @*/
3192: PetscErrorCode TSGetTotalSteps(TS ts,PetscInt *steps) { return TSGetStepNumber(ts,steps); }
3194: /*@
3195: TSSetSolution - Sets the initial solution vector
3196: for use by the TS routines.
3198: Logically Collective on TS
3200: Input Parameters:
3201: + ts - the TS context obtained from TSCreate()
3202: - u - the solution vector
3204: Level: beginner
3206: .seealso: TSSetSolutionFunction(), TSGetSolution(), TSCreate()
3207: @*/
3208: PetscErrorCode TSSetSolution(TS ts,Vec u)
3209: {
3211: DM dm;
3216: PetscObjectReference((PetscObject)u);
3217: VecDestroy(&ts->vec_sol);
3218: ts->vec_sol = u;
3220: TSGetDM(ts,&dm);
3221: DMShellSetGlobalVector(dm,u);
3222: return(0);
3223: }
3225: /*@C
3226: TSSetPreStep - Sets the general-purpose function
3227: called once at the beginning of each time step.
3229: Logically Collective on TS
3231: Input Parameters:
3232: + ts - The TS context obtained from TSCreate()
3233: - func - The function
3235: Calling sequence of func:
3236: . PetscErrorCode func (TS ts);
3238: Level: intermediate
3240: .seealso: TSSetPreStage(), TSSetPostStage(), TSSetPostStep(), TSStep(), TSRestartStep()
3241: @*/
3242: PetscErrorCode TSSetPreStep(TS ts, PetscErrorCode (*func)(TS))
3243: {
3246: ts->prestep = func;
3247: return(0);
3248: }
3250: /*@
3251: TSPreStep - Runs the user-defined pre-step function.
3253: Collective on TS
3255: Input Parameters:
3256: . ts - The TS context obtained from TSCreate()
3258: Notes:
3259: TSPreStep() is typically used within time stepping implementations,
3260: so most users would not generally call this routine themselves.
3262: Level: developer
3264: .seealso: TSSetPreStep(), TSPreStage(), TSPostStage(), TSPostStep()
3265: @*/
3266: PetscErrorCode TSPreStep(TS ts)
3267: {
3272: if (ts->prestep) {
3273: Vec U;
3274: PetscObjectState sprev,spost;
3276: TSGetSolution(ts,&U);
3277: PetscObjectStateGet((PetscObject)U,&sprev);
3278: PetscStackCallStandard((*ts->prestep),(ts));
3279: PetscObjectStateGet((PetscObject)U,&spost);
3280: if (sprev != spost) {TSRestartStep(ts);}
3281: }
3282: return(0);
3283: }
3285: /*@C
3286: TSSetPreStage - Sets the general-purpose function
3287: called once at the beginning of each stage.
3289: Logically Collective on TS
3291: Input Parameters:
3292: + ts - The TS context obtained from TSCreate()
3293: - func - The function
3295: Calling sequence of func:
3296: . PetscErrorCode func(TS ts, PetscReal stagetime);
3298: Level: intermediate
3300: Note:
3301: There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
3302: The time step number being computed can be queried using TSGetStepNumber() and the total size of the step being
3303: attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().
3305: .seealso: TSSetPostStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3306: @*/
3307: PetscErrorCode TSSetPreStage(TS ts, PetscErrorCode (*func)(TS,PetscReal))
3308: {
3311: ts->prestage = func;
3312: return(0);
3313: }
3315: /*@C
3316: TSSetPostStage - Sets the general-purpose function
3317: called once at the end of each stage.
3319: Logically Collective on TS
3321: Input Parameters:
3322: + ts - The TS context obtained from TSCreate()
3323: - func - The function
3325: Calling sequence of func:
3326: . PetscErrorCode func(TS ts, PetscReal stagetime, PetscInt stageindex, Vec* Y);
3328: Level: intermediate
3330: Note:
3331: There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
3332: The time step number being computed can be queried using TSGetStepNumber() and the total size of the step being
3333: attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().
3335: .seealso: TSSetPreStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3336: @*/
3337: PetscErrorCode TSSetPostStage(TS ts, PetscErrorCode (*func)(TS,PetscReal,PetscInt,Vec*))
3338: {
3341: ts->poststage = func;
3342: return(0);
3343: }
3345: /*@C
3346: TSSetPostEvaluate - Sets the general-purpose function
3347: called once at the end of each step evaluation.
3349: Logically Collective on TS
3351: Input Parameters:
3352: + ts - The TS context obtained from TSCreate()
3353: - func - The function
3355: Calling sequence of func:
3356: . PetscErrorCode func(TS ts);
3358: Level: intermediate
3360: Note:
3361: Semantically, TSSetPostEvaluate() differs from TSSetPostStep() since the function it sets is called before event-handling
3362: thus guaranteeing the same solution (computed by the time-stepper) will be passed to it. On the other hand, TSPostStep()
3363: may be passed a different solution, possibly changed by the event handler. TSPostEvaluate() is called after the next step
3364: solution is evaluated allowing to modify it, if need be. The solution can be obtained with TSGetSolution(), the time step
3365: with TSGetTimeStep(), and the time at the start of the step is available via TSGetTime()
3367: .seealso: TSSetPreStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3368: @*/
3369: PetscErrorCode TSSetPostEvaluate(TS ts, PetscErrorCode (*func)(TS))
3370: {
3373: ts->postevaluate = func;
3374: return(0);
3375: }
3377: /*@
3378: TSPreStage - Runs the user-defined pre-stage function set using TSSetPreStage()
3380: Collective on TS
3382: Input Parameters:
3383: . ts - The TS context obtained from TSCreate()
3384: stagetime - The absolute time of the current stage
3386: Notes:
3387: TSPreStage() is typically used within time stepping implementations,
3388: most users would not generally call this routine themselves.
3390: Level: developer
3392: .seealso: TSPostStage(), TSSetPreStep(), TSPreStep(), TSPostStep()
3393: @*/
3394: PetscErrorCode TSPreStage(TS ts, PetscReal stagetime)
3395: {
3398: if (ts->prestage) {
3399: PetscStackCallStandard((*ts->prestage),(ts,stagetime));
3400: }
3401: return(0);
3402: }
3404: /*@
3405: TSPostStage - Runs the user-defined post-stage function set using TSSetPostStage()
3407: Collective on TS
3409: Input Parameters:
3410: . ts - The TS context obtained from TSCreate()
3411: stagetime - The absolute time of the current stage
3412: stageindex - Stage number
3413: Y - Array of vectors (of size = total number
3414: of stages) with the stage solutions
3416: Notes:
3417: TSPostStage() is typically used within time stepping implementations,
3418: most users would not generally call this routine themselves.
3420: Level: developer
3422: .seealso: TSPreStage(), TSSetPreStep(), TSPreStep(), TSPostStep()
3423: @*/
3424: PetscErrorCode TSPostStage(TS ts, PetscReal stagetime, PetscInt stageindex, Vec *Y)
3425: {
3428: if (ts->poststage) {
3429: PetscStackCallStandard((*ts->poststage),(ts,stagetime,stageindex,Y));
3430: }
3431: return(0);
3432: }
3434: /*@
3435: TSPostEvaluate - Runs the user-defined post-evaluate function set using TSSetPostEvaluate()
3437: Collective on TS
3439: Input Parameters:
3440: . ts - The TS context obtained from TSCreate()
3442: Notes:
3443: TSPostEvaluate() is typically used within time stepping implementations,
3444: most users would not generally call this routine themselves.
3446: Level: developer
3448: .seealso: TSSetPostEvaluate(), TSSetPreStep(), TSPreStep(), TSPostStep()
3449: @*/
3450: PetscErrorCode TSPostEvaluate(TS ts)
3451: {
3456: if (ts->postevaluate) {
3457: Vec U;
3458: PetscObjectState sprev,spost;
3460: TSGetSolution(ts,&U);
3461: PetscObjectStateGet((PetscObject)U,&sprev);
3462: PetscStackCallStandard((*ts->postevaluate),(ts));
3463: PetscObjectStateGet((PetscObject)U,&spost);
3464: if (sprev != spost) {TSRestartStep(ts);}
3465: }
3466: return(0);
3467: }
3469: /*@C
3470: TSSetPostStep - Sets the general-purpose function
3471: called once at the end of each time step.
3473: Logically Collective on TS
3475: Input Parameters:
3476: + ts - The TS context obtained from TSCreate()
3477: - func - The function
3479: Calling sequence of func:
3480: $ func (TS ts);
3482: Notes:
3483: The function set by TSSetPostStep() is called after each successful step. The solution vector X
3484: obtained by TSGetSolution() may be different than that computed at the step end if the event handler
3485: locates an event and TSPostEvent() modifies it. Use TSSetPostEvaluate() if an unmodified solution is needed instead.
3487: Level: intermediate
3489: .seealso: TSSetPreStep(), TSSetPreStage(), TSSetPostEvaluate(), TSGetTimeStep(), TSGetStepNumber(), TSGetTime(), TSRestartStep()
3490: @*/
3491: PetscErrorCode TSSetPostStep(TS ts, PetscErrorCode (*func)(TS))
3492: {
3495: ts->poststep = func;
3496: return(0);
3497: }
3499: /*@
3500: TSPostStep - Runs the user-defined post-step function.
3502: Collective on TS
3504: Input Parameters:
3505: . ts - The TS context obtained from TSCreate()
3507: Notes:
3508: TSPostStep() is typically used within time stepping implementations,
3509: so most users would not generally call this routine themselves.
3511: Level: developer
3513: @*/
3514: PetscErrorCode TSPostStep(TS ts)
3515: {
3520: if (ts->poststep) {
3521: Vec U;
3522: PetscObjectState sprev,spost;
3524: TSGetSolution(ts,&U);
3525: PetscObjectStateGet((PetscObject)U,&sprev);
3526: PetscStackCallStandard((*ts->poststep),(ts));
3527: PetscObjectStateGet((PetscObject)U,&spost);
3528: if (sprev != spost) {TSRestartStep(ts);}
3529: }
3530: return(0);
3531: }
3533: /* ------------ Routines to set performance monitoring options ----------- */
3535: /*@C
3536: TSMonitorSet - Sets an ADDITIONAL function that is to be used at every
3537: timestep to display the iteration's progress.
3539: Logically Collective on TS
3541: Input Parameters:
3542: + ts - the TS context obtained from TSCreate()
3543: . monitor - monitoring routine
3544: . mctx - [optional] user-defined context for private data for the
3545: monitor routine (use NULL if no context is desired)
3546: - monitordestroy - [optional] routine that frees monitor context
3547: (may be NULL)
3549: Calling sequence of monitor:
3550: $ PetscErrorCode monitor(TS ts,PetscInt steps,PetscReal time,Vec u,void *mctx)
3552: + ts - the TS context
3553: . steps - iteration number (after the final time step the monitor routine may be called with a step of -1, this indicates the solution has been interpolated to this time)
3554: . time - current time
3555: . u - current iterate
3556: - mctx - [optional] monitoring context
3558: Notes:
3559: This routine adds an additional monitor to the list of monitors that
3560: already has been loaded.
3562: Fortran Notes:
3563: Only a single monitor function can be set for each TS object
3565: Level: intermediate
3567: .seealso: TSMonitorDefault(), TSMonitorCancel()
3568: @*/
3569: PetscErrorCode TSMonitorSet(TS ts,PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,void*),void *mctx,PetscErrorCode (*mdestroy)(void**))
3570: {
3572: PetscInt i;
3573: PetscBool identical;
3577: for (i=0; i<ts->numbermonitors;i++) {
3578: PetscMonitorCompare((PetscErrorCode (*)(void))monitor,mctx,mdestroy,(PetscErrorCode (*)(void))ts->monitor[i],ts->monitorcontext[i],ts->monitordestroy[i],&identical);
3579: if (identical) return(0);
3580: }
3581: if (ts->numbermonitors >= MAXTSMONITORS) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many monitors set");
3582: ts->monitor[ts->numbermonitors] = monitor;
3583: ts->monitordestroy[ts->numbermonitors] = mdestroy;
3584: ts->monitorcontext[ts->numbermonitors++] = (void*)mctx;
3585: return(0);
3586: }
3588: /*@C
3589: TSMonitorCancel - Clears all the monitors that have been set on a time-step object.
3591: Logically Collective on TS
3593: Input Parameters:
3594: . ts - the TS context obtained from TSCreate()
3596: Notes:
3597: There is no way to remove a single, specific monitor.
3599: Level: intermediate
3601: .seealso: TSMonitorDefault(), TSMonitorSet()
3602: @*/
3603: PetscErrorCode TSMonitorCancel(TS ts)
3604: {
3606: PetscInt i;
3610: for (i=0; i<ts->numbermonitors; i++) {
3611: if (ts->monitordestroy[i]) {
3612: (*ts->monitordestroy[i])(&ts->monitorcontext[i]);
3613: }
3614: }
3615: ts->numbermonitors = 0;
3616: return(0);
3617: }
3619: /*@C
3620: TSMonitorDefault - The Default monitor, prints the timestep and time for each step
3622: Level: intermediate
3624: .seealso: TSMonitorSet()
3625: @*/
3626: PetscErrorCode TSMonitorDefault(TS ts,PetscInt step,PetscReal ptime,Vec v,PetscViewerAndFormat *vf)
3627: {
3629: PetscViewer viewer = vf->viewer;
3630: PetscBool iascii,ibinary;
3634: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
3635: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&ibinary);
3636: PetscViewerPushFormat(viewer,vf->format);
3637: if (iascii) {
3638: PetscViewerASCIIAddTab(viewer,((PetscObject)ts)->tablevel);
3639: if (step == -1){ /* this indicates it is an interpolated solution */
3640: PetscViewerASCIIPrintf(viewer,"Interpolated solution at time %g between steps %D and %D\n",(double)ptime,ts->steps-1,ts->steps);
3641: } else {
3642: PetscViewerASCIIPrintf(viewer,"%D TS dt %g time %g%s",step,(double)ts->time_step,(double)ptime,ts->steprollback ? " (r)\n" : "\n");
3643: }
3644: PetscViewerASCIISubtractTab(viewer,((PetscObject)ts)->tablevel);
3645: } else if (ibinary) {
3646: PetscMPIInt rank;
3647: MPI_Comm_rank(PetscObjectComm((PetscObject)viewer),&rank);
3648: if (!rank) {
3649: PetscBool skipHeader;
3650: PetscInt classid = REAL_FILE_CLASSID;
3652: PetscViewerBinaryGetSkipHeader(viewer,&skipHeader);
3653: if (!skipHeader) {
3654: PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT);
3655: }
3656: PetscRealView(1,&ptime,viewer);
3657: } else {
3658: PetscRealView(0,&ptime,viewer);
3659: }
3660: }
3661: PetscViewerPopFormat(viewer);
3662: return(0);
3663: }
3665: /*@C
3666: TSMonitorExtreme - Prints the extreme values of the solution at each timestep
3668: Level: intermediate
3670: .seealso: TSMonitorSet()
3671: @*/
3672: PetscErrorCode TSMonitorExtreme(TS ts,PetscInt step,PetscReal ptime,Vec v,PetscViewerAndFormat *vf)
3673: {
3675: PetscViewer viewer = vf->viewer;
3676: PetscBool iascii;
3677: PetscReal max,min;
3682: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
3683: PetscViewerPushFormat(viewer,vf->format);
3684: if (iascii) {
3685: VecMax(v,NULL,&max);
3686: VecMin(v,NULL,&min);
3687: PetscViewerASCIIAddTab(viewer,((PetscObject)ts)->tablevel);
3688: PetscViewerASCIIPrintf(viewer,"%D TS dt %g time %g%s max %g min %g\n",step,(double)ts->time_step,(double)ptime,ts->steprollback ? " (r)" : "",(double)max,(double)min);
3689: PetscViewerASCIISubtractTab(viewer,((PetscObject)ts)->tablevel);
3690: }
3691: PetscViewerPopFormat(viewer);
3692: return(0);
3693: }
3695: /*@
3696: TSInterpolate - Interpolate the solution computed during the previous step to an arbitrary location in the interval
3698: Collective on TS
3700: Input Argument:
3701: + ts - time stepping context
3702: - t - time to interpolate to
3704: Output Argument:
3705: . U - state at given time
3707: Level: intermediate
3709: Developer Notes:
3710: TSInterpolate() and the storing of previous steps/stages should be generalized to support delay differential equations and continuous adjoints.
3712: .seealso: TSSetExactFinalTime(), TSSolve()
3713: @*/
3714: PetscErrorCode TSInterpolate(TS ts,PetscReal t,Vec U)
3715: {
3721: if (t < ts->ptime_prev || t > ts->ptime) SETERRQ3(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Requested time %g not in last time steps [%g,%g]",t,(double)ts->ptime_prev,(double)ts->ptime);
3722: if (!ts->ops->interpolate) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"%s does not provide interpolation",((PetscObject)ts)->type_name);
3723: (*ts->ops->interpolate)(ts,t,U);
3724: return(0);
3725: }
3727: /*@
3728: TSStep - Steps one time step
3730: Collective on TS
3732: Input Parameter:
3733: . ts - the TS context obtained from TSCreate()
3735: Level: developer
3737: Notes:
3738: The public interface for the ODE/DAE solvers is TSSolve(), you should almost for sure be using that routine and not this routine.
3740: The hook set using TSSetPreStep() is called before each attempt to take the step. In general, the time step size may
3741: be changed due to adaptive error controller or solve failures. Note that steps may contain multiple stages.
3743: This may over-step the final time provided in TSSetMaxTime() depending on the time-step used. TSSolve() interpolates to exactly the
3744: time provided in TSSetMaxTime(). One can use TSInterpolate() to determine an interpolated solution within the final timestep.
3746: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSInterpolate()
3747: @*/
3748: PetscErrorCode TSStep(TS ts)
3749: {
3750: PetscErrorCode ierr;
3751: static PetscBool cite = PETSC_FALSE;
3752: PetscReal ptime;
3756: PetscCitationsRegister("@article{tspaper,\n"
3757: " title = {{PETSc/TS}: A Modern Scalable {DAE/ODE} Solver Library},\n"
3758: " author = {Abhyankar, Shrirang and Brown, Jed and Constantinescu, Emil and Ghosh, Debojyoti and Smith, Barry F. and Zhang, Hong},\n"
3759: " journal = {arXiv e-preprints},\n"
3760: " eprint = {1806.01437},\n"
3761: " archivePrefix = {arXiv},\n"
3762: " year = {2018}\n}\n",&cite);
3764: TSSetUp(ts);
3765: TSTrajectorySetUp(ts->trajectory,ts);
3767: if (!ts->ops->step) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSStep not implemented for type '%s'",((PetscObject)ts)->type_name);
3768: if (ts->max_time >= PETSC_MAX_REAL && ts->max_steps == PETSC_MAX_INT) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetMaxTime() or TSSetMaxSteps(), or use -ts_max_time <time> or -ts_max_steps <steps>");
3769: if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetExactFinalTime() or use -ts_exact_final_time <stepover,interpolate,matchstep> before calling TSStep()");
3770: if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP && !ts->adapt) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Since TS is not adaptive you cannot use TS_EXACTFINALTIME_MATCHSTEP, suggest TS_EXACTFINALTIME_INTERPOLATE");
3772: if (!ts->steps) ts->ptime_prev = ts->ptime;
3773: ptime = ts->ptime; ts->ptime_prev_rollback = ts->ptime_prev;
3774: ts->reason = TS_CONVERGED_ITERATING;
3776: PetscLogEventBegin(TS_Step,ts,0,0,0);
3777: (*ts->ops->step)(ts);
3778: PetscLogEventEnd(TS_Step,ts,0,0,0);
3780: if (ts->reason >= 0) {
3781: ts->ptime_prev = ptime;
3782: ts->steps++;
3783: ts->steprollback = PETSC_FALSE;
3784: ts->steprestart = PETSC_FALSE;
3785: }
3787: if (!ts->reason) {
3788: if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
3789: else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
3790: }
3792: if (ts->reason < 0 && ts->errorifstepfailed && ts->reason == TS_DIVERGED_NONLINEAR_SOLVE) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s, increase -ts_max_snes_failures or make negative to attempt recovery",TSConvergedReasons[ts->reason]);
3793: if (ts->reason < 0 && ts->errorifstepfailed) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s",TSConvergedReasons[ts->reason]);
3794: return(0);
3795: }
3797: /*@
3798: TSEvaluateWLTE - Evaluate the weighted local truncation error norm
3799: at the end of a time step with a given order of accuracy.
3801: Collective on TS
3803: Input Arguments:
3804: + ts - time stepping context
3805: . wnormtype - norm type, either NORM_2 or NORM_INFINITY
3806: - order - optional, desired order for the error evaluation or PETSC_DECIDE
3808: Output Arguments:
3809: + order - optional, the actual order of the error evaluation
3810: - wlte - the weighted local truncation error norm
3812: Level: advanced
3814: Notes:
3815: If the timestepper cannot evaluate the error in a particular step
3816: (eg. in the first step or restart steps after event handling),
3817: this routine returns wlte=-1.0 .
3819: .seealso: TSStep(), TSAdapt, TSErrorWeightedNorm()
3820: @*/
3821: PetscErrorCode TSEvaluateWLTE(TS ts,NormType wnormtype,PetscInt *order,PetscReal *wlte)
3822: {
3832: if (wnormtype != NORM_2 && wnormtype != NORM_INFINITY) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
3833: if (!ts->ops->evaluatewlte) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSEvaluateWLTE not implemented for type '%s'",((PetscObject)ts)->type_name);
3834: (*ts->ops->evaluatewlte)(ts,wnormtype,order,wlte);
3835: return(0);
3836: }
3838: /*@
3839: TSEvaluateStep - Evaluate the solution at the end of a time step with a given order of accuracy.
3841: Collective on TS
3843: Input Arguments:
3844: + ts - time stepping context
3845: . order - desired order of accuracy
3846: - done - whether the step was evaluated at this order (pass NULL to generate an error if not available)
3848: Output Arguments:
3849: . U - state at the end of the current step
3851: Level: advanced
3853: Notes:
3854: This function cannot be called until all stages have been evaluated.
3855: It is normally called by adaptive controllers before a step has been accepted and may also be called by the user after TSStep() has returned.
3857: .seealso: TSStep(), TSAdapt
3858: @*/
3859: PetscErrorCode TSEvaluateStep(TS ts,PetscInt order,Vec U,PetscBool *done)
3860: {
3867: if (!ts->ops->evaluatestep) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSEvaluateStep not implemented for type '%s'",((PetscObject)ts)->type_name);
3868: (*ts->ops->evaluatestep)(ts,order,U,done);
3869: return(0);
3870: }
3872: /*@C
3873: TSGetComputeInitialCondition - Get the function used to automatically compute an initial condition for the timestepping.
3875: Not collective
3877: Input Argument:
3878: . ts - time stepping context
3880: Output Argument:
3881: . initConditions - The function which computes an initial condition
3883: Level: advanced
3885: Notes:
3886: The calling sequence for the function is
3887: $ initCondition(TS ts, Vec u)
3888: $ ts - The timestepping context
3889: $ u - The input vector in which the initial condition is stored
3891: .seealso: TSSetComputeInitialCondition(), TSComputeInitialCondition()
3892: @*/
3893: PetscErrorCode TSGetComputeInitialCondition(TS ts, PetscErrorCode (**initCondition)(TS, Vec))
3894: {
3898: *initCondition = ts->ops->initcondition;
3899: return(0);
3900: }
3902: /*@C
3903: TSSetComputeInitialCondition - Set the function used to automatically compute an initial condition for the timestepping.
3905: Logically collective on ts
3907: Input Arguments:
3908: + ts - time stepping context
3909: - initCondition - The function which computes an initial condition
3911: Level: advanced
3913: Calling sequence for initCondition:
3914: $ PetscErrorCode initCondition(TS ts, Vec u)
3916: + ts - The timestepping context
3917: - u - The input vector in which the initial condition is to be stored
3919: .seealso: TSGetComputeInitialCondition(), TSComputeInitialCondition()
3920: @*/
3921: PetscErrorCode TSSetComputeInitialCondition(TS ts, PetscErrorCode (*initCondition)(TS, Vec))
3922: {
3926: ts->ops->initcondition = initCondition;
3927: return(0);
3928: }
3930: /*@
3931: TSComputeInitialCondition - Compute an initial condition for the timestepping using the function previously set.
3933: Collective on ts
3935: Input Arguments:
3936: + ts - time stepping context
3937: - u - The Vec to store the condition in which will be used in TSSolve()
3939: Level: advanced
3941: .seealso: TSGetComputeInitialCondition(), TSSetComputeInitialCondition(), TSSolve()
3942: @*/
3943: PetscErrorCode TSComputeInitialCondition(TS ts, Vec u)
3944: {
3950: if (ts->ops->initcondition) {(*ts->ops->initcondition)(ts, u);}
3951: return(0);
3952: }
3954: /*@C
3955: TSGetComputeExactError - Get the function used to automatically compute the exact error for the timestepping.
3957: Not collective
3959: Input Argument:
3960: . ts - time stepping context
3962: Output Argument:
3963: . exactError - The function which computes the solution error
3965: Level: advanced
3967: Calling sequence for exactError:
3968: $ PetscErrorCode exactError(TS ts, Vec u)
3970: + ts - The timestepping context
3971: . u - The approximate solution vector
3972: - e - The input vector in which the error is stored
3974: .seealso: TSGetComputeExactError(), TSComputeExactError()
3975: @*/
3976: PetscErrorCode TSGetComputeExactError(TS ts, PetscErrorCode (**exactError)(TS, Vec, Vec))
3977: {
3981: *exactError = ts->ops->exacterror;
3982: return(0);
3983: }
3985: /*@C
3986: TSSetComputeExactError - Set the function used to automatically compute the exact error for the timestepping.
3988: Logically collective on ts
3990: Input Arguments:
3991: + ts - time stepping context
3992: - exactError - The function which computes the solution error
3994: Level: advanced
3996: Calling sequence for exactError:
3997: $ PetscErrorCode exactError(TS ts, Vec u)
3999: + ts - The timestepping context
4000: . u - The approximate solution vector
4001: - e - The input vector in which the error is stored
4003: .seealso: TSGetComputeExactError(), TSComputeExactError()
4004: @*/
4005: PetscErrorCode TSSetComputeExactError(TS ts, PetscErrorCode (*exactError)(TS, Vec, Vec))
4006: {
4010: ts->ops->exacterror = exactError;
4011: return(0);
4012: }
4014: /*@
4015: TSComputeExactError - Compute the solution error for the timestepping using the function previously set.
4017: Collective on ts
4019: Input Arguments:
4020: + ts - time stepping context
4021: . u - The approximate solution
4022: - e - The Vec used to store the error
4024: Level: advanced
4026: .seealso: TSGetComputeInitialCondition(), TSSetComputeInitialCondition(), TSSolve()
4027: @*/
4028: PetscErrorCode TSComputeExactError(TS ts, Vec u, Vec e)
4029: {
4036: if (ts->ops->exacterror) {(*ts->ops->exacterror)(ts, u, e);}
4037: return(0);
4038: }
4040: /*@
4041: TSSolve - Steps the requested number of timesteps.
4043: Collective on TS
4045: Input Parameter:
4046: + ts - the TS context obtained from TSCreate()
4047: - u - the solution vector (can be null if TSSetSolution() was used and TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP) was not used,
4048: otherwise must contain the initial conditions and will contain the solution at the final requested time
4050: Level: beginner
4052: Notes:
4053: The final time returned by this function may be different from the time of the internally
4054: held state accessible by TSGetSolution() and TSGetTime() because the method may have
4055: stepped over the final time.
4057: .seealso: TSCreate(), TSSetSolution(), TSStep(), TSGetTime(), TSGetSolveTime()
4058: @*/
4059: PetscErrorCode TSSolve(TS ts,Vec u)
4060: {
4061: Vec solution;
4062: PetscErrorCode ierr;
4068: TSSetExactFinalTimeDefault(ts);
4069: if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && u) { /* Need ts->vec_sol to be distinct so it is not overwritten when we interpolate at the end */
4070: if (!ts->vec_sol || u == ts->vec_sol) {
4071: VecDuplicate(u,&solution);
4072: TSSetSolution(ts,solution);
4073: VecDestroy(&solution); /* grant ownership */
4074: }
4075: VecCopy(u,ts->vec_sol);
4076: if (ts->forward_solve) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Sensitivity analysis does not support the mode TS_EXACTFINALTIME_INTERPOLATE");
4077: } else if (u) {
4078: TSSetSolution(ts,u);
4079: }
4080: TSSetUp(ts);
4081: TSTrajectorySetUp(ts->trajectory,ts);
4083: if (ts->max_time >= PETSC_MAX_REAL && ts->max_steps == PETSC_MAX_INT) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetMaxTime() or TSSetMaxSteps(), or use -ts_max_time <time> or -ts_max_steps <steps>");
4084: if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetExactFinalTime() or use -ts_exact_final_time <stepover,interpolate,matchstep> before calling TSSolve()");
4085: if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP && !ts->adapt) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Since TS is not adaptive you cannot use TS_EXACTFINALTIME_MATCHSTEP, suggest TS_EXACTFINALTIME_INTERPOLATE");
4087: if (ts->forward_solve) {
4088: TSForwardSetUp(ts);
4089: }
4091: /* reset number of steps only when the step is not restarted. ARKIMEX
4092: restarts the step after an event. Resetting these counters in such case causes
4093: TSTrajectory to incorrectly save the output files
4094: */
4095: /* reset time step and iteration counters */
4096: if (!ts->steps) {
4097: ts->ksp_its = 0;
4098: ts->snes_its = 0;
4099: ts->num_snes_failures = 0;
4100: ts->reject = 0;
4101: ts->steprestart = PETSC_TRUE;
4102: ts->steprollback = PETSC_FALSE;
4103: ts->rhsjacobian.time = PETSC_MIN_REAL;
4104: }
4106: /* make sure initial time step does not overshoot final time */
4107: if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP) {
4108: PetscReal maxdt = ts->max_time-ts->ptime;
4109: PetscReal dt = ts->time_step;
4111: ts->time_step = dt >= maxdt ? maxdt : (PetscIsCloseAtTol(dt,maxdt,10*PETSC_MACHINE_EPSILON,0) ? maxdt : dt);
4112: }
4113: ts->reason = TS_CONVERGED_ITERATING;
4115: {
4116: PetscViewer viewer;
4117: PetscViewerFormat format;
4118: PetscBool flg;
4119: static PetscBool incall = PETSC_FALSE;
4121: if (!incall) {
4122: /* Estimate the convergence rate of the time discretization */
4123: PetscOptionsGetViewer(PetscObjectComm((PetscObject) ts),((PetscObject)ts)->options, ((PetscObject) ts)->prefix, "-ts_convergence_estimate", &viewer, &format, &flg);
4124: if (flg) {
4125: PetscConvEst conv;
4126: DM dm;
4127: PetscReal *alpha; /* Convergence rate of the solution error for each field in the L_2 norm */
4128: PetscInt Nf;
4129: PetscBool checkTemporal = PETSC_TRUE;
4131: incall = PETSC_TRUE;
4132: PetscOptionsGetBool(((PetscObject)ts)->options, ((PetscObject) ts)->prefix, "-ts_convergence_temporal", &checkTemporal, &flg);
4133: TSGetDM(ts, &dm);
4134: DMGetNumFields(dm, &Nf);
4135: PetscCalloc1(PetscMax(Nf, 1), &alpha);
4136: PetscConvEstCreate(PetscObjectComm((PetscObject) ts), &conv);
4137: PetscConvEstUseTS(conv, checkTemporal);
4138: PetscConvEstSetSolver(conv, (PetscObject) ts);
4139: PetscConvEstSetFromOptions(conv);
4140: PetscConvEstSetUp(conv);
4141: PetscConvEstGetConvRate(conv, alpha);
4142: PetscViewerPushFormat(viewer, format);
4143: PetscConvEstRateView(conv, alpha, viewer);
4144: PetscViewerPopFormat(viewer);
4145: PetscViewerDestroy(&viewer);
4146: PetscConvEstDestroy(&conv);
4147: PetscFree(alpha);
4148: incall = PETSC_FALSE;
4149: }
4150: }
4151: }
4153: TSViewFromOptions(ts,NULL,"-ts_view_pre");
4155: if (ts->ops->solve) { /* This private interface is transitional and should be removed when all implementations are updated. */
4156: (*ts->ops->solve)(ts);
4157: if (u) {VecCopy(ts->vec_sol,u);}
4158: ts->solvetime = ts->ptime;
4159: solution = ts->vec_sol;
4160: } else { /* Step the requested number of timesteps. */
4161: if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
4162: else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
4164: if (!ts->steps) {
4165: TSTrajectorySet(ts->trajectory,ts,ts->steps,ts->ptime,ts->vec_sol);
4166: TSEventInitialize(ts->event,ts,ts->ptime,ts->vec_sol);
4167: }
4169: while (!ts->reason) {
4170: TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);
4171: if (!ts->steprollback) {
4172: TSPreStep(ts);
4173: }
4174: TSStep(ts);
4175: if (ts->testjacobian) {
4176: TSRHSJacobianTest(ts,NULL);
4177: }
4178: if (ts->testjacobiantranspose) {
4179: TSRHSJacobianTestTranspose(ts,NULL);
4180: }
4181: if (ts->quadraturets && ts->costintegralfwd) { /* Must evaluate the cost integral before event is handled. The cost integral value can also be rolled back. */
4182: if (ts->reason >= 0) ts->steps--; /* Revert the step number changed by TSStep() */
4183: TSForwardCostIntegral(ts);
4184: if (ts->reason >= 0) ts->steps++;
4185: }
4186: if (ts->forward_solve) { /* compute forward sensitivities before event handling because postevent() may change RHS and jump conditions may have to be applied */
4187: if (ts->reason >= 0) ts->steps--; /* Revert the step number changed by TSStep() */
4188: TSForwardStep(ts);
4189: if (ts->reason >= 0) ts->steps++;
4190: }
4191: TSPostEvaluate(ts);
4192: TSEventHandler(ts); /* The right-hand side may be changed due to event. Be careful with Any computation using the RHS information after this point. */
4193: if (ts->steprollback) {
4194: TSPostEvaluate(ts);
4195: }
4196: if (!ts->steprollback) {
4197: TSTrajectorySet(ts->trajectory,ts,ts->steps,ts->ptime,ts->vec_sol);
4198: TSPostStep(ts);
4199: }
4200: }
4201: TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);
4203: if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && ts->ptime > ts->max_time) {
4204: TSInterpolate(ts,ts->max_time,u);
4205: ts->solvetime = ts->max_time;
4206: solution = u;
4207: TSMonitor(ts,-1,ts->solvetime,solution);
4208: } else {
4209: if (u) {VecCopy(ts->vec_sol,u);}
4210: ts->solvetime = ts->ptime;
4211: solution = ts->vec_sol;
4212: }
4213: }
4215: TSViewFromOptions(ts,NULL,"-ts_view");
4216: VecViewFromOptions(solution,(PetscObject)ts,"-ts_view_solution");
4217: PetscObjectSAWsBlock((PetscObject)ts);
4218: if (ts->adjoint_solve) {
4219: TSAdjointSolve(ts);
4220: }
4221: return(0);
4222: }
4224: /*@C
4225: TSMonitor - Runs all user-provided monitor routines set using TSMonitorSet()
4227: Collective on TS
4229: Input Parameters:
4230: + ts - time stepping context obtained from TSCreate()
4231: . step - step number that has just completed
4232: . ptime - model time of the state
4233: - u - state at the current model time
4235: Notes:
4236: TSMonitor() is typically used automatically within the time stepping implementations.
4237: Users would almost never call this routine directly.
4239: A step of -1 indicates that the monitor is being called on a solution obtained by interpolating from computed solutions
4241: Level: developer
4243: @*/
4244: PetscErrorCode TSMonitor(TS ts,PetscInt step,PetscReal ptime,Vec u)
4245: {
4246: DM dm;
4247: PetscInt i,n = ts->numbermonitors;
4254: TSGetDM(ts,&dm);
4255: DMSetOutputSequenceNumber(dm,step,ptime);
4257: VecLockReadPush(u);
4258: for (i=0; i<n; i++) {
4259: (*ts->monitor[i])(ts,step,ptime,u,ts->monitorcontext[i]);
4260: }
4261: VecLockReadPop(u);
4262: return(0);
4263: }
4265: /* ------------------------------------------------------------------------*/
4266: /*@C
4267: TSMonitorLGCtxCreate - Creates a TSMonitorLGCtx context for use with
4268: TS to monitor the solution process graphically in various ways
4270: Collective on TS
4272: Input Parameters:
4273: + host - the X display to open, or null for the local machine
4274: . label - the title to put in the title bar
4275: . x, y - the screen coordinates of the upper left coordinate of the window
4276: . m, n - the screen width and height in pixels
4277: - howoften - if positive then determines the frequency of the plotting, if -1 then only at the final time
4279: Output Parameter:
4280: . ctx - the context
4282: Options Database Key:
4283: + -ts_monitor_lg_timestep - automatically sets line graph monitor
4284: + -ts_monitor_lg_timestep_log - automatically sets line graph monitor
4285: . -ts_monitor_lg_solution - monitor the solution (or certain values of the solution by calling TSMonitorLGSetDisplayVariables() or TSMonitorLGCtxSetDisplayVariables())
4286: . -ts_monitor_lg_error - monitor the error
4287: . -ts_monitor_lg_ksp_iterations - monitor the number of KSP iterations needed for each timestep
4288: . -ts_monitor_lg_snes_iterations - monitor the number of SNES iterations needed for each timestep
4289: - -lg_use_markers <true,false> - mark the data points (at each time step) on the plot; default is true
4291: Notes:
4292: Use TSMonitorLGCtxDestroy() to destroy.
4294: One can provide a function that transforms the solution before plotting it with TSMonitorLGCtxSetTransform() or TSMonitorLGSetTransform()
4296: Many of the functions that control the monitoring have two forms: TSMonitorLGSet/GetXXXX() and TSMonitorLGCtxSet/GetXXXX() the first take a TS object as the
4297: first argument (if that TS object does not have a TSMonitorLGCtx associated with it the function call is ignored) and the second takes a TSMonitorLGCtx object
4298: as the first argument.
4300: One can control the names displayed for each solution or error variable with TSMonitorLGCtxSetVariableNames() or TSMonitorLGSetVariableNames()
4302: Level: intermediate
4304: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError(), TSMonitorDefault(), VecView(),
4305: TSMonitorLGCtxCreate(), TSMonitorLGCtxSetVariableNames(), TSMonitorLGCtxGetVariableNames(),
4306: TSMonitorLGSetVariableNames(), TSMonitorLGGetVariableNames(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetDisplayVariables(),
4307: TSMonitorLGCtxSetTransform(), TSMonitorLGSetTransform(), TSMonitorLGError(), TSMonitorLGSNESIterations(), TSMonitorLGKSPIterations(),
4308: TSMonitorEnvelopeCtxCreate(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxDestroy(), TSMonitorEnvelop()
4310: @*/
4311: PetscErrorCode TSMonitorLGCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorLGCtx *ctx)
4312: {
4313: PetscDraw draw;
4317: PetscNew(ctx);
4318: PetscDrawCreate(comm,host,label,x,y,m,n,&draw);
4319: PetscDrawSetFromOptions(draw);
4320: PetscDrawLGCreate(draw,1,&(*ctx)->lg);
4321: PetscDrawLGSetFromOptions((*ctx)->lg);
4322: PetscDrawDestroy(&draw);
4323: (*ctx)->howoften = howoften;
4324: return(0);
4325: }
4327: PetscErrorCode TSMonitorLGTimeStep(TS ts,PetscInt step,PetscReal ptime,Vec v,void *monctx)
4328: {
4329: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
4330: PetscReal x = ptime,y;
4334: if (step < 0) return(0); /* -1 indicates an interpolated solution */
4335: if (!step) {
4336: PetscDrawAxis axis;
4337: const char *ylabel = ctx->semilogy ? "Log Time Step" : "Time Step";
4338: PetscDrawLGGetAxis(ctx->lg,&axis);
4339: PetscDrawAxisSetLabels(axis,"Timestep as function of time","Time",ylabel);
4340: PetscDrawLGReset(ctx->lg);
4341: }
4342: TSGetTimeStep(ts,&y);
4343: if (ctx->semilogy) y = PetscLog10Real(y);
4344: PetscDrawLGAddPoint(ctx->lg,&x,&y);
4345: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
4346: PetscDrawLGDraw(ctx->lg);
4347: PetscDrawLGSave(ctx->lg);
4348: }
4349: return(0);
4350: }
4352: /*@C
4353: TSMonitorLGCtxDestroy - Destroys a line graph context that was created
4354: with TSMonitorLGCtxCreate().
4356: Collective on TSMonitorLGCtx
4358: Input Parameter:
4359: . ctx - the monitor context
4361: Level: intermediate
4363: .seealso: TSMonitorLGCtxCreate(), TSMonitorSet(), TSMonitorLGTimeStep();
4364: @*/
4365: PetscErrorCode TSMonitorLGCtxDestroy(TSMonitorLGCtx *ctx)
4366: {
4370: if ((*ctx)->transformdestroy) {
4371: ((*ctx)->transformdestroy)((*ctx)->transformctx);
4372: }
4373: PetscDrawLGDestroy(&(*ctx)->lg);
4374: PetscStrArrayDestroy(&(*ctx)->names);
4375: PetscStrArrayDestroy(&(*ctx)->displaynames);
4376: PetscFree((*ctx)->displayvariables);
4377: PetscFree((*ctx)->displayvalues);
4378: PetscFree(*ctx);
4379: return(0);
4380: }
4382: /*
4384: Creates a TS Monitor SPCtx for use with DM Swarm particle visualizations
4386: */
4387: PetscErrorCode TSMonitorSPCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorSPCtx *ctx)
4388: {
4389: PetscDraw draw;
4393: PetscNew(ctx);
4394: PetscDrawCreate(comm,host,label,x,y,m,n,&draw);
4395: PetscDrawSetFromOptions(draw);
4396: PetscDrawSPCreate(draw,1,&(*ctx)->sp);
4397: PetscDrawDestroy(&draw);
4398: (*ctx)->howoften = howoften;
4399: return(0);
4401: }
4403: /*
4404: Destroys a TSMonitorSPCtx that was created with TSMonitorSPCtxCreate
4405: */
4406: PetscErrorCode TSMonitorSPCtxDestroy(TSMonitorSPCtx *ctx)
4407: {
4412: PetscDrawSPDestroy(&(*ctx)->sp);
4413: PetscFree(*ctx);
4415: return(0);
4417: }
4419: /*@
4420: TSGetTime - Gets the time of the most recently completed step.
4422: Not Collective
4424: Input Parameter:
4425: . ts - the TS context obtained from TSCreate()
4427: Output Parameter:
4428: . t - the current time. This time may not corresponds to the final time set with TSSetMaxTime(), use TSGetSolveTime().
4430: Level: beginner
4432: Note:
4433: When called during time step evaluation (e.g. during residual evaluation or via hooks set using TSSetPreStep(),
4434: TSSetPreStage(), TSSetPostStage(), or TSSetPostStep()), the time is the time at the start of the step being evaluated.
4436: .seealso: TSGetSolveTime(), TSSetTime(), TSGetTimeStep(), TSGetStepNumber()
4438: @*/
4439: PetscErrorCode TSGetTime(TS ts,PetscReal *t)
4440: {
4444: *t = ts->ptime;
4445: return(0);
4446: }
4448: /*@
4449: TSGetPrevTime - Gets the starting time of the previously completed step.
4451: Not Collective
4453: Input Parameter:
4454: . ts - the TS context obtained from TSCreate()
4456: Output Parameter:
4457: . t - the previous time
4459: Level: beginner
4461: .seealso: TSGetTime(), TSGetSolveTime(), TSGetTimeStep()
4463: @*/
4464: PetscErrorCode TSGetPrevTime(TS ts,PetscReal *t)
4465: {
4469: *t = ts->ptime_prev;
4470: return(0);
4471: }
4473: /*@
4474: TSSetTime - Allows one to reset the time.
4476: Logically Collective on TS
4478: Input Parameters:
4479: + ts - the TS context obtained from TSCreate()
4480: - time - the time
4482: Level: intermediate
4484: .seealso: TSGetTime(), TSSetMaxSteps()
4486: @*/
4487: PetscErrorCode TSSetTime(TS ts, PetscReal t)
4488: {
4492: ts->ptime = t;
4493: return(0);
4494: }
4496: /*@C
4497: TSSetOptionsPrefix - Sets the prefix used for searching for all
4498: TS options in the database.
4500: Logically Collective on TS
4502: Input Parameter:
4503: + ts - The TS context
4504: - prefix - The prefix to prepend to all option names
4506: Notes:
4507: A hyphen (-) must NOT be given at the beginning of the prefix name.
4508: The first character of all runtime options is AUTOMATICALLY the
4509: hyphen.
4511: Level: advanced
4513: .seealso: TSSetFromOptions()
4515: @*/
4516: PetscErrorCode TSSetOptionsPrefix(TS ts,const char prefix[])
4517: {
4519: SNES snes;
4523: PetscObjectSetOptionsPrefix((PetscObject)ts,prefix);
4524: TSGetSNES(ts,&snes);
4525: SNESSetOptionsPrefix(snes,prefix);
4526: return(0);
4527: }
4529: /*@C
4530: TSAppendOptionsPrefix - Appends to the prefix used for searching for all
4531: TS options in the database.
4533: Logically Collective on TS
4535: Input Parameter:
4536: + ts - The TS context
4537: - prefix - The prefix to prepend to all option names
4539: Notes:
4540: A hyphen (-) must NOT be given at the beginning of the prefix name.
4541: The first character of all runtime options is AUTOMATICALLY the
4542: hyphen.
4544: Level: advanced
4546: .seealso: TSGetOptionsPrefix()
4548: @*/
4549: PetscErrorCode TSAppendOptionsPrefix(TS ts,const char prefix[])
4550: {
4552: SNES snes;
4556: PetscObjectAppendOptionsPrefix((PetscObject)ts,prefix);
4557: TSGetSNES(ts,&snes);
4558: SNESAppendOptionsPrefix(snes,prefix);
4559: return(0);
4560: }
4562: /*@C
4563: TSGetOptionsPrefix - Sets the prefix used for searching for all
4564: TS options in the database.
4566: Not Collective
4568: Input Parameter:
4569: . ts - The TS context
4571: Output Parameter:
4572: . prefix - A pointer to the prefix string used
4574: Notes:
4575: On the fortran side, the user should pass in a string 'prifix' of
4576: sufficient length to hold the prefix.
4578: Level: intermediate
4580: .seealso: TSAppendOptionsPrefix()
4581: @*/
4582: PetscErrorCode TSGetOptionsPrefix(TS ts,const char *prefix[])
4583: {
4589: PetscObjectGetOptionsPrefix((PetscObject)ts,prefix);
4590: return(0);
4591: }
4593: /*@C
4594: TSGetRHSJacobian - Returns the Jacobian J at the present timestep.
4596: Not Collective, but parallel objects are returned if TS is parallel
4598: Input Parameter:
4599: . ts - The TS context obtained from TSCreate()
4601: Output Parameters:
4602: + Amat - The (approximate) Jacobian J of G, where U_t = G(U,t) (or NULL)
4603: . Pmat - The matrix from which the preconditioner is constructed, usually the same as Amat (or NULL)
4604: . func - Function to compute the Jacobian of the RHS (or NULL)
4605: - ctx - User-defined context for Jacobian evaluation routine (or NULL)
4607: Notes:
4608: You can pass in NULL for any return argument you do not need.
4610: Level: intermediate
4612: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetStepNumber()
4614: @*/
4615: PetscErrorCode TSGetRHSJacobian(TS ts,Mat *Amat,Mat *Pmat,TSRHSJacobian *func,void **ctx)
4616: {
4618: DM dm;
4621: if (Amat || Pmat) {
4622: SNES snes;
4623: TSGetSNES(ts,&snes);
4624: SNESSetUpMatrices(snes);
4625: SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
4626: }
4627: TSGetDM(ts,&dm);
4628: DMTSGetRHSJacobian(dm,func,ctx);
4629: return(0);
4630: }
4632: /*@C
4633: TSGetIJacobian - Returns the implicit Jacobian at the present timestep.
4635: Not Collective, but parallel objects are returned if TS is parallel
4637: Input Parameter:
4638: . ts - The TS context obtained from TSCreate()
4640: Output Parameters:
4641: + Amat - The (approximate) Jacobian of F(t,U,U_t)
4642: . Pmat - The matrix from which the preconditioner is constructed, often the same as Amat
4643: . f - The function to compute the matrices
4644: - ctx - User-defined context for Jacobian evaluation routine
4646: Notes:
4647: You can pass in NULL for any return argument you do not need.
4649: Level: advanced
4651: .seealso: TSGetTimeStep(), TSGetRHSJacobian(), TSGetMatrices(), TSGetTime(), TSGetStepNumber()
4653: @*/
4654: PetscErrorCode TSGetIJacobian(TS ts,Mat *Amat,Mat *Pmat,TSIJacobian *f,void **ctx)
4655: {
4657: DM dm;
4660: if (Amat || Pmat) {
4661: SNES snes;
4662: TSGetSNES(ts,&snes);
4663: SNESSetUpMatrices(snes);
4664: SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
4665: }
4666: TSGetDM(ts,&dm);
4667: DMTSGetIJacobian(dm,f,ctx);
4668: return(0);
4669: }
4671: /*@C
4672: TSMonitorDrawSolution - Monitors progress of the TS solvers by calling
4673: VecView() for the solution at each timestep
4675: Collective on TS
4677: Input Parameters:
4678: + ts - the TS context
4679: . step - current time-step
4680: . ptime - current time
4681: - dummy - either a viewer or NULL
4683: Options Database:
4684: . -ts_monitor_draw_solution_initial - show initial solution as well as current solution
4686: Notes:
4687: the initial solution and current solution are not display with a common axis scaling so generally the option -ts_monitor_draw_solution_initial
4688: will look bad
4690: Level: intermediate
4692: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4693: @*/
4694: PetscErrorCode TSMonitorDrawSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4695: {
4696: PetscErrorCode ierr;
4697: TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
4698: PetscDraw draw;
4701: if (!step && ictx->showinitial) {
4702: if (!ictx->initialsolution) {
4703: VecDuplicate(u,&ictx->initialsolution);
4704: }
4705: VecCopy(u,ictx->initialsolution);
4706: }
4707: if (!(((ictx->howoften > 0) && (!(step % ictx->howoften))) || ((ictx->howoften == -1) && ts->reason))) return(0);
4709: if (ictx->showinitial) {
4710: PetscReal pause;
4711: PetscViewerDrawGetPause(ictx->viewer,&pause);
4712: PetscViewerDrawSetPause(ictx->viewer,0.0);
4713: VecView(ictx->initialsolution,ictx->viewer);
4714: PetscViewerDrawSetPause(ictx->viewer,pause);
4715: PetscViewerDrawSetHold(ictx->viewer,PETSC_TRUE);
4716: }
4717: VecView(u,ictx->viewer);
4718: if (ictx->showtimestepandtime) {
4719: PetscReal xl,yl,xr,yr,h;
4720: char time[32];
4722: PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
4723: PetscSNPrintf(time,32,"Timestep %d Time %g",(int)step,(double)ptime);
4724: PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
4725: h = yl + .95*(yr - yl);
4726: PetscDrawStringCentered(draw,.5*(xl+xr),h,PETSC_DRAW_BLACK,time);
4727: PetscDrawFlush(draw);
4728: }
4730: if (ictx->showinitial) {
4731: PetscViewerDrawSetHold(ictx->viewer,PETSC_FALSE);
4732: }
4733: return(0);
4734: }
4736: /*@C
4737: TSMonitorDrawSolutionPhase - Monitors progress of the TS solvers by plotting the solution as a phase diagram
4739: Collective on TS
4741: Input Parameters:
4742: + ts - the TS context
4743: . step - current time-step
4744: . ptime - current time
4745: - dummy - either a viewer or NULL
4747: Level: intermediate
4749: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4750: @*/
4751: PetscErrorCode TSMonitorDrawSolutionPhase(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4752: {
4753: PetscErrorCode ierr;
4754: TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
4755: PetscDraw draw;
4756: PetscDrawAxis axis;
4757: PetscInt n;
4758: PetscMPIInt size;
4759: PetscReal U0,U1,xl,yl,xr,yr,h;
4760: char time[32];
4761: const PetscScalar *U;
4764: MPI_Comm_size(PetscObjectComm((PetscObject)ts),&size);
4765: if (size != 1) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Only allowed for sequential runs");
4766: VecGetSize(u,&n);
4767: if (n != 2) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Only for ODEs with two unknowns");
4769: PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
4770: PetscViewerDrawGetDrawAxis(ictx->viewer,0,&axis);
4771: PetscDrawAxisGetLimits(axis,&xl,&xr,&yl,&yr);
4772: if (!step) {
4773: PetscDrawClear(draw);
4774: PetscDrawAxisDraw(axis);
4775: }
4777: VecGetArrayRead(u,&U);
4778: U0 = PetscRealPart(U[0]);
4779: U1 = PetscRealPart(U[1]);
4780: VecRestoreArrayRead(u,&U);
4781: if ((U0 < xl) || (U1 < yl) || (U0 > xr) || (U1 > yr)) return(0);
4783: PetscDrawCollectiveBegin(draw);
4784: PetscDrawPoint(draw,U0,U1,PETSC_DRAW_BLACK);
4785: if (ictx->showtimestepandtime) {
4786: PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
4787: PetscSNPrintf(time,32,"Timestep %d Time %g",(int)step,(double)ptime);
4788: h = yl + .95*(yr - yl);
4789: PetscDrawStringCentered(draw,.5*(xl+xr),h,PETSC_DRAW_BLACK,time);
4790: }
4791: PetscDrawCollectiveEnd(draw);
4792: PetscDrawFlush(draw);
4793: PetscDrawPause(draw);
4794: PetscDrawSave(draw);
4795: return(0);
4796: }
4798: /*@C
4799: TSMonitorDrawCtxDestroy - Destroys the monitor context for TSMonitorDrawSolution()
4801: Collective on TS
4803: Input Parameters:
4804: . ctx - the monitor context
4806: Level: intermediate
4808: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawSolution(), TSMonitorDrawError()
4809: @*/
4810: PetscErrorCode TSMonitorDrawCtxDestroy(TSMonitorDrawCtx *ictx)
4811: {
4815: PetscViewerDestroy(&(*ictx)->viewer);
4816: VecDestroy(&(*ictx)->initialsolution);
4817: PetscFree(*ictx);
4818: return(0);
4819: }
4821: /*@C
4822: TSMonitorDrawCtxCreate - Creates the monitor context for TSMonitorDrawCtx
4824: Collective on TS
4826: Input Parameter:
4827: . ts - time-step context
4829: Output Patameter:
4830: . ctx - the monitor context
4832: Options Database:
4833: . -ts_monitor_draw_solution_initial - show initial solution as well as current solution
4835: Level: intermediate
4837: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawCtx()
4838: @*/
4839: PetscErrorCode TSMonitorDrawCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorDrawCtx *ctx)
4840: {
4841: PetscErrorCode ierr;
4844: PetscNew(ctx);
4845: PetscViewerDrawOpen(comm,host,label,x,y,m,n,&(*ctx)->viewer);
4846: PetscViewerSetFromOptions((*ctx)->viewer);
4848: (*ctx)->howoften = howoften;
4849: (*ctx)->showinitial = PETSC_FALSE;
4850: PetscOptionsGetBool(NULL,NULL,"-ts_monitor_draw_solution_initial",&(*ctx)->showinitial,NULL);
4852: (*ctx)->showtimestepandtime = PETSC_FALSE;
4853: PetscOptionsGetBool(NULL,NULL,"-ts_monitor_draw_solution_show_time",&(*ctx)->showtimestepandtime,NULL);
4854: return(0);
4855: }
4857: /*@C
4858: TSMonitorDrawSolutionFunction - Monitors progress of the TS solvers by calling
4859: VecView() for the solution provided by TSSetSolutionFunction() at each timestep
4861: Collective on TS
4863: Input Parameters:
4864: + ts - the TS context
4865: . step - current time-step
4866: . ptime - current time
4867: - dummy - either a viewer or NULL
4869: Options Database:
4870: . -ts_monitor_draw_solution_function - Monitor error graphically, requires user to have provided TSSetSolutionFunction()
4872: Level: intermediate
4874: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
4875: @*/
4876: PetscErrorCode TSMonitorDrawSolutionFunction(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4877: {
4878: PetscErrorCode ierr;
4879: TSMonitorDrawCtx ctx = (TSMonitorDrawCtx)dummy;
4880: PetscViewer viewer = ctx->viewer;
4881: Vec work;
4884: if (!(((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason))) return(0);
4885: VecDuplicate(u,&work);
4886: TSComputeSolutionFunction(ts,ptime,work);
4887: VecView(work,viewer);
4888: VecDestroy(&work);
4889: return(0);
4890: }
4892: /*@C
4893: TSMonitorDrawError - Monitors progress of the TS solvers by calling
4894: VecView() for the error at each timestep
4896: Collective on TS
4898: Input Parameters:
4899: + ts - the TS context
4900: . step - current time-step
4901: . ptime - current time
4902: - dummy - either a viewer or NULL
4904: Options Database:
4905: . -ts_monitor_draw_error - Monitor error graphically, requires user to have provided TSSetSolutionFunction()
4907: Level: intermediate
4909: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
4910: @*/
4911: PetscErrorCode TSMonitorDrawError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4912: {
4913: PetscErrorCode ierr;
4914: TSMonitorDrawCtx ctx = (TSMonitorDrawCtx)dummy;
4915: PetscViewer viewer = ctx->viewer;
4916: Vec work;
4919: if (!(((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason))) return(0);
4920: VecDuplicate(u,&work);
4921: TSComputeSolutionFunction(ts,ptime,work);
4922: VecAXPY(work,-1.0,u);
4923: VecView(work,viewer);
4924: VecDestroy(&work);
4925: return(0);
4926: }
4928: #include <petsc/private/dmimpl.h>
4929: /*@
4930: TSSetDM - Sets the DM that may be used by some nonlinear solvers or preconditioners under the TS
4932: Logically Collective on ts
4934: Input Parameters:
4935: + ts - the ODE integrator object
4936: - dm - the dm, cannot be NULL
4938: Notes:
4939: A DM can only be used for solving one problem at a time because information about the problem is stored on the DM,
4940: even when not using interfaces like DMTSSetIFunction(). Use DMClone() to get a distinct DM when solving
4941: different problems using the same function space.
4943: Level: intermediate
4945: .seealso: TSGetDM(), SNESSetDM(), SNESGetDM()
4946: @*/
4947: PetscErrorCode TSSetDM(TS ts,DM dm)
4948: {
4950: SNES snes;
4951: DMTS tsdm;
4956: PetscObjectReference((PetscObject)dm);
4957: if (ts->dm) { /* Move the DMTS context over to the new DM unless the new DM already has one */
4958: if (ts->dm->dmts && !dm->dmts) {
4959: DMCopyDMTS(ts->dm,dm);
4960: DMGetDMTS(ts->dm,&tsdm);
4961: if (tsdm->originaldm == ts->dm) { /* Grant write privileges to the replacement DM */
4962: tsdm->originaldm = dm;
4963: }
4964: }
4965: DMDestroy(&ts->dm);
4966: }
4967: ts->dm = dm;
4969: TSGetSNES(ts,&snes);
4970: SNESSetDM(snes,dm);
4971: return(0);
4972: }
4974: /*@
4975: TSGetDM - Gets the DM that may be used by some preconditioners
4977: Not Collective
4979: Input Parameter:
4980: . ts - the preconditioner context
4982: Output Parameter:
4983: . dm - the dm
4985: Level: intermediate
4987: .seealso: TSSetDM(), SNESSetDM(), SNESGetDM()
4988: @*/
4989: PetscErrorCode TSGetDM(TS ts,DM *dm)
4990: {
4995: if (!ts->dm) {
4996: DMShellCreate(PetscObjectComm((PetscObject)ts),&ts->dm);
4997: if (ts->snes) {SNESSetDM(ts->snes,ts->dm);}
4998: }
4999: *dm = ts->dm;
5000: return(0);
5001: }
5003: /*@
5004: SNESTSFormFunction - Function to evaluate nonlinear residual
5006: Logically Collective on SNES
5008: Input Parameter:
5009: + snes - nonlinear solver
5010: . U - the current state at which to evaluate the residual
5011: - ctx - user context, must be a TS
5013: Output Parameter:
5014: . F - the nonlinear residual
5016: Notes:
5017: This function is not normally called by users and is automatically registered with the SNES used by TS.
5018: It is most frequently passed to MatFDColoringSetFunction().
5020: Level: advanced
5022: .seealso: SNESSetFunction(), MatFDColoringSetFunction()
5023: @*/
5024: PetscErrorCode SNESTSFormFunction(SNES snes,Vec U,Vec F,void *ctx)
5025: {
5026: TS ts = (TS)ctx;
5034: (ts->ops->snesfunction)(snes,U,F,ts);
5035: return(0);
5036: }
5038: /*@
5039: SNESTSFormJacobian - Function to evaluate the Jacobian
5041: Collective on SNES
5043: Input Parameter:
5044: + snes - nonlinear solver
5045: . U - the current state at which to evaluate the residual
5046: - ctx - user context, must be a TS
5048: Output Parameter:
5049: + A - the Jacobian
5050: . B - the preconditioning matrix (may be the same as A)
5051: - flag - indicates any structure change in the matrix
5053: Notes:
5054: This function is not normally called by users and is automatically registered with the SNES used by TS.
5056: Level: developer
5058: .seealso: SNESSetJacobian()
5059: @*/
5060: PetscErrorCode SNESTSFormJacobian(SNES snes,Vec U,Mat A,Mat B,void *ctx)
5061: {
5062: TS ts = (TS)ctx;
5073: (ts->ops->snesjacobian)(snes,U,A,B,ts);
5074: return(0);
5075: }
5077: /*@C
5078: TSComputeRHSFunctionLinear - Evaluate the right hand side via the user-provided Jacobian, for linear problems Udot = A U only
5080: Collective on TS
5082: Input Arguments:
5083: + ts - time stepping context
5084: . t - time at which to evaluate
5085: . U - state at which to evaluate
5086: - ctx - context
5088: Output Arguments:
5089: . F - right hand side
5091: Level: intermediate
5093: Notes:
5094: This function is intended to be passed to TSSetRHSFunction() to evaluate the right hand side for linear problems.
5095: The matrix (and optionally the evaluation context) should be passed to TSSetRHSJacobian().
5097: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
5098: @*/
5099: PetscErrorCode TSComputeRHSFunctionLinear(TS ts,PetscReal t,Vec U,Vec F,void *ctx)
5100: {
5102: Mat Arhs,Brhs;
5105: TSGetRHSMats_Private(ts,&Arhs,&Brhs);
5106: /* undo the damage caused by shifting */
5107: TSRecoverRHSJacobian(ts,Arhs,Brhs);
5108: TSComputeRHSJacobian(ts,t,U,Arhs,Brhs);
5109: MatMult(Arhs,U,F);
5110: return(0);
5111: }
5113: /*@C
5114: TSComputeRHSJacobianConstant - Reuses a Jacobian that is time-independent.
5116: Collective on TS
5118: Input Arguments:
5119: + ts - time stepping context
5120: . t - time at which to evaluate
5121: . U - state at which to evaluate
5122: - ctx - context
5124: Output Arguments:
5125: + A - pointer to operator
5126: . B - pointer to preconditioning matrix
5127: - flg - matrix structure flag
5129: Level: intermediate
5131: Notes:
5132: This function is intended to be passed to TSSetRHSJacobian() to evaluate the Jacobian for linear time-independent problems.
5134: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSFunctionLinear()
5135: @*/
5136: PetscErrorCode TSComputeRHSJacobianConstant(TS ts,PetscReal t,Vec U,Mat A,Mat B,void *ctx)
5137: {
5139: return(0);
5140: }
5142: /*@C
5143: TSComputeIFunctionLinear - Evaluate the left hand side via the user-provided Jacobian, for linear problems only
5145: Collective on TS
5147: Input Arguments:
5148: + ts - time stepping context
5149: . t - time at which to evaluate
5150: . U - state at which to evaluate
5151: . Udot - time derivative of state vector
5152: - ctx - context
5154: Output Arguments:
5155: . F - left hand side
5157: Level: intermediate
5159: Notes:
5160: The assumption here is that the left hand side is of the form A*Udot (and not A*Udot + B*U). For other cases, the
5161: user is required to write their own TSComputeIFunction.
5162: This function is intended to be passed to TSSetIFunction() to evaluate the left hand side for linear problems.
5163: The matrix (and optionally the evaluation context) should be passed to TSSetIJacobian().
5165: Note that using this function is NOT equivalent to using TSComputeRHSFunctionLinear() since that solves Udot = A U
5167: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIJacobianConstant(), TSComputeRHSFunctionLinear()
5168: @*/
5169: PetscErrorCode TSComputeIFunctionLinear(TS ts,PetscReal t,Vec U,Vec Udot,Vec F,void *ctx)
5170: {
5172: Mat A,B;
5175: TSGetIJacobian(ts,&A,&B,NULL,NULL);
5176: TSComputeIJacobian(ts,t,U,Udot,1.0,A,B,PETSC_TRUE);
5177: MatMult(A,Udot,F);
5178: return(0);
5179: }
5181: /*@C
5182: TSComputeIJacobianConstant - Reuses a time-independent for a semi-implicit DAE or ODE
5184: Collective on TS
5186: Input Arguments:
5187: + ts - time stepping context
5188: . t - time at which to evaluate
5189: . U - state at which to evaluate
5190: . Udot - time derivative of state vector
5191: . shift - shift to apply
5192: - ctx - context
5194: Output Arguments:
5195: + A - pointer to operator
5196: . B - pointer to preconditioning matrix
5197: - flg - matrix structure flag
5199: Level: advanced
5201: Notes:
5202: This function is intended to be passed to TSSetIJacobian() to evaluate the Jacobian for linear time-independent problems.
5204: It is only appropriate for problems of the form
5206: $ M Udot = F(U,t)
5208: where M is constant and F is non-stiff. The user must pass M to TSSetIJacobian(). The current implementation only
5209: works with IMEX time integration methods such as TSROSW and TSARKIMEX, since there is no support for de-constructing
5210: an implicit operator of the form
5212: $ shift*M + J
5214: where J is the Jacobian of -F(U). Support may be added in a future version of PETSc, but for now, the user must store
5215: a copy of M or reassemble it when requested.
5217: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIFunctionLinear()
5218: @*/
5219: PetscErrorCode TSComputeIJacobianConstant(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat A,Mat B,void *ctx)
5220: {
5224: MatScale(A, shift / ts->ijacobian.shift);
5225: ts->ijacobian.shift = shift;
5226: return(0);
5227: }
5229: /*@
5230: TSGetEquationType - Gets the type of the equation that TS is solving.
5232: Not Collective
5234: Input Parameter:
5235: . ts - the TS context
5237: Output Parameter:
5238: . equation_type - see TSEquationType
5240: Level: beginner
5242: .seealso: TSSetEquationType(), TSEquationType
5243: @*/
5244: PetscErrorCode TSGetEquationType(TS ts,TSEquationType *equation_type)
5245: {
5249: *equation_type = ts->equation_type;
5250: return(0);
5251: }
5253: /*@
5254: TSSetEquationType - Sets the type of the equation that TS is solving.
5256: Not Collective
5258: Input Parameter:
5259: + ts - the TS context
5260: - equation_type - see TSEquationType
5262: Level: advanced
5264: .seealso: TSGetEquationType(), TSEquationType
5265: @*/
5266: PetscErrorCode TSSetEquationType(TS ts,TSEquationType equation_type)
5267: {
5270: ts->equation_type = equation_type;
5271: return(0);
5272: }
5274: /*@
5275: TSGetConvergedReason - Gets the reason the TS iteration was stopped.
5277: Not Collective
5279: Input Parameter:
5280: . ts - the TS context
5282: Output Parameter:
5283: . reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
5284: manual pages for the individual convergence tests for complete lists
5286: Level: beginner
5288: Notes:
5289: Can only be called after the call to TSSolve() is complete.
5291: .seealso: TSSetConvergenceTest(), TSConvergedReason
5292: @*/
5293: PetscErrorCode TSGetConvergedReason(TS ts,TSConvergedReason *reason)
5294: {
5298: *reason = ts->reason;
5299: return(0);
5300: }
5302: /*@
5303: TSSetConvergedReason - Sets the reason for handling the convergence of TSSolve.
5305: Logically Collective; reason must contain common value
5307: Input Parameters:
5308: + ts - the TS context
5309: - reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
5310: manual pages for the individual convergence tests for complete lists
5312: Level: advanced
5314: Notes:
5315: Can only be called while TSSolve() is active.
5317: .seealso: TSConvergedReason
5318: @*/
5319: PetscErrorCode TSSetConvergedReason(TS ts,TSConvergedReason reason)
5320: {
5323: ts->reason = reason;
5324: return(0);
5325: }
5327: /*@
5328: TSGetSolveTime - Gets the time after a call to TSSolve()
5330: Not Collective
5332: Input Parameter:
5333: . ts - the TS context
5335: Output Parameter:
5336: . ftime - the final time. This time corresponds to the final time set with TSSetMaxTime()
5338: Level: beginner
5340: Notes:
5341: Can only be called after the call to TSSolve() is complete.
5343: .seealso: TSSetConvergenceTest(), TSConvergedReason
5344: @*/
5345: PetscErrorCode TSGetSolveTime(TS ts,PetscReal *ftime)
5346: {
5350: *ftime = ts->solvetime;
5351: return(0);
5352: }
5354: /*@
5355: TSGetSNESIterations - Gets the total number of nonlinear iterations
5356: used by the time integrator.
5358: Not Collective
5360: Input Parameter:
5361: . ts - TS context
5363: Output Parameter:
5364: . nits - number of nonlinear iterations
5366: Notes:
5367: This counter is reset to zero for each successive call to TSSolve().
5369: Level: intermediate
5371: .seealso: TSGetKSPIterations()
5372: @*/
5373: PetscErrorCode TSGetSNESIterations(TS ts,PetscInt *nits)
5374: {
5378: *nits = ts->snes_its;
5379: return(0);
5380: }
5382: /*@
5383: TSGetKSPIterations - Gets the total number of linear iterations
5384: used by the time integrator.
5386: Not Collective
5388: Input Parameter:
5389: . ts - TS context
5391: Output Parameter:
5392: . lits - number of linear iterations
5394: Notes:
5395: This counter is reset to zero for each successive call to TSSolve().
5397: Level: intermediate
5399: .seealso: TSGetSNESIterations(), SNESGetKSPIterations()
5400: @*/
5401: PetscErrorCode TSGetKSPIterations(TS ts,PetscInt *lits)
5402: {
5406: *lits = ts->ksp_its;
5407: return(0);
5408: }
5410: /*@
5411: TSGetStepRejections - Gets the total number of rejected steps.
5413: Not Collective
5415: Input Parameter:
5416: . ts - TS context
5418: Output Parameter:
5419: . rejects - number of steps rejected
5421: Notes:
5422: This counter is reset to zero for each successive call to TSSolve().
5424: Level: intermediate
5426: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetSNESFailures(), TSSetMaxSNESFailures(), TSSetErrorIfStepFails()
5427: @*/
5428: PetscErrorCode TSGetStepRejections(TS ts,PetscInt *rejects)
5429: {
5433: *rejects = ts->reject;
5434: return(0);
5435: }
5437: /*@
5438: TSGetSNESFailures - Gets the total number of failed SNES solves
5440: Not Collective
5442: Input Parameter:
5443: . ts - TS context
5445: Output Parameter:
5446: . fails - number of failed nonlinear solves
5448: Notes:
5449: This counter is reset to zero for each successive call to TSSolve().
5451: Level: intermediate
5453: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSSetMaxSNESFailures()
5454: @*/
5455: PetscErrorCode TSGetSNESFailures(TS ts,PetscInt *fails)
5456: {
5460: *fails = ts->num_snes_failures;
5461: return(0);
5462: }
5464: /*@
5465: TSSetMaxStepRejections - Sets the maximum number of step rejections before a step fails
5467: Not Collective
5469: Input Parameter:
5470: + ts - TS context
5471: - rejects - maximum number of rejected steps, pass -1 for unlimited
5473: Notes:
5474: The counter is reset to zero for each step
5476: Options Database Key:
5477: . -ts_max_reject - Maximum number of step rejections before a step fails
5479: Level: intermediate
5481: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxSNESFailures(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
5482: @*/
5483: PetscErrorCode TSSetMaxStepRejections(TS ts,PetscInt rejects)
5484: {
5487: ts->max_reject = rejects;
5488: return(0);
5489: }
5491: /*@
5492: TSSetMaxSNESFailures - Sets the maximum number of failed SNES solves
5494: Not Collective
5496: Input Parameter:
5497: + ts - TS context
5498: - fails - maximum number of failed nonlinear solves, pass -1 for unlimited
5500: Notes:
5501: The counter is reset to zero for each successive call to TSSolve().
5503: Options Database Key:
5504: . -ts_max_snes_failures - Maximum number of nonlinear solve failures
5506: Level: intermediate
5508: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), SNESGetConvergedReason(), TSGetConvergedReason()
5509: @*/
5510: PetscErrorCode TSSetMaxSNESFailures(TS ts,PetscInt fails)
5511: {
5514: ts->max_snes_failures = fails;
5515: return(0);
5516: }
5518: /*@
5519: TSSetErrorIfStepFails - Error if no step succeeds
5521: Not Collective
5523: Input Parameter:
5524: + ts - TS context
5525: - err - PETSC_TRUE to error if no step succeeds, PETSC_FALSE to return without failure
5527: Options Database Key:
5528: . -ts_error_if_step_fails - Error if no step succeeds
5530: Level: intermediate
5532: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
5533: @*/
5534: PetscErrorCode TSSetErrorIfStepFails(TS ts,PetscBool err)
5535: {
5538: ts->errorifstepfailed = err;
5539: return(0);
5540: }
5542: /*@C
5543: TSMonitorSolution - Monitors progress of the TS solvers by VecView() for the solution at each timestep. Normally the viewer is a binary file or a PetscDraw object
5545: Collective on TS
5547: Input Parameters:
5548: + ts - the TS context
5549: . step - current time-step
5550: . ptime - current time
5551: . u - current state
5552: - vf - viewer and its format
5554: Level: intermediate
5556: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
5557: @*/
5558: PetscErrorCode TSMonitorSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,PetscViewerAndFormat *vf)
5559: {
5563: PetscViewerPushFormat(vf->viewer,vf->format);
5564: VecView(u,vf->viewer);
5565: PetscViewerPopFormat(vf->viewer);
5566: return(0);
5567: }
5569: /*@C
5570: TSMonitorSolutionVTK - Monitors progress of the TS solvers by VecView() for the solution at each timestep.
5572: Collective on TS
5574: Input Parameters:
5575: + ts - the TS context
5576: . step - current time-step
5577: . ptime - current time
5578: . u - current state
5579: - filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)
5581: Level: intermediate
5583: Notes:
5584: The VTK format does not allow writing multiple time steps in the same file, therefore a different file will be written for each time step.
5585: These are named according to the file name template.
5587: This function is normally passed as an argument to TSMonitorSet() along with TSMonitorSolutionVTKDestroy().
5589: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
5590: @*/
5591: PetscErrorCode TSMonitorSolutionVTK(TS ts,PetscInt step,PetscReal ptime,Vec u,void *filenametemplate)
5592: {
5594: char filename[PETSC_MAX_PATH_LEN];
5595: PetscViewer viewer;
5598: if (step < 0) return(0); /* -1 indicates interpolated solution */
5599: PetscSNPrintf(filename,sizeof(filename),(const char*)filenametemplate,step);
5600: PetscViewerVTKOpen(PetscObjectComm((PetscObject)ts),filename,FILE_MODE_WRITE,&viewer);
5601: VecView(u,viewer);
5602: PetscViewerDestroy(&viewer);
5603: return(0);
5604: }
5606: /*@C
5607: TSMonitorSolutionVTKDestroy - Destroy context for monitoring
5609: Collective on TS
5611: Input Parameters:
5612: . filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)
5614: Level: intermediate
5616: Note:
5617: This function is normally passed to TSMonitorSet() along with TSMonitorSolutionVTK().
5619: .seealso: TSMonitorSet(), TSMonitorSolutionVTK()
5620: @*/
5621: PetscErrorCode TSMonitorSolutionVTKDestroy(void *filenametemplate)
5622: {
5626: PetscFree(*(char**)filenametemplate);
5627: return(0);
5628: }
5630: /*@
5631: TSGetAdapt - Get the adaptive controller context for the current method
5633: Collective on TS if controller has not been created yet
5635: Input Arguments:
5636: . ts - time stepping context
5638: Output Arguments:
5639: . adapt - adaptive controller
5641: Level: intermediate
5643: .seealso: TSAdapt, TSAdaptSetType(), TSAdaptChoose()
5644: @*/
5645: PetscErrorCode TSGetAdapt(TS ts,TSAdapt *adapt)
5646: {
5652: if (!ts->adapt) {
5653: TSAdaptCreate(PetscObjectComm((PetscObject)ts),&ts->adapt);
5654: PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->adapt);
5655: PetscObjectIncrementTabLevel((PetscObject)ts->adapt,(PetscObject)ts,1);
5656: }
5657: *adapt = ts->adapt;
5658: return(0);
5659: }
5661: /*@
5662: TSSetTolerances - Set tolerances for local truncation error when using adaptive controller
5664: Logically Collective
5666: Input Arguments:
5667: + ts - time integration context
5668: . atol - scalar absolute tolerances, PETSC_DECIDE to leave current value
5669: . vatol - vector of absolute tolerances or NULL, used in preference to atol if present
5670: . rtol - scalar relative tolerances, PETSC_DECIDE to leave current value
5671: - vrtol - vector of relative tolerances or NULL, used in preference to atol if present
5673: Options Database keys:
5674: + -ts_rtol <rtol> - relative tolerance for local truncation error
5675: - -ts_atol <atol> Absolute tolerance for local truncation error
5677: Notes:
5678: With PETSc's implicit schemes for DAE problems, the calculation of the local truncation error
5679: (LTE) includes both the differential and the algebraic variables. If one wants the LTE to be
5680: computed only for the differential or the algebraic part then this can be done using the vector of
5681: tolerances vatol. For example, by setting the tolerance vector with the desired tolerance for the
5682: differential part and infinity for the algebraic part, the LTE calculation will include only the
5683: differential variables.
5685: Level: beginner
5687: .seealso: TS, TSAdapt, TSErrorWeightedNorm(), TSGetTolerances()
5688: @*/
5689: PetscErrorCode TSSetTolerances(TS ts,PetscReal atol,Vec vatol,PetscReal rtol,Vec vrtol)
5690: {
5694: if (atol != PETSC_DECIDE && atol != PETSC_DEFAULT) ts->atol = atol;
5695: if (vatol) {
5696: PetscObjectReference((PetscObject)vatol);
5697: VecDestroy(&ts->vatol);
5698: ts->vatol = vatol;
5699: }
5700: if (rtol != PETSC_DECIDE && rtol != PETSC_DEFAULT) ts->rtol = rtol;
5701: if (vrtol) {
5702: PetscObjectReference((PetscObject)vrtol);
5703: VecDestroy(&ts->vrtol);
5704: ts->vrtol = vrtol;
5705: }
5706: return(0);
5707: }
5709: /*@
5710: TSGetTolerances - Get tolerances for local truncation error when using adaptive controller
5712: Logically Collective
5714: Input Arguments:
5715: . ts - time integration context
5717: Output Arguments:
5718: + atol - scalar absolute tolerances, NULL to ignore
5719: . vatol - vector of absolute tolerances, NULL to ignore
5720: . rtol - scalar relative tolerances, NULL to ignore
5721: - vrtol - vector of relative tolerances, NULL to ignore
5723: Level: beginner
5725: .seealso: TS, TSAdapt, TSErrorWeightedNorm(), TSSetTolerances()
5726: @*/
5727: PetscErrorCode TSGetTolerances(TS ts,PetscReal *atol,Vec *vatol,PetscReal *rtol,Vec *vrtol)
5728: {
5730: if (atol) *atol = ts->atol;
5731: if (vatol) *vatol = ts->vatol;
5732: if (rtol) *rtol = ts->rtol;
5733: if (vrtol) *vrtol = ts->vrtol;
5734: return(0);
5735: }
5737: /*@
5738: TSErrorWeightedNorm2 - compute a weighted 2-norm of the difference between two state vectors
5740: Collective on TS
5742: Input Arguments:
5743: + ts - time stepping context
5744: . U - state vector, usually ts->vec_sol
5745: - Y - state vector to be compared to U
5747: Output Arguments:
5748: + norm - weighted norm, a value of 1.0 means that the error matches the tolerances
5749: . norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
5750: - normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances
5752: Level: developer
5754: .seealso: TSErrorWeightedNorm(), TSErrorWeightedNormInfinity()
5755: @*/
5756: PetscErrorCode TSErrorWeightedNorm2(TS ts,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5757: {
5758: PetscErrorCode ierr;
5759: PetscInt i,n,N,rstart;
5760: PetscInt n_loc,na_loc,nr_loc;
5761: PetscReal n_glb,na_glb,nr_glb;
5762: const PetscScalar *u,*y;
5763: PetscReal sum,suma,sumr,gsum,gsuma,gsumr,diff;
5764: PetscReal tol,tola,tolr;
5765: PetscReal err_loc[6],err_glb[6];
5777: if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"U and Y cannot be the same vector");
5779: VecGetSize(U,&N);
5780: VecGetLocalSize(U,&n);
5781: VecGetOwnershipRange(U,&rstart,NULL);
5782: VecGetArrayRead(U,&u);
5783: VecGetArrayRead(Y,&y);
5784: sum = 0.; n_loc = 0;
5785: suma = 0.; na_loc = 0;
5786: sumr = 0.; nr_loc = 0;
5787: if (ts->vatol && ts->vrtol) {
5788: const PetscScalar *atol,*rtol;
5789: VecGetArrayRead(ts->vatol,&atol);
5790: VecGetArrayRead(ts->vrtol,&rtol);
5791: for (i=0; i<n; i++) {
5792: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5793: diff = PetscAbsScalar(y[i] - u[i]);
5794: tola = PetscRealPart(atol[i]);
5795: if (tola>0.){
5796: suma += PetscSqr(diff/tola);
5797: na_loc++;
5798: }
5799: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5800: if (tolr>0.){
5801: sumr += PetscSqr(diff/tolr);
5802: nr_loc++;
5803: }
5804: tol=tola+tolr;
5805: if (tol>0.){
5806: sum += PetscSqr(diff/tol);
5807: n_loc++;
5808: }
5809: }
5810: VecRestoreArrayRead(ts->vatol,&atol);
5811: VecRestoreArrayRead(ts->vrtol,&rtol);
5812: } else if (ts->vatol) { /* vector atol, scalar rtol */
5813: const PetscScalar *atol;
5814: VecGetArrayRead(ts->vatol,&atol);
5815: for (i=0; i<n; i++) {
5816: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5817: diff = PetscAbsScalar(y[i] - u[i]);
5818: tola = PetscRealPart(atol[i]);
5819: if (tola>0.){
5820: suma += PetscSqr(diff/tola);
5821: na_loc++;
5822: }
5823: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5824: if (tolr>0.){
5825: sumr += PetscSqr(diff/tolr);
5826: nr_loc++;
5827: }
5828: tol=tola+tolr;
5829: if (tol>0.){
5830: sum += PetscSqr(diff/tol);
5831: n_loc++;
5832: }
5833: }
5834: VecRestoreArrayRead(ts->vatol,&atol);
5835: } else if (ts->vrtol) { /* scalar atol, vector rtol */
5836: const PetscScalar *rtol;
5837: VecGetArrayRead(ts->vrtol,&rtol);
5838: for (i=0; i<n; i++) {
5839: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5840: diff = PetscAbsScalar(y[i] - u[i]);
5841: tola = ts->atol;
5842: if (tola>0.){
5843: suma += PetscSqr(diff/tola);
5844: na_loc++;
5845: }
5846: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5847: if (tolr>0.){
5848: sumr += PetscSqr(diff/tolr);
5849: nr_loc++;
5850: }
5851: tol=tola+tolr;
5852: if (tol>0.){
5853: sum += PetscSqr(diff/tol);
5854: n_loc++;
5855: }
5856: }
5857: VecRestoreArrayRead(ts->vrtol,&rtol);
5858: } else { /* scalar atol, scalar rtol */
5859: for (i=0; i<n; i++) {
5860: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5861: diff = PetscAbsScalar(y[i] - u[i]);
5862: tola = ts->atol;
5863: if (tola>0.){
5864: suma += PetscSqr(diff/tola);
5865: na_loc++;
5866: }
5867: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5868: if (tolr>0.){
5869: sumr += PetscSqr(diff/tolr);
5870: nr_loc++;
5871: }
5872: tol=tola+tolr;
5873: if (tol>0.){
5874: sum += PetscSqr(diff/tol);
5875: n_loc++;
5876: }
5877: }
5878: }
5879: VecRestoreArrayRead(U,&u);
5880: VecRestoreArrayRead(Y,&y);
5882: err_loc[0] = sum;
5883: err_loc[1] = suma;
5884: err_loc[2] = sumr;
5885: err_loc[3] = (PetscReal)n_loc;
5886: err_loc[4] = (PetscReal)na_loc;
5887: err_loc[5] = (PetscReal)nr_loc;
5889: MPIU_Allreduce(err_loc,err_glb,6,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));
5891: gsum = err_glb[0];
5892: gsuma = err_glb[1];
5893: gsumr = err_glb[2];
5894: n_glb = err_glb[3];
5895: na_glb = err_glb[4];
5896: nr_glb = err_glb[5];
5898: *norm = 0.;
5899: if (n_glb>0.){*norm = PetscSqrtReal(gsum / n_glb);}
5900: *norma = 0.;
5901: if (na_glb>0.){*norma = PetscSqrtReal(gsuma / na_glb);}
5902: *normr = 0.;
5903: if (nr_glb>0.){*normr = PetscSqrtReal(gsumr / nr_glb);}
5905: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
5906: if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
5907: if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
5908: return(0);
5909: }
5911: /*@
5912: TSErrorWeightedNormInfinity - compute a weighted infinity-norm of the difference between two state vectors
5914: Collective on TS
5916: Input Arguments:
5917: + ts - time stepping context
5918: . U - state vector, usually ts->vec_sol
5919: - Y - state vector to be compared to U
5921: Output Arguments:
5922: + norm - weighted norm, a value of 1.0 means that the error matches the tolerances
5923: . norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
5924: - normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances
5926: Level: developer
5928: .seealso: TSErrorWeightedNorm(), TSErrorWeightedNorm2()
5929: @*/
5930: PetscErrorCode TSErrorWeightedNormInfinity(TS ts,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5931: {
5932: PetscErrorCode ierr;
5933: PetscInt i,n,N,rstart;
5934: const PetscScalar *u,*y;
5935: PetscReal max,gmax,maxa,gmaxa,maxr,gmaxr;
5936: PetscReal tol,tola,tolr,diff;
5937: PetscReal err_loc[3],err_glb[3];
5949: if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"U and Y cannot be the same vector");
5951: VecGetSize(U,&N);
5952: VecGetLocalSize(U,&n);
5953: VecGetOwnershipRange(U,&rstart,NULL);
5954: VecGetArrayRead(U,&u);
5955: VecGetArrayRead(Y,&y);
5957: max=0.;
5958: maxa=0.;
5959: maxr=0.;
5961: if (ts->vatol && ts->vrtol) { /* vector atol, vector rtol */
5962: const PetscScalar *atol,*rtol;
5963: VecGetArrayRead(ts->vatol,&atol);
5964: VecGetArrayRead(ts->vrtol,&rtol);
5966: for (i=0; i<n; i++) {
5967: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5968: diff = PetscAbsScalar(y[i] - u[i]);
5969: tola = PetscRealPart(atol[i]);
5970: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5971: tol = tola+tolr;
5972: if (tola>0.){
5973: maxa = PetscMax(maxa,diff / tola);
5974: }
5975: if (tolr>0.){
5976: maxr = PetscMax(maxr,diff / tolr);
5977: }
5978: if (tol>0.){
5979: max = PetscMax(max,diff / tol);
5980: }
5981: }
5982: VecRestoreArrayRead(ts->vatol,&atol);
5983: VecRestoreArrayRead(ts->vrtol,&rtol);
5984: } else if (ts->vatol) { /* vector atol, scalar rtol */
5985: const PetscScalar *atol;
5986: VecGetArrayRead(ts->vatol,&atol);
5987: for (i=0; i<n; i++) {
5988: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5989: diff = PetscAbsScalar(y[i] - u[i]);
5990: tola = PetscRealPart(atol[i]);
5991: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5992: tol = tola+tolr;
5993: if (tola>0.){
5994: maxa = PetscMax(maxa,diff / tola);
5995: }
5996: if (tolr>0.){
5997: maxr = PetscMax(maxr,diff / tolr);
5998: }
5999: if (tol>0.){
6000: max = PetscMax(max,diff / tol);
6001: }
6002: }
6003: VecRestoreArrayRead(ts->vatol,&atol);
6004: } else if (ts->vrtol) { /* scalar atol, vector rtol */
6005: const PetscScalar *rtol;
6006: VecGetArrayRead(ts->vrtol,&rtol);
6008: for (i=0; i<n; i++) {
6009: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6010: diff = PetscAbsScalar(y[i] - u[i]);
6011: tola = ts->atol;
6012: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6013: tol = tola+tolr;
6014: if (tola>0.){
6015: maxa = PetscMax(maxa,diff / tola);
6016: }
6017: if (tolr>0.){
6018: maxr = PetscMax(maxr,diff / tolr);
6019: }
6020: if (tol>0.){
6021: max = PetscMax(max,diff / tol);
6022: }
6023: }
6024: VecRestoreArrayRead(ts->vrtol,&rtol);
6025: } else { /* scalar atol, scalar rtol */
6027: for (i=0; i<n; i++) {
6028: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6029: diff = PetscAbsScalar(y[i] - u[i]);
6030: tola = ts->atol;
6031: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6032: tol = tola+tolr;
6033: if (tola>0.){
6034: maxa = PetscMax(maxa,diff / tola);
6035: }
6036: if (tolr>0.){
6037: maxr = PetscMax(maxr,diff / tolr);
6038: }
6039: if (tol>0.){
6040: max = PetscMax(max,diff / tol);
6041: }
6042: }
6043: }
6044: VecRestoreArrayRead(U,&u);
6045: VecRestoreArrayRead(Y,&y);
6046: err_loc[0] = max;
6047: err_loc[1] = maxa;
6048: err_loc[2] = maxr;
6049: MPIU_Allreduce(err_loc,err_glb,3,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
6050: gmax = err_glb[0];
6051: gmaxa = err_glb[1];
6052: gmaxr = err_glb[2];
6054: *norm = gmax;
6055: *norma = gmaxa;
6056: *normr = gmaxr;
6057: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
6058: if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
6059: if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
6060: return(0);
6061: }
6063: /*@
6064: TSErrorWeightedNorm - compute a weighted norm of the difference between two state vectors based on supplied absolute and relative tolerances
6066: Collective on TS
6068: Input Arguments:
6069: + ts - time stepping context
6070: . U - state vector, usually ts->vec_sol
6071: . Y - state vector to be compared to U
6072: - wnormtype - norm type, either NORM_2 or NORM_INFINITY
6074: Output Arguments:
6075: + norm - weighted norm, a value of 1.0 achieves a balance between absolute and relative tolerances
6076: . norma - weighted norm, a value of 1.0 means that the error meets the absolute tolerance set by the user
6077: - normr - weighted norm, a value of 1.0 means that the error meets the relative tolerance set by the user
6079: Options Database Keys:
6080: . -ts_adapt_wnormtype <wnormtype> - 2, INFINITY
6082: Level: developer
6084: .seealso: TSErrorWeightedNormInfinity(), TSErrorWeightedNorm2(), TSErrorWeightedENorm
6085: @*/
6086: PetscErrorCode TSErrorWeightedNorm(TS ts,Vec U,Vec Y,NormType wnormtype,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6087: {
6091: if (wnormtype == NORM_2) {
6092: TSErrorWeightedNorm2(ts,U,Y,norm,norma,normr);
6093: } else if (wnormtype == NORM_INFINITY) {
6094: TSErrorWeightedNormInfinity(ts,U,Y,norm,norma,normr);
6095: } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
6096: return(0);
6097: }
6100: /*@
6101: TSErrorWeightedENorm2 - compute a weighted 2 error norm based on supplied absolute and relative tolerances
6103: Collective on TS
6105: Input Arguments:
6106: + ts - time stepping context
6107: . E - error vector
6108: . U - state vector, usually ts->vec_sol
6109: - Y - state vector, previous time step
6111: Output Arguments:
6112: + norm - weighted norm, a value of 1.0 means that the error matches the tolerances
6113: . norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
6114: - normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances
6116: Level: developer
6118: .seealso: TSErrorWeightedENorm(), TSErrorWeightedENormInfinity()
6119: @*/
6120: PetscErrorCode TSErrorWeightedENorm2(TS ts,Vec E,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6121: {
6122: PetscErrorCode ierr;
6123: PetscInt i,n,N,rstart;
6124: PetscInt n_loc,na_loc,nr_loc;
6125: PetscReal n_glb,na_glb,nr_glb;
6126: const PetscScalar *e,*u,*y;
6127: PetscReal err,sum,suma,sumr,gsum,gsuma,gsumr;
6128: PetscReal tol,tola,tolr;
6129: PetscReal err_loc[6],err_glb[6];
6145: VecGetSize(E,&N);
6146: VecGetLocalSize(E,&n);
6147: VecGetOwnershipRange(E,&rstart,NULL);
6148: VecGetArrayRead(E,&e);
6149: VecGetArrayRead(U,&u);
6150: VecGetArrayRead(Y,&y);
6151: sum = 0.; n_loc = 0;
6152: suma = 0.; na_loc = 0;
6153: sumr = 0.; nr_loc = 0;
6154: if (ts->vatol && ts->vrtol) {
6155: const PetscScalar *atol,*rtol;
6156: VecGetArrayRead(ts->vatol,&atol);
6157: VecGetArrayRead(ts->vrtol,&rtol);
6158: for (i=0; i<n; i++) {
6159: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6160: err = PetscAbsScalar(e[i]);
6161: tola = PetscRealPart(atol[i]);
6162: if (tola>0.){
6163: suma += PetscSqr(err/tola);
6164: na_loc++;
6165: }
6166: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6167: if (tolr>0.){
6168: sumr += PetscSqr(err/tolr);
6169: nr_loc++;
6170: }
6171: tol=tola+tolr;
6172: if (tol>0.){
6173: sum += PetscSqr(err/tol);
6174: n_loc++;
6175: }
6176: }
6177: VecRestoreArrayRead(ts->vatol,&atol);
6178: VecRestoreArrayRead(ts->vrtol,&rtol);
6179: } else if (ts->vatol) { /* vector atol, scalar rtol */
6180: const PetscScalar *atol;
6181: VecGetArrayRead(ts->vatol,&atol);
6182: for (i=0; i<n; i++) {
6183: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6184: err = PetscAbsScalar(e[i]);
6185: tola = PetscRealPart(atol[i]);
6186: if (tola>0.){
6187: suma += PetscSqr(err/tola);
6188: na_loc++;
6189: }
6190: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6191: if (tolr>0.){
6192: sumr += PetscSqr(err/tolr);
6193: nr_loc++;
6194: }
6195: tol=tola+tolr;
6196: if (tol>0.){
6197: sum += PetscSqr(err/tol);
6198: n_loc++;
6199: }
6200: }
6201: VecRestoreArrayRead(ts->vatol,&atol);
6202: } else if (ts->vrtol) { /* scalar atol, vector rtol */
6203: const PetscScalar *rtol;
6204: VecGetArrayRead(ts->vrtol,&rtol);
6205: for (i=0; i<n; i++) {
6206: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6207: err = PetscAbsScalar(e[i]);
6208: tola = ts->atol;
6209: if (tola>0.){
6210: suma += PetscSqr(err/tola);
6211: na_loc++;
6212: }
6213: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6214: if (tolr>0.){
6215: sumr += PetscSqr(err/tolr);
6216: nr_loc++;
6217: }
6218: tol=tola+tolr;
6219: if (tol>0.){
6220: sum += PetscSqr(err/tol);
6221: n_loc++;
6222: }
6223: }
6224: VecRestoreArrayRead(ts->vrtol,&rtol);
6225: } else { /* scalar atol, scalar rtol */
6226: for (i=0; i<n; i++) {
6227: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6228: err = PetscAbsScalar(e[i]);
6229: tola = ts->atol;
6230: if (tola>0.){
6231: suma += PetscSqr(err/tola);
6232: na_loc++;
6233: }
6234: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6235: if (tolr>0.){
6236: sumr += PetscSqr(err/tolr);
6237: nr_loc++;
6238: }
6239: tol=tola+tolr;
6240: if (tol>0.){
6241: sum += PetscSqr(err/tol);
6242: n_loc++;
6243: }
6244: }
6245: }
6246: VecRestoreArrayRead(E,&e);
6247: VecRestoreArrayRead(U,&u);
6248: VecRestoreArrayRead(Y,&y);
6250: err_loc[0] = sum;
6251: err_loc[1] = suma;
6252: err_loc[2] = sumr;
6253: err_loc[3] = (PetscReal)n_loc;
6254: err_loc[4] = (PetscReal)na_loc;
6255: err_loc[5] = (PetscReal)nr_loc;
6257: MPIU_Allreduce(err_loc,err_glb,6,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));
6259: gsum = err_glb[0];
6260: gsuma = err_glb[1];
6261: gsumr = err_glb[2];
6262: n_glb = err_glb[3];
6263: na_glb = err_glb[4];
6264: nr_glb = err_glb[5];
6266: *norm = 0.;
6267: if (n_glb>0.){*norm = PetscSqrtReal(gsum / n_glb);}
6268: *norma = 0.;
6269: if (na_glb>0.){*norma = PetscSqrtReal(gsuma / na_glb);}
6270: *normr = 0.;
6271: if (nr_glb>0.){*normr = PetscSqrtReal(gsumr / nr_glb);}
6273: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
6274: if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
6275: if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
6276: return(0);
6277: }
6279: /*@
6280: TSErrorWeightedENormInfinity - compute a weighted infinity error norm based on supplied absolute and relative tolerances
6281: Collective on TS
6283: Input Arguments:
6284: + ts - time stepping context
6285: . E - error vector
6286: . U - state vector, usually ts->vec_sol
6287: - Y - state vector, previous time step
6289: Output Arguments:
6290: + norm - weighted norm, a value of 1.0 means that the error matches the tolerances
6291: . norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
6292: - normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances
6294: Level: developer
6296: .seealso: TSErrorWeightedENorm(), TSErrorWeightedENorm2()
6297: @*/
6298: PetscErrorCode TSErrorWeightedENormInfinity(TS ts,Vec E,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6299: {
6300: PetscErrorCode ierr;
6301: PetscInt i,n,N,rstart;
6302: const PetscScalar *e,*u,*y;
6303: PetscReal err,max,gmax,maxa,gmaxa,maxr,gmaxr;
6304: PetscReal tol,tola,tolr;
6305: PetscReal err_loc[3],err_glb[3];
6321: VecGetSize(E,&N);
6322: VecGetLocalSize(E,&n);
6323: VecGetOwnershipRange(E,&rstart,NULL);
6324: VecGetArrayRead(E,&e);
6325: VecGetArrayRead(U,&u);
6326: VecGetArrayRead(Y,&y);
6328: max=0.;
6329: maxa=0.;
6330: maxr=0.;
6332: if (ts->vatol && ts->vrtol) { /* vector atol, vector rtol */
6333: const PetscScalar *atol,*rtol;
6334: VecGetArrayRead(ts->vatol,&atol);
6335: VecGetArrayRead(ts->vrtol,&rtol);
6337: for (i=0; i<n; i++) {
6338: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6339: err = PetscAbsScalar(e[i]);
6340: tola = PetscRealPart(atol[i]);
6341: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6342: tol = tola+tolr;
6343: if (tola>0.){
6344: maxa = PetscMax(maxa,err / tola);
6345: }
6346: if (tolr>0.){
6347: maxr = PetscMax(maxr,err / tolr);
6348: }
6349: if (tol>0.){
6350: max = PetscMax(max,err / tol);
6351: }
6352: }
6353: VecRestoreArrayRead(ts->vatol,&atol);
6354: VecRestoreArrayRead(ts->vrtol,&rtol);
6355: } else if (ts->vatol) { /* vector atol, scalar rtol */
6356: const PetscScalar *atol;
6357: VecGetArrayRead(ts->vatol,&atol);
6358: for (i=0; i<n; i++) {
6359: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6360: err = PetscAbsScalar(e[i]);
6361: tola = PetscRealPart(atol[i]);
6362: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6363: tol = tola+tolr;
6364: if (tola>0.){
6365: maxa = PetscMax(maxa,err / tola);
6366: }
6367: if (tolr>0.){
6368: maxr = PetscMax(maxr,err / tolr);
6369: }
6370: if (tol>0.){
6371: max = PetscMax(max,err / tol);
6372: }
6373: }
6374: VecRestoreArrayRead(ts->vatol,&atol);
6375: } else if (ts->vrtol) { /* scalar atol, vector rtol */
6376: const PetscScalar *rtol;
6377: VecGetArrayRead(ts->vrtol,&rtol);
6379: for (i=0; i<n; i++) {
6380: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6381: err = PetscAbsScalar(e[i]);
6382: tola = ts->atol;
6383: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6384: tol = tola+tolr;
6385: if (tola>0.){
6386: maxa = PetscMax(maxa,err / tola);
6387: }
6388: if (tolr>0.){
6389: maxr = PetscMax(maxr,err / tolr);
6390: }
6391: if (tol>0.){
6392: max = PetscMax(max,err / tol);
6393: }
6394: }
6395: VecRestoreArrayRead(ts->vrtol,&rtol);
6396: } else { /* scalar atol, scalar rtol */
6398: for (i=0; i<n; i++) {
6399: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6400: err = PetscAbsScalar(e[i]);
6401: tola = ts->atol;
6402: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6403: tol = tola+tolr;
6404: if (tola>0.){
6405: maxa = PetscMax(maxa,err / tola);
6406: }
6407: if (tolr>0.){
6408: maxr = PetscMax(maxr,err / tolr);
6409: }
6410: if (tol>0.){
6411: max = PetscMax(max,err / tol);
6412: }
6413: }
6414: }
6415: VecRestoreArrayRead(E,&e);
6416: VecRestoreArrayRead(U,&u);
6417: VecRestoreArrayRead(Y,&y);
6418: err_loc[0] = max;
6419: err_loc[1] = maxa;
6420: err_loc[2] = maxr;
6421: MPIU_Allreduce(err_loc,err_glb,3,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
6422: gmax = err_glb[0];
6423: gmaxa = err_glb[1];
6424: gmaxr = err_glb[2];
6426: *norm = gmax;
6427: *norma = gmaxa;
6428: *normr = gmaxr;
6429: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
6430: if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
6431: if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
6432: return(0);
6433: }
6435: /*@
6436: TSErrorWeightedENorm - compute a weighted error norm based on supplied absolute and relative tolerances
6438: Collective on TS
6440: Input Arguments:
6441: + ts - time stepping context
6442: . E - error vector
6443: . U - state vector, usually ts->vec_sol
6444: . Y - state vector, previous time step
6445: - wnormtype - norm type, either NORM_2 or NORM_INFINITY
6447: Output Arguments:
6448: + norm - weighted norm, a value of 1.0 achieves a balance between absolute and relative tolerances
6449: . norma - weighted norm, a value of 1.0 means that the error meets the absolute tolerance set by the user
6450: - normr - weighted norm, a value of 1.0 means that the error meets the relative tolerance set by the user
6452: Options Database Keys:
6453: . -ts_adapt_wnormtype <wnormtype> - 2, INFINITY
6455: Level: developer
6457: .seealso: TSErrorWeightedENormInfinity(), TSErrorWeightedENorm2(), TSErrorWeightedNormInfinity(), TSErrorWeightedNorm2()
6458: @*/
6459: PetscErrorCode TSErrorWeightedENorm(TS ts,Vec E,Vec U,Vec Y,NormType wnormtype,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6460: {
6464: if (wnormtype == NORM_2) {
6465: TSErrorWeightedENorm2(ts,E,U,Y,norm,norma,normr);
6466: } else if (wnormtype == NORM_INFINITY) {
6467: TSErrorWeightedENormInfinity(ts,E,U,Y,norm,norma,normr);
6468: } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
6469: return(0);
6470: }
6473: /*@
6474: TSSetCFLTimeLocal - Set the local CFL constraint relative to forward Euler
6476: Logically Collective on TS
6478: Input Arguments:
6479: + ts - time stepping context
6480: - cfltime - maximum stable time step if using forward Euler (value can be different on each process)
6482: Note:
6483: After calling this function, the global CFL time can be obtained by calling TSGetCFLTime()
6485: Level: intermediate
6487: .seealso: TSGetCFLTime(), TSADAPTCFL
6488: @*/
6489: PetscErrorCode TSSetCFLTimeLocal(TS ts,PetscReal cfltime)
6490: {
6493: ts->cfltime_local = cfltime;
6494: ts->cfltime = -1.;
6495: return(0);
6496: }
6498: /*@
6499: TSGetCFLTime - Get the maximum stable time step according to CFL criteria applied to forward Euler
6501: Collective on TS
6503: Input Arguments:
6504: . ts - time stepping context
6506: Output Arguments:
6507: . cfltime - maximum stable time step for forward Euler
6509: Level: advanced
6511: .seealso: TSSetCFLTimeLocal()
6512: @*/
6513: PetscErrorCode TSGetCFLTime(TS ts,PetscReal *cfltime)
6514: {
6518: if (ts->cfltime < 0) {
6519: MPIU_Allreduce(&ts->cfltime_local,&ts->cfltime,1,MPIU_REAL,MPIU_MIN,PetscObjectComm((PetscObject)ts));
6520: }
6521: *cfltime = ts->cfltime;
6522: return(0);
6523: }
6525: /*@
6526: TSVISetVariableBounds - Sets the lower and upper bounds for the solution vector. xl <= x <= xu
6528: Input Parameters:
6529: + ts - the TS context.
6530: . xl - lower bound.
6531: - xu - upper bound.
6533: Notes:
6534: If this routine is not called then the lower and upper bounds are set to
6535: PETSC_NINFINITY and PETSC_INFINITY respectively during SNESSetUp().
6537: Level: advanced
6539: @*/
6540: PetscErrorCode TSVISetVariableBounds(TS ts, Vec xl, Vec xu)
6541: {
6543: SNES snes;
6546: TSGetSNES(ts,&snes);
6547: SNESVISetVariableBounds(snes,xl,xu);
6548: return(0);
6549: }
6551: /*@C
6552: TSMonitorLGSolution - Monitors progress of the TS solvers by plotting each component of the solution vector
6553: in a time based line graph
6555: Collective on TS
6557: Input Parameters:
6558: + ts - the TS context
6559: . step - current time-step
6560: . ptime - current time
6561: . u - current solution
6562: - dctx - the TSMonitorLGCtx object that contains all the options for the monitoring, this is created with TSMonitorLGCtxCreate()
6564: Options Database:
6565: . -ts_monitor_lg_solution_variables
6567: Level: intermediate
6569: Notes:
6570: Each process in a parallel run displays its component solutions in a separate window
6572: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGCtxCreate(), TSMonitorLGCtxSetVariableNames(), TSMonitorLGCtxGetVariableNames(),
6573: TSMonitorLGSetVariableNames(), TSMonitorLGGetVariableNames(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetDisplayVariables(),
6574: TSMonitorLGCtxSetTransform(), TSMonitorLGSetTransform(), TSMonitorLGError(), TSMonitorLGSNESIterations(), TSMonitorLGKSPIterations(),
6575: TSMonitorEnvelopeCtxCreate(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxDestroy(), TSMonitorEnvelop()
6576: @*/
6577: PetscErrorCode TSMonitorLGSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
6578: {
6579: PetscErrorCode ierr;
6580: TSMonitorLGCtx ctx = (TSMonitorLGCtx)dctx;
6581: const PetscScalar *yy;
6582: Vec v;
6585: if (step < 0) return(0); /* -1 indicates interpolated solution */
6586: if (!step) {
6587: PetscDrawAxis axis;
6588: PetscInt dim;
6589: PetscDrawLGGetAxis(ctx->lg,&axis);
6590: PetscDrawAxisSetLabels(axis,"Solution as function of time","Time","Solution");
6591: if (!ctx->names) {
6592: PetscBool flg;
6593: /* user provides names of variables to plot but no names has been set so assume names are integer values */
6594: PetscOptionsHasName(((PetscObject)ts)->options,((PetscObject)ts)->prefix,"-ts_monitor_lg_solution_variables",&flg);
6595: if (flg) {
6596: PetscInt i,n;
6597: char **names;
6598: VecGetSize(u,&n);
6599: PetscMalloc1(n+1,&names);
6600: for (i=0; i<n; i++) {
6601: PetscMalloc1(5,&names[i]);
6602: PetscSNPrintf(names[i],5,"%D",i);
6603: }
6604: names[n] = NULL;
6605: ctx->names = names;
6606: }
6607: }
6608: if (ctx->names && !ctx->displaynames) {
6609: char **displaynames;
6610: PetscBool flg;
6611: VecGetLocalSize(u,&dim);
6612: PetscCalloc1(dim+1,&displaynames);
6613: PetscOptionsGetStringArray(((PetscObject)ts)->options,((PetscObject)ts)->prefix,"-ts_monitor_lg_solution_variables",displaynames,&dim,&flg);
6614: if (flg) {
6615: TSMonitorLGCtxSetDisplayVariables(ctx,(const char *const *)displaynames);
6616: }
6617: PetscStrArrayDestroy(&displaynames);
6618: }
6619: if (ctx->displaynames) {
6620: PetscDrawLGSetDimension(ctx->lg,ctx->ndisplayvariables);
6621: PetscDrawLGSetLegend(ctx->lg,(const char *const *)ctx->displaynames);
6622: } else if (ctx->names) {
6623: VecGetLocalSize(u,&dim);
6624: PetscDrawLGSetDimension(ctx->lg,dim);
6625: PetscDrawLGSetLegend(ctx->lg,(const char *const *)ctx->names);
6626: } else {
6627: VecGetLocalSize(u,&dim);
6628: PetscDrawLGSetDimension(ctx->lg,dim);
6629: }
6630: PetscDrawLGReset(ctx->lg);
6631: }
6633: if (!ctx->transform) v = u;
6634: else {(*ctx->transform)(ctx->transformctx,u,&v);}
6635: VecGetArrayRead(v,&yy);
6636: if (ctx->displaynames) {
6637: PetscInt i;
6638: for (i=0; i<ctx->ndisplayvariables; i++)
6639: ctx->displayvalues[i] = PetscRealPart(yy[ctx->displayvariables[i]]);
6640: PetscDrawLGAddCommonPoint(ctx->lg,ptime,ctx->displayvalues);
6641: } else {
6642: #if defined(PETSC_USE_COMPLEX)
6643: PetscInt i,n;
6644: PetscReal *yreal;
6645: VecGetLocalSize(v,&n);
6646: PetscMalloc1(n,&yreal);
6647: for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
6648: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
6649: PetscFree(yreal);
6650: #else
6651: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
6652: #endif
6653: }
6654: VecRestoreArrayRead(v,&yy);
6655: if (ctx->transform) {VecDestroy(&v);}
6657: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
6658: PetscDrawLGDraw(ctx->lg);
6659: PetscDrawLGSave(ctx->lg);
6660: }
6661: return(0);
6662: }
6664: /*@C
6665: TSMonitorLGSetVariableNames - Sets the name of each component in the solution vector so that it may be displayed in the plot
6667: Collective on TS
6669: Input Parameters:
6670: + ts - the TS context
6671: - names - the names of the components, final string must be NULL
6673: Level: intermediate
6675: Notes:
6676: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6678: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetVariableNames()
6679: @*/
6680: PetscErrorCode TSMonitorLGSetVariableNames(TS ts,const char * const *names)
6681: {
6682: PetscErrorCode ierr;
6683: PetscInt i;
6686: for (i=0; i<ts->numbermonitors; i++) {
6687: if (ts->monitor[i] == TSMonitorLGSolution) {
6688: TSMonitorLGCtxSetVariableNames((TSMonitorLGCtx)ts->monitorcontext[i],names);
6689: break;
6690: }
6691: }
6692: return(0);
6693: }
6695: /*@C
6696: TSMonitorLGCtxSetVariableNames - Sets the name of each component in the solution vector so that it may be displayed in the plot
6698: Collective on TS
6700: Input Parameters:
6701: + ts - the TS context
6702: - names - the names of the components, final string must be NULL
6704: Level: intermediate
6706: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables(), TSMonitorLGSetVariableNames()
6707: @*/
6708: PetscErrorCode TSMonitorLGCtxSetVariableNames(TSMonitorLGCtx ctx,const char * const *names)
6709: {
6710: PetscErrorCode ierr;
6713: PetscStrArrayDestroy(&ctx->names);
6714: PetscStrArrayallocpy(names,&ctx->names);
6715: return(0);
6716: }
6718: /*@C
6719: TSMonitorLGGetVariableNames - Gets the name of each component in the solution vector so that it may be displayed in the plot
6721: Collective on TS
6723: Input Parameter:
6724: . ts - the TS context
6726: Output Parameter:
6727: . names - the names of the components, final string must be NULL
6729: Level: intermediate
6731: Notes:
6732: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6734: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables()
6735: @*/
6736: PetscErrorCode TSMonitorLGGetVariableNames(TS ts,const char *const **names)
6737: {
6738: PetscInt i;
6741: *names = NULL;
6742: for (i=0; i<ts->numbermonitors; i++) {
6743: if (ts->monitor[i] == TSMonitorLGSolution) {
6744: TSMonitorLGCtx ctx = (TSMonitorLGCtx) ts->monitorcontext[i];
6745: *names = (const char *const *)ctx->names;
6746: break;
6747: }
6748: }
6749: return(0);
6750: }
6752: /*@C
6753: TSMonitorLGCtxSetDisplayVariables - Sets the variables that are to be display in the monitor
6755: Collective on TS
6757: Input Parameters:
6758: + ctx - the TSMonitorLG context
6759: - displaynames - the names of the components, final string must be NULL
6761: Level: intermediate
6763: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames()
6764: @*/
6765: PetscErrorCode TSMonitorLGCtxSetDisplayVariables(TSMonitorLGCtx ctx,const char * const *displaynames)
6766: {
6767: PetscInt j = 0,k;
6768: PetscErrorCode ierr;
6771: if (!ctx->names) return(0);
6772: PetscStrArrayDestroy(&ctx->displaynames);
6773: PetscStrArrayallocpy(displaynames,&ctx->displaynames);
6774: while (displaynames[j]) j++;
6775: ctx->ndisplayvariables = j;
6776: PetscMalloc1(ctx->ndisplayvariables,&ctx->displayvariables);
6777: PetscMalloc1(ctx->ndisplayvariables,&ctx->displayvalues);
6778: j = 0;
6779: while (displaynames[j]) {
6780: k = 0;
6781: while (ctx->names[k]) {
6782: PetscBool flg;
6783: PetscStrcmp(displaynames[j],ctx->names[k],&flg);
6784: if (flg) {
6785: ctx->displayvariables[j] = k;
6786: break;
6787: }
6788: k++;
6789: }
6790: j++;
6791: }
6792: return(0);
6793: }
6795: /*@C
6796: TSMonitorLGSetDisplayVariables - Sets the variables that are to be display in the monitor
6798: Collective on TS
6800: Input Parameters:
6801: + ts - the TS context
6802: - displaynames - the names of the components, final string must be NULL
6804: Notes:
6805: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6807: Level: intermediate
6809: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames()
6810: @*/
6811: PetscErrorCode TSMonitorLGSetDisplayVariables(TS ts,const char * const *displaynames)
6812: {
6813: PetscInt i;
6814: PetscErrorCode ierr;
6817: for (i=0; i<ts->numbermonitors; i++) {
6818: if (ts->monitor[i] == TSMonitorLGSolution) {
6819: TSMonitorLGCtxSetDisplayVariables((TSMonitorLGCtx)ts->monitorcontext[i],displaynames);
6820: break;
6821: }
6822: }
6823: return(0);
6824: }
6826: /*@C
6827: TSMonitorLGSetTransform - Solution vector will be transformed by provided function before being displayed
6829: Collective on TS
6831: Input Parameters:
6832: + ts - the TS context
6833: . transform - the transform function
6834: . destroy - function to destroy the optional context
6835: - ctx - optional context used by transform function
6837: Notes:
6838: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6840: Level: intermediate
6842: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames(), TSMonitorLGCtxSetTransform()
6843: @*/
6844: PetscErrorCode TSMonitorLGSetTransform(TS ts,PetscErrorCode (*transform)(void*,Vec,Vec*),PetscErrorCode (*destroy)(void*),void *tctx)
6845: {
6846: PetscInt i;
6847: PetscErrorCode ierr;
6850: for (i=0; i<ts->numbermonitors; i++) {
6851: if (ts->monitor[i] == TSMonitorLGSolution) {
6852: TSMonitorLGCtxSetTransform((TSMonitorLGCtx)ts->monitorcontext[i],transform,destroy,tctx);
6853: }
6854: }
6855: return(0);
6856: }
6858: /*@C
6859: TSMonitorLGCtxSetTransform - Solution vector will be transformed by provided function before being displayed
6861: Collective on TSLGCtx
6863: Input Parameters:
6864: + ts - the TS context
6865: . transform - the transform function
6866: . destroy - function to destroy the optional context
6867: - ctx - optional context used by transform function
6869: Level: intermediate
6871: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames(), TSMonitorLGSetTransform()
6872: @*/
6873: PetscErrorCode TSMonitorLGCtxSetTransform(TSMonitorLGCtx ctx,PetscErrorCode (*transform)(void*,Vec,Vec*),PetscErrorCode (*destroy)(void*),void *tctx)
6874: {
6876: ctx->transform = transform;
6877: ctx->transformdestroy = destroy;
6878: ctx->transformctx = tctx;
6879: return(0);
6880: }
6882: /*@C
6883: TSMonitorLGError - Monitors progress of the TS solvers by plotting each component of the error
6884: in a time based line graph
6886: Collective on TS
6888: Input Parameters:
6889: + ts - the TS context
6890: . step - current time-step
6891: . ptime - current time
6892: . u - current solution
6893: - dctx - TSMonitorLGCtx object created with TSMonitorLGCtxCreate()
6895: Level: intermediate
6897: Notes:
6898: Each process in a parallel run displays its component errors in a separate window
6900: The user must provide the solution using TSSetSolutionFunction() to use this monitor.
6902: Options Database Keys:
6903: . -ts_monitor_lg_error - create a graphical monitor of error history
6905: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
6906: @*/
6907: PetscErrorCode TSMonitorLGError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
6908: {
6909: PetscErrorCode ierr;
6910: TSMonitorLGCtx ctx = (TSMonitorLGCtx)dummy;
6911: const PetscScalar *yy;
6912: Vec y;
6915: if (!step) {
6916: PetscDrawAxis axis;
6917: PetscInt dim;
6918: PetscDrawLGGetAxis(ctx->lg,&axis);
6919: PetscDrawAxisSetLabels(axis,"Error in solution as function of time","Time","Error");
6920: VecGetLocalSize(u,&dim);
6921: PetscDrawLGSetDimension(ctx->lg,dim);
6922: PetscDrawLGReset(ctx->lg);
6923: }
6924: VecDuplicate(u,&y);
6925: TSComputeSolutionFunction(ts,ptime,y);
6926: VecAXPY(y,-1.0,u);
6927: VecGetArrayRead(y,&yy);
6928: #if defined(PETSC_USE_COMPLEX)
6929: {
6930: PetscReal *yreal;
6931: PetscInt i,n;
6932: VecGetLocalSize(y,&n);
6933: PetscMalloc1(n,&yreal);
6934: for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
6935: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
6936: PetscFree(yreal);
6937: }
6938: #else
6939: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
6940: #endif
6941: VecRestoreArrayRead(y,&yy);
6942: VecDestroy(&y);
6943: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
6944: PetscDrawLGDraw(ctx->lg);
6945: PetscDrawLGSave(ctx->lg);
6946: }
6947: return(0);
6948: }
6950: /*@C
6951: TSMonitorSPSwarmSolution - Graphically displays phase plots of DMSwarm particles on a scatter plot
6953: Input Parameters:
6954: + ts - the TS context
6955: . step - current time-step
6956: . ptime - current time
6957: . u - current solution
6958: - dctx - the TSMonitorSPCtx object that contains all the options for the monitoring, this is created with TSMonitorSPCtxCreate()
6960: Options Database:
6961: . -ts_monitor_sp_swarm
6963: Level: intermediate
6965: @*/
6966: PetscErrorCode TSMonitorSPSwarmSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
6967: {
6968: PetscErrorCode ierr;
6969: TSMonitorSPCtx ctx = (TSMonitorSPCtx)dctx;
6970: const PetscScalar *yy;
6971: PetscReal *y,*x;
6972: PetscInt Np, p, dim=2;
6973: DM dm;
6977: if (step < 0) return(0); /* -1 indicates interpolated solution */
6978: if (!step) {
6979: PetscDrawAxis axis;
6980: PetscDrawSPGetAxis(ctx->sp,&axis);
6981: PetscDrawAxisSetLabels(axis,"Particles","X","Y");
6982: PetscDrawAxisSetLimits(axis, -5, 5, -5, 5);
6983: PetscDrawAxisSetHoldLimits(axis, PETSC_TRUE);
6984: TSGetDM(ts, &dm);
6985: DMGetDimension(dm, &dim);
6986: if (dim!=2) SETERRQ(PETSC_COMM_SELF, ierr, "Dimensions improper for monitor arguments! Current support: two dimensions.");
6987: VecGetLocalSize(u, &Np);
6988: Np /= 2*dim;
6989: PetscDrawSPSetDimension(ctx->sp, Np);
6990: PetscDrawSPReset(ctx->sp);
6991: }
6993: VecGetLocalSize(u, &Np);
6994: Np /= 2*dim;
6995: VecGetArrayRead(u,&yy);
6996: PetscMalloc2(Np, &x, Np, &y);
6997: /* get points from solution vector */
6998: for (p=0; p<Np; ++p){
6999: x[p] = PetscRealPart(yy[2*dim*p]);
7000: y[p] = PetscRealPart(yy[2*dim*p+1]);
7001: }
7002: VecRestoreArrayRead(u,&yy);
7004: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
7005: PetscDrawSPAddPoint(ctx->sp,x,y);
7006: PetscDrawSPDraw(ctx->sp,PETSC_FALSE);
7007: PetscDrawSPSave(ctx->sp);
7008: }
7010: PetscFree2(x, y);
7012: return(0);
7013: }
7017: /*@C
7018: TSMonitorError - Monitors progress of the TS solvers by printing the 2 norm of the error at each timestep
7020: Collective on TS
7022: Input Parameters:
7023: + ts - the TS context
7024: . step - current time-step
7025: . ptime - current time
7026: . u - current solution
7027: - dctx - unused context
7029: Level: intermediate
7031: The user must provide the solution using TSSetSolutionFunction() to use this monitor.
7033: Options Database Keys:
7034: . -ts_monitor_error - create a graphical monitor of error history
7036: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
7037: @*/
7038: PetscErrorCode TSMonitorError(TS ts,PetscInt step,PetscReal ptime,Vec u,PetscViewerAndFormat *vf)
7039: {
7040: PetscErrorCode ierr;
7041: Vec y;
7042: PetscReal nrm;
7043: PetscBool flg;
7046: VecDuplicate(u,&y);
7047: TSComputeSolutionFunction(ts,ptime,y);
7048: VecAXPY(y,-1.0,u);
7049: PetscObjectTypeCompare((PetscObject)vf->viewer,PETSCVIEWERASCII,&flg);
7050: if (flg) {
7051: VecNorm(y,NORM_2,&nrm);
7052: PetscViewerASCIIPrintf(vf->viewer,"2-norm of error %g\n",(double)nrm);
7053: }
7054: PetscObjectTypeCompare((PetscObject)vf->viewer,PETSCVIEWERDRAW,&flg);
7055: if (flg) {
7056: VecView(y,vf->viewer);
7057: }
7058: VecDestroy(&y);
7059: return(0);
7060: }
7062: PetscErrorCode TSMonitorLGSNESIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
7063: {
7064: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
7065: PetscReal x = ptime,y;
7067: PetscInt its;
7070: if (n < 0) return(0); /* -1 indicates interpolated solution */
7071: if (!n) {
7072: PetscDrawAxis axis;
7073: PetscDrawLGGetAxis(ctx->lg,&axis);
7074: PetscDrawAxisSetLabels(axis,"Nonlinear iterations as function of time","Time","SNES Iterations");
7075: PetscDrawLGReset(ctx->lg);
7076: ctx->snes_its = 0;
7077: }
7078: TSGetSNESIterations(ts,&its);
7079: y = its - ctx->snes_its;
7080: PetscDrawLGAddPoint(ctx->lg,&x,&y);
7081: if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
7082: PetscDrawLGDraw(ctx->lg);
7083: PetscDrawLGSave(ctx->lg);
7084: }
7085: ctx->snes_its = its;
7086: return(0);
7087: }
7089: PetscErrorCode TSMonitorLGKSPIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
7090: {
7091: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
7092: PetscReal x = ptime,y;
7094: PetscInt its;
7097: if (n < 0) return(0); /* -1 indicates interpolated solution */
7098: if (!n) {
7099: PetscDrawAxis axis;
7100: PetscDrawLGGetAxis(ctx->lg,&axis);
7101: PetscDrawAxisSetLabels(axis,"Linear iterations as function of time","Time","KSP Iterations");
7102: PetscDrawLGReset(ctx->lg);
7103: ctx->ksp_its = 0;
7104: }
7105: TSGetKSPIterations(ts,&its);
7106: y = its - ctx->ksp_its;
7107: PetscDrawLGAddPoint(ctx->lg,&x,&y);
7108: if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
7109: PetscDrawLGDraw(ctx->lg);
7110: PetscDrawLGSave(ctx->lg);
7111: }
7112: ctx->ksp_its = its;
7113: return(0);
7114: }
7116: /*@
7117: TSComputeLinearStability - computes the linear stability function at a point
7119: Collective on TS
7121: Input Parameters:
7122: + ts - the TS context
7123: - xr,xi - real and imaginary part of input arguments
7125: Output Parameters:
7126: . yr,yi - real and imaginary part of function value
7128: Level: developer
7130: .seealso: TSSetRHSFunction(), TSComputeIFunction()
7131: @*/
7132: PetscErrorCode TSComputeLinearStability(TS ts,PetscReal xr,PetscReal xi,PetscReal *yr,PetscReal *yi)
7133: {
7138: if (!ts->ops->linearstability) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Linearized stability function not provided for this method");
7139: (*ts->ops->linearstability)(ts,xr,xi,yr,yi);
7140: return(0);
7141: }
7143: /* ------------------------------------------------------------------------*/
7144: /*@C
7145: TSMonitorEnvelopeCtxCreate - Creates a context for use with TSMonitorEnvelope()
7147: Collective on TS
7149: Input Parameters:
7150: . ts - the ODE solver object
7152: Output Parameter:
7153: . ctx - the context
7155: Level: intermediate
7157: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError()
7159: @*/
7160: PetscErrorCode TSMonitorEnvelopeCtxCreate(TS ts,TSMonitorEnvelopeCtx *ctx)
7161: {
7165: PetscNew(ctx);
7166: return(0);
7167: }
7169: /*@C
7170: TSMonitorEnvelope - Monitors the maximum and minimum value of each component of the solution
7172: Collective on TS
7174: Input Parameters:
7175: + ts - the TS context
7176: . step - current time-step
7177: . ptime - current time
7178: . u - current solution
7179: - dctx - the envelope context
7181: Options Database:
7182: . -ts_monitor_envelope
7184: Level: intermediate
7186: Notes:
7187: after a solve you can use TSMonitorEnvelopeGetBounds() to access the envelope
7189: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxCreate()
7190: @*/
7191: PetscErrorCode TSMonitorEnvelope(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
7192: {
7193: PetscErrorCode ierr;
7194: TSMonitorEnvelopeCtx ctx = (TSMonitorEnvelopeCtx)dctx;
7197: if (!ctx->max) {
7198: VecDuplicate(u,&ctx->max);
7199: VecDuplicate(u,&ctx->min);
7200: VecCopy(u,ctx->max);
7201: VecCopy(u,ctx->min);
7202: } else {
7203: VecPointwiseMax(ctx->max,u,ctx->max);
7204: VecPointwiseMin(ctx->min,u,ctx->min);
7205: }
7206: return(0);
7207: }
7209: /*@C
7210: TSMonitorEnvelopeGetBounds - Gets the bounds for the components of the solution
7212: Collective on TS
7214: Input Parameter:
7215: . ts - the TS context
7217: Output Parameter:
7218: + max - the maximum values
7219: - min - the minimum values
7221: Notes:
7222: If the TS does not have a TSMonitorEnvelopeCtx associated with it then this function is ignored
7224: Level: intermediate
7226: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables()
7227: @*/
7228: PetscErrorCode TSMonitorEnvelopeGetBounds(TS ts,Vec *max,Vec *min)
7229: {
7230: PetscInt i;
7233: if (max) *max = NULL;
7234: if (min) *min = NULL;
7235: for (i=0; i<ts->numbermonitors; i++) {
7236: if (ts->monitor[i] == TSMonitorEnvelope) {
7237: TSMonitorEnvelopeCtx ctx = (TSMonitorEnvelopeCtx) ts->monitorcontext[i];
7238: if (max) *max = ctx->max;
7239: if (min) *min = ctx->min;
7240: break;
7241: }
7242: }
7243: return(0);
7244: }
7246: /*@C
7247: TSMonitorEnvelopeCtxDestroy - Destroys a context that was created with TSMonitorEnvelopeCtxCreate().
7249: Collective on TSMonitorEnvelopeCtx
7251: Input Parameter:
7252: . ctx - the monitor context
7254: Level: intermediate
7256: .seealso: TSMonitorLGCtxCreate(), TSMonitorSet(), TSMonitorLGTimeStep()
7257: @*/
7258: PetscErrorCode TSMonitorEnvelopeCtxDestroy(TSMonitorEnvelopeCtx *ctx)
7259: {
7263: VecDestroy(&(*ctx)->min);
7264: VecDestroy(&(*ctx)->max);
7265: PetscFree(*ctx);
7266: return(0);
7267: }
7269: /*@
7270: TSRestartStep - Flags the solver to restart the next step
7272: Collective on TS
7274: Input Parameter:
7275: . ts - the TS context obtained from TSCreate()
7277: Level: advanced
7279: Notes:
7280: Multistep methods like BDF or Runge-Kutta methods with FSAL property require restarting the solver in the event of
7281: discontinuities. These discontinuities may be introduced as a consequence of explicitly modifications to the solution
7282: vector (which PETSc attempts to detect and handle) or problem coefficients (which PETSc is not able to detect). For
7283: the sake of correctness and maximum safety, users are expected to call TSRestart() whenever they introduce
7284: discontinuities in callback routines (e.g. prestep and poststep routines, or implicit/rhs function routines with
7285: discontinuous source terms).
7287: .seealso: TSSolve(), TSSetPreStep(), TSSetPostStep()
7288: @*/
7289: PetscErrorCode TSRestartStep(TS ts)
7290: {
7293: ts->steprestart = PETSC_TRUE;
7294: return(0);
7295: }
7297: /*@
7298: TSRollBack - Rolls back one time step
7300: Collective on TS
7302: Input Parameter:
7303: . ts - the TS context obtained from TSCreate()
7305: Level: advanced
7307: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSInterpolate()
7308: @*/
7309: PetscErrorCode TSRollBack(TS ts)
7310: {
7315: if (ts->steprollback) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"TSRollBack already called");
7316: if (!ts->ops->rollback) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSRollBack not implemented for type '%s'",((PetscObject)ts)->type_name);
7317: (*ts->ops->rollback)(ts);
7318: ts->time_step = ts->ptime - ts->ptime_prev;
7319: ts->ptime = ts->ptime_prev;
7320: ts->ptime_prev = ts->ptime_prev_rollback;
7321: ts->steps--;
7322: ts->steprollback = PETSC_TRUE;
7323: return(0);
7324: }
7326: /*@
7327: TSGetStages - Get the number of stages and stage values
7329: Input Parameter:
7330: . ts - the TS context obtained from TSCreate()
7332: Output Parameters:
7333: + ns - the number of stages
7334: - Y - the current stage vectors
7336: Level: advanced
7338: Notes: Both ns and Y can be NULL.
7340: .seealso: TSCreate()
7341: @*/
7342: PetscErrorCode TSGetStages(TS ts,PetscInt *ns,Vec **Y)
7343: {
7350: if (!ts->ops->getstages) {
7351: if (ns) *ns = 0;
7352: if (Y) *Y = NULL;
7353: } else {
7354: (*ts->ops->getstages)(ts,ns,Y);
7355: }
7356: return(0);
7357: }
7359: /*@C
7360: TSComputeIJacobianDefaultColor - Computes the Jacobian using finite differences and coloring to exploit matrix sparsity.
7362: Collective on SNES
7364: Input Parameters:
7365: + ts - the TS context
7366: . t - current timestep
7367: . U - state vector
7368: . Udot - time derivative of state vector
7369: . shift - shift to apply, see note below
7370: - ctx - an optional user context
7372: Output Parameters:
7373: + J - Jacobian matrix (not altered in this routine)
7374: - B - newly computed Jacobian matrix to use with preconditioner (generally the same as J)
7376: Level: intermediate
7378: Notes:
7379: If F(t,U,Udot)=0 is the DAE, the required Jacobian is
7381: dF/dU + shift*dF/dUdot
7383: Most users should not need to explicitly call this routine, as it
7384: is used internally within the nonlinear solvers.
7386: This will first try to get the coloring from the DM. If the DM type has no coloring
7387: routine, then it will try to get the coloring from the matrix. This requires that the
7388: matrix have nonzero entries precomputed.
7390: .seealso: TSSetIJacobian(), MatFDColoringCreate(), MatFDColoringSetFunction()
7391: @*/
7392: PetscErrorCode TSComputeIJacobianDefaultColor(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat J,Mat B,void *ctx)
7393: {
7394: SNES snes;
7395: MatFDColoring color;
7396: PetscBool hascolor, matcolor = PETSC_FALSE;
7400: PetscOptionsGetBool(((PetscObject)ts)->options,((PetscObject) ts)->prefix, "-ts_fd_color_use_mat", &matcolor, NULL);
7401: PetscObjectQuery((PetscObject) B, "TSMatFDColoring", (PetscObject *) &color);
7402: if (!color) {
7403: DM dm;
7404: ISColoring iscoloring;
7406: TSGetDM(ts, &dm);
7407: DMHasColoring(dm, &hascolor);
7408: if (hascolor && !matcolor) {
7409: DMCreateColoring(dm, IS_COLORING_GLOBAL, &iscoloring);
7410: MatFDColoringCreate(B, iscoloring, &color);
7411: MatFDColoringSetFunction(color, (PetscErrorCode (*)(void)) SNESTSFormFunction, (void *) ts);
7412: MatFDColoringSetFromOptions(color);
7413: MatFDColoringSetUp(B, iscoloring, color);
7414: ISColoringDestroy(&iscoloring);
7415: } else {
7416: MatColoring mc;
7418: MatColoringCreate(B, &mc);
7419: MatColoringSetDistance(mc, 2);
7420: MatColoringSetType(mc, MATCOLORINGSL);
7421: MatColoringSetFromOptions(mc);
7422: MatColoringApply(mc, &iscoloring);
7423: MatColoringDestroy(&mc);
7424: MatFDColoringCreate(B, iscoloring, &color);
7425: MatFDColoringSetFunction(color, (PetscErrorCode (*)(void)) SNESTSFormFunction, (void *) ts);
7426: MatFDColoringSetFromOptions(color);
7427: MatFDColoringSetUp(B, iscoloring, color);
7428: ISColoringDestroy(&iscoloring);
7429: }
7430: PetscObjectCompose((PetscObject) B, "TSMatFDColoring", (PetscObject) color);
7431: PetscObjectDereference((PetscObject) color);
7432: }
7433: TSGetSNES(ts, &snes);
7434: MatFDColoringApply(B, color, U, snes);
7435: if (J != B) {
7436: MatAssemblyBegin(J, MAT_FINAL_ASSEMBLY);
7437: MatAssemblyEnd(J, MAT_FINAL_ASSEMBLY);
7438: }
7439: return(0);
7440: }
7442: /*@
7443: TSSetFunctionDomainError - Set a function that tests if the current state vector is valid
7445: Input Parameters:
7446: + ts - the TS context
7447: - func - function called within TSFunctionDomainError
7449: Calling sequence of func:
7450: $ PetscErrorCode func(TS ts,PetscReal time,Vec state,PetscBool reject)
7452: + ts - the TS context
7453: . time - the current time (of the stage)
7454: . state - the state to check if it is valid
7455: - reject - (output parameter) PETSC_FALSE if the state is acceptable, PETSC_TRUE if not acceptable
7457: Level: intermediate
7459: Notes:
7460: If an implicit ODE solver is being used then, in addition to providing this routine, the
7461: user's code should call SNESSetFunctionDomainError() when domain errors occur during
7462: function evaluations where the functions are provided by TSSetIFunction() or TSSetRHSFunction().
7463: Use TSGetSNES() to obtain the SNES object
7465: Developer Notes:
7466: The naming of this function is inconsistent with the SNESSetFunctionDomainError()
7467: since one takes a function pointer and the other does not.
7469: .seealso: TSAdaptCheckStage(), TSFunctionDomainError(), SNESSetFunctionDomainError(), TSGetSNES()
7470: @*/
7472: PetscErrorCode TSSetFunctionDomainError(TS ts, PetscErrorCode (*func)(TS,PetscReal,Vec,PetscBool*))
7473: {
7476: ts->functiondomainerror = func;
7477: return(0);
7478: }
7480: /*@
7481: TSFunctionDomainError - Checks if the current state is valid
7483: Input Parameters:
7484: + ts - the TS context
7485: . stagetime - time of the simulation
7486: - Y - state vector to check.
7488: Output Parameter:
7489: . accept - Set to PETSC_FALSE if the current state vector is valid.
7491: Note:
7492: This function is called by the TS integration routines and calls the user provided function (set with TSSetFunctionDomainError())
7493: to check if the current state is valid.
7495: Level: developer
7497: .seealso: TSSetFunctionDomainError()
7498: @*/
7499: PetscErrorCode TSFunctionDomainError(TS ts,PetscReal stagetime,Vec Y,PetscBool* accept)
7500: {
7503: *accept = PETSC_TRUE;
7504: if (ts->functiondomainerror) {
7505: PetscStackCallStandard((*ts->functiondomainerror),(ts,stagetime,Y,accept));
7506: }
7507: return(0);
7508: }
7510: /*@C
7511: TSClone - This function clones a time step object.
7513: Collective
7515: Input Parameter:
7516: . tsin - The input TS
7518: Output Parameter:
7519: . tsout - The output TS (cloned)
7521: Notes:
7522: This function is used to create a clone of a TS object. It is used in ARKIMEX for initializing the slope for first stage explicit methods. It will likely be replaced in the future with a mechanism of switching methods on the fly.
7524: When using TSDestroy() on a clone the user has to first reset the correct TS reference in the embedded SNES object: e.g.: by running SNES snes_dup=NULL; TSGetSNES(ts,&snes_dup); TSSetSNES(ts,snes_dup);
7526: Level: developer
7528: .seealso: TSCreate(), TSSetType(), TSSetUp(), TSDestroy(), TSSetProblemType()
7529: @*/
7530: PetscErrorCode TSClone(TS tsin, TS *tsout)
7531: {
7532: TS t;
7534: SNES snes_start;
7535: DM dm;
7536: TSType type;
7540: *tsout = NULL;
7542: PetscHeaderCreate(t, TS_CLASSID, "TS", "Time stepping", "TS", PetscObjectComm((PetscObject)tsin), TSDestroy, TSView);
7544: /* General TS description */
7545: t->numbermonitors = 0;
7546: t->setupcalled = 0;
7547: t->ksp_its = 0;
7548: t->snes_its = 0;
7549: t->nwork = 0;
7550: t->rhsjacobian.time = PETSC_MIN_REAL;
7551: t->rhsjacobian.scale = 1.;
7552: t->ijacobian.shift = 1.;
7554: TSGetSNES(tsin,&snes_start);
7555: TSSetSNES(t,snes_start);
7557: TSGetDM(tsin,&dm);
7558: TSSetDM(t,dm);
7560: t->adapt = tsin->adapt;
7561: PetscObjectReference((PetscObject)t->adapt);
7563: t->trajectory = tsin->trajectory;
7564: PetscObjectReference((PetscObject)t->trajectory);
7566: t->event = tsin->event;
7567: if (t->event) t->event->refct++;
7569: t->problem_type = tsin->problem_type;
7570: t->ptime = tsin->ptime;
7571: t->ptime_prev = tsin->ptime_prev;
7572: t->time_step = tsin->time_step;
7573: t->max_time = tsin->max_time;
7574: t->steps = tsin->steps;
7575: t->max_steps = tsin->max_steps;
7576: t->equation_type = tsin->equation_type;
7577: t->atol = tsin->atol;
7578: t->rtol = tsin->rtol;
7579: t->max_snes_failures = tsin->max_snes_failures;
7580: t->max_reject = tsin->max_reject;
7581: t->errorifstepfailed = tsin->errorifstepfailed;
7583: TSGetType(tsin,&type);
7584: TSSetType(t,type);
7586: t->vec_sol = NULL;
7588: t->cfltime = tsin->cfltime;
7589: t->cfltime_local = tsin->cfltime_local;
7590: t->exact_final_time = tsin->exact_final_time;
7592: PetscMemcpy(t->ops,tsin->ops,sizeof(struct _TSOps));
7594: if (((PetscObject)tsin)->fortran_func_pointers) {
7595: PetscInt i;
7596: PetscMalloc((10)*sizeof(void(*)(void)),&((PetscObject)t)->fortran_func_pointers);
7597: for (i=0; i<10; i++) {
7598: ((PetscObject)t)->fortran_func_pointers[i] = ((PetscObject)tsin)->fortran_func_pointers[i];
7599: }
7600: }
7601: *tsout = t;
7602: return(0);
7603: }
7605: static PetscErrorCode RHSWrapperFunction_TSRHSJacobianTest(void* ctx,Vec x,Vec y)
7606: {
7608: TS ts = (TS) ctx;
7611: TSComputeRHSFunction(ts,0,x,y);
7612: return(0);
7613: }
7615: /*@
7616: TSRHSJacobianTest - Compares the multiply routine provided to the MATSHELL with differencing on the TS given RHS function.
7618: Logically Collective on TS
7620: Input Parameters:
7621: TS - the time stepping routine
7623: Output Parameter:
7624: . flg - PETSC_TRUE if the multiply is likely correct
7626: Options Database:
7627: . -ts_rhs_jacobian_test_mult -mat_shell_test_mult_view - run the test at each timestep of the integrator
7629: Level: advanced
7631: Notes:
7632: This only works for problems defined only the RHS function and Jacobian NOT IFunction and IJacobian
7634: .seealso: MatCreateShell(), MatShellGetContext(), MatShellGetOperation(), MatShellTestMultTranspose(), TSRHSJacobianTestTranspose()
7635: @*/
7636: PetscErrorCode TSRHSJacobianTest(TS ts,PetscBool *flg)
7637: {
7638: Mat J,B;
7640: TSRHSJacobian func;
7641: void* ctx;
7644: TSGetRHSJacobian(ts,&J,&B,&func,&ctx);
7645: (*func)(ts,0.0,ts->vec_sol,J,B,ctx);
7646: MatShellTestMult(J,RHSWrapperFunction_TSRHSJacobianTest,ts->vec_sol,ts,flg);
7647: return(0);
7648: }
7650: /*@C
7651: TSRHSJacobianTestTranspose - Compares the multiply transpose routine provided to the MATSHELL with differencing on the TS given RHS function.
7653: Logically Collective on TS
7655: Input Parameters:
7656: TS - the time stepping routine
7658: Output Parameter:
7659: . flg - PETSC_TRUE if the multiply is likely correct
7661: Options Database:
7662: . -ts_rhs_jacobian_test_mult_transpose -mat_shell_test_mult_transpose_view - run the test at each timestep of the integrator
7664: Notes:
7665: This only works for problems defined only the RHS function and Jacobian NOT IFunction and IJacobian
7667: Level: advanced
7669: .seealso: MatCreateShell(), MatShellGetContext(), MatShellGetOperation(), MatShellTestMultTranspose(), TSRHSJacobianTest()
7670: @*/
7671: PetscErrorCode TSRHSJacobianTestTranspose(TS ts,PetscBool *flg)
7672: {
7673: Mat J,B;
7675: void *ctx;
7676: TSRHSJacobian func;
7679: TSGetRHSJacobian(ts,&J,&B,&func,&ctx);
7680: (*func)(ts,0.0,ts->vec_sol,J,B,ctx);
7681: MatShellTestMultTranspose(J,RHSWrapperFunction_TSRHSJacobianTest,ts->vec_sol,ts,flg);
7682: return(0);
7683: }
7685: /*@
7686: TSSetUseSplitRHSFunction - Use the split RHSFunction when a multirate method is used.
7688: Logically collective
7690: Input Parameter:
7691: + ts - timestepping context
7692: - use_splitrhsfunction - PETSC_TRUE indicates that the split RHSFunction will be used
7694: Options Database:
7695: . -ts_use_splitrhsfunction - <true,false>
7697: Notes:
7698: This is only useful for multirate methods
7700: Level: intermediate
7702: .seealso: TSGetUseSplitRHSFunction()
7703: @*/
7704: PetscErrorCode TSSetUseSplitRHSFunction(TS ts, PetscBool use_splitrhsfunction)
7705: {
7708: ts->use_splitrhsfunction = use_splitrhsfunction;
7709: return(0);
7710: }
7712: /*@
7713: TSGetUseSplitRHSFunction - Gets whether to use the split RHSFunction when a multirate method is used.
7715: Not collective
7717: Input Parameter:
7718: . ts - timestepping context
7720: Output Parameter:
7721: . use_splitrhsfunction - PETSC_TRUE indicates that the split RHSFunction will be used
7723: Level: intermediate
7725: .seealso: TSSetUseSplitRHSFunction()
7726: @*/
7727: PetscErrorCode TSGetUseSplitRHSFunction(TS ts, PetscBool *use_splitrhsfunction)
7728: {
7731: *use_splitrhsfunction = ts->use_splitrhsfunction;
7732: return(0);
7733: }
7735: /*@
7736: TSSetMatStructure - sets the relationship between the nonzero structure of the RHS Jacobian matrix to the IJacobian matrix.
7738: Logically Collective on ts
7740: Input Parameters:
7741: + ts - the time-stepper
7742: - str - the structure (the default is UNKNOWN_NONZERO_PATTERN)
7744: Level: intermediate
7746: Notes:
7747: When the relationship between the nonzero structures is known and supplied the solution process can be much faster
7749: .seealso: MatAXPY(), MatStructure
7750: @*/
7751: PetscErrorCode TSSetMatStructure(TS ts,MatStructure str)
7752: {
7755: ts->axpy_pattern = str;
7756: return(0);
7757: }