Actual source code: glee.c

  1: /*
  2:   Code for time stepping with the General Linear with Error Estimation method


  5:   Notes:
  6:   The general system is written as

  8:   Udot = F(t,U)

 10: */
 11: #include <petsc/private/tsimpl.h>
 12: #include <petscdm.h>

 14: static PetscBool  cited = PETSC_FALSE;
 15: static const char citation[] =
 16:   "@ARTICLE{Constantinescu_TR2016b,\n"
 17:   " author = {Constantinescu, E.M.},\n"
 18:   " title = {Estimating Global Errors in Time Stepping},\n"
 19:   " journal = {ArXiv e-prints},\n"
 20:   " year = 2016,\n"
 21:   " adsurl = {http://adsabs.harvard.edu/abs/2015arXiv150305166C}\n}\n";

 23: static TSGLEEType   TSGLEEDefaultType = TSGLEE35;
 24: static PetscBool    TSGLEERegisterAllCalled;
 25: static PetscBool    TSGLEEPackageInitialized;
 26: static PetscInt     explicit_stage_time_id;

 28: typedef struct _GLEETableau *GLEETableau;
 29: struct _GLEETableau {
 30:   char      *name;
 31:   PetscInt   order;               /* Classical approximation order of the method i*/
 32:   PetscInt   s;                   /* Number of stages */
 33:   PetscInt   r;                   /* Number of steps */
 34:   PetscReal  gamma;               /* LTE ratio */
 35:   PetscReal *A,*B,*U,*V,*S,*F,*c; /* Tableau */
 36:   PetscReal *Fembed;              /* Embedded final method coefficients */
 37:   PetscReal *Ferror;              /* Coefficients for computing error   */
 38:   PetscReal *Serror;              /* Coefficients for initializing the error   */
 39:   PetscInt   pinterp;             /* Interpolation order */
 40:   PetscReal *binterp;             /* Interpolation coefficients */
 41:   PetscReal  ccfl;                /* Placeholder for CFL coefficient relative to forward Euler  */
 42: };
 43: typedef struct _GLEETableauLink *GLEETableauLink;
 44: struct _GLEETableauLink {
 45:   struct _GLEETableau tab;
 46:   GLEETableauLink     next;
 47: };
 48: static GLEETableauLink GLEETableauList;

 50: typedef struct {
 51:   GLEETableau  tableau;
 52:   Vec          *Y;         /* Solution vector (along with auxiliary solution y~ or eps) */
 53:   Vec          *X;         /* Temporary solution vector */
 54:   Vec          *YStage;    /* Stage values */
 55:   Vec          *YdotStage; /* Stage right hand side */
 56:   Vec          W;          /* Right-hand-side for implicit stage solve */
 57:   Vec          Ydot;       /* Work vector holding Ydot during residual evaluation */
 58:   Vec          yGErr;      /* Vector holding the global error after a step is completed */
 59:   PetscScalar  *swork;     /* Scalar work (size of the number of stages)*/
 60:   PetscScalar  *rwork;     /* Scalar work (size of the number of steps)*/
 61:   PetscReal    scoeff;     /* shift = scoeff/dt */
 62:   PetscReal    stage_time;
 63:   TSStepStatus status;
 64: } TS_GLEE;

 66: /*MC
 67:      TSGLEE23 - Second order three stage GLEE method

 69:      This method has three stages.
 70:      s = 3, r = 2

 72:      Level: advanced

 74: .seealso: TSGLEE
 75: M*/
 76: /*MC
 77:      TSGLEE24 - Second order four stage GLEE method

 79:      This method has four stages.
 80:      s = 4, r = 2

 82:      Level: advanced

 84: .seealso: TSGLEE
 85: M*/
 86: /*MC
 87:      TSGLEE25i - Second order five stage GLEE method

 89:      This method has five stages.
 90:      s = 5, r = 2

 92:      Level: advanced

 94: .seealso: TSGLEE
 95: M*/
 96: /*MC
 97:      TSGLEE35  - Third order five stage GLEE method

 99:      This method has five stages.
100:      s = 5, r = 2

102:      Level: advanced

104: .seealso: TSGLEE
105: M*/
106: /*MC
107:      TSGLEEEXRK2A  - Second order six stage GLEE method

109:      This method has six stages.
110:      s = 6, r = 2

112:      Level: advanced

114: .seealso: TSGLEE
115: M*/
116: /*MC
117:      TSGLEERK32G1  - Third order eight stage GLEE method

119:      This method has eight stages.
120:      s = 8, r = 2

122:      Level: advanced

124: .seealso: TSGLEE
125: M*/
126: /*MC
127:      TSGLEERK285EX  - Second order nine stage GLEE method

129:      This method has nine stages.
130:      s = 9, r = 2

132:      Level: advanced

134: .seealso: TSGLEE
135: M*/

137: /*@C
138:   TSGLEERegisterAll - Registers all of the General Linear with Error Estimation methods in TSGLEE

140:   Not Collective, but should be called by all processes which will need the schemes to be registered

142:   Level: advanced

144: .seealso:  TSGLEERegisterDestroy()
145: @*/
146: PetscErrorCode TSGLEERegisterAll(void)
147: {

151:   if (TSGLEERegisterAllCalled) return(0);
152:   TSGLEERegisterAllCalled = PETSC_TRUE;

154:   {
155: #define GAMMA 0.5
156:     /* y-eps form */
157:     const PetscInt
158:       p = 1,
159:       s = 3,
160:       r = 2;
161:     const PetscReal
162:       A[3][3]   = {{1.0,0,0},{0,0.5,0},{0,0.5,0.5}},
163:       B[2][3]   = {{1.0,0,0},{-2.0,1.0,1.0}},
164:       U[3][2]   = {{1.0,0},{1.0,0.5},{1.0,0.5}},
165:       V[2][2]   = {{1,0},{0,1}},
166:       S[2]      = {1,0},
167:       F[2]      = {1,0},
168:       Fembed[2] = {1,1-GAMMA},
169:       Ferror[2] = {0,1},
170:       Serror[2] = {1,0};
171:     TSGLEERegister(TSGLEEi1,p,s,r,GAMMA,&A[0][0],&B[0][0],&U[0][0],&V[0][0],S,F,NULL,Fembed,Ferror,Serror,0,NULL);
172:   }
173:   {
174: #undef GAMMA
175: #define GAMMA 0.0
176:     /* y-eps form */
177:     const PetscInt
178:       p = 2,
179:       s = 3,
180:       r = 2;
181:     const PetscReal
182:       A[3][3]   = {{0,0,0},{1,0,0},{0.25,0.25,0}},
183:       B[2][3]   = {{1.0/12.0,1.0/12.0,5.0/6.0},{1.0/12.0,1.0/12.0,-1.0/6.0}},
184:       U[3][2]   = {{1,0},{1,10},{1,-1}},
185:       V[2][2]   = {{1,0},{0,1}},
186:       S[2]      = {1,0},
187:       F[2]      = {1,0},
188:       Fembed[2] = {1,1-GAMMA},
189:       Ferror[2] = {0,1},
190:       Serror[2] = {1,0};
191:     TSGLEERegister(TSGLEE23,p,s,r,GAMMA,&A[0][0],&B[0][0],&U[0][0],&V[0][0],S,F,NULL,Fembed,Ferror,Serror,0,NULL);
192:   }
193:   {
194: #undef GAMMA
195: #define GAMMA 0.0
196:     /* y-y~ form */
197:     const PetscInt
198:       p = 2,
199:       s = 4,
200:       r = 2;
201:     const PetscReal
202:       A[4][4]   = {{0,0,0,0},{0.75,0,0,0},{0.25,29.0/60.0,0,0},{-21.0/44.0,145.0/44.0,-20.0/11.0,0}},
203:       B[2][4]   = {{109.0/275.0,58.0/75.0,-37.0/110.0,1.0/6.0},{3.0/11.0,0,75.0/88.0,-1.0/8.0}},
204:       U[4][2]   = {{0,1},{75.0/58.0,-17.0/58.0},{0,1},{0,1}},
205:       V[2][2]   = {{1,0},{0,1}},
206:       S[2]      = {1,1},
207:       F[2]      = {1,0},
208:       Fembed[2] = {0,1},
209:       Ferror[2] = {-1.0/(1.0-GAMMA),1.0/(1.0-GAMMA)},
210:       Serror[2] = {1.0-GAMMA,1.0};
211:       TSGLEERegister(TSGLEE24,p,s,r,GAMMA,&A[0][0],&B[0][0],&U[0][0],&V[0][0],S,F,NULL,Fembed,Ferror,Serror,0,NULL);
212:   }
213:   {
214: #undef GAMMA
215: #define GAMMA 0.0
216:     /* y-y~ form */
217:     const PetscInt
218:       p = 2,
219:       s = 5,
220:       r = 2;
221:     const PetscReal
222:       A[5][5]   = {{0,0,0,0,0},
223:                    {-0.94079244066783383269,0,0,0,0},
224:                    {0.64228187778301907108,0.10915356933958500042,0,0,0},
225:                    {-0.51764297742287450812,0.74414270351096040738,-0.71404164927824538121,0,0},
226:                    {-0.44696561556825969206,-0.76768425657590196518,0.20111608138142987881,0.93828186737840469796,0}},
227:       B[2][5]   = {{-0.029309178948150356153,-0.49671981884013874923,0.34275801517650053274,0.32941112623949194988,0.85385985637229662276},
228:                    {0.78133219686062535272,0.074238691892675897635,0.57957363498384957966,-0.24638502829674959968,-0.18875949544040123033}},
229:       U[5][2]   = {{0.16911424754448327735,0.83088575245551672265},
230:                    {0.53638465733199574340,0.46361534266800425660},
231:                    {0.39901579167169582526,0.60098420832830417474},
232:                    {0.87689005530618575480,0.12310994469381424520},
233:                    {0.99056100455550913009,0.0094389954444908699092}},
234:       V[2][2]   = {{1,0},{0,1}},
235:       S[2]      = {1,1},
236:       F[2]      = {1,0},
237:       Fembed[2] = {0,1},
238:       Ferror[2] = {-1.0/(1.0-GAMMA),1.0/(1.0-GAMMA)},
239:       Serror[2] = {1.0-GAMMA,1.0};
240:     TSGLEERegister(TSGLEE25I,p,s,r,GAMMA,&A[0][0],&B[0][0],&U[0][0],&V[0][0],S,F,NULL,Fembed,Ferror,Serror,0,NULL);
241:   }
242:   {
243: #undef GAMMA
244: #define GAMMA 0.0
245:     /* y-y~ form */
246:     const PetscInt
247:       p = 3,
248:       s = 5,
249:       r = 2;
250:     const PetscReal
251:       A[5][5]   = {{0,0,0,0,0},
252:                    {- 2169604947363702313.0 /  24313474998937147335.0,0,0,0,0},
253:                    {46526746497697123895.0 /  94116917485856474137.0,-10297879244026594958.0 /  49199457603717988219.0,0,0,0},
254:                    {23364788935845982499.0 /  87425311444725389446.0,-79205144337496116638.0 / 148994349441340815519.0,40051189859317443782.0 /  36487615018004984309.0,0,0},
255:                    {42089522664062539205.0 / 124911313006412840286.0,-15074384760342762939.0 / 137927286865289746282.0,-62274678522253371016.0 / 125918573676298591413.0,13755475729852471739.0 /  79257927066651693390.0,0}},
256:       B[2][5]   = {{61546696837458703723.0 /  56982519523786160813.0,-55810892792806293355.0 / 206957624151308356511.0,24061048952676379087.0 / 158739347956038723465.0,3577972206874351339.0 /   7599733370677197135.0,-59449832954780563947.0 / 137360038685338563670.0},
257:                    {- 9738262186984159168.0 /  99299082461487742983.0,-32797097931948613195.0 /  61521565616362163366.0,42895514606418420631.0 /  71714201188501437336.0,22608567633166065068.0 /  55371917805607957003.0,94655809487476459565.0 / 151517167160302729021.0}},
258:       U[5][2]   = {{70820309139834661559.0 /  80863923579509469826.0,10043614439674808267.0 /  80863923579509469826.0},
259:                    {161694774978034105510.0 / 106187653640211060371.0,-55507121337823045139.0 / 106187653640211060371.0},
260:                    {78486094644566264568.0 /  88171030896733822981.0,9684936252167558413.0 /  88171030896733822981.0},
261:                    {65394922146334854435.0 /  84570853840405479554.0,19175931694070625119.0 /  84570853840405479554.0},
262:                    {8607282770183754108.0 / 108658046436496925911.0,100050763666313171803.0 / 108658046436496925911.0}},
263:       V[2][2]   = {{1,0},{0,1}},
264:       S[2]      = {1,1},
265:       F[2]      = {1,0},
266:       Fembed[2] = {0,1},
267:       Ferror[2] = {-1.0/(1.0-GAMMA),1.0/(1.0-GAMMA)},
268:       Serror[2] = {1.0-GAMMA,1.0};
269:     TSGLEERegister(TSGLEE35,p,s,r,GAMMA,&A[0][0],&B[0][0],&U[0][0],&V[0][0],S,F,NULL,Fembed,Ferror,Serror,0,NULL);
270:   }
271:   {
272: #undef GAMMA
273: #define GAMMA 0.25
274:     /* y-eps form */
275:     const PetscInt
276:       p = 2,
277:       s = 6,
278:       r = 2;
279:     const PetscReal
280:       A[6][6]   = {{0,0,0,0,0,0},
281:                    {1,0,0,0,0,0},
282:                    {0,0,0,0,0,0},
283:                    {0,0,0.5,0,0,0},
284:                    {0,0,0.25,0.25,0,0},
285:                    {0,0,0.25,0.25,0.5,0}},
286:       B[2][6]   = {{0.5,0.5,0,0,0,0},
287:                    {-2.0/3.0,-2.0/3.0,1.0/3.0,1.0/3.0,1.0/3.0,1.0/3.0}},
288:       U[6][2]   = {{1,0},{1,0},{1,0.75},{1,0.75},{1,0.75},{1,0.75}},
289:       V[2][2]   = {{1,0},{0,1}},
290:       S[2]      = {1,0},
291:       F[2]      = {1,0},
292:       Fembed[2] = {1,1-GAMMA},
293:       Ferror[2] = {0,1},
294:       Serror[2] = {1,0};
295:     TSGLEERegister(TSGLEEEXRK2A,p,s,r,GAMMA,&A[0][0],&B[0][0],&U[0][0],&V[0][0],S,F,NULL,Fembed,Ferror,Serror,0,NULL);
296:   }
297:   {
298: #undef GAMMA
299: #define GAMMA 0.0
300:     /* y-eps form */
301:     const PetscInt
302:       p = 3,
303:       s = 8,
304:       r = 2;
305:     const PetscReal
306:       A[8][8]   = {{0,0,0,0,0,0,0,0},
307:                    {0.5,0,0,0,0,0,0,0},
308:                    {-1,2,0,0,0,0,0,0},
309:                    {1.0/6.0,2.0/3.0,1.0/6.0,0,0,0,0,0},
310:                    {0,0,0,0,0,0,0,0},
311:                    {-7.0/24.0,1.0/3.0,1.0/12.0,-1.0/8.0,0.5,0,0,0},
312:                    {7.0/6.0,-4.0/3.0,-1.0/3.0,0.5,-1.0,2.0,0,0},
313:                    {0,0,0,0,1.0/6.0,2.0/3.0,1.0/6.0,0}},
314:       B[2][8]   = {{1.0/6.0,2.0/3.0,1.0/6.0,0,0,0,0,0},
315:                    {-1.0/6.0,-2.0/3.0,-1.0/6.0,0,1.0/6.0,2.0/3.0,1.0/6.0,0}},
316:       U[8][2]   = {{1,0},{1,0},{1,0},{1,0},{1,1},{1,1},{1,1},{1,1}},
317:       V[2][2]   = {{1,0},{0,1}},
318:       S[2]      = {1,0},
319:       F[2]      = {1,0},
320:       Fembed[2] = {1,1-GAMMA},
321:       Ferror[2] = {0,1},
322:       Serror[2] = {1,0};
323:     TSGLEERegister(TSGLEERK32G1,p,s,r,GAMMA,&A[0][0],&B[0][0],&U[0][0],&V[0][0],S,F,NULL,Fembed,Ferror,Serror,0,NULL);
324:   }
325:   {
326: #undef GAMMA
327: #define GAMMA 0.25
328:     /* y-eps form */
329:     const PetscInt
330:       p = 2,
331:       s = 9,
332:       r = 2;
333:     const PetscReal
334:       A[9][9]   = {{0,0,0,0,0,0,0,0,0},
335:                    {0.585786437626904966,0,0,0,0,0,0,0,0},
336:                    {0.149999999999999994,0.849999999999999978,0,0,0,0,0,0,0},
337:                    {0,0,0,0,0,0,0,0,0},
338:                    {0,0,0,0.292893218813452483,0,0,0,0,0},
339:                    {0,0,0,0.0749999999999999972,0.424999999999999989,0,0,0,0},
340:                    {0,0,0,0.176776695296636893,0.176776695296636893,0.146446609406726241,0,0,0},
341:                    {0,0,0,0.176776695296636893,0.176776695296636893,0.146446609406726241,0.292893218813452483,0,0},
342:                    {0,0,0,0.176776695296636893,0.176776695296636893,0.146446609406726241,0.0749999999999999972,0.424999999999999989,0}},
343:       B[2][9]   = {{0.353553390593273786,0.353553390593273786,0.292893218813452483,0,0,0,0,0,0},
344:                    {-0.471404520791031678,-0.471404520791031678,-0.390524291751269959,0.235702260395515839,0.235702260395515839,0.195262145875634979,0.235702260395515839,0.235702260395515839,0.195262145875634979}},
345:       U[9][2]   = {{1,0},{1,0},{1,0},{1,0.75},{1,0.75},{1,0.75},{1,0.75},{1,0.75},{1,0.75}},
346:       V[2][2]   = {{1,0},{0,1}},
347:       S[2]      = {1,0},
348:       F[2]      = {1,0},
349:       Fembed[2] = {1,1-GAMMA},
350:       Ferror[2] = {0,1},
351:       Serror[2] = {1,0};
352:     TSGLEERegister(TSGLEERK285EX,p,s,r,GAMMA,&A[0][0],&B[0][0],&U[0][0],&V[0][0],S,F,NULL,Fembed,Ferror,Serror,0,NULL);
353:   }

355:   return(0);
356: }

358: /*@C
359:    TSGLEERegisterDestroy - Frees the list of schemes that were registered by TSGLEERegister().

361:    Not Collective

363:    Level: advanced

365: .seealso: TSGLEERegister(), TSGLEERegisterAll()
366: @*/
367: PetscErrorCode TSGLEERegisterDestroy(void)
368: {
370:   GLEETableauLink link;

373:   while ((link = GLEETableauList)) {
374:     GLEETableau t = &link->tab;
375:     GLEETableauList = link->next;
376:     PetscFree5(t->A,t->B,t->U,t->V,t->c);
377:     PetscFree2(t->S,t->F);               
378:     PetscFree (t->Fembed);               
379:     PetscFree (t->Ferror);               
380:     PetscFree (t->Serror);               
381:     PetscFree (t->binterp);              
382:     PetscFree (t->name);                 
383:     PetscFree (link);                    
384:   }
385:   TSGLEERegisterAllCalled = PETSC_FALSE;
386:   return(0);
387: }

389: /*@C
390:   TSGLEEInitializePackage - This function initializes everything in the TSGLEE package. It is called
391:   from TSInitializePackage().

393:   Level: developer

395: .seealso: PetscInitialize()
396: @*/
397: PetscErrorCode TSGLEEInitializePackage(void)
398: {

402:   if (TSGLEEPackageInitialized) return(0);
403:   TSGLEEPackageInitialized = PETSC_TRUE;
404:   TSGLEERegisterAll();
405:   PetscObjectComposedDataRegister(&explicit_stage_time_id);
406:   PetscRegisterFinalize(TSGLEEFinalizePackage);
407:   return(0);
408: }

410: /*@C
411:   TSGLEEFinalizePackage - This function destroys everything in the TSGLEE package. It is
412:   called from PetscFinalize().

414:   Level: developer

416: .seealso: PetscFinalize()
417: @*/
418: PetscErrorCode TSGLEEFinalizePackage(void)
419: {

423:   TSGLEEPackageInitialized = PETSC_FALSE;
424:   TSGLEERegisterDestroy();
425:   return(0);
426: }

428: /*@C
429:    TSGLEERegister - register an GLEE scheme by providing the entries in the Butcher tableau

431:    Not Collective, but the same schemes should be registered on all processes on which they will be used

433:    Input Parameters:
434: +  name   - identifier for method
435: .  order  - order of method
436: .  s - number of stages
437: .  r - number of steps
438: .  gamma - LTE ratio
439: .  A - stage coefficients (dimension s*s, row-major)
440: .  B - step completion coefficients (dimension r*s, row-major)
441: .  U - method coefficients (dimension s*r, row-major)
442: .  V - method coefficients (dimension r*r, row-major)
443: .  S - starting coefficients
444: .  F - finishing coefficients
445: .  c - abscissa (dimension s; NULL to use row sums of A)
446: .  Fembed - step completion coefficients for embedded method
447: .  Ferror - error computation coefficients
448: .  Serror - error initialization coefficients
449: .  pinterp - order of interpolation (0 if unavailable)
450: -  binterp - array of interpolation coefficients (NULL if unavailable)

452:    Notes:
453:    Several GLEE methods are provided, this function is only needed to create new methods.

455:    Level: advanced

457: .seealso: TSGLEE
458: @*/
459: PetscErrorCode TSGLEERegister(TSGLEEType name,PetscInt order,PetscInt s, PetscInt r,
460:                               PetscReal gamma,
461:                               const PetscReal A[],const PetscReal B[],
462:                               const PetscReal U[],const PetscReal V[],
463:                               const PetscReal S[],const PetscReal F[],
464:                               const PetscReal c[],
465:                               const PetscReal Fembed[],const PetscReal Ferror[],
466:                               const PetscReal Serror[],
467:                               PetscInt pinterp, const PetscReal binterp[])
468: {
469:   PetscErrorCode    ierr;
470:   GLEETableauLink   link;
471:   GLEETableau       t;
472:   PetscInt          i,j;

475:   TSGLEEInitializePackage();
476:   PetscNew(&link);
477:   t        = &link->tab;
478:   PetscStrallocpy(name,&t->name);
479:   t->order = order;
480:   t->s     = s;
481:   t->r     = r;
482:   t->gamma = gamma;
483:   PetscMalloc5(s*s,&t->A,r*r,&t->V,s,&t->c,r*s,&t->B,s*r,&t->U);
484:   PetscMalloc2(r,&t->S,r,&t->F);
485:   PetscArraycpy(t->A,A,s*s);
486:   PetscArraycpy(t->B,B,r*s);
487:   PetscArraycpy(t->U,U,s*r);
488:   PetscArraycpy(t->V,V,r*r);
489:   PetscArraycpy(t->S,S,r);
490:   PetscArraycpy(t->F,F,r);
491:   if (c) {
492:     PetscArraycpy(t->c,c,s);
493:   } else {
494:     for (i=0; i<s; i++) for (j=0,t->c[i]=0; j<s; j++) t->c[i] += A[i*s+j];
495:   }
496:   PetscMalloc1(r,&t->Fembed);
497:   PetscMalloc1(r,&t->Ferror);
498:   PetscMalloc1(r,&t->Serror);
499:   PetscArraycpy(t->Fembed,Fembed,r);
500:   PetscArraycpy(t->Ferror,Ferror,r);
501:   PetscArraycpy(t->Serror,Serror,r);
502:   t->pinterp = pinterp;
503:   PetscMalloc1(s*pinterp,&t->binterp);
504:   PetscArraycpy(t->binterp,binterp,s*pinterp);

506:   link->next      = GLEETableauList;
507:   GLEETableauList = link;
508:   return(0);
509: }

511: static PetscErrorCode TSEvaluateStep_GLEE(TS ts,PetscInt order,Vec X,PetscBool *done)
512: {
513:   TS_GLEE         *glee = (TS_GLEE*) ts->data;
514:   GLEETableau     tab = glee->tableau;
515:   PetscReal       h, *B = tab->B, *V = tab->V,
516:                   *F = tab->F,
517:                   *Fembed = tab->Fembed;
518:   PetscInt        s = tab->s, r = tab->r, i, j;
519:   Vec             *Y = glee->Y, *YdotStage = glee->YdotStage;
520:   PetscScalar     *ws = glee->swork, *wr = glee->rwork;
521:   PetscErrorCode  ierr;


525:   switch (glee->status) {
526:     case TS_STEP_INCOMPLETE:
527:     case TS_STEP_PENDING:
528:       h = ts->time_step; break;
529:     case TS_STEP_COMPLETE:
530:       h = ts->ptime - ts->ptime_prev; break;
531:     default: SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_PLIB,"Invalid TSStepStatus");
532:   }

534:   if (order == tab->order) {

536:     /* Note: Irrespective of whether status is TS_STEP_INCOMPLETE
537:              or TS_STEP_COMPLETE, glee->X has the solution at the
538:              beginning of the time step. So no need to roll-back.
539:     */
540:     if (glee->status == TS_STEP_INCOMPLETE) {
541:       for (i=0; i<r; i++) {
542:         VecZeroEntries(Y[i]);
543:         for (j=0; j<r; j++) wr[j] = V[i*r+j];
544:         VecMAXPY(Y[i],r,wr,glee->X);
545:         for (j=0; j<s; j++) ws[j] = h*B[i*s+j];
546:         VecMAXPY(Y[i],s,ws,YdotStage);
547:       }
548:       VecZeroEntries(X);
549:       for (j=0; j<r; j++) wr[j] = F[j];
550:       VecMAXPY(X,r,wr,Y);
551:     } else {VecCopy(ts->vec_sol,X);}
552:     return(0);

554:   } else if (order == tab->order-1) {

556:     /* Complete with the embedded method (Fembed) */
557:     for (i=0; i<r; i++) {
558:       VecZeroEntries(Y[i]);
559:       for (j=0; j<r; j++) wr[j] = V[i*r+j];
560:       VecMAXPY(Y[i],r,wr,glee->X);
561:       for (j=0; j<s; j++) ws[j] = h*B[i*s+j];
562:       VecMAXPY(Y[i],s,ws,YdotStage);
563:     }
564:     VecZeroEntries(X);
565:     for (j=0; j<r; j++) wr[j] = Fembed[j];
566:     VecMAXPY(X,r,wr,Y);

568:     if (done) *done = PETSC_TRUE;
569:     return(0);
570:   }
571:   if (done) *done = PETSC_FALSE;
572:   else SETERRQ3(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"GLEE '%s' of order %D cannot evaluate step at order %D",tab->name,tab->order,order);
573:   return(0);
574: }

576: static PetscErrorCode TSStep_GLEE(TS ts)
577: {
578:   TS_GLEE         *glee = (TS_GLEE*)ts->data;
579:   GLEETableau     tab = glee->tableau;
580:   const PetscInt  s = tab->s, r = tab->r;
581:   PetscReal       *A = tab->A, *U = tab->U,
582:                   *F = tab->F,
583:                   *c = tab->c;
584:   Vec             *Y = glee->Y, *X = glee->X,
585:                   *YStage = glee->YStage,
586:                   *YdotStage = glee->YdotStage,
587:                   W = glee->W;
588:   SNES            snes;
589:   PetscScalar     *ws = glee->swork, *wr = glee->rwork;
590:   TSAdapt         adapt;
591:   PetscInt        i,j,reject,next_scheme,its,lits;
592:   PetscReal       next_time_step;
593:   PetscReal       t;
594:   PetscBool       accept;
595:   PetscErrorCode  ierr;

598:   PetscCitationsRegister(citation,&cited);

600:   for (i=0; i<r; i++) { VecCopy(Y[i],X[i]); }

602:   TSGetSNES(ts,&snes);
603:   next_time_step = ts->time_step;
604:   t              = ts->ptime;
605:   accept         = PETSC_TRUE;
606:   glee->status   = TS_STEP_INCOMPLETE;

608:   for (reject=0; reject<ts->max_reject && !ts->reason; reject++,ts->reject++) {

610:     PetscReal h = ts->time_step;
611:     TSPreStep(ts);

613:     for (i=0; i<s; i++) {

615:       glee->stage_time = t + h*c[i];
616:       TSPreStage(ts,glee->stage_time);

618:       if (A[i*s+i] == 0) {  /* Explicit stage */
619:         VecZeroEntries(YStage[i]);
620:         for (j=0; j<r; j++) wr[j] = U[i*r+j];
621:         VecMAXPY(YStage[i],r,wr,X);
622:         for (j=0; j<i; j++) ws[j] = h*A[i*s+j];
623:         VecMAXPY(YStage[i],i,ws,YdotStage);
624:       } else {              /* Implicit stage */
625:         glee->scoeff = 1.0/A[i*s+i];
626:         /* compute right-hand-side */
627:         VecZeroEntries(W);
628:         for (j=0; j<r; j++) wr[j] = U[i*r+j];
629:         VecMAXPY(W,r,wr,X);
630:         for (j=0; j<i; j++) ws[j] = h*A[i*s+j];
631:         VecMAXPY(W,i,ws,YdotStage);
632:         VecScale(W,glee->scoeff/h);
633:         /* set initial guess */
634:         VecCopy(i>0 ? YStage[i-1] : ts->vec_sol,YStage[i]);
635:         /* solve for this stage */
636:         SNESSolve(snes,W,YStage[i]);
637:         SNESGetIterationNumber(snes,&its);
638:         SNESGetLinearSolveIterations(snes,&lits);
639:         ts->snes_its += its; ts->ksp_its += lits;
640:       }
641:       TSGetAdapt(ts,&adapt);
642:       TSAdaptCheckStage(adapt,ts,glee->stage_time,YStage[i],&accept);
643:       if (!accept) goto reject_step;
644:       TSPostStage(ts,glee->stage_time,i,YStage);
645:       TSComputeRHSFunction(ts,t+h*c[i],YStage[i],YdotStage[i]);
646:     }
647:     TSEvaluateStep(ts,tab->order,ts->vec_sol,NULL);
648:     glee->status = TS_STEP_PENDING;

650:     /* Register only the current method as a candidate because we're not supporting multiple candidates yet. */
651:     TSGetAdapt(ts,&adapt);
652:     TSAdaptCandidatesClear(adapt);
653:     TSAdaptCandidateAdd(adapt,tab->name,tab->order,1,tab->ccfl,(PetscReal)tab->s,PETSC_TRUE);
654:     TSAdaptChoose(adapt,ts,ts->time_step,&next_scheme,&next_time_step,&accept);
655:     if (accept) {
656:       /* ignore next_scheme for now */
657:       ts->ptime     += ts->time_step;
658:       ts->time_step  = next_time_step;
659:       glee->status = TS_STEP_COMPLETE;
660:       /* compute and store the global error */
661:       /* Note: this is not needed if TSAdaptGLEE is not used */
662:       TSGetTimeError(ts,0,&(glee->yGErr));
663:       PetscObjectComposedDataSetReal((PetscObject)ts->vec_sol,explicit_stage_time_id,ts->ptime);
664:       break;
665:     } else {                    /* Roll back the current step */
666:       for (j=0; j<r; j++) wr[j] = F[j];
667:       VecMAXPY(ts->vec_sol,r,wr,X);
668:       ts->time_step = next_time_step;
669:       glee->status  = TS_STEP_INCOMPLETE;
670:     }
671: reject_step: continue;
672:   }
673:   if (glee->status != TS_STEP_COMPLETE && !ts->reason) ts->reason = TS_DIVERGED_STEP_REJECTED;
674:   return(0);
675: }

677: static PetscErrorCode TSInterpolate_GLEE(TS ts,PetscReal itime,Vec X)
678: {
679:   TS_GLEE         *glee = (TS_GLEE*)ts->data;
680:   PetscInt        s=glee->tableau->s, pinterp=glee->tableau->pinterp,i,j;
681:   PetscReal       h,tt,t;
682:   PetscScalar     *b;
683:   const PetscReal *B = glee->tableau->binterp;
684:   PetscErrorCode  ierr;

687:   if (!B) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSGLEE %s does not have an interpolation formula",glee->tableau->name);
688:   switch (glee->status) {
689:     case TS_STEP_INCOMPLETE:
690:     case TS_STEP_PENDING:
691:       h = ts->time_step;
692:       t = (itime - ts->ptime)/h;
693:       break;
694:     case TS_STEP_COMPLETE:
695:       h = ts->ptime - ts->ptime_prev;
696:       t = (itime - ts->ptime)/h + 1; /* In the interval [0,1] */
697:       break;
698:     default: SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_PLIB,"Invalid TSStepStatus");
699:   }
700:   PetscMalloc1(s,&b);
701:   for (i=0; i<s; i++) b[i] = 0;
702:   for (j=0,tt=t; j<pinterp; j++,tt*=t) {
703:     for (i=0; i<s; i++) {
704:       b[i]  += h * B[i*pinterp+j] * tt;
705:     }
706:   }
707:   VecCopy(glee->YStage[0],X);
708:   VecMAXPY(X,s,b,glee->YdotStage);
709:   PetscFree(b);
710:   return(0);
711: }

713: /*------------------------------------------------------------*/
714: static PetscErrorCode TSReset_GLEE(TS ts)
715: {
716:   TS_GLEE        *glee = (TS_GLEE*)ts->data;
717:   PetscInt       s, r;

721:   if (!glee->tableau) return(0);
722:   s    = glee->tableau->s;
723:   r    = glee->tableau->r;
724:   VecDestroyVecs(r,&glee->Y);
725:   VecDestroyVecs(r,&glee->X);
726:   VecDestroyVecs(s,&glee->YStage);
727:   VecDestroyVecs(s,&glee->YdotStage);
728:   VecDestroy(&glee->Ydot);
729:   VecDestroy(&glee->yGErr);
730:   VecDestroy(&glee->W);
731:   PetscFree2(glee->swork,glee->rwork);
732:   return(0);
733: }

735: static PetscErrorCode TSGLEEGetVecs(TS ts,DM dm,Vec *Ydot)
736: {
737:   TS_GLEE     *glee = (TS_GLEE*)ts->data;

741:   if (Ydot) {
742:     if (dm && dm != ts->dm) {
743:       DMGetNamedGlobalVector(dm,"TSGLEE_Ydot",Ydot);
744:     } else *Ydot = glee->Ydot;
745:   }
746:   return(0);
747: }


750: static PetscErrorCode TSGLEERestoreVecs(TS ts,DM dm,Vec *Ydot)
751: {

755:   if (Ydot) {
756:     if (dm && dm != ts->dm) {
757:       DMRestoreNamedGlobalVector(dm,"TSGLEE_Ydot",Ydot);
758:     }
759:   }
760:   return(0);
761: }

763: /*
764:   This defines the nonlinear equation that is to be solved with SNES
765: */
766: static PetscErrorCode SNESTSFormFunction_GLEE(SNES snes,Vec X,Vec F,TS ts)
767: {
768:   TS_GLEE       *glee = (TS_GLEE*)ts->data;
769:   DM             dm,dmsave;
770:   Vec            Ydot;
771:   PetscReal      shift = glee->scoeff / ts->time_step;

775:   SNESGetDM(snes,&dm);
776:   TSGLEEGetVecs(ts,dm,&Ydot);
777:   /* Set Ydot = shift*X */
778:   VecCopy(X,Ydot);
779:   VecScale(Ydot,shift);
780:   dmsave = ts->dm;
781:   ts->dm = dm;

783:   TSComputeIFunction(ts,glee->stage_time,X,Ydot,F,PETSC_FALSE);

785:   ts->dm = dmsave;
786:   TSGLEERestoreVecs(ts,dm,&Ydot);
787:   return(0);
788: }

790: static PetscErrorCode SNESTSFormJacobian_GLEE(SNES snes,Vec X,Mat A,Mat B,TS ts)
791: {
792:   TS_GLEE        *glee = (TS_GLEE*)ts->data;
793:   DM             dm,dmsave;
794:   Vec            Ydot;
795:   PetscReal      shift = glee->scoeff / ts->time_step;

799:   SNESGetDM(snes,&dm);
800:   TSGLEEGetVecs(ts,dm,&Ydot);
801:   /* glee->Ydot has already been computed in SNESTSFormFunction_GLEE (SNES guarantees this) */
802:   dmsave = ts->dm;
803:   ts->dm = dm;

805:   TSComputeIJacobian(ts,glee->stage_time,X,Ydot,shift,A,B,PETSC_FALSE);

807:   ts->dm = dmsave;
808:   TSGLEERestoreVecs(ts,dm,&Ydot);
809:   return(0);
810: }

812: static PetscErrorCode DMCoarsenHook_TSGLEE(DM fine,DM coarse,void *ctx)
813: {
815:   return(0);
816: }

818: static PetscErrorCode DMRestrictHook_TSGLEE(DM fine,Mat restrct,Vec rscale,Mat inject,DM coarse,void *ctx)
819: {
821:   return(0);
822: }


825: static PetscErrorCode DMSubDomainHook_TSGLEE(DM dm,DM subdm,void *ctx)
826: {
828:   return(0);
829: }

831: static PetscErrorCode DMSubDomainRestrictHook_TSGLEE(DM dm,VecScatter gscat,VecScatter lscat,DM subdm,void *ctx)
832: {
834:   return(0);
835: }

837: static PetscErrorCode TSSetUp_GLEE(TS ts)
838: {
839:   TS_GLEE        *glee = (TS_GLEE*)ts->data;
840:   GLEETableau    tab;
841:   PetscInt       s,r;
843:   DM             dm;

846:   if (!glee->tableau) {
847:     TSGLEESetType(ts,TSGLEEDefaultType);
848:   }
849:   tab  = glee->tableau;
850:   s    = tab->s;
851:   r    = tab->r;
852:   VecDuplicateVecs(ts->vec_sol,r,&glee->Y);
853:   VecDuplicateVecs(ts->vec_sol,r,&glee->X);
854:   VecDuplicateVecs(ts->vec_sol,s,&glee->YStage);
855:   VecDuplicateVecs(ts->vec_sol,s,&glee->YdotStage);
856:   VecDuplicate(ts->vec_sol,&glee->Ydot);
857:   VecDuplicate(ts->vec_sol,&glee->yGErr);
858:   VecZeroEntries(glee->yGErr);
859:   VecDuplicate(ts->vec_sol,&glee->W);
860:   PetscMalloc2(s,&glee->swork,r,&glee->rwork);
861:   TSGetDM(ts,&dm);
862:   DMCoarsenHookAdd(dm,DMCoarsenHook_TSGLEE,DMRestrictHook_TSGLEE,ts);
863:   DMSubDomainHookAdd(dm,DMSubDomainHook_TSGLEE,DMSubDomainRestrictHook_TSGLEE,ts);
864:   return(0);
865: }

867: PetscErrorCode TSStartingMethod_GLEE(TS ts)
868: {
869:   TS_GLEE        *glee = (TS_GLEE*)ts->data;
870:   GLEETableau    tab  = glee->tableau;
871:   PetscInt       r=tab->r,i;
872:   PetscReal      *S=tab->S;

876:   for (i=0; i<r; i++) {
877:     VecZeroEntries(glee->Y[i]);
878:     VecAXPY(glee->Y[i],S[i],ts->vec_sol);
879:   }

881:   return(0);
882: }


885: /*------------------------------------------------------------*/

887: static PetscErrorCode TSSetFromOptions_GLEE(PetscOptionItems *PetscOptionsObject,TS ts)
888: {
890:   char           gleetype[256];

893:   PetscOptionsHead(PetscOptionsObject,"GLEE ODE solver options");
894:   {
895:     GLEETableauLink link;
896:     PetscInt        count,choice;
897:     PetscBool       flg;
898:     const char      **namelist;

900:     PetscStrncpy(gleetype,TSGLEEDefaultType,sizeof(gleetype));
901:     for (link=GLEETableauList,count=0; link; link=link->next,count++) ;
902:     PetscMalloc1(count,(char***)&namelist);
903:     for (link=GLEETableauList,count=0; link; link=link->next,count++) namelist[count] = link->tab.name;
904:     PetscOptionsEList("-ts_glee_type","Family of GLEE method","TSGLEESetType",(const char*const*)namelist,count,gleetype,&choice,&flg);
905:     TSGLEESetType(ts,flg ? namelist[choice] : gleetype);
906:     PetscFree(namelist);
907:   }
908:   PetscOptionsTail();
909:   return(0);
910: }

912: static PetscErrorCode TSView_GLEE(TS ts,PetscViewer viewer)
913: {
914:   TS_GLEE        *glee   = (TS_GLEE*)ts->data;
915:   GLEETableau    tab  = glee->tableau;
916:   PetscBool      iascii;

920:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
921:   if (iascii) {
922:     TSGLEEType gleetype;
923:     char       buf[512];
924:     TSGLEEGetType(ts,&gleetype);
925:     PetscViewerASCIIPrintf(viewer,"  GLEE type %s\n",gleetype);
926:     PetscFormatRealArray(buf,sizeof(buf),"% 8.6f",tab->s,tab->c);
927:     PetscViewerASCIIPrintf(viewer,"  Abscissa     c = %s\n",buf);
928:     /* Note: print out r as well */
929:   }
930:   return(0);
931: }

933: static PetscErrorCode TSLoad_GLEE(TS ts,PetscViewer viewer)
934: {
936:   SNES           snes;
937:   TSAdapt        tsadapt;

940:   TSGetAdapt(ts,&tsadapt);
941:   TSAdaptLoad(tsadapt,viewer);
942:   TSGetSNES(ts,&snes);
943:   SNESLoad(snes,viewer);
944:   /* function and Jacobian context for SNES when used with TS is always ts object */
945:   SNESSetFunction(snes,NULL,NULL,ts);
946:   SNESSetJacobian(snes,NULL,NULL,NULL,ts);
947:   return(0);
948: }

950: /*@C
951:   TSGLEESetType - Set the type of GLEE scheme

953:   Logically collective

955:   Input Parameter:
956: +  ts - timestepping context
957: -  gleetype - type of GLEE-scheme

959:   Level: intermediate

961: .seealso: TSGLEEGetType(), TSGLEE
962: @*/
963: PetscErrorCode TSGLEESetType(TS ts,TSGLEEType gleetype)
964: {

970:   PetscTryMethod(ts,"TSGLEESetType_C",(TS,TSGLEEType),(ts,gleetype));
971:   return(0);
972: }

974: /*@C
975:   TSGLEEGetType - Get the type of GLEE scheme

977:   Logically collective

979:   Input Parameter:
980: .  ts - timestepping context

982:   Output Parameter:
983: .  gleetype - type of GLEE-scheme

985:   Level: intermediate

987: .seealso: TSGLEESetType()
988: @*/
989: PetscErrorCode TSGLEEGetType(TS ts,TSGLEEType *gleetype)
990: {

995:   PetscUseMethod(ts,"TSGLEEGetType_C",(TS,TSGLEEType*),(ts,gleetype));
996:   return(0);
997: }

999: PetscErrorCode  TSGLEEGetType_GLEE(TS ts,TSGLEEType *gleetype)
1000: {
1001:   TS_GLEE     *glee = (TS_GLEE*)ts->data;

1005:   if (!glee->tableau) {
1006:     TSGLEESetType(ts,TSGLEEDefaultType);
1007:   }
1008:   *gleetype = glee->tableau->name;
1009:   return(0);
1010: }
1011: PetscErrorCode  TSGLEESetType_GLEE(TS ts,TSGLEEType gleetype)
1012: {
1013:   TS_GLEE         *glee = (TS_GLEE*)ts->data;
1014:   PetscErrorCode  ierr;
1015:   PetscBool       match;
1016:   GLEETableauLink link;

1019:   if (glee->tableau) {
1020:     PetscStrcmp(glee->tableau->name,gleetype,&match);
1021:     if (match) return(0);
1022:   }
1023:   for (link = GLEETableauList; link; link=link->next) {
1024:     PetscStrcmp(link->tab.name,gleetype,&match);
1025:     if (match) {
1026:       TSReset_GLEE(ts);
1027:       glee->tableau = &link->tab;
1028:       return(0);
1029:     }
1030:   }
1031:   SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_UNKNOWN_TYPE,"Could not find '%s'",gleetype);
1032: }

1034: static PetscErrorCode  TSGetStages_GLEE(TS ts,PetscInt *ns,Vec **Y)
1035: {
1036:   TS_GLEE *glee = (TS_GLEE*)ts->data;

1039:   if (ns) *ns = glee->tableau->s;
1040:   if (Y)  *Y  = glee->YStage;
1041:   return(0);
1042: }

1044: PetscErrorCode TSGetSolutionComponents_GLEE(TS ts,PetscInt *n,Vec *Y)
1045: {
1046:   TS_GLEE         *glee = (TS_GLEE*)ts->data;
1047:   GLEETableau     tab   = glee->tableau;
1048:   PetscErrorCode  ierr;

1051:   if (!Y) *n = tab->r;
1052:   else {
1053:     if ((*n >= 0) && (*n < tab->r)) {
1054:       VecCopy(glee->Y[*n],*Y);
1055:     } else SETERRQ3(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Second argument (%d) out of range[%d,%d].",*n,0,tab->r-1);
1056:   }
1057:   return(0);
1058: }

1060: PetscErrorCode TSGetAuxSolution_GLEE(TS ts,Vec *X)
1061: {
1062:   TS_GLEE         *glee = (TS_GLEE*)ts->data;
1063:   GLEETableau     tab   = glee->tableau;
1064:   PetscReal       *F    = tab->Fembed;
1065:   PetscInt        r     = tab->r;
1066:   Vec             *Y    = glee->Y;
1067:   PetscScalar     *wr   = glee->rwork;
1068:   PetscInt        i;
1069:   PetscErrorCode  ierr;

1072:   VecZeroEntries(*X);
1073:   for (i=0; i<r; i++) wr[i] = F[i];
1074:   VecMAXPY((*X),r,wr,Y);
1075:   return(0);
1076: }

1078: PetscErrorCode TSGetTimeError_GLEE(TS ts,PetscInt n,Vec *X)
1079: {
1080:   TS_GLEE         *glee = (TS_GLEE*)ts->data;
1081:   GLEETableau     tab   = glee->tableau;
1082:   PetscReal       *F    = tab->Ferror;
1083:   PetscInt        r     = tab->r;
1084:   Vec             *Y    = glee->Y;
1085:   PetscScalar     *wr   = glee->rwork;
1086:   PetscInt        i;
1087:   PetscErrorCode  ierr;

1090:   VecZeroEntries(*X);
1091:   if (n==0){
1092:     for (i=0; i<r; i++) wr[i] = F[i];
1093:     VecMAXPY((*X),r,wr,Y);
1094:   } else if (n==-1) {
1095:     *X=glee->yGErr;
1096:   }
1097:   return(0);
1098: }

1100: PetscErrorCode TSSetTimeError_GLEE(TS ts,Vec X)
1101: {
1102:   TS_GLEE         *glee = (TS_GLEE*)ts->data;
1103:   GLEETableau     tab   = glee->tableau;
1104:   PetscReal       *S    = tab->Serror;
1105:   PetscInt        r     = tab->r,i;
1106:   Vec             *Y    = glee->Y;
1107:   PetscErrorCode  ierr;

1110:   if (r != 2) SETERRQ2(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSSetTimeError_GLEE not supported for '%s' with r=%D.",tab->name,tab->r);
1111:   for (i=1; i<r; i++) {
1112:     VecCopy(ts->vec_sol,Y[i]);
1113:     VecAXPBY(Y[i],S[0],S[1],X);
1114:     VecCopy(X,glee->yGErr);
1115:   }
1116:   return(0);
1117: }

1119: static PetscErrorCode TSDestroy_GLEE(TS ts)
1120: {

1124:   TSReset_GLEE(ts);
1125:   if (ts->dm) {
1126:     DMCoarsenHookRemove(ts->dm,DMCoarsenHook_TSGLEE,DMRestrictHook_TSGLEE,ts);
1127:     DMSubDomainHookRemove(ts->dm,DMSubDomainHook_TSGLEE,DMSubDomainRestrictHook_TSGLEE,ts);
1128:   }
1129:   PetscFree(ts->data);
1130:   PetscObjectComposeFunction((PetscObject)ts,"TSGLEEGetType_C",NULL);
1131:   PetscObjectComposeFunction((PetscObject)ts,"TSGLEESetType_C",NULL);
1132:   return(0);
1133: }

1135: /* ------------------------------------------------------------ */
1136: /*MC
1137:       TSGLEE - ODE and DAE solver using General Linear with Error Estimation schemes

1139:   The user should provide the right hand side of the equation
1140:   using TSSetRHSFunction().

1142:   Notes:
1143:   The default is TSGLEE35, it can be changed with TSGLEESetType() or -ts_glee_type

1145:   Level: beginner

1147: .seealso:  TSCreate(), TS, TSSetType(), TSGLEESetType(), TSGLEEGetType(),
1148:            TSGLEE23, TTSGLEE24, TSGLEE35, TSGLEE25I, TSGLEEEXRK2A,
1149:            TSGLEERK32G1, TSGLEERK285EX, TSGLEEType, TSGLEERegister()

1151: M*/
1152: PETSC_EXTERN PetscErrorCode TSCreate_GLEE(TS ts)
1153: {
1154:   TS_GLEE         *th;
1155:   PetscErrorCode  ierr;

1158:   TSGLEEInitializePackage();

1160:   ts->ops->reset                  = TSReset_GLEE;
1161:   ts->ops->destroy                = TSDestroy_GLEE;
1162:   ts->ops->view                   = TSView_GLEE;
1163:   ts->ops->load                   = TSLoad_GLEE;
1164:   ts->ops->setup                  = TSSetUp_GLEE;
1165:   ts->ops->step                   = TSStep_GLEE;
1166:   ts->ops->interpolate            = TSInterpolate_GLEE;
1167:   ts->ops->evaluatestep           = TSEvaluateStep_GLEE;
1168:   ts->ops->setfromoptions         = TSSetFromOptions_GLEE;
1169:   ts->ops->getstages              = TSGetStages_GLEE;
1170:   ts->ops->snesfunction           = SNESTSFormFunction_GLEE;
1171:   ts->ops->snesjacobian           = SNESTSFormJacobian_GLEE;
1172:   ts->ops->getsolutioncomponents  = TSGetSolutionComponents_GLEE;
1173:   ts->ops->getauxsolution         = TSGetAuxSolution_GLEE;
1174:   ts->ops->gettimeerror           = TSGetTimeError_GLEE;
1175:   ts->ops->settimeerror           = TSSetTimeError_GLEE;
1176:   ts->ops->startingmethod         = TSStartingMethod_GLEE;
1177:   ts->default_adapt_type          = TSADAPTGLEE;

1179:   ts->usessnes = PETSC_TRUE;

1181:   PetscNewLog(ts,&th);
1182:   ts->data = (void*)th;

1184:   PetscObjectComposeFunction((PetscObject)ts,"TSGLEEGetType_C",TSGLEEGetType_GLEE);
1185:   PetscObjectComposeFunction((PetscObject)ts,"TSGLEESetType_C",TSGLEESetType_GLEE);
1186:   return(0);
1187: }