Actual source code: fe.c
1: /* Basis Jet Tabulation
3: We would like to tabulate the nodal basis functions and derivatives at a set of points, usually quadrature points. We
4: follow here the derviation in http://www.math.ttu.edu/~kirby/papers/fiat-toms-2004.pdf. The nodal basis $\psi_i$ can
5: be expressed in terms of a prime basis $\phi_i$ which can be stably evaluated. In PETSc, we will use the Legendre basis
6: as a prime basis.
8: \psi_i = \sum_k \alpha_{ki} \phi_k
10: Our nodal basis is defined in terms of the dual basis $n_j$
12: n_j \cdot \psi_i = \delta_{ji}
14: and we may act on the first equation to obtain
16: n_j \cdot \psi_i = \sum_k \alpha_{ki} n_j \cdot \phi_k
17: \delta_{ji} = \sum_k \alpha_{ki} V_{jk}
18: I = V \alpha
20: so the coefficients of the nodal basis in the prime basis are
22: \alpha = V^{-1}
24: We will define the dual basis vectors $n_j$ using a quadrature rule.
26: Right now, we will just use the polynomial spaces P^k. I know some elements use the space of symmetric polynomials
27: (I think Nedelec), but we will neglect this for now. Constraints in the space, e.g. Arnold-Winther elements, can
28: be implemented exactly as in FIAT using functionals $L_j$.
30: I will have to count the degrees correctly for the Legendre product when we are on simplices.
32: We will have three objects:
33: - Space, P: this just need point evaluation I think
34: - Dual Space, P'+K: This looks like a set of functionals that can act on members of P, each n is defined by a Q
35: - FEM: This keeps {P, P', Q}
36: */
37: #include <petsc/private/petscfeimpl.h>
38: #include <petscdmplex.h>
40: PetscBool FEcite = PETSC_FALSE;
41: const char FECitation[] = "@article{kirby2004,\n"
42: " title = {Algorithm 839: FIAT, a New Paradigm for Computing Finite Element Basis Functions},\n"
43: " journal = {ACM Transactions on Mathematical Software},\n"
44: " author = {Robert C. Kirby},\n"
45: " volume = {30},\n"
46: " number = {4},\n"
47: " pages = {502--516},\n"
48: " doi = {10.1145/1039813.1039820},\n"
49: " year = {2004}\n}\n";
51: PetscClassId PETSCFE_CLASSID = 0;
53: PetscLogEvent PETSCFE_SetUp;
55: PetscFunctionList PetscFEList = NULL;
56: PetscBool PetscFERegisterAllCalled = PETSC_FALSE;
58: /*@C
59: PetscFERegister - Adds a new PetscFE implementation
61: Not Collective
63: Input Parameters:
64: + name - The name of a new user-defined creation routine
65: - create_func - The creation routine itself
67: Notes:
68: PetscFERegister() may be called multiple times to add several user-defined PetscFEs
70: Sample usage:
71: .vb
72: PetscFERegister("my_fe", MyPetscFECreate);
73: .ve
75: Then, your PetscFE type can be chosen with the procedural interface via
76: .vb
77: PetscFECreate(MPI_Comm, PetscFE *);
78: PetscFESetType(PetscFE, "my_fe");
79: .ve
80: or at runtime via the option
81: .vb
82: -petscfe_type my_fe
83: .ve
85: Level: advanced
87: .seealso: PetscFERegisterAll(), PetscFERegisterDestroy()
89: @*/
90: PetscErrorCode PetscFERegister(const char sname[], PetscErrorCode (*function)(PetscFE))
91: {
95: PetscFunctionListAdd(&PetscFEList, sname, function);
96: return(0);
97: }
99: /*@C
100: PetscFESetType - Builds a particular PetscFE
102: Collective on fem
104: Input Parameters:
105: + fem - The PetscFE object
106: - name - The kind of FEM space
108: Options Database Key:
109: . -petscfe_type <type> - Sets the PetscFE type; use -help for a list of available types
111: Level: intermediate
113: .seealso: PetscFEGetType(), PetscFECreate()
114: @*/
115: PetscErrorCode PetscFESetType(PetscFE fem, PetscFEType name)
116: {
117: PetscErrorCode (*r)(PetscFE);
118: PetscBool match;
123: PetscObjectTypeCompare((PetscObject) fem, name, &match);
124: if (match) return(0);
126: if (!PetscFERegisterAllCalled) {PetscFERegisterAll();}
127: PetscFunctionListFind(PetscFEList, name, &r);
128: if (!r) SETERRQ1(PetscObjectComm((PetscObject) fem), PETSC_ERR_ARG_UNKNOWN_TYPE, "Unknown PetscFE type: %s", name);
130: if (fem->ops->destroy) {
131: (*fem->ops->destroy)(fem);
132: fem->ops->destroy = NULL;
133: }
134: (*r)(fem);
135: PetscObjectChangeTypeName((PetscObject) fem, name);
136: return(0);
137: }
139: /*@C
140: PetscFEGetType - Gets the PetscFE type name (as a string) from the object.
142: Not Collective
144: Input Parameter:
145: . fem - The PetscFE
147: Output Parameter:
148: . name - The PetscFE type name
150: Level: intermediate
152: .seealso: PetscFESetType(), PetscFECreate()
153: @*/
154: PetscErrorCode PetscFEGetType(PetscFE fem, PetscFEType *name)
155: {
161: if (!PetscFERegisterAllCalled) {
162: PetscFERegisterAll();
163: }
164: *name = ((PetscObject) fem)->type_name;
165: return(0);
166: }
168: /*@C
169: PetscFEViewFromOptions - View from Options
171: Collective on PetscFE
173: Input Parameters:
174: + A - the PetscFE object
175: . obj - Optional object
176: - name - command line option
178: Level: intermediate
179: .seealso: PetscFE(), PetscFEView(), PetscObjectViewFromOptions(), PetscFECreate()
180: @*/
181: PetscErrorCode PetscFEViewFromOptions(PetscFE A,PetscObject obj,const char name[])
182: {
187: PetscObjectViewFromOptions((PetscObject)A,obj,name);
188: return(0);
189: }
191: /*@C
192: PetscFEView - Views a PetscFE
194: Collective on fem
196: Input Parameter:
197: + fem - the PetscFE object to view
198: - viewer - the viewer
200: Level: beginner
202: .seealso PetscFEDestroy()
203: @*/
204: PetscErrorCode PetscFEView(PetscFE fem, PetscViewer viewer)
205: {
206: PetscBool iascii;
212: if (!viewer) {PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject) fem), &viewer);}
213: PetscObjectPrintClassNamePrefixType((PetscObject)fem, viewer);
214: PetscObjectTypeCompare((PetscObject) viewer, PETSCVIEWERASCII, &iascii);
215: if (fem->ops->view) {(*fem->ops->view)(fem, viewer);}
216: return(0);
217: }
219: /*@
220: PetscFESetFromOptions - sets parameters in a PetscFE from the options database
222: Collective on fem
224: Input Parameter:
225: . fem - the PetscFE object to set options for
227: Options Database:
228: + -petscfe_num_blocks - the number of cell blocks to integrate concurrently
229: - -petscfe_num_batches - the number of cell batches to integrate serially
231: Level: intermediate
233: .seealso PetscFEView()
234: @*/
235: PetscErrorCode PetscFESetFromOptions(PetscFE fem)
236: {
237: const char *defaultType;
238: char name[256];
239: PetscBool flg;
244: if (!((PetscObject) fem)->type_name) {
245: defaultType = PETSCFEBASIC;
246: } else {
247: defaultType = ((PetscObject) fem)->type_name;
248: }
249: if (!PetscFERegisterAllCalled) {PetscFERegisterAll();}
251: PetscObjectOptionsBegin((PetscObject) fem);
252: PetscOptionsFList("-petscfe_type", "Finite element space", "PetscFESetType", PetscFEList, defaultType, name, 256, &flg);
253: if (flg) {
254: PetscFESetType(fem, name);
255: } else if (!((PetscObject) fem)->type_name) {
256: PetscFESetType(fem, defaultType);
257: }
258: PetscOptionsBoundedInt("-petscfe_num_blocks", "The number of cell blocks to integrate concurrently", "PetscSpaceSetTileSizes", fem->numBlocks, &fem->numBlocks, NULL,1);
259: PetscOptionsBoundedInt("-petscfe_num_batches", "The number of cell batches to integrate serially", "PetscSpaceSetTileSizes", fem->numBatches, &fem->numBatches, NULL,1);
260: if (fem->ops->setfromoptions) {
261: (*fem->ops->setfromoptions)(PetscOptionsObject,fem);
262: }
263: /* process any options handlers added with PetscObjectAddOptionsHandler() */
264: PetscObjectProcessOptionsHandlers(PetscOptionsObject,(PetscObject) fem);
265: PetscOptionsEnd();
266: PetscFEViewFromOptions(fem, NULL, "-petscfe_view");
267: return(0);
268: }
270: /*@C
271: PetscFESetUp - Construct data structures for the PetscFE
273: Collective on fem
275: Input Parameter:
276: . fem - the PetscFE object to setup
278: Level: intermediate
280: .seealso PetscFEView(), PetscFEDestroy()
281: @*/
282: PetscErrorCode PetscFESetUp(PetscFE fem)
283: {
288: if (fem->setupcalled) return(0);
289: PetscLogEventBegin(PETSCFE_SetUp, fem, 0, 0, 0);
290: fem->setupcalled = PETSC_TRUE;
291: if (fem->ops->setup) {(*fem->ops->setup)(fem);}
292: PetscLogEventEnd(PETSCFE_SetUp, fem, 0, 0, 0);
293: return(0);
294: }
296: /*@
297: PetscFEDestroy - Destroys a PetscFE object
299: Collective on fem
301: Input Parameter:
302: . fem - the PetscFE object to destroy
304: Level: beginner
306: .seealso PetscFEView()
307: @*/
308: PetscErrorCode PetscFEDestroy(PetscFE *fem)
309: {
313: if (!*fem) return(0);
316: if (--((PetscObject)(*fem))->refct > 0) {*fem = NULL; return(0);}
317: ((PetscObject) (*fem))->refct = 0;
319: if ((*fem)->subspaces) {
320: PetscInt dim, d;
322: PetscDualSpaceGetDimension((*fem)->dualSpace, &dim);
323: for (d = 0; d < dim; ++d) {PetscFEDestroy(&(*fem)->subspaces[d]);}
324: }
325: PetscFree((*fem)->subspaces);
326: PetscFree((*fem)->invV);
327: PetscTabulationDestroy(&(*fem)->T);
328: PetscTabulationDestroy(&(*fem)->Tf);
329: PetscTabulationDestroy(&(*fem)->Tc);
330: PetscSpaceDestroy(&(*fem)->basisSpace);
331: PetscDualSpaceDestroy(&(*fem)->dualSpace);
332: PetscQuadratureDestroy(&(*fem)->quadrature);
333: PetscQuadratureDestroy(&(*fem)->faceQuadrature);
335: if ((*fem)->ops->destroy) {(*(*fem)->ops->destroy)(*fem);}
336: PetscHeaderDestroy(fem);
337: return(0);
338: }
340: /*@
341: PetscFECreate - Creates an empty PetscFE object. The type can then be set with PetscFESetType().
343: Collective
345: Input Parameter:
346: . comm - The communicator for the PetscFE object
348: Output Parameter:
349: . fem - The PetscFE object
351: Level: beginner
353: .seealso: PetscFESetType(), PETSCFEGALERKIN
354: @*/
355: PetscErrorCode PetscFECreate(MPI_Comm comm, PetscFE *fem)
356: {
357: PetscFE f;
362: PetscCitationsRegister(FECitation,&FEcite);
363: *fem = NULL;
364: PetscFEInitializePackage();
366: PetscHeaderCreate(f, PETSCFE_CLASSID, "PetscFE", "Finite Element", "PetscFE", comm, PetscFEDestroy, PetscFEView);
368: f->basisSpace = NULL;
369: f->dualSpace = NULL;
370: f->numComponents = 1;
371: f->subspaces = NULL;
372: f->invV = NULL;
373: f->T = NULL;
374: f->Tf = NULL;
375: f->Tc = NULL;
376: PetscArrayzero(&f->quadrature, 1);
377: PetscArrayzero(&f->faceQuadrature, 1);
378: f->blockSize = 0;
379: f->numBlocks = 1;
380: f->batchSize = 0;
381: f->numBatches = 1;
383: *fem = f;
384: return(0);
385: }
387: /*@
388: PetscFEGetSpatialDimension - Returns the spatial dimension of the element
390: Not collective
392: Input Parameter:
393: . fem - The PetscFE object
395: Output Parameter:
396: . dim - The spatial dimension
398: Level: intermediate
400: .seealso: PetscFECreate()
401: @*/
402: PetscErrorCode PetscFEGetSpatialDimension(PetscFE fem, PetscInt *dim)
403: {
404: DM dm;
410: PetscDualSpaceGetDM(fem->dualSpace, &dm);
411: DMGetDimension(dm, dim);
412: return(0);
413: }
415: /*@
416: PetscFESetNumComponents - Sets the number of components in the element
418: Not collective
420: Input Parameters:
421: + fem - The PetscFE object
422: - comp - The number of field components
424: Level: intermediate
426: .seealso: PetscFECreate()
427: @*/
428: PetscErrorCode PetscFESetNumComponents(PetscFE fem, PetscInt comp)
429: {
432: fem->numComponents = comp;
433: return(0);
434: }
436: /*@
437: PetscFEGetNumComponents - Returns the number of components in the element
439: Not collective
441: Input Parameter:
442: . fem - The PetscFE object
444: Output Parameter:
445: . comp - The number of field components
447: Level: intermediate
449: .seealso: PetscFECreate()
450: @*/
451: PetscErrorCode PetscFEGetNumComponents(PetscFE fem, PetscInt *comp)
452: {
456: *comp = fem->numComponents;
457: return(0);
458: }
460: /*@
461: PetscFESetTileSizes - Sets the tile sizes for evaluation
463: Not collective
465: Input Parameters:
466: + fem - The PetscFE object
467: . blockSize - The number of elements in a block
468: . numBlocks - The number of blocks in a batch
469: . batchSize - The number of elements in a batch
470: - numBatches - The number of batches in a chunk
472: Level: intermediate
474: .seealso: PetscFECreate()
475: @*/
476: PetscErrorCode PetscFESetTileSizes(PetscFE fem, PetscInt blockSize, PetscInt numBlocks, PetscInt batchSize, PetscInt numBatches)
477: {
480: fem->blockSize = blockSize;
481: fem->numBlocks = numBlocks;
482: fem->batchSize = batchSize;
483: fem->numBatches = numBatches;
484: return(0);
485: }
487: /*@
488: PetscFEGetTileSizes - Returns the tile sizes for evaluation
490: Not collective
492: Input Parameter:
493: . fem - The PetscFE object
495: Output Parameters:
496: + blockSize - The number of elements in a block
497: . numBlocks - The number of blocks in a batch
498: . batchSize - The number of elements in a batch
499: - numBatches - The number of batches in a chunk
501: Level: intermediate
503: .seealso: PetscFECreate()
504: @*/
505: PetscErrorCode PetscFEGetTileSizes(PetscFE fem, PetscInt *blockSize, PetscInt *numBlocks, PetscInt *batchSize, PetscInt *numBatches)
506: {
513: if (blockSize) *blockSize = fem->blockSize;
514: if (numBlocks) *numBlocks = fem->numBlocks;
515: if (batchSize) *batchSize = fem->batchSize;
516: if (numBatches) *numBatches = fem->numBatches;
517: return(0);
518: }
520: /*@
521: PetscFEGetBasisSpace - Returns the PetscSpace used for approximation of the solution
523: Not collective
525: Input Parameter:
526: . fem - The PetscFE object
528: Output Parameter:
529: . sp - The PetscSpace object
531: Level: intermediate
533: .seealso: PetscFECreate()
534: @*/
535: PetscErrorCode PetscFEGetBasisSpace(PetscFE fem, PetscSpace *sp)
536: {
540: *sp = fem->basisSpace;
541: return(0);
542: }
544: /*@
545: PetscFESetBasisSpace - Sets the PetscSpace used for approximation of the solution
547: Not collective
549: Input Parameters:
550: + fem - The PetscFE object
551: - sp - The PetscSpace object
553: Level: intermediate
555: .seealso: PetscFECreate()
556: @*/
557: PetscErrorCode PetscFESetBasisSpace(PetscFE fem, PetscSpace sp)
558: {
564: PetscSpaceDestroy(&fem->basisSpace);
565: fem->basisSpace = sp;
566: PetscObjectReference((PetscObject) fem->basisSpace);
567: return(0);
568: }
570: /*@
571: PetscFEGetDualSpace - Returns the PetscDualSpace used to define the inner product
573: Not collective
575: Input Parameter:
576: . fem - The PetscFE object
578: Output Parameter:
579: . sp - The PetscDualSpace object
581: Level: intermediate
583: .seealso: PetscFECreate()
584: @*/
585: PetscErrorCode PetscFEGetDualSpace(PetscFE fem, PetscDualSpace *sp)
586: {
590: *sp = fem->dualSpace;
591: return(0);
592: }
594: /*@
595: PetscFESetDualSpace - Sets the PetscDualSpace used to define the inner product
597: Not collective
599: Input Parameters:
600: + fem - The PetscFE object
601: - sp - The PetscDualSpace object
603: Level: intermediate
605: .seealso: PetscFECreate()
606: @*/
607: PetscErrorCode PetscFESetDualSpace(PetscFE fem, PetscDualSpace sp)
608: {
614: PetscDualSpaceDestroy(&fem->dualSpace);
615: fem->dualSpace = sp;
616: PetscObjectReference((PetscObject) fem->dualSpace);
617: return(0);
618: }
620: /*@
621: PetscFEGetQuadrature - Returns the PetscQuadrature used to calculate inner products
623: Not collective
625: Input Parameter:
626: . fem - The PetscFE object
628: Output Parameter:
629: . q - The PetscQuadrature object
631: Level: intermediate
633: .seealso: PetscFECreate()
634: @*/
635: PetscErrorCode PetscFEGetQuadrature(PetscFE fem, PetscQuadrature *q)
636: {
640: *q = fem->quadrature;
641: return(0);
642: }
644: /*@
645: PetscFESetQuadrature - Sets the PetscQuadrature used to calculate inner products
647: Not collective
649: Input Parameters:
650: + fem - The PetscFE object
651: - q - The PetscQuadrature object
653: Level: intermediate
655: .seealso: PetscFECreate()
656: @*/
657: PetscErrorCode PetscFESetQuadrature(PetscFE fem, PetscQuadrature q)
658: {
659: PetscInt Nc, qNc;
664: if (q == fem->quadrature) return(0);
665: PetscFEGetNumComponents(fem, &Nc);
666: PetscQuadratureGetNumComponents(q, &qNc);
667: if ((qNc != 1) && (Nc != qNc)) SETERRQ2(PetscObjectComm((PetscObject) fem), PETSC_ERR_ARG_SIZ, "FE components %D != Quadrature components %D and non-scalar quadrature", Nc, qNc);
668: PetscTabulationDestroy(&fem->T);
669: PetscTabulationDestroy(&fem->Tc);
670: PetscObjectReference((PetscObject) q);
671: PetscQuadratureDestroy(&fem->quadrature);
672: fem->quadrature = q;
673: return(0);
674: }
676: /*@
677: PetscFEGetFaceQuadrature - Returns the PetscQuadrature used to calculate inner products on faces
679: Not collective
681: Input Parameter:
682: . fem - The PetscFE object
684: Output Parameter:
685: . q - The PetscQuadrature object
687: Level: intermediate
689: .seealso: PetscFECreate()
690: @*/
691: PetscErrorCode PetscFEGetFaceQuadrature(PetscFE fem, PetscQuadrature *q)
692: {
696: *q = fem->faceQuadrature;
697: return(0);
698: }
700: /*@
701: PetscFESetFaceQuadrature - Sets the PetscQuadrature used to calculate inner products on faces
703: Not collective
705: Input Parameters:
706: + fem - The PetscFE object
707: - q - The PetscQuadrature object
709: Level: intermediate
711: .seealso: PetscFECreate()
712: @*/
713: PetscErrorCode PetscFESetFaceQuadrature(PetscFE fem, PetscQuadrature q)
714: {
715: PetscInt Nc, qNc;
720: PetscFEGetNumComponents(fem, &Nc);
721: PetscQuadratureGetNumComponents(q, &qNc);
722: if ((qNc != 1) && (Nc != qNc)) SETERRQ2(PetscObjectComm((PetscObject) fem), PETSC_ERR_ARG_SIZ, "FE components %D != Quadrature components %D and non-scalar quadrature", Nc, qNc);
723: PetscTabulationDestroy(&fem->Tf);
724: PetscQuadratureDestroy(&fem->faceQuadrature);
725: fem->faceQuadrature = q;
726: PetscObjectReference((PetscObject) q);
727: return(0);
728: }
730: /*@
731: PetscFECopyQuadrature - Copy both volumetric and surface quadrature
733: Not collective
735: Input Parameters:
736: + sfe - The PetscFE source for the quadratures
737: - tfe - The PetscFE target for the quadratures
739: Level: intermediate
741: .seealso: PetscFECreate(), PetscFESetQuadrature(), PetscFESetFaceQuadrature()
742: @*/
743: PetscErrorCode PetscFECopyQuadrature(PetscFE sfe, PetscFE tfe)
744: {
745: PetscQuadrature q;
746: PetscErrorCode ierr;
751: PetscFEGetQuadrature(sfe, &q);
752: PetscFESetQuadrature(tfe, q);
753: PetscFEGetFaceQuadrature(sfe, &q);
754: PetscFESetFaceQuadrature(tfe, q);
755: return(0);
756: }
758: /*@C
759: PetscFEGetNumDof - Returns the number of dofs (dual basis vectors) associated to mesh points on the reference cell of a given dimension
761: Not collective
763: Input Parameter:
764: . fem - The PetscFE object
766: Output Parameter:
767: . numDof - Array with the number of dofs per dimension
769: Level: intermediate
771: .seealso: PetscFECreate()
772: @*/
773: PetscErrorCode PetscFEGetNumDof(PetscFE fem, const PetscInt **numDof)
774: {
780: PetscDualSpaceGetNumDof(fem->dualSpace, numDof);
781: return(0);
782: }
784: /*@C
785: PetscFEGetCellTabulation - Returns the tabulation of the basis functions at the quadrature points on the reference cell
787: Not collective
789: Input Parameter:
790: + fem - The PetscFE object
791: - k - The highest derivative we need to tabulate, very often 1
793: Output Parameter:
794: . T - The basis function values and derivatives at quadrature points
796: Note:
797: $ T->T[0] = B[(p*pdim + i)*Nc + c] is the value at point p for basis function i and component c
798: $ T->T[1] = D[((p*pdim + i)*Nc + c)*dim + d] is the derivative value at point p for basis function i, component c, in direction d
799: $ T->T[2] = H[(((p*pdim + i)*Nc + c)*dim + d)*dim + e] is the value at point p for basis function i, component c, in directions d and e
801: Level: intermediate
803: .seealso: PetscFECreateTabulation(), PetscTabulationDestroy()
804: @*/
805: PetscErrorCode PetscFEGetCellTabulation(PetscFE fem, PetscInt k, PetscTabulation *T)
806: {
807: PetscInt npoints;
808: const PetscReal *points;
809: PetscErrorCode ierr;
814: PetscQuadratureGetData(fem->quadrature, NULL, NULL, &npoints, &points, NULL);
815: if (!fem->T) {PetscFECreateTabulation(fem, 1, npoints, points, k, &fem->T);}
816: if (fem->T && k > fem->T->K) SETERRQ2(PetscObjectComm((PetscObject) fem), PETSC_ERR_ARG_OUTOFRANGE, "Requested %D derivatives, but only tabulated %D", k, fem->T->K);
817: *T = fem->T;
818: return(0);
819: }
821: /*@C
822: PetscFEGetFaceTabulation - Returns the tabulation of the basis functions at the face quadrature points for each face of the reference cell
824: Not collective
826: Input Parameter:
827: + fem - The PetscFE object
828: - k - The highest derivative we need to tabulate, very often 1
830: Output Parameters:
831: . Tf - The basis function values and derviatives at face quadrature points
833: Note:
834: $ T->T[0] = Bf[((f*Nq + q)*pdim + i)*Nc + c] is the value at point f,q for basis function i and component c
835: $ T->T[1] = Df[(((f*Nq + q)*pdim + i)*Nc + c)*dim + d] is the derivative value at point f,q for basis function i, component c, in direction d
836: $ T->T[2] = Hf[((((f*Nq + q)*pdim + i)*Nc + c)*dim + d)*dim + e] is the value at point f,q for basis function i, component c, in directions d and e
838: Level: intermediate
840: .seealso: PetscFEGetCellTabulation(), PetscFECreateTabulation(), PetscTabulationDestroy()
841: @*/
842: PetscErrorCode PetscFEGetFaceTabulation(PetscFE fem, PetscInt k, PetscTabulation *Tf)
843: {
844: PetscErrorCode ierr;
849: if (!fem->Tf) {
850: const PetscReal xi0[3] = {-1., -1., -1.};
851: PetscReal v0[3], J[9], detJ;
852: PetscQuadrature fq;
853: PetscDualSpace sp;
854: DM dm;
855: const PetscInt *faces;
856: PetscInt dim, numFaces, f, npoints, q;
857: const PetscReal *points;
858: PetscReal *facePoints;
860: PetscFEGetDualSpace(fem, &sp);
861: PetscDualSpaceGetDM(sp, &dm);
862: DMGetDimension(dm, &dim);
863: DMPlexGetConeSize(dm, 0, &numFaces);
864: DMPlexGetCone(dm, 0, &faces);
865: PetscFEGetFaceQuadrature(fem, &fq);
866: if (fq) {
867: PetscQuadratureGetData(fq, NULL, NULL, &npoints, &points, NULL);
868: PetscMalloc1(numFaces*npoints*dim, &facePoints);
869: for (f = 0; f < numFaces; ++f) {
870: DMPlexComputeCellGeometryFEM(dm, faces[f], NULL, v0, J, NULL, &detJ);
871: for (q = 0; q < npoints; ++q) CoordinatesRefToReal(dim, dim-1, xi0, v0, J, &points[q*(dim-1)], &facePoints[(f*npoints+q)*dim]);
872: }
873: PetscFECreateTabulation(fem, numFaces, npoints, facePoints, k, &fem->Tf);
874: PetscFree(facePoints);
875: }
876: }
877: if (fem->Tf && k > fem->Tf->K) SETERRQ2(PetscObjectComm((PetscObject) fem), PETSC_ERR_ARG_OUTOFRANGE, "Requested %D derivatives, but only tabulated %D", k, fem->Tf->K);
878: *Tf = fem->Tf;
879: return(0);
880: }
882: /*@C
883: PetscFEGetFaceCentroidTabulation - Returns the tabulation of the basis functions at the face centroid points
885: Not collective
887: Input Parameter:
888: . fem - The PetscFE object
890: Output Parameters:
891: . Tc - The basis function values at face centroid points
893: Note:
894: $ T->T[0] = Bf[(f*pdim + i)*Nc + c] is the value at point f for basis function i and component c
896: Level: intermediate
898: .seealso: PetscFEGetFaceTabulation(), PetscFEGetCellTabulation(), PetscFECreateTabulation(), PetscTabulationDestroy()
899: @*/
900: PetscErrorCode PetscFEGetFaceCentroidTabulation(PetscFE fem, PetscTabulation *Tc)
901: {
902: PetscErrorCode ierr;
907: if (!fem->Tc) {
908: PetscDualSpace sp;
909: DM dm;
910: const PetscInt *cone;
911: PetscReal *centroids;
912: PetscInt dim, numFaces, f;
914: PetscFEGetDualSpace(fem, &sp);
915: PetscDualSpaceGetDM(sp, &dm);
916: DMGetDimension(dm, &dim);
917: DMPlexGetConeSize(dm, 0, &numFaces);
918: DMPlexGetCone(dm, 0, &cone);
919: PetscMalloc1(numFaces*dim, ¢roids);
920: for (f = 0; f < numFaces; ++f) {DMPlexComputeCellGeometryFVM(dm, cone[f], NULL, ¢roids[f*dim], NULL);}
921: PetscFECreateTabulation(fem, 1, numFaces, centroids, 0, &fem->Tc);
922: PetscFree(centroids);
923: }
924: *Tc = fem->Tc;
925: return(0);
926: }
928: /*@C
929: PetscFECreateTabulation - Tabulates the basis functions, and perhaps derivatives, at the points provided.
931: Not collective
933: Input Parameters:
934: + fem - The PetscFE object
935: . nrepl - The number of replicas
936: . npoints - The number of tabulation points in a replica
937: . points - The tabulation point coordinates
938: - K - The number of derivatives calculated
940: Output Parameter:
941: . T - The basis function values and derivatives at tabulation points
943: Note:
944: $ T->T[0] = B[(p*pdim + i)*Nc + c] is the value at point p for basis function i and component c
945: $ T->T[1] = D[((p*pdim + i)*Nc + c)*dim + d] is the derivative value at point p for basis function i, component c, in direction d
946: $ T->T[2] = H[(((p*pdim + i)*Nc + c)*dim + d)*dim + e] is the value at point p for basis function i, component c, in directions d and e
948: Level: intermediate
950: .seealso: PetscFEGetCellTabulation(), PetscTabulationDestroy()
951: @*/
952: PetscErrorCode PetscFECreateTabulation(PetscFE fem, PetscInt nrepl, PetscInt npoints, const PetscReal points[], PetscInt K, PetscTabulation *T)
953: {
954: DM dm;
955: PetscDualSpace Q;
956: PetscInt Nb; /* Dimension of FE space P */
957: PetscInt Nc; /* Field components */
958: PetscInt cdim; /* Reference coordinate dimension */
959: PetscInt k;
960: PetscErrorCode ierr;
963: if (!npoints || !fem->dualSpace || K < 0) {
964: *T = NULL;
965: return(0);
966: }
970: PetscFEGetDualSpace(fem, &Q);
971: PetscDualSpaceGetDM(Q, &dm);
972: DMGetDimension(dm, &cdim);
973: PetscDualSpaceGetDimension(Q, &Nb);
974: PetscFEGetNumComponents(fem, &Nc);
975: PetscMalloc1(1, T);
976: (*T)->K = !cdim ? 0 : K;
977: (*T)->Nr = nrepl;
978: (*T)->Np = npoints;
979: (*T)->Nb = Nb;
980: (*T)->Nc = Nc;
981: (*T)->cdim = cdim;
982: PetscMalloc1((*T)->K+1, &(*T)->T);
983: for (k = 0; k <= (*T)->K; ++k) {
984: PetscMalloc1(nrepl*npoints*Nb*Nc*PetscPowInt(cdim, k), &(*T)->T[k]);
985: }
986: (*fem->ops->createtabulation)(fem, nrepl*npoints, points, K, *T);
987: return(0);
988: }
990: /*@C
991: PetscFEComputeTabulation - Tabulates the basis functions, and perhaps derivatives, at the points provided.
993: Not collective
995: Input Parameters:
996: + fem - The PetscFE object
997: . npoints - The number of tabulation points
998: . points - The tabulation point coordinates
999: . K - The number of derivatives calculated
1000: - T - An existing tabulation object with enough allocated space
1002: Output Parameter:
1003: . T - The basis function values and derivatives at tabulation points
1005: Note:
1006: $ T->T[0] = B[(p*pdim + i)*Nc + c] is the value at point p for basis function i and component c
1007: $ T->T[1] = D[((p*pdim + i)*Nc + c)*dim + d] is the derivative value at point p for basis function i, component c, in direction d
1008: $ T->T[2] = H[(((p*pdim + i)*Nc + c)*dim + d)*dim + e] is the value at point p for basis function i, component c, in directions d and e
1010: Level: intermediate
1012: .seealso: PetscFEGetCellTabulation(), PetscTabulationDestroy()
1013: @*/
1014: PetscErrorCode PetscFEComputeTabulation(PetscFE fem, PetscInt npoints, const PetscReal points[], PetscInt K, PetscTabulation T)
1015: {
1019: if (!npoints || !fem->dualSpace || K < 0) return(0);
1023: if (PetscDefined(USE_DEBUG)) {
1024: DM dm;
1025: PetscDualSpace Q;
1026: PetscInt Nb; /* Dimension of FE space P */
1027: PetscInt Nc; /* Field components */
1028: PetscInt cdim; /* Reference coordinate dimension */
1030: PetscFEGetDualSpace(fem, &Q);
1031: PetscDualSpaceGetDM(Q, &dm);
1032: DMGetDimension(dm, &cdim);
1033: PetscDualSpaceGetDimension(Q, &Nb);
1034: PetscFEGetNumComponents(fem, &Nc);
1035: if (T->K != (!cdim ? 0 : K)) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Tabulation K %D must match requested K %D", T->K, !cdim ? 0 : K);
1036: if (T->Nb != Nb) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Tabulation Nb %D must match requested Nb %D", T->Nb, Nb);
1037: if (T->Nc != Nc) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Tabulation Nc %D must match requested Nc %D", T->Nc, Nc);
1038: if (T->cdim != cdim) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Tabulation cdim %D must match requested cdim %D", T->cdim, cdim);
1039: }
1040: T->Nr = 1;
1041: T->Np = npoints;
1042: (*fem->ops->createtabulation)(fem, npoints, points, K, T);
1043: return(0);
1044: }
1046: /*@C
1047: PetscTabulationDestroy - Frees memory from the associated tabulation.
1049: Not collective
1051: Input Parameter:
1052: . T - The tabulation
1054: Level: intermediate
1056: .seealso: PetscFECreateTabulation(), PetscFEGetCellTabulation()
1057: @*/
1058: PetscErrorCode PetscTabulationDestroy(PetscTabulation *T)
1059: {
1060: PetscInt k;
1065: if (!T || !(*T)) return(0);
1066: for (k = 0; k <= (*T)->K; ++k) {PetscFree((*T)->T[k]);}
1067: PetscFree((*T)->T);
1068: PetscFree(*T);
1069: *T = NULL;
1070: return(0);
1071: }
1073: PETSC_EXTERN PetscErrorCode PetscFECreatePointTrace(PetscFE fe, PetscInt refPoint, PetscFE *trFE)
1074: {
1075: PetscSpace bsp, bsubsp;
1076: PetscDualSpace dsp, dsubsp;
1077: PetscInt dim, depth, numComp, i, j, coneSize, order;
1078: PetscFEType type;
1079: DM dm;
1080: DMLabel label;
1081: PetscReal *xi, *v, *J, detJ;
1082: const char *name;
1083: PetscQuadrature origin, fullQuad, subQuad;
1089: PetscFEGetBasisSpace(fe,&bsp);
1090: PetscFEGetDualSpace(fe,&dsp);
1091: PetscDualSpaceGetDM(dsp,&dm);
1092: DMGetDimension(dm,&dim);
1093: DMPlexGetDepthLabel(dm,&label);
1094: DMLabelGetValue(label,refPoint,&depth);
1095: PetscCalloc1(depth,&xi);
1096: PetscMalloc1(dim,&v);
1097: PetscMalloc1(dim*dim,&J);
1098: for (i = 0; i < depth; i++) xi[i] = 0.;
1099: PetscQuadratureCreate(PETSC_COMM_SELF,&origin);
1100: PetscQuadratureSetData(origin,depth,0,1,xi,NULL);
1101: DMPlexComputeCellGeometryFEM(dm,refPoint,origin,v,J,NULL,&detJ);
1102: /* CellGeometryFEM computes the expanded Jacobian, we want the true jacobian */
1103: for (i = 1; i < dim; i++) {
1104: for (j = 0; j < depth; j++) {
1105: J[i * depth + j] = J[i * dim + j];
1106: }
1107: }
1108: PetscQuadratureDestroy(&origin);
1109: PetscDualSpaceGetPointSubspace(dsp,refPoint,&dsubsp);
1110: PetscSpaceCreateSubspace(bsp,dsubsp,v,J,NULL,NULL,PETSC_OWN_POINTER,&bsubsp);
1111: PetscSpaceSetUp(bsubsp);
1112: PetscFECreate(PetscObjectComm((PetscObject)fe),trFE);
1113: PetscFEGetType(fe,&type);
1114: PetscFESetType(*trFE,type);
1115: PetscFEGetNumComponents(fe,&numComp);
1116: PetscFESetNumComponents(*trFE,numComp);
1117: PetscFESetBasisSpace(*trFE,bsubsp);
1118: PetscFESetDualSpace(*trFE,dsubsp);
1119: PetscObjectGetName((PetscObject) fe, &name);
1120: if (name) {PetscFESetName(*trFE, name);}
1121: PetscFEGetQuadrature(fe,&fullQuad);
1122: PetscQuadratureGetOrder(fullQuad,&order);
1123: DMPlexGetConeSize(dm,refPoint,&coneSize);
1124: if (coneSize == 2 * depth) {
1125: PetscDTGaussTensorQuadrature(depth,1,(order + 1)/2,-1.,1.,&subQuad);
1126: } else {
1127: PetscDTStroudConicalQuadrature(depth,1,(order + 1)/2,-1.,1.,&subQuad);
1128: }
1129: PetscFESetQuadrature(*trFE,subQuad);
1130: PetscFESetUp(*trFE);
1131: PetscQuadratureDestroy(&subQuad);
1132: PetscSpaceDestroy(&bsubsp);
1133: return(0);
1134: }
1136: PetscErrorCode PetscFECreateHeightTrace(PetscFE fe, PetscInt height, PetscFE *trFE)
1137: {
1138: PetscInt hStart, hEnd;
1139: PetscDualSpace dsp;
1140: DM dm;
1146: *trFE = NULL;
1147: PetscFEGetDualSpace(fe,&dsp);
1148: PetscDualSpaceGetDM(dsp,&dm);
1149: DMPlexGetHeightStratum(dm,height,&hStart,&hEnd);
1150: if (hEnd <= hStart) return(0);
1151: PetscFECreatePointTrace(fe,hStart,trFE);
1152: return(0);
1153: }
1156: /*@
1157: PetscFEGetDimension - Get the dimension of the finite element space on a cell
1159: Not collective
1161: Input Parameter:
1162: . fe - The PetscFE
1164: Output Parameter:
1165: . dim - The dimension
1167: Level: intermediate
1169: .seealso: PetscFECreate(), PetscSpaceGetDimension(), PetscDualSpaceGetDimension()
1170: @*/
1171: PetscErrorCode PetscFEGetDimension(PetscFE fem, PetscInt *dim)
1172: {
1178: if (fem->ops->getdimension) {(*fem->ops->getdimension)(fem, dim);}
1179: return(0);
1180: }
1182: /*@C
1183: PetscFEPushforward - Map the reference element function to real space
1185: Input Parameters:
1186: + fe - The PetscFE
1187: . fegeom - The cell geometry
1188: . Nv - The number of function values
1189: - vals - The function values
1191: Output Parameter:
1192: . vals - The transformed function values
1194: Level: advanced
1196: Note: This just forwards the call onto PetscDualSpacePushforward().
1198: Note: This only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
1200: .seealso: PetscDualSpacePushforward()
1201: @*/
1202: PetscErrorCode PetscFEPushforward(PetscFE fe, PetscFEGeom *fegeom, PetscInt Nv, PetscScalar vals[])
1203: {
1207: PetscDualSpacePushforward(fe->dualSpace, fegeom, Nv, fe->numComponents, vals);
1208: return(0);
1209: }
1211: /*@C
1212: PetscFEPushforwardGradient - Map the reference element function gradient to real space
1214: Input Parameters:
1215: + fe - The PetscFE
1216: . fegeom - The cell geometry
1217: . Nv - The number of function gradient values
1218: - vals - The function gradient values
1220: Output Parameter:
1221: . vals - The transformed function gradient values
1223: Level: advanced
1225: Note: This just forwards the call onto PetscDualSpacePushforwardGradient().
1227: Note: This only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
1229: .seealso: PetscFEPushforward(), PetscDualSpacePushforwardGradient(), PetscDualSpacePushforward()
1230: @*/
1231: PetscErrorCode PetscFEPushforwardGradient(PetscFE fe, PetscFEGeom *fegeom, PetscInt Nv, PetscScalar vals[])
1232: {
1236: PetscDualSpacePushforwardGradient(fe->dualSpace, fegeom, Nv, fe->numComponents, vals);
1237: return(0);
1238: }
1240: /*@C
1241: PetscFEPushforwardHessian - Map the reference element function Hessian to real space
1243: Input Parameters:
1244: + fe - The PetscFE
1245: . fegeom - The cell geometry
1246: . Nv - The number of function Hessian values
1247: - vals - The function Hessian values
1249: Output Parameter:
1250: . vals - The transformed function Hessian values
1252: Level: advanced
1254: Note: This just forwards the call onto PetscDualSpacePushforwardHessian().
1256: Note: This only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
1258: .seealso: PetscFEPushforward(), PetscDualSpacePushforwardHessian(), PetscDualSpacePushforward()
1259: @*/
1260: PetscErrorCode PetscFEPushforwardHessian(PetscFE fe, PetscFEGeom *fegeom, PetscInt Nv, PetscScalar vals[])
1261: {
1265: PetscDualSpacePushforwardHessian(fe->dualSpace, fegeom, Nv, fe->numComponents, vals);
1266: return(0);
1267: }
1269: /*
1270: Purpose: Compute element vector for chunk of elements
1272: Input:
1273: Sizes:
1274: Ne: number of elements
1275: Nf: number of fields
1276: PetscFE
1277: dim: spatial dimension
1278: Nb: number of basis functions
1279: Nc: number of field components
1280: PetscQuadrature
1281: Nq: number of quadrature points
1283: Geometry:
1284: PetscFEGeom[Ne] possibly *Nq
1285: PetscReal v0s[dim]
1286: PetscReal n[dim]
1287: PetscReal jacobians[dim*dim]
1288: PetscReal jacobianInverses[dim*dim]
1289: PetscReal jacobianDeterminants
1290: FEM:
1291: PetscFE
1292: PetscQuadrature
1293: PetscReal quadPoints[Nq*dim]
1294: PetscReal quadWeights[Nq]
1295: PetscReal basis[Nq*Nb*Nc]
1296: PetscReal basisDer[Nq*Nb*Nc*dim]
1297: PetscScalar coefficients[Ne*Nb*Nc]
1298: PetscScalar elemVec[Ne*Nb*Nc]
1300: Problem:
1301: PetscInt f: the active field
1302: f0, f1
1304: Work Space:
1305: PetscFE
1306: PetscScalar f0[Nq*dim];
1307: PetscScalar f1[Nq*dim*dim];
1308: PetscScalar u[Nc];
1309: PetscScalar gradU[Nc*dim];
1310: PetscReal x[dim];
1311: PetscScalar realSpaceDer[dim];
1313: Purpose: Compute element vector for N_cb batches of elements
1315: Input:
1316: Sizes:
1317: N_cb: Number of serial cell batches
1319: Geometry:
1320: PetscReal v0s[Ne*dim]
1321: PetscReal jacobians[Ne*dim*dim] possibly *Nq
1322: PetscReal jacobianInverses[Ne*dim*dim] possibly *Nq
1323: PetscReal jacobianDeterminants[Ne] possibly *Nq
1324: FEM:
1325: static PetscReal quadPoints[Nq*dim]
1326: static PetscReal quadWeights[Nq]
1327: static PetscReal basis[Nq*Nb*Nc]
1328: static PetscReal basisDer[Nq*Nb*Nc*dim]
1329: PetscScalar coefficients[Ne*Nb*Nc]
1330: PetscScalar elemVec[Ne*Nb*Nc]
1332: ex62.c:
1333: PetscErrorCode PetscFEIntegrateResidualBatch(PetscInt Ne, PetscInt numFields, PetscInt field, PetscQuadrature quad[], const PetscScalar coefficients[],
1334: const PetscReal v0s[], const PetscReal jacobians[], const PetscReal jacobianInverses[], const PetscReal jacobianDeterminants[],
1335: void (*f0_func)(const PetscScalar u[], const PetscScalar gradU[], const PetscReal x[], PetscScalar f0[]),
1336: void (*f1_func)(const PetscScalar u[], const PetscScalar gradU[], const PetscReal x[], PetscScalar f1[]), PetscScalar elemVec[])
1338: ex52.c:
1339: PetscErrorCode IntegrateLaplacianBatchCPU(PetscInt Ne, PetscInt Nb, const PetscScalar coefficients[], const PetscReal jacobianInverses[], const PetscReal jacobianDeterminants[], PetscInt Nq, const PetscReal quadPoints[], const PetscReal quadWeights[], const PetscReal basisTabulation[], const PetscReal basisDerTabulation[], PetscScalar elemVec[], AppCtx *user)
1340: PetscErrorCode IntegrateElasticityBatchCPU(PetscInt Ne, PetscInt Nb, PetscInt Ncomp, const PetscScalar coefficients[], const PetscReal jacobianInverses[], const PetscReal jacobianDeterminants[], PetscInt Nq, const PetscReal quadPoints[], const PetscReal quadWeights[], const PetscReal basisTabulation[], const PetscReal basisDerTabulation[], PetscScalar elemVec[], AppCtx *user)
1342: ex52_integrateElement.cu
1343: __global__ void integrateElementQuadrature(int N_cb, realType *coefficients, realType *jacobianInverses, realType *jacobianDeterminants, realType *elemVec)
1345: PETSC_EXTERN PetscErrorCode IntegrateElementBatchGPU(PetscInt spatial_dim, PetscInt Ne, PetscInt Ncb, PetscInt Nbc, PetscInt Nbl, const PetscScalar coefficients[],
1346: const PetscReal jacobianInverses[], const PetscReal jacobianDeterminants[], PetscScalar elemVec[],
1347: PetscLogEvent event, PetscInt debug, PetscInt pde_op)
1349: ex52_integrateElementOpenCL.c:
1350: PETSC_EXTERN PetscErrorCode IntegrateElementBatchGPU(PetscInt spatial_dim, PetscInt Ne, PetscInt Ncb, PetscInt Nbc, PetscInt N_bl, const PetscScalar coefficients[],
1351: const PetscReal jacobianInverses[], const PetscReal jacobianDeterminants[], PetscScalar elemVec[],
1352: PetscLogEvent event, PetscInt debug, PetscInt pde_op)
1354: __kernel void integrateElementQuadrature(int N_cb, __global float *coefficients, __global float *jacobianInverses, __global float *jacobianDeterminants, __global float *elemVec)
1355: */
1357: /*@C
1358: PetscFEIntegrate - Produce the integral for the given field for a chunk of elements by quadrature integration
1360: Not collective
1362: Input Parameters:
1363: + prob - The PetscDS specifying the discretizations and continuum functions
1364: . field - The field being integrated
1365: . Ne - The number of elements in the chunk
1366: . cgeom - The cell geometry for each cell in the chunk
1367: . coefficients - The array of FEM basis coefficients for the elements
1368: . probAux - The PetscDS specifying the auxiliary discretizations
1369: - coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1371: Output Parameter:
1372: . integral - the integral for this field
1374: Level: intermediate
1376: .seealso: PetscFEIntegrateResidual()
1377: @*/
1378: PetscErrorCode PetscFEIntegrate(PetscDS prob, PetscInt field, PetscInt Ne, PetscFEGeom *cgeom,
1379: const PetscScalar coefficients[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscScalar integral[])
1380: {
1381: PetscFE fe;
1386: PetscDSGetDiscretization(prob, field, (PetscObject *) &fe);
1387: if (fe->ops->integrate) {(*fe->ops->integrate)(prob, field, Ne, cgeom, coefficients, probAux, coefficientsAux, integral);}
1388: return(0);
1389: }
1391: /*@C
1392: PetscFEIntegrateBd - Produce the integral for the given field for a chunk of elements by quadrature integration
1394: Not collective
1396: Input Parameters:
1397: + prob - The PetscDS specifying the discretizations and continuum functions
1398: . field - The field being integrated
1399: . obj_func - The function to be integrated
1400: . Ne - The number of elements in the chunk
1401: . fgeom - The face geometry for each face in the chunk
1402: . coefficients - The array of FEM basis coefficients for the elements
1403: . probAux - The PetscDS specifying the auxiliary discretizations
1404: - coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1406: Output Parameter:
1407: . integral - the integral for this field
1409: Level: intermediate
1411: .seealso: PetscFEIntegrateResidual()
1412: @*/
1413: PetscErrorCode PetscFEIntegrateBd(PetscDS prob, PetscInt field,
1414: void (*obj_func)(PetscInt, PetscInt, PetscInt,
1415: const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[],
1416: const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[],
1417: PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]),
1418: PetscInt Ne, PetscFEGeom *geom, const PetscScalar coefficients[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscScalar integral[])
1419: {
1420: PetscFE fe;
1425: PetscDSGetDiscretization(prob, field, (PetscObject *) &fe);
1426: if (fe->ops->integratebd) {(*fe->ops->integratebd)(prob, field, obj_func, Ne, geom, coefficients, probAux, coefficientsAux, integral);}
1427: return(0);
1428: }
1430: /*@C
1431: PetscFEIntegrateResidual - Produce the element residual vector for a chunk of elements by quadrature integration
1433: Not collective
1435: Input Parameters:
1436: + ds - The PetscDS specifying the discretizations and continuum functions
1437: . key - The (label+value, field) being integrated
1438: . Ne - The number of elements in the chunk
1439: . cgeom - The cell geometry for each cell in the chunk
1440: . coefficients - The array of FEM basis coefficients for the elements
1441: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1442: . probAux - The PetscDS specifying the auxiliary discretizations
1443: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1444: - t - The time
1446: Output Parameter:
1447: . elemVec - the element residual vectors from each element
1449: Note:
1450: $ Loop over batch of elements (e):
1451: $ Loop over quadrature points (q):
1452: $ Make u_q and gradU_q (loops over fields,Nb,Ncomp) and x_q
1453: $ Call f_0 and f_1
1454: $ Loop over element vector entries (f,fc --> i):
1455: $ elemVec[i] += \psi^{fc}_f(q) f0_{fc}(u, \nabla u) + \nabla\psi^{fc}_f(q) \cdot f1_{fc,df}(u, \nabla u)
1457: Level: intermediate
1459: .seealso: PetscFEIntegrateResidual()
1460: @*/
1461: PetscErrorCode PetscFEIntegrateResidual(PetscDS ds, PetscHashFormKey key, PetscInt Ne, PetscFEGeom *cgeom,
1462: const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscScalar elemVec[])
1463: {
1464: PetscFE fe;
1469: PetscDSGetDiscretization(ds, key.field, (PetscObject *) &fe);
1470: if (fe->ops->integrateresidual) {(*fe->ops->integrateresidual)(ds, key, Ne, cgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, elemVec);}
1471: return(0);
1472: }
1474: /*@C
1475: PetscFEIntegrateBdResidual - Produce the element residual vector for a chunk of elements by quadrature integration over a boundary
1477: Not collective
1479: Input Parameters:
1480: + prob - The PetscDS specifying the discretizations and continuum functions
1481: . field - The field being integrated
1482: . Ne - The number of elements in the chunk
1483: . fgeom - The face geometry for each cell in the chunk
1484: . coefficients - The array of FEM basis coefficients for the elements
1485: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1486: . probAux - The PetscDS specifying the auxiliary discretizations
1487: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1488: - t - The time
1490: Output Parameter:
1491: . elemVec - the element residual vectors from each element
1493: Level: intermediate
1495: .seealso: PetscFEIntegrateResidual()
1496: @*/
1497: PetscErrorCode PetscFEIntegrateBdResidual(PetscDS prob, PetscInt field, PetscInt Ne, PetscFEGeom *fgeom,
1498: const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscScalar elemVec[])
1499: {
1500: PetscFE fe;
1505: PetscDSGetDiscretization(prob, field, (PetscObject *) &fe);
1506: if (fe->ops->integratebdresidual) {(*fe->ops->integratebdresidual)(prob, field, Ne, fgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, elemVec);}
1507: return(0);
1508: }
1510: /*@C
1511: PetscFEIntegrateHybridResidual - Produce the element residual vector for a chunk of hybrid element faces by quadrature integration
1513: Not collective
1515: Input Parameters:
1516: + prob - The PetscDS specifying the discretizations and continuum functions
1517: . key - The (label+value, field) being integrated
1518: . Ne - The number of elements in the chunk
1519: . fgeom - The face geometry for each cell in the chunk
1520: . coefficients - The array of FEM basis coefficients for the elements
1521: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1522: . probAux - The PetscDS specifying the auxiliary discretizations
1523: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1524: - t - The time
1526: Output Parameter
1527: . elemVec - the element residual vectors from each element
1529: Level: developer
1531: .seealso: PetscFEIntegrateResidual()
1532: @*/
1533: PetscErrorCode PetscFEIntegrateHybridResidual(PetscDS prob, PetscHashFormKey key, PetscInt Ne, PetscFEGeom *fgeom,
1534: const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscScalar elemVec[])
1535: {
1536: PetscFE fe;
1541: PetscDSGetDiscretization(prob, key.field, (PetscObject *) &fe);
1542: if (fe->ops->integratehybridresidual) {(*fe->ops->integratehybridresidual)(prob, key, Ne, fgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, elemVec);}
1543: return(0);
1544: }
1546: /*@C
1547: PetscFEIntegrateJacobian - Produce the element Jacobian for a chunk of elements by quadrature integration
1549: Not collective
1551: Input Parameters:
1552: + ds - The PetscDS specifying the discretizations and continuum functions
1553: . jtype - The type of matrix pointwise functions that should be used
1554: . key - The (label+value, fieldI*Nf + fieldJ) being integrated
1555: . Ne - The number of elements in the chunk
1556: . cgeom - The cell geometry for each cell in the chunk
1557: . coefficients - The array of FEM basis coefficients for the elements for the Jacobian evaluation point
1558: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1559: . probAux - The PetscDS specifying the auxiliary discretizations
1560: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1561: . t - The time
1562: - u_tShift - A multiplier for the dF/du_t term (as opposed to the dF/du term)
1564: Output Parameter:
1565: . elemMat - the element matrices for the Jacobian from each element
1567: Note:
1568: $ Loop over batch of elements (e):
1569: $ Loop over element matrix entries (f,fc,g,gc --> i,j):
1570: $ Loop over quadrature points (q):
1571: $ Make u_q and gradU_q (loops over fields,Nb,Ncomp)
1572: $ elemMat[i,j] += \psi^{fc}_f(q) g0_{fc,gc}(u, \nabla u) \phi^{gc}_g(q)
1573: $ + \psi^{fc}_f(q) \cdot g1_{fc,gc,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1574: $ + \nabla\psi^{fc}_f(q) \cdot g2_{fc,gc,df}(u, \nabla u) \phi^{gc}_g(q)
1575: $ + \nabla\psi^{fc}_f(q) \cdot g3_{fc,gc,df,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1576: Level: intermediate
1578: .seealso: PetscFEIntegrateResidual()
1579: @*/
1580: PetscErrorCode PetscFEIntegrateJacobian(PetscDS ds, PetscFEJacobianType jtype, PetscHashFormKey key, PetscInt Ne, PetscFEGeom *cgeom,
1581: const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscReal u_tshift, PetscScalar elemMat[])
1582: {
1583: PetscFE fe;
1584: PetscInt Nf;
1589: PetscDSGetNumFields(ds, &Nf);
1590: PetscDSGetDiscretization(ds, key.field / Nf, (PetscObject *) &fe);
1591: if (fe->ops->integratejacobian) {(*fe->ops->integratejacobian)(ds, jtype, key, Ne, cgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, u_tshift, elemMat);}
1592: return(0);
1593: }
1595: /*@C
1596: PetscFEIntegrateBdJacobian - Produce the boundary element Jacobian for a chunk of elements by quadrature integration
1598: Not collective
1600: Input Parameters:
1601: + prob - The PetscDS specifying the discretizations and continuum functions
1602: . fieldI - The test field being integrated
1603: . fieldJ - The basis field being integrated
1604: . Ne - The number of elements in the chunk
1605: . fgeom - The face geometry for each cell in the chunk
1606: . coefficients - The array of FEM basis coefficients for the elements for the Jacobian evaluation point
1607: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1608: . probAux - The PetscDS specifying the auxiliary discretizations
1609: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1610: . t - The time
1611: - u_tShift - A multiplier for the dF/du_t term (as opposed to the dF/du term)
1613: Output Parameter:
1614: . elemMat - the element matrices for the Jacobian from each element
1616: Note:
1617: $ Loop over batch of elements (e):
1618: $ Loop over element matrix entries (f,fc,g,gc --> i,j):
1619: $ Loop over quadrature points (q):
1620: $ Make u_q and gradU_q (loops over fields,Nb,Ncomp)
1621: $ elemMat[i,j] += \psi^{fc}_f(q) g0_{fc,gc}(u, \nabla u) \phi^{gc}_g(q)
1622: $ + \psi^{fc}_f(q) \cdot g1_{fc,gc,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1623: $ + \nabla\psi^{fc}_f(q) \cdot g2_{fc,gc,df}(u, \nabla u) \phi^{gc}_g(q)
1624: $ + \nabla\psi^{fc}_f(q) \cdot g3_{fc,gc,df,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1625: Level: intermediate
1627: .seealso: PetscFEIntegrateJacobian(), PetscFEIntegrateResidual()
1628: @*/
1629: PetscErrorCode PetscFEIntegrateBdJacobian(PetscDS prob, PetscInt fieldI, PetscInt fieldJ, PetscInt Ne, PetscFEGeom *fgeom,
1630: const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscReal u_tshift, PetscScalar elemMat[])
1631: {
1632: PetscFE fe;
1637: PetscDSGetDiscretization(prob, fieldI, (PetscObject *) &fe);
1638: if (fe->ops->integratebdjacobian) {(*fe->ops->integratebdjacobian)(prob, fieldI, fieldJ, Ne, fgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, u_tshift, elemMat);}
1639: return(0);
1640: }
1642: /*@C
1643: PetscFEIntegrateHybridJacobian - Produce the boundary element Jacobian for a chunk of hybrid elements by quadrature integration
1645: Not collective
1647: Input Parameters:
1648: + prob - The PetscDS specifying the discretizations and continuum functions
1649: . jtype - The type of matrix pointwise functions that should be used
1650: . fieldI - The test field being integrated
1651: . fieldJ - The basis field being integrated
1652: . Ne - The number of elements in the chunk
1653: . fgeom - The face geometry for each cell in the chunk
1654: . coefficients - The array of FEM basis coefficients for the elements for the Jacobian evaluation point
1655: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1656: . probAux - The PetscDS specifying the auxiliary discretizations
1657: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1658: . t - The time
1659: - u_tShift - A multiplier for the dF/du_t term (as opposed to the dF/du term)
1661: Output Parameter
1662: . elemMat - the element matrices for the Jacobian from each element
1664: Note:
1665: $ Loop over batch of elements (e):
1666: $ Loop over element matrix entries (f,fc,g,gc --> i,j):
1667: $ Loop over quadrature points (q):
1668: $ Make u_q and gradU_q (loops over fields,Nb,Ncomp)
1669: $ elemMat[i,j] += \psi^{fc}_f(q) g0_{fc,gc}(u, \nabla u) \phi^{gc}_g(q)
1670: $ + \psi^{fc}_f(q) \cdot g1_{fc,gc,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1671: $ + \nabla\psi^{fc}_f(q) \cdot g2_{fc,gc,df}(u, \nabla u) \phi^{gc}_g(q)
1672: $ + \nabla\psi^{fc}_f(q) \cdot g3_{fc,gc,df,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1673: Level: developer
1675: .seealso: PetscFEIntegrateJacobian(), PetscFEIntegrateResidual()
1676: @*/
1677: PetscErrorCode PetscFEIntegrateHybridJacobian(PetscDS prob, PetscFEJacobianType jtype, PetscInt fieldI, PetscInt fieldJ, PetscInt Ne, PetscFEGeom *fgeom,
1678: const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscReal u_tshift, PetscScalar elemMat[])
1679: {
1680: PetscFE fe;
1685: PetscDSGetDiscretization(prob, fieldI, (PetscObject *) &fe);
1686: if (fe->ops->integratehybridjacobian) {(*fe->ops->integratehybridjacobian)(prob, jtype, fieldI, fieldJ, Ne, fgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, u_tshift, elemMat);}
1687: return(0);
1688: }
1690: /*@
1691: PetscFEGetHeightSubspace - Get the subspace of this space for a mesh point of a given height
1693: Input Parameters:
1694: + fe - The finite element space
1695: - height - The height of the Plex point
1697: Output Parameter:
1698: . subfe - The subspace of this FE space
1700: Note: For example, if we want the subspace of this space for a face, we would choose height = 1.
1702: Level: advanced
1704: .seealso: PetscFECreateDefault()
1705: @*/
1706: PetscErrorCode PetscFEGetHeightSubspace(PetscFE fe, PetscInt height, PetscFE *subfe)
1707: {
1708: PetscSpace P, subP;
1709: PetscDualSpace Q, subQ;
1710: PetscQuadrature subq;
1711: PetscFEType fetype;
1712: PetscInt dim, Nc;
1713: PetscErrorCode ierr;
1718: if (height == 0) {
1719: *subfe = fe;
1720: return(0);
1721: }
1722: PetscFEGetBasisSpace(fe, &P);
1723: PetscFEGetDualSpace(fe, &Q);
1724: PetscFEGetNumComponents(fe, &Nc);
1725: PetscFEGetFaceQuadrature(fe, &subq);
1726: PetscDualSpaceGetDimension(Q, &dim);
1727: if (height > dim || height < 0) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Asked for space at height %D for dimension %D space", height, dim);
1728: if (!fe->subspaces) {PetscCalloc1(dim, &fe->subspaces);}
1729: if (height <= dim) {
1730: if (!fe->subspaces[height-1]) {
1731: PetscFE sub = NULL;
1732: const char *name;
1734: PetscSpaceGetHeightSubspace(P, height, &subP);
1735: PetscDualSpaceGetHeightSubspace(Q, height, &subQ);
1736: if (subQ) {
1737: PetscFECreate(PetscObjectComm((PetscObject) fe), &sub);
1738: PetscObjectGetName((PetscObject) fe, &name);
1739: PetscObjectSetName((PetscObject) sub, name);
1740: PetscFEGetType(fe, &fetype);
1741: PetscFESetType(sub, fetype);
1742: PetscFESetBasisSpace(sub, subP);
1743: PetscFESetDualSpace(sub, subQ);
1744: PetscFESetNumComponents(sub, Nc);
1745: PetscFESetUp(sub);
1746: PetscFESetQuadrature(sub, subq);
1747: }
1748: fe->subspaces[height-1] = sub;
1749: }
1750: *subfe = fe->subspaces[height-1];
1751: } else {
1752: *subfe = NULL;
1753: }
1754: return(0);
1755: }
1757: /*@
1758: PetscFERefine - Create a "refined" PetscFE object that refines the reference cell into smaller copies. This is typically used
1759: to precondition a higher order method with a lower order method on a refined mesh having the same number of dofs (but more
1760: sparsity). It is also used to create an interpolation between regularly refined meshes.
1762: Collective on fem
1764: Input Parameter:
1765: . fe - The initial PetscFE
1767: Output Parameter:
1768: . feRef - The refined PetscFE
1770: Level: advanced
1772: .seealso: PetscFEType, PetscFECreate(), PetscFESetType()
1773: @*/
1774: PetscErrorCode PetscFERefine(PetscFE fe, PetscFE *feRef)
1775: {
1776: PetscSpace P, Pref;
1777: PetscDualSpace Q, Qref;
1778: DM K, Kref;
1779: PetscQuadrature q, qref;
1780: const PetscReal *v0, *jac;
1781: PetscInt numComp, numSubelements;
1782: PetscInt cStart, cEnd, c;
1783: PetscDualSpace *cellSpaces;
1784: PetscErrorCode ierr;
1787: PetscFEGetBasisSpace(fe, &P);
1788: PetscFEGetDualSpace(fe, &Q);
1789: PetscFEGetQuadrature(fe, &q);
1790: PetscDualSpaceGetDM(Q, &K);
1791: /* Create space */
1792: PetscObjectReference((PetscObject) P);
1793: Pref = P;
1794: /* Create dual space */
1795: PetscDualSpaceDuplicate(Q, &Qref);
1796: PetscDualSpaceSetType(Qref, PETSCDUALSPACEREFINED);
1797: DMRefine(K, PetscObjectComm((PetscObject) fe), &Kref);
1798: PetscDualSpaceSetDM(Qref, Kref);
1799: DMPlexGetHeightStratum(Kref, 0, &cStart, &cEnd);
1800: PetscMalloc1(cEnd - cStart, &cellSpaces);
1801: /* TODO: fix for non-uniform refinement */
1802: for (c = 0; c < cEnd - cStart; c++) cellSpaces[c] = Q;
1803: PetscDualSpaceRefinedSetCellSpaces(Qref, cellSpaces);
1804: PetscFree(cellSpaces);
1805: DMDestroy(&Kref);
1806: PetscDualSpaceSetUp(Qref);
1807: /* Create element */
1808: PetscFECreate(PetscObjectComm((PetscObject) fe), feRef);
1809: PetscFESetType(*feRef, PETSCFECOMPOSITE);
1810: PetscFESetBasisSpace(*feRef, Pref);
1811: PetscFESetDualSpace(*feRef, Qref);
1812: PetscFEGetNumComponents(fe, &numComp);
1813: PetscFESetNumComponents(*feRef, numComp);
1814: PetscFESetUp(*feRef);
1815: PetscSpaceDestroy(&Pref);
1816: PetscDualSpaceDestroy(&Qref);
1817: /* Create quadrature */
1818: PetscFECompositeGetMapping(*feRef, &numSubelements, &v0, &jac, NULL);
1819: PetscQuadratureExpandComposite(q, numSubelements, v0, jac, &qref);
1820: PetscFESetQuadrature(*feRef, qref);
1821: PetscQuadratureDestroy(&qref);
1822: return(0);
1823: }
1825: /*@C
1826: PetscFECreateDefault - Create a PetscFE for basic FEM computation
1828: Collective
1830: Input Parameters:
1831: + comm - The MPI comm
1832: . dim - The spatial dimension
1833: . Nc - The number of components
1834: . isSimplex - Flag for simplex reference cell, otherwise its a tensor product
1835: . prefix - The options prefix, or NULL
1836: - qorder - The quadrature order or PETSC_DETERMINE to use PetscSpace polynomial degree
1838: Output Parameter:
1839: . fem - The PetscFE object
1841: Note:
1842: Each subobject is SetFromOption() during creation, so that the object may be customized from the command line, using the prefix specified above. See the links below for the particular options available.
1844: Level: beginner
1846: .seealso: PetscSpaceSetFromOptions(), PetscDualSpaceSetFromOptions(), PetscFESetFromOptions(), PetscFECreate(), PetscSpaceCreate(), PetscDualSpaceCreate()
1847: @*/
1848: PetscErrorCode PetscFECreateDefault(MPI_Comm comm, PetscInt dim, PetscInt Nc, PetscBool isSimplex, const char prefix[], PetscInt qorder, PetscFE *fem)
1849: {
1850: PetscQuadrature q, fq;
1851: DM K;
1852: PetscSpace P;
1853: PetscDualSpace Q;
1854: PetscInt order, quadPointsPerEdge;
1855: PetscBool tensor = isSimplex ? PETSC_FALSE : PETSC_TRUE;
1856: PetscErrorCode ierr;
1859: /* Create space */
1860: PetscSpaceCreate(comm, &P);
1861: PetscObjectSetOptionsPrefix((PetscObject) P, prefix);
1862: PetscSpacePolynomialSetTensor(P, tensor);
1863: PetscSpaceSetNumComponents(P, Nc);
1864: PetscSpaceSetNumVariables(P, dim);
1865: PetscSpaceSetFromOptions(P);
1866: PetscSpaceSetUp(P);
1867: PetscSpaceGetDegree(P, &order, NULL);
1868: PetscSpacePolynomialGetTensor(P, &tensor);
1869: /* Create dual space */
1870: PetscDualSpaceCreate(comm, &Q);
1871: PetscDualSpaceSetType(Q,PETSCDUALSPACELAGRANGE);
1872: PetscObjectSetOptionsPrefix((PetscObject) Q, prefix);
1873: PetscDualSpaceCreateReferenceCell(Q, dim, isSimplex, &K);
1874: PetscDualSpaceSetDM(Q, K);
1875: DMDestroy(&K);
1876: PetscDualSpaceSetNumComponents(Q, Nc);
1877: PetscDualSpaceSetOrder(Q, order);
1878: PetscDualSpaceLagrangeSetTensor(Q, tensor);
1879: PetscDualSpaceSetFromOptions(Q);
1880: PetscDualSpaceSetUp(Q);
1881: /* Create element */
1882: PetscFECreate(comm, fem);
1883: PetscObjectSetOptionsPrefix((PetscObject) *fem, prefix);
1884: PetscFESetBasisSpace(*fem, P);
1885: PetscFESetDualSpace(*fem, Q);
1886: PetscFESetNumComponents(*fem, Nc);
1887: PetscFESetFromOptions(*fem);
1888: PetscFESetUp(*fem);
1889: PetscSpaceDestroy(&P);
1890: PetscDualSpaceDestroy(&Q);
1891: /* Create quadrature (with specified order if given) */
1892: qorder = qorder >= 0 ? qorder : order;
1893: PetscObjectOptionsBegin((PetscObject)*fem);
1894: PetscOptionsBoundedInt("-petscfe_default_quadrature_order","Quadrature order is one less than quadrature points per edge","PetscFECreateDefault",qorder,&qorder,NULL,0);
1895: PetscOptionsEnd();
1896: quadPointsPerEdge = PetscMax(qorder + 1,1);
1897: if (isSimplex) {
1898: PetscDTStroudConicalQuadrature(dim, 1, quadPointsPerEdge, -1.0, 1.0, &q);
1899: PetscDTStroudConicalQuadrature(dim-1, 1, quadPointsPerEdge, -1.0, 1.0, &fq);
1900: } else {
1901: PetscDTGaussTensorQuadrature(dim, 1, quadPointsPerEdge, -1.0, 1.0, &q);
1902: PetscDTGaussTensorQuadrature(dim-1, 1, quadPointsPerEdge, -1.0, 1.0, &fq);
1903: }
1904: PetscFESetQuadrature(*fem, q);
1905: PetscFESetFaceQuadrature(*fem, fq);
1906: PetscQuadratureDestroy(&q);
1907: PetscQuadratureDestroy(&fq);
1908: return(0);
1909: }
1911: /*@
1912: PetscFECreateLagrange - Create a PetscFE for the basic Lagrange space of degree k
1914: Collective
1916: Input Parameters:
1917: + comm - The MPI comm
1918: . dim - The spatial dimension
1919: . Nc - The number of components
1920: . isSimplex - Flag for simplex reference cell, otherwise its a tensor product
1921: . k - The degree k of the space
1922: - qorder - The quadrature order or PETSC_DETERMINE to use PetscSpace polynomial degree
1924: Output Parameter:
1925: . fem - The PetscFE object
1927: Level: beginner
1929: Notes:
1930: For simplices, this element is the space of maximum polynomial degree k, otherwise it is a tensor product of 1D polynomials, each with maximal degree k.
1932: .seealso: PetscFECreate(), PetscSpaceCreate(), PetscDualSpaceCreate()
1933: @*/
1934: PetscErrorCode PetscFECreateLagrange(MPI_Comm comm, PetscInt dim, PetscInt Nc, PetscBool isSimplex, PetscInt k, PetscInt qorder, PetscFE *fem)
1935: {
1936: PetscQuadrature q, fq;
1937: DM K;
1938: PetscSpace P;
1939: PetscDualSpace Q;
1940: PetscInt quadPointsPerEdge;
1941: PetscBool tensor = isSimplex ? PETSC_FALSE : PETSC_TRUE;
1942: char name[64];
1943: PetscErrorCode ierr;
1946: /* Create space */
1947: PetscSpaceCreate(comm, &P);
1948: PetscSpaceSetType(P, PETSCSPACEPOLYNOMIAL);
1949: PetscSpacePolynomialSetTensor(P, tensor);
1950: PetscSpaceSetNumComponents(P, Nc);
1951: PetscSpaceSetNumVariables(P, dim);
1952: PetscSpaceSetDegree(P, k, PETSC_DETERMINE);
1953: PetscSpaceSetUp(P);
1954: /* Create dual space */
1955: PetscDualSpaceCreate(comm, &Q);
1956: PetscDualSpaceSetType(Q, PETSCDUALSPACELAGRANGE);
1957: PetscDualSpaceCreateReferenceCell(Q, dim, isSimplex, &K);
1958: PetscDualSpaceSetDM(Q, K);
1959: DMDestroy(&K);
1960: PetscDualSpaceSetNumComponents(Q, Nc);
1961: PetscDualSpaceSetOrder(Q, k);
1962: PetscDualSpaceLagrangeSetTensor(Q, tensor);
1963: PetscDualSpaceSetUp(Q);
1964: /* Create finite element */
1965: PetscFECreate(comm, fem);
1966: PetscSNPrintf(name, sizeof(name), "%s%D", isSimplex? "P" : "Q", k);
1967: PetscObjectSetName((PetscObject) *fem, name);
1968: PetscFESetType(*fem, PETSCFEBASIC);
1969: PetscFESetBasisSpace(*fem, P);
1970: PetscFESetDualSpace(*fem, Q);
1971: PetscFESetNumComponents(*fem, Nc);
1972: PetscFESetUp(*fem);
1973: PetscSpaceDestroy(&P);
1974: PetscDualSpaceDestroy(&Q);
1975: /* Create quadrature (with specified order if given) */
1976: qorder = qorder >= 0 ? qorder : k;
1977: quadPointsPerEdge = PetscMax(qorder + 1,1);
1978: if (isSimplex) {
1979: PetscDTStroudConicalQuadrature(dim, 1, quadPointsPerEdge, -1.0, 1.0, &q);
1980: PetscDTStroudConicalQuadrature(dim-1, 1, quadPointsPerEdge, -1.0, 1.0, &fq);
1981: } else {
1982: PetscDTGaussTensorQuadrature(dim, 1, quadPointsPerEdge, -1.0, 1.0, &q);
1983: PetscDTGaussTensorQuadrature(dim-1, 1, quadPointsPerEdge, -1.0, 1.0, &fq);
1984: }
1985: PetscFESetQuadrature(*fem, q);
1986: PetscFESetFaceQuadrature(*fem, fq);
1987: PetscQuadratureDestroy(&q);
1988: PetscQuadratureDestroy(&fq);
1989: /* Set finite element name */
1990: PetscSNPrintf(name, sizeof(name), "%s%D", isSimplex? "P" : "Q", k);
1991: PetscFESetName(*fem, name);
1992: return(0);
1993: }
1995: /*@C
1996: PetscFESetName - Names the FE and its subobjects
1998: Not collective
2000: Input Parameters:
2001: + fe - The PetscFE
2002: - name - The name
2004: Level: intermediate
2006: .seealso: PetscFECreate(), PetscSpaceCreate(), PetscDualSpaceCreate()
2007: @*/
2008: PetscErrorCode PetscFESetName(PetscFE fe, const char name[])
2009: {
2010: PetscSpace P;
2011: PetscDualSpace Q;
2015: PetscFEGetBasisSpace(fe, &P);
2016: PetscFEGetDualSpace(fe, &Q);
2017: PetscObjectSetName((PetscObject) fe, name);
2018: PetscObjectSetName((PetscObject) P, name);
2019: PetscObjectSetName((PetscObject) Q, name);
2020: return(0);
2021: }
2023: PetscErrorCode PetscFEEvaluateFieldJets_Internal(PetscDS ds, PetscInt Nf, PetscInt r, PetscInt q, PetscTabulation T[], PetscFEGeom *fegeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscScalar u[], PetscScalar u_x[], PetscScalar u_t[])
2024: {
2025: PetscInt dOffset = 0, fOffset = 0, f, g;
2028: for (f = 0; f < Nf; ++f) {
2029: PetscFE fe;
2030: const PetscInt k = ds->jetDegree[f];
2031: const PetscInt cdim = T[f]->cdim;
2032: const PetscInt Nq = T[f]->Np;
2033: const PetscInt Nbf = T[f]->Nb;
2034: const PetscInt Ncf = T[f]->Nc;
2035: const PetscReal *Bq = &T[f]->T[0][(r*Nq+q)*Nbf*Ncf];
2036: const PetscReal *Dq = &T[f]->T[1][(r*Nq+q)*Nbf*Ncf*cdim];
2037: const PetscReal *Hq = k > 1 ? &T[f]->T[2][(r*Nq+q)*Nbf*Ncf*cdim*cdim] : NULL;
2038: PetscInt hOffset = 0, b, c, d;
2040: PetscDSGetDiscretization(ds, f, (PetscObject *) &fe);
2041: for (c = 0; c < Ncf; ++c) u[fOffset+c] = 0.0;
2042: for (d = 0; d < cdim*Ncf; ++d) u_x[fOffset*cdim+d] = 0.0;
2043: for (b = 0; b < Nbf; ++b) {
2044: for (c = 0; c < Ncf; ++c) {
2045: const PetscInt cidx = b*Ncf+c;
2047: u[fOffset+c] += Bq[cidx]*coefficients[dOffset+b];
2048: for (d = 0; d < cdim; ++d) u_x[(fOffset+c)*cdim+d] += Dq[cidx*cdim+d]*coefficients[dOffset+b];
2049: }
2050: }
2051: if (k > 1) {
2052: for (g = 0; g < Nf; ++g) hOffset += T[g]->Nc*cdim;
2053: for (d = 0; d < cdim*cdim*Ncf; ++d) u_x[hOffset+fOffset*cdim*cdim+d] = 0.0;
2054: for (b = 0; b < Nbf; ++b) {
2055: for (c = 0; c < Ncf; ++c) {
2056: const PetscInt cidx = b*Ncf+c;
2058: for (d = 0; d < cdim*cdim; ++d) u_x[hOffset+(fOffset+c)*cdim*cdim+d] += Hq[cidx*cdim*cdim+d]*coefficients[dOffset+b];
2059: }
2060: }
2061: PetscFEPushforwardHessian(fe, fegeom, 1, &u_x[hOffset+fOffset*cdim*cdim]);
2062: }
2063: PetscFEPushforward(fe, fegeom, 1, &u[fOffset]);
2064: PetscFEPushforwardGradient(fe, fegeom, 1, &u_x[fOffset*cdim]);
2065: if (u_t) {
2066: for (c = 0; c < Ncf; ++c) u_t[fOffset+c] = 0.0;
2067: for (b = 0; b < Nbf; ++b) {
2068: for (c = 0; c < Ncf; ++c) {
2069: const PetscInt cidx = b*Ncf+c;
2071: u_t[fOffset+c] += Bq[cidx]*coefficients_t[dOffset+b];
2072: }
2073: }
2074: PetscFEPushforward(fe, fegeom, 1, &u_t[fOffset]);
2075: }
2076: fOffset += Ncf;
2077: dOffset += Nbf;
2078: }
2079: return 0;
2080: }
2082: PetscErrorCode PetscFEEvaluateFieldJets_Hybrid_Internal(PetscDS ds, PetscInt Nf, PetscInt r, PetscInt q, PetscTabulation T[], PetscFEGeom *fegeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscScalar u[], PetscScalar u_x[], PetscScalar u_t[])
2083: {
2084: PetscInt dOffset = 0, fOffset = 0, g;
2087: for (g = 0; g < 2*Nf-1; ++g) {
2088: if (!T[g/2]) continue;
2089: {
2090: PetscFE fe;
2091: const PetscInt f = g/2;
2092: const PetscInt cdim = T[f]->cdim;
2093: const PetscInt Nq = T[f]->Np;
2094: const PetscInt Nbf = T[f]->Nb;
2095: const PetscInt Ncf = T[f]->Nc;
2096: const PetscReal *Bq = &T[f]->T[0][(r*Nq+q)*Nbf*Ncf];
2097: const PetscReal *Dq = &T[f]->T[1][(r*Nq+q)*Nbf*Ncf*cdim];
2098: PetscInt b, c, d;
2100: fe = (PetscFE) ds->disc[f];
2101: for (c = 0; c < Ncf; ++c) u[fOffset+c] = 0.0;
2102: for (d = 0; d < cdim*Ncf; ++d) u_x[fOffset*cdim+d] = 0.0;
2103: for (b = 0; b < Nbf; ++b) {
2104: for (c = 0; c < Ncf; ++c) {
2105: const PetscInt cidx = b*Ncf+c;
2107: u[fOffset+c] += Bq[cidx]*coefficients[dOffset+b];
2108: for (d = 0; d < cdim; ++d) u_x[(fOffset+c)*cdim+d] += Dq[cidx*cdim+d]*coefficients[dOffset+b];
2109: }
2110: }
2111: PetscFEPushforward(fe, fegeom, 1, &u[fOffset]);
2112: PetscFEPushforwardGradient(fe, fegeom, 1, &u_x[fOffset*cdim]);
2113: if (u_t) {
2114: for (c = 0; c < Ncf; ++c) u_t[fOffset+c] = 0.0;
2115: for (b = 0; b < Nbf; ++b) {
2116: for (c = 0; c < Ncf; ++c) {
2117: const PetscInt cidx = b*Ncf+c;
2119: u_t[fOffset+c] += Bq[cidx]*coefficients_t[dOffset+b];
2120: }
2121: }
2122: PetscFEPushforward(fe, fegeom, 1, &u_t[fOffset]);
2123: }
2124: fOffset += Ncf;
2125: dOffset += Nbf;
2126: }
2127: }
2128: return 0;
2129: }
2131: PetscErrorCode PetscFEEvaluateFaceFields_Internal(PetscDS prob, PetscInt field, PetscInt faceLoc, const PetscScalar coefficients[], PetscScalar u[])
2132: {
2133: PetscFE fe;
2134: PetscTabulation Tc;
2135: PetscInt b, c;
2136: PetscErrorCode ierr;
2138: if (!prob) return 0;
2139: PetscDSGetDiscretization(prob, field, (PetscObject *) &fe);
2140: PetscFEGetFaceCentroidTabulation(fe, &Tc);
2141: {
2142: const PetscReal *faceBasis = Tc->T[0];
2143: const PetscInt Nb = Tc->Nb;
2144: const PetscInt Nc = Tc->Nc;
2146: for (c = 0; c < Nc; ++c) {u[c] = 0.0;}
2147: for (b = 0; b < Nb; ++b) {
2148: for (c = 0; c < Nc; ++c) {
2149: u[c] += coefficients[b] * faceBasis[(faceLoc*Nb + b)*Nc + c];
2150: }
2151: }
2152: }
2153: return 0;
2154: }
2156: PetscErrorCode PetscFEUpdateElementVec_Internal(PetscFE fe, PetscTabulation T, PetscInt r, PetscScalar tmpBasis[], PetscScalar tmpBasisDer[], PetscFEGeom *fegeom, PetscScalar f0[], PetscScalar f1[], PetscScalar elemVec[])
2157: {
2158: const PetscInt dE = T->cdim; /* fegeom->dimEmbed */
2159: const PetscInt Nq = T->Np;
2160: const PetscInt Nb = T->Nb;
2161: const PetscInt Nc = T->Nc;
2162: const PetscReal *basis = &T->T[0][r*Nq*Nb*Nc];
2163: const PetscReal *basisDer = &T->T[1][r*Nq*Nb*Nc*dE];
2164: PetscInt q, b, c, d;
2165: PetscErrorCode ierr;
2167: for (b = 0; b < Nb; ++b) elemVec[b] = 0.0;
2168: for (q = 0; q < Nq; ++q) {
2169: for (b = 0; b < Nb; ++b) {
2170: for (c = 0; c < Nc; ++c) {
2171: const PetscInt bcidx = b*Nc+c;
2173: tmpBasis[bcidx] = basis[q*Nb*Nc+bcidx];
2174: for (d = 0; d < dE; ++d) tmpBasisDer[bcidx*dE+d] = basisDer[q*Nb*Nc*dE+bcidx*dE+d];
2175: }
2176: }
2177: PetscFEPushforward(fe, fegeom, Nb, tmpBasis);
2178: PetscFEPushforwardGradient(fe, fegeom, Nb, tmpBasisDer);
2179: for (b = 0; b < Nb; ++b) {
2180: for (c = 0; c < Nc; ++c) {
2181: const PetscInt bcidx = b*Nc+c;
2182: const PetscInt qcidx = q*Nc+c;
2184: elemVec[b] += tmpBasis[bcidx]*f0[qcidx];
2185: for (d = 0; d < dE; ++d) elemVec[b] += tmpBasisDer[bcidx*dE+d]*f1[qcidx*dE+d];
2186: }
2187: }
2188: }
2189: return(0);
2190: }
2192: PetscErrorCode PetscFEUpdateElementVec_Hybrid_Internal(PetscFE fe, PetscTabulation T, PetscInt r, PetscScalar tmpBasis[], PetscScalar tmpBasisDer[], PetscFEGeom *fegeom, PetscScalar f0[], PetscScalar f1[], PetscScalar elemVec[])
2193: {
2194: const PetscInt dE = T->cdim;
2195: const PetscInt Nq = T->Np;
2196: const PetscInt Nb = T->Nb;
2197: const PetscInt Nc = T->Nc;
2198: const PetscReal *basis = &T->T[0][r*Nq*Nb*Nc];
2199: const PetscReal *basisDer = &T->T[1][r*Nq*Nb*Nc*dE];
2200: PetscInt q, b, c, d, s;
2201: PetscErrorCode ierr;
2203: for (b = 0; b < Nb*2; ++b) elemVec[b] = 0.0;
2204: for (q = 0; q < Nq; ++q) {
2205: for (b = 0; b < Nb; ++b) {
2206: for (c = 0; c < Nc; ++c) {
2207: const PetscInt bcidx = b*Nc+c;
2209: tmpBasis[bcidx] = basis[q*Nb*Nc+bcidx];
2210: for (d = 0; d < dE; ++d) tmpBasisDer[bcidx*dE+d] = basisDer[q*Nb*Nc*dE+bcidx*dE+d];
2211: }
2212: }
2213: PetscFEPushforward(fe, fegeom, Nb, tmpBasis);
2214: PetscFEPushforwardGradient(fe, fegeom, Nb, tmpBasisDer);
2215: for (s = 0; s < 2; ++s) {
2216: for (b = 0; b < Nb; ++b) {
2217: for (c = 0; c < Nc; ++c) {
2218: const PetscInt bcidx = b*Nc+c;
2219: const PetscInt qcidx = (q*2+s)*Nc+c;
2221: elemVec[Nb*s+b] += tmpBasis[bcidx]*f0[qcidx];
2222: for (d = 0; d < dE; ++d) elemVec[Nb*s+b] += tmpBasisDer[bcidx*dE+d]*f1[qcidx*dE+d];
2223: }
2224: }
2225: }
2226: }
2227: return(0);
2228: }
2230: PetscErrorCode PetscFEUpdateElementMat_Internal(PetscFE feI, PetscFE feJ, PetscInt r, PetscInt q, PetscTabulation TI, PetscScalar tmpBasisI[], PetscScalar tmpBasisDerI[], PetscTabulation TJ, PetscScalar tmpBasisJ[], PetscScalar tmpBasisDerJ[], PetscFEGeom *fegeom, const PetscScalar g0[], const PetscScalar g1[], const PetscScalar g2[], const PetscScalar g3[], PetscInt eOffset, PetscInt totDim, PetscInt offsetI, PetscInt offsetJ, PetscScalar elemMat[])
2231: {
2232: const PetscInt dE = TI->cdim;
2233: const PetscInt NqI = TI->Np;
2234: const PetscInt NbI = TI->Nb;
2235: const PetscInt NcI = TI->Nc;
2236: const PetscReal *basisI = &TI->T[0][(r*NqI+q)*NbI*NcI];
2237: const PetscReal *basisDerI = &TI->T[1][(r*NqI+q)*NbI*NcI*dE];
2238: const PetscInt NqJ = TJ->Np;
2239: const PetscInt NbJ = TJ->Nb;
2240: const PetscInt NcJ = TJ->Nc;
2241: const PetscReal *basisJ = &TJ->T[0][(r*NqJ+q)*NbJ*NcJ];
2242: const PetscReal *basisDerJ = &TJ->T[1][(r*NqJ+q)*NbJ*NcJ*dE];
2243: PetscInt f, fc, g, gc, df, dg;
2244: PetscErrorCode ierr;
2246: for (f = 0; f < NbI; ++f) {
2247: for (fc = 0; fc < NcI; ++fc) {
2248: const PetscInt fidx = f*NcI+fc; /* Test function basis index */
2250: tmpBasisI[fidx] = basisI[fidx];
2251: for (df = 0; df < dE; ++df) tmpBasisDerI[fidx*dE+df] = basisDerI[fidx*dE+df];
2252: }
2253: }
2254: PetscFEPushforward(feI, fegeom, NbI, tmpBasisI);
2255: PetscFEPushforwardGradient(feI, fegeom, NbI, tmpBasisDerI);
2256: for (g = 0; g < NbJ; ++g) {
2257: for (gc = 0; gc < NcJ; ++gc) {
2258: const PetscInt gidx = g*NcJ+gc; /* Trial function basis index */
2260: tmpBasisJ[gidx] = basisJ[gidx];
2261: for (dg = 0; dg < dE; ++dg) tmpBasisDerJ[gidx*dE+dg] = basisDerJ[gidx*dE+dg];
2262: }
2263: }
2264: PetscFEPushforward(feJ, fegeom, NbJ, tmpBasisJ);
2265: PetscFEPushforwardGradient(feJ, fegeom, NbJ, tmpBasisDerJ);
2266: for (f = 0; f < NbI; ++f) {
2267: for (fc = 0; fc < NcI; ++fc) {
2268: const PetscInt fidx = f*NcI+fc; /* Test function basis index */
2269: const PetscInt i = offsetI+f; /* Element matrix row */
2270: for (g = 0; g < NbJ; ++g) {
2271: for (gc = 0; gc < NcJ; ++gc) {
2272: const PetscInt gidx = g*NcJ+gc; /* Trial function basis index */
2273: const PetscInt j = offsetJ+g; /* Element matrix column */
2274: const PetscInt fOff = eOffset+i*totDim+j;
2276: elemMat[fOff] += tmpBasisI[fidx]*g0[fc*NcJ+gc]*tmpBasisJ[gidx];
2277: for (df = 0; df < dE; ++df) {
2278: elemMat[fOff] += tmpBasisI[fidx]*g1[(fc*NcJ+gc)*dE+df]*tmpBasisDerJ[gidx*dE+df];
2279: elemMat[fOff] += tmpBasisDerI[fidx*dE+df]*g2[(fc*NcJ+gc)*dE+df]*tmpBasisJ[gidx];
2280: for (dg = 0; dg < dE; ++dg) {
2281: elemMat[fOff] += tmpBasisDerI[fidx*dE+df]*g3[((fc*NcJ+gc)*dE+df)*dE+dg]*tmpBasisDerJ[gidx*dE+dg];
2282: }
2283: }
2284: }
2285: }
2286: }
2287: }
2288: return(0);
2289: }
2291: PetscErrorCode PetscFEUpdateElementMat_Hybrid_Internal(PetscFE feI, PetscBool isHybridI, PetscFE feJ, PetscBool isHybridJ, PetscInt r, PetscInt q, PetscTabulation TI, PetscScalar tmpBasisI[], PetscScalar tmpBasisDerI[], PetscTabulation TJ, PetscScalar tmpBasisJ[], PetscScalar tmpBasisDerJ[], PetscFEGeom *fegeom, const PetscScalar g0[], const PetscScalar g1[], const PetscScalar g2[], const PetscScalar g3[], PetscInt eOffset, PetscInt totDim, PetscInt offsetI, PetscInt offsetJ, PetscScalar elemMat[])
2292: {
2293: const PetscInt dE = TI->cdim;
2294: const PetscInt NqI = TI->Np;
2295: const PetscInt NbI = TI->Nb;
2296: const PetscInt NcI = TI->Nc;
2297: const PetscReal *basisI = &TI->T[0][(r*NqI+q)*NbI*NcI];
2298: const PetscReal *basisDerI = &TI->T[1][(r*NqI+q)*NbI*NcI*dE];
2299: const PetscInt NqJ = TJ->Np;
2300: const PetscInt NbJ = TJ->Nb;
2301: const PetscInt NcJ = TJ->Nc;
2302: const PetscReal *basisJ = &TJ->T[0][(r*NqJ+q)*NbJ*NcJ];
2303: const PetscReal *basisDerJ = &TJ->T[1][(r*NqJ+q)*NbJ*NcJ*dE];
2304: const PetscInt Ns = isHybridI ? 1 : 2;
2305: const PetscInt Nt = isHybridJ ? 1 : 2;
2306: PetscInt f, fc, g, gc, df, dg, s, t;
2307: PetscErrorCode ierr;
2309: for (f = 0; f < NbI; ++f) {
2310: for (fc = 0; fc < NcI; ++fc) {
2311: const PetscInt fidx = f*NcI+fc; /* Test function basis index */
2313: tmpBasisI[fidx] = basisI[fidx];
2314: for (df = 0; df < dE; ++df) tmpBasisDerI[fidx*dE+df] = basisDerI[fidx*dE+df];
2315: }
2316: }
2317: PetscFEPushforward(feI, fegeom, NbI, tmpBasisI);
2318: PetscFEPushforwardGradient(feI, fegeom, NbI, tmpBasisDerI);
2319: for (g = 0; g < NbJ; ++g) {
2320: for (gc = 0; gc < NcJ; ++gc) {
2321: const PetscInt gidx = g*NcJ+gc; /* Trial function basis index */
2323: tmpBasisJ[gidx] = basisJ[gidx];
2324: for (dg = 0; dg < dE; ++dg) tmpBasisDerJ[gidx*dE+dg] = basisDerJ[gidx*dE+dg];
2325: }
2326: }
2327: PetscFEPushforward(feJ, fegeom, NbJ, tmpBasisJ);
2328: PetscFEPushforwardGradient(feJ, fegeom, NbJ, tmpBasisDerJ);
2329: for (s = 0; s < Ns; ++s) {
2330: for (f = 0; f < NbI; ++f) {
2331: for (fc = 0; fc < NcI; ++fc) {
2332: const PetscInt sc = NcI*s+fc; /* components from each side of the surface */
2333: const PetscInt fidx = f*NcI+fc; /* Test function basis index */
2334: const PetscInt i = offsetI+NbI*s+f; /* Element matrix row */
2335: for (t = 0; t < Nt; ++t) {
2336: for (g = 0; g < NbJ; ++g) {
2337: for (gc = 0; gc < NcJ; ++gc) {
2338: const PetscInt tc = NcJ*t+gc; /* components from each side of the surface */
2339: const PetscInt gidx = g*NcJ+gc; /* Trial function basis index */
2340: const PetscInt j = offsetJ+NbJ*t+g; /* Element matrix column */
2341: const PetscInt fOff = eOffset+i*totDim+j;
2343: elemMat[fOff] += tmpBasisI[fidx]*g0[sc*NcJ*Nt+tc]*tmpBasisJ[gidx];
2344: for (df = 0; df < dE; ++df) {
2345: elemMat[fOff] += tmpBasisI[fidx]*g1[(sc*NcJ*Nt+tc)*dE+df]*tmpBasisDerJ[gidx*dE+df];
2346: elemMat[fOff] += tmpBasisDerI[fidx*dE+df]*g2[(sc*NcJ*Nt+tc)*dE+df]*tmpBasisJ[gidx];
2347: for (dg = 0; dg < dE; ++dg) {
2348: elemMat[fOff] += tmpBasisDerI[fidx*dE+df]*g3[((sc*NcJ*Nt+tc)*dE+df)*dE+dg]*tmpBasisDerJ[gidx*dE+dg];
2349: }
2350: }
2351: }
2352: }
2353: }
2354: }
2355: }
2356: }
2357: return(0);
2358: }
2360: PetscErrorCode PetscFECreateCellGeometry(PetscFE fe, PetscQuadrature quad, PetscFEGeom *cgeom)
2361: {
2362: PetscDualSpace dsp;
2363: DM dm;
2364: PetscQuadrature quadDef;
2365: PetscInt dim, cdim, Nq;
2366: PetscErrorCode ierr;
2369: PetscFEGetDualSpace(fe, &dsp);
2370: PetscDualSpaceGetDM(dsp, &dm);
2371: DMGetDimension(dm, &dim);
2372: DMGetCoordinateDim(dm, &cdim);
2373: PetscFEGetQuadrature(fe, &quadDef);
2374: quad = quad ? quad : quadDef;
2375: PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL);
2376: PetscMalloc1(Nq*cdim, &cgeom->v);
2377: PetscMalloc1(Nq*cdim*cdim, &cgeom->J);
2378: PetscMalloc1(Nq*cdim*cdim, &cgeom->invJ);
2379: PetscMalloc1(Nq, &cgeom->detJ);
2380: cgeom->dim = dim;
2381: cgeom->dimEmbed = cdim;
2382: cgeom->numCells = 1;
2383: cgeom->numPoints = Nq;
2384: DMPlexComputeCellGeometryFEM(dm, 0, quad, cgeom->v, cgeom->J, cgeom->invJ, cgeom->detJ);
2385: return(0);
2386: }
2388: PetscErrorCode PetscFEDestroyCellGeometry(PetscFE fe, PetscFEGeom *cgeom)
2389: {
2393: PetscFree(cgeom->v);
2394: PetscFree(cgeom->J);
2395: PetscFree(cgeom->invJ);
2396: PetscFree(cgeom->detJ);
2397: return(0);
2398: }