Actual source code: land_tensors.h

petsc-3.14.6 2021-03-30
Report Typos and Errors
  1: #define LANDAU_INVSQRT(q) (1./PetscSqrtReal(q))
  2: #define LANDAU_SQRT(q) PetscSqrtReal(q)

  4: /* elliptic functions
  5:  */
  6: PETSC_DEVICE_FUNC_DECL PetscReal polevl_10(PetscReal x, PetscReal coef[])
  7: {
  8:   PetscReal ans;
  9:   PetscInt  i;
 10:   ans = coef[0];
 11:   for (i=1; i<11; i++) ans = ans * x + coef[i];
 12:   return(ans);
 13: }
 14: PETSC_DEVICE_FUNC_DECL PetscReal polevl_9(PetscReal x, PetscReal coef[])
 15: {
 16:   PetscReal ans;
 17:   PetscInt  i;
 18:   ans = coef[0];
 19:   for (i=1; i<10; i++) ans = ans * x + coef[i];
 20:   return(ans);
 21: }
 22: /*
 23:  *      Complete elliptic integral of the second kind
 24:  */
 25: PETSC_DEVICE_FUNC_DECL void ellipticE(PetscReal x,PetscReal *ret)
 26: {
 27: #if defined(PETSC_USE_REAL_SINGLE)
 28:   static PetscReal P2[] = {
 29:     1.53552577301013293365E-4F,
 30:     2.50888492163602060990E-3F,
 31:     8.68786816565889628429E-3F,
 32:     1.07350949056076193403E-2F,
 33:     7.77395492516787092951E-3F,
 34:     7.58395289413514708519E-3F,
 35:     1.15688436810574127319E-2F,
 36:     2.18317996015557253103E-2F,
 37:     5.68051945617860553470E-2F,
 38:     4.43147180560990850618E-1F,
 39:     1.00000000000000000299E0F
 40:   };
 41:   static PetscReal Q2[] = {
 42:     3.27954898576485872656E-5F,
 43:     1.00962792679356715133E-3F,
 44:     6.50609489976927491433E-3F,
 45:     1.68862163993311317300E-2F,
 46:     2.61769742454493659583E-2F,
 47:     3.34833904888224918614E-2F,
 48:     4.27180926518931511717E-2F,
 49:     5.85936634471101055642E-2F,
 50:     9.37499997197644278445E-2F,
 51:     2.49999999999888314361E-1F
 52:   };
 53: #else
 54:   static PetscReal P2[] = {
 55:     1.53552577301013293365E-4,
 56:     2.50888492163602060990E-3,
 57:     8.68786816565889628429E-3,
 58:     1.07350949056076193403E-2,
 59:     7.77395492516787092951E-3,
 60:     7.58395289413514708519E-3,
 61:     1.15688436810574127319E-2,
 62:     2.18317996015557253103E-2,
 63:     5.68051945617860553470E-2,
 64:     4.43147180560990850618E-1,
 65:     1.00000000000000000299E0
 66:   };
 67:   static PetscReal Q2[] = {
 68:     3.27954898576485872656E-5,
 69:     1.00962792679356715133E-3,
 70:     6.50609489976927491433E-3,
 71:     1.68862163993311317300E-2,
 72:     2.61769742454493659583E-2,
 73:     3.34833904888224918614E-2,
 74:     4.27180926518931511717E-2,
 75:     5.85936634471101055642E-2,
 76:     9.37499997197644278445E-2,
 77:     2.49999999999888314361E-1
 78:   };
 79: #endif
 80:   x = 1 - x; /* where m = 1 - m1 */
 81:   *ret = polevl_10(x,P2) - PetscLogReal(x) * (x * polevl_9(x,Q2));
 82: }
 83: /*
 84:  *      Complete elliptic integral of the first kind
 85:  */
 86: PETSC_DEVICE_FUNC_DECL void ellipticK(PetscReal x,PetscReal *ret)
 87: {
 88: #if defined(PETSC_USE_REAL_SINGLE)
 89:   static PetscReal P1[] =
 90:     {
 91:       1.37982864606273237150E-4F,
 92:       2.28025724005875567385E-3F,
 93:       7.97404013220415179367E-3F,
 94:       9.85821379021226008714E-3F,
 95:       6.87489687449949877925E-3F,
 96:       6.18901033637687613229E-3F,
 97:       8.79078273952743772254E-3F,
 98:       1.49380448916805252718E-2F,
 99:       3.08851465246711995998E-2F,
100:       9.65735902811690126535E-2F,
101:       1.38629436111989062502E0F
102:     };
103:   static PetscReal Q1[] =
104:     {
105:       2.94078955048598507511E-5F,
106:       9.14184723865917226571E-4F,
107:       5.94058303753167793257E-3F,
108:       1.54850516649762399335E-2F,
109:       2.39089602715924892727E-2F,
110:       3.01204715227604046988E-2F,
111:       3.73774314173823228969E-2F,
112:       4.88280347570998239232E-2F,
113:       7.03124996963957469739E-2F,
114:       1.24999999999870820058E-1F,
115:       4.99999999999999999821E-1F
116:     };
117: #else
118:   static PetscReal P1[] =
119:     {
120:       1.37982864606273237150E-4,
121:       2.28025724005875567385E-3,
122:       7.97404013220415179367E-3,
123:       9.85821379021226008714E-3,
124:       6.87489687449949877925E-3,
125:       6.18901033637687613229E-3,
126:       8.79078273952743772254E-3,
127:       1.49380448916805252718E-2,
128:       3.08851465246711995998E-2,
129:       9.65735902811690126535E-2,
130:       1.38629436111989062502E0
131:     };
132:   static PetscReal Q1[] =
133:     {
134:       2.94078955048598507511E-5,
135:       9.14184723865917226571E-4,
136:       5.94058303753167793257E-3,
137:       1.54850516649762399335E-2,
138:       2.39089602715924892727E-2,
139:       3.01204715227604046988E-2,
140:       3.73774314173823228969E-2,
141:       4.88280347570998239232E-2,
142:       7.03124996963957469739E-2,
143:       1.24999999999870820058E-1,
144:       4.99999999999999999821E-1
145:     };
146: #endif
147:   x = 1 - x; /* where m = 1 - m1 */
148:   *ret = polevl_10(x,P1) - PetscLogReal(x) * polevl_10(x,Q1);
149: }


152: /* integration point functions */
153: /* Evaluates the tensor U=(I-(x-y)(x-y)/(x-y)^2)/|x-y| at point x,y */
154: /* if x==y we will return zero. This is not the correct result */
155: /* since the tensor diverges for x==y but when integrated */
156: /* the divergent part is antisymmetric and vanishes. This is not  */
157: /* trivial, but can be proven. */
158: #if LANDAU_DIM==3
159: PETSC_DEVICE_FUNC_DECL void LandauTensor3D(const PetscReal x1[], const PetscReal xp, const PetscReal yp, const PetscReal zp, PetscReal U[][3], PetscReal mask)
160: {
161:   PetscReal dx[3],inorm3,inorm,inorm2,norm2,x2[] = {xp,yp,zp};
162:   PetscInt  d;
163:   for (d = 0, norm2 = PETSC_MACHINE_EPSILON; d < 3; ++d) {
164:     dx[d] = x2[d] - x1[d];
165:     norm2 += dx[d] * dx[d];
166:   }
167:   inorm2 = mask/norm2;
168:   inorm = LANDAU_SQRT(inorm2);
169:   inorm3 = inorm2*inorm;
170:   for (d = 0; d < 3; ++d) U[d][d] = inorm - inorm3 * dx[d] * dx[d];
171:   U[1][0] = U[0][1] = -inorm3 * dx[0] * dx[1];
172:   U[1][2] = U[2][1] = -inorm3 * dx[2] * dx[1];
173:   U[2][0] = U[0][2] = -inorm3 * dx[0] * dx[2];
174: }
175: #else
176: PETSC_DEVICE_FUNC_DECL void LandauTensor2D(const PetscReal x[], const PetscReal rp, const PetscReal zp, PetscReal Ud[][2], PetscReal Uk[][2], const PetscReal mask)
177: {
178:   PetscReal l,s,r=x[0],z=x[1],i1func,i2func,i3func,ks,es,pi4pow,sqrt_1s,r2,rp2,r2prp2,zmzp,zmzp2,tt;
179:   //PetscReal mask /* = !!(r!=rp || z!=zp) */;
180:   /* !!(zmzp2 > 1.e-12 || (r-rp) >  1.e-12 || (r-rp) < -1.e-12); */
181:   r2=PetscSqr(r);
182:   zmzp=z-zp;
183:   rp2=PetscSqr(rp);
184:   zmzp2=PetscSqr(zmzp);
185:   r2prp2=r2+rp2;
186:   l = r2 + rp2 + zmzp2;
187:   /* if      (zmzp2 >  PETSC_SMALL) mask = 1; */
188:   /* else if ((tt=(r-rp)) >  PETSC_SMALL) mask = 1; */
189:   /* else if  (tt         < -PETSC_SMALL) mask = 1; */
190:   /* else mask = 0; */
191:   s = mask*2*r*rp/l; /* mask for vectorization */
192:   tt = 1./(1+s);
193:   pi4pow = 4*PETSC_PI*LANDAU_INVSQRT(PetscSqr(l)*l);
194:   sqrt_1s = LANDAU_SQRT(1.+s);
195:   /* sp.ellipe(2.*s/(1.+s)) */
196:   ellipticE(2*s*tt,&es); /* 44 flops * 2 + 75 = 163 flops including 2 logs, 1 sqrt, 1 pow, 21 mult */
197:   /* sp.ellipk(2.*s/(1.+s)) */
198:   ellipticK(2*s*tt,&ks); /* 44 flops + 75 in rest, 21 mult */
199:   /* mask is needed here just for single precision */
200:   i2func = 2./((1-s)*sqrt_1s) * es;
201:   i1func = 4./(PetscSqr(s)*sqrt_1s + PETSC_MACHINE_EPSILON) * mask * (ks - (1.+s) * es);
202:   i3func = 2./((1-s)*(s)*sqrt_1s + PETSC_MACHINE_EPSILON) * (es - (1-s) * ks);
203:   Ud[0][0]=                    pi4pow*(rp2*i1func+PetscSqr(zmzp)*i2func);
204:   Ud[0][1]=Ud[1][0]=Uk[0][1]= -pi4pow*(zmzp)*(r*i2func-rp*i3func);
205:   Uk[1][1]=Ud[1][1]=           pi4pow*((r2prp2)*i2func-2*r*rp*i3func)*mask;
206:   Uk[0][0]=                    pi4pow*(zmzp2*i3func+r*rp*i1func);
207:   Uk[1][0]=                   -pi4pow*(zmzp)*(r*i3func-rp*i2func); /* 48 mults + 21 + 21 = 90 mults and divs */
208: }
209: #endif