Actual source code: baijsolvnat2.c

petsc-3.14.6 2021-03-30
Report Typos and Errors
  1: #include <../src/mat/impls/baij/seq/baij.h>
  2: #include <petsc/private/kernels/blockinvert.h>

  4: /*
  5:       Special case where the matrix was ILU(0) factored in the natural
  6:    ordering. This eliminates the need for the column and row permutation.
  7: */
  8: PetscErrorCode MatSolve_SeqBAIJ_2_NaturalOrdering_inplace(Mat A,Vec bb,Vec xx)
  9: {
 10:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
 11:   const PetscInt    n  =a->mbs,*vi,*ai=a->i,*aj=a->j,*diag=a->diag;
 12:   PetscErrorCode    ierr;
 13:   const MatScalar   *aa=a->a,*v;
 14:   PetscScalar       *x,s1,s2,x1,x2;
 15:   const PetscScalar *b;
 16:   PetscInt          jdx,idt,idx,nz,i;

 19:   VecGetArrayRead(bb,&b);
 20:   VecGetArray(xx,&x);

 22:   /* forward solve the lower triangular */
 23:   idx  = 0;
 24:   x[0] = b[0]; x[1] = b[1];
 25:   for (i=1; i<n; i++) {
 26:     v    =  aa      + 4*ai[i];
 27:     vi   =  aj      + ai[i];
 28:     nz   =  diag[i] - ai[i];
 29:     idx +=  2;
 30:     s1   =  b[idx];s2 = b[1+idx];
 31:     while (nz--) {
 32:       jdx = 2*(*vi++);
 33:       x1  = x[jdx];x2 = x[1+jdx];
 34:       s1 -= v[0]*x1 + v[2]*x2;
 35:       s2 -= v[1]*x1 + v[3]*x2;
 36:       v  += 4;
 37:     }
 38:     x[idx]   = s1;
 39:     x[1+idx] = s2;
 40:   }
 41:   /* backward solve the upper triangular */
 42:   for (i=n-1; i>=0; i--) {
 43:     v   = aa + 4*diag[i] + 4;
 44:     vi  = aj + diag[i] + 1;
 45:     nz  = ai[i+1] - diag[i] - 1;
 46:     idt = 2*i;
 47:     s1  = x[idt];  s2 = x[1+idt];
 48:     while (nz--) {
 49:       idx = 2*(*vi++);
 50:       x1  = x[idx];   x2 = x[1+idx];
 51:       s1 -= v[0]*x1 + v[2]*x2;
 52:       s2 -= v[1]*x1 + v[3]*x2;
 53:       v  += 4;
 54:     }
 55:     v        = aa +  4*diag[i];
 56:     x[idt]   = v[0]*s1 + v[2]*s2;
 57:     x[1+idt] = v[1]*s1 + v[3]*s2;
 58:   }

 60:   VecRestoreArrayRead(bb,&b);
 61:   VecRestoreArray(xx,&x);
 62:   PetscLogFlops(2.0*4*(a->nz) - 2.0*A->cmap->n);
 63:   return(0);
 64: }

 66: PetscErrorCode MatSolve_SeqBAIJ_2_NaturalOrdering(Mat A,Vec bb,Vec xx)
 67: {
 68:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
 69:   const PetscInt    n  = a->mbs,*vi,*ai=a->i,*aj=a->j,*adiag=a->diag;
 70:   PetscInt          i,k,nz,idx,idt,jdx;
 71:   PetscErrorCode    ierr;
 72:   const MatScalar   *aa=a->a,*v;
 73:   PetscScalar       *x,s1,s2,x1,x2;
 74:   const PetscScalar *b;

 77:   VecGetArrayRead(bb,&b);
 78:   VecGetArray(xx,&x);
 79:   /* forward solve the lower triangular */
 80:   idx  = 0;
 81:   x[0] = b[idx]; x[1] = b[1+idx];
 82:   for (i=1; i<n; i++) {
 83:     v   = aa + 4*ai[i];
 84:     vi  = aj + ai[i];
 85:     nz  = ai[i+1] - ai[i];
 86:     idx = 2*i;
 87:     s1  = b[idx];s2 = b[1+idx];
 88:     PetscPrefetchBlock(vi+nz,nz,0,PETSC_PREFETCH_HINT_NTA);
 89:     PetscPrefetchBlock(v+4*nz,4*nz,0,PETSC_PREFETCH_HINT_NTA);
 90:     for (k=0; k<nz; k++) {
 91:       jdx = 2*vi[k];
 92:       x1  = x[jdx];x2 = x[1+jdx];
 93:       s1 -= v[0]*x1 + v[2]*x2;
 94:       s2 -= v[1]*x1 + v[3]*x2;
 95:       v  +=  4;
 96:     }
 97:     x[idx]   = s1;
 98:     x[1+idx] = s2;
 99:   }

101:   /* backward solve the upper triangular */
102:   for (i=n-1; i>=0; i--) {
103:     v   = aa + 4*(adiag[i+1]+1);
104:     vi  = aj + adiag[i+1]+1;
105:     nz  = adiag[i] - adiag[i+1]-1;
106:     idt = 2*i;
107:     s1  = x[idt];  s2 = x[1+idt];
108:     PetscPrefetchBlock(vi+nz,nz,0,PETSC_PREFETCH_HINT_NTA);
109:     PetscPrefetchBlock(v+4*nz,4*nz,0,PETSC_PREFETCH_HINT_NTA);
110:     for (k=0; k<nz; k++) {
111:       idx = 2*vi[k];
112:       x1  = x[idx];   x2 = x[1+idx];
113:       s1 -= v[0]*x1 + v[2]*x2;
114:       s2 -= v[1]*x1 + v[3]*x2;
115:       v  += 4;
116:     }
117:     /* x = inv_diagonal*x */
118:     x[idt]   = v[0]*s1 + v[2]*s2;
119:     x[1+idt] = v[1]*s1 + v[3]*s2;
120:   }

122:   VecRestoreArrayRead(bb,&b);
123:   VecRestoreArray(xx,&x);
124:   PetscLogFlops(2.0*4*(a->nz) - 2.0*A->cmap->n);
125:   return(0);
126: }

128: PetscErrorCode MatForwardSolve_SeqBAIJ_2_NaturalOrdering(Mat A,Vec bb,Vec xx)
129: {
130:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
131:   const PetscInt    n  = a->mbs,*vi,*ai=a->i,*aj=a->j;
132:   PetscInt          i,k,nz,idx,jdx;
133:   PetscErrorCode    ierr;
134:   const MatScalar   *aa=a->a,*v;
135:   PetscScalar       *x,s1,s2,x1,x2;
136:   const PetscScalar *b;

139:   VecGetArrayRead(bb,&b);
140:   VecGetArray(xx,&x);
141:   /* forward solve the lower triangular */
142:   idx  = 0;
143:   x[0] = b[idx]; x[1] = b[1+idx];
144:   for (i=1; i<n; i++) {
145:     v   = aa + 4*ai[i];
146:     vi  = aj + ai[i];
147:     nz  = ai[i+1] - ai[i];
148:     idx = 2*i;
149:     s1  = b[idx];s2 = b[1+idx];
150:     PetscPrefetchBlock(vi+nz,nz,0,PETSC_PREFETCH_HINT_NTA);
151:     PetscPrefetchBlock(v+4*nz,4*nz,0,PETSC_PREFETCH_HINT_NTA);
152:     for (k=0; k<nz; k++) {
153:       jdx = 2*vi[k];
154:       x1  = x[jdx];x2 = x[1+jdx];
155:       s1 -= v[0]*x1 + v[2]*x2;
156:       s2 -= v[1]*x1 + v[3]*x2;
157:       v  +=  4;
158:     }
159:     x[idx]   = s1;
160:     x[1+idx] = s2;
161:   }


164:   VecRestoreArrayRead(bb,&b);
165:   VecRestoreArray(xx,&x);
166:   PetscLogFlops(4.0*(a->nz) - A->cmap->n);
167:   return(0);
168: }

170: PetscErrorCode MatBackwardSolve_SeqBAIJ_2_NaturalOrdering(Mat A,Vec bb,Vec xx)
171: {
172:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
173:   const PetscInt    n  = a->mbs,*vi,*aj=a->j,*adiag=a->diag;
174:   PetscInt          i,k,nz,idx,idt;
175:   PetscErrorCode    ierr;
176:   const MatScalar   *aa=a->a,*v;
177:   PetscScalar       *x,s1,s2,x1,x2;
178:   const PetscScalar *b;

181:   VecGetArrayRead(bb,&b);
182:   VecGetArray(xx,&x);

184:   /* backward solve the upper triangular */
185:   for (i=n-1; i>=0; i--) {
186:     v   = aa + 4*(adiag[i+1]+1);
187:     vi  = aj + adiag[i+1]+1;
188:     nz  = adiag[i] - adiag[i+1]-1;
189:     idt = 2*i;
190:     s1  = b[idt];  s2 = b[1+idt];
191:     PetscPrefetchBlock(vi+nz,nz,0,PETSC_PREFETCH_HINT_NTA);
192:     PetscPrefetchBlock(v+4*nz,4*nz,0,PETSC_PREFETCH_HINT_NTA);
193:     for (k=0; k<nz; k++) {
194:       idx = 2*vi[k];
195:       x1  = x[idx];   x2 = x[1+idx];
196:       s1 -= v[0]*x1 + v[2]*x2;
197:       s2 -= v[1]*x1 + v[3]*x2;
198:       v  += 4;
199:     }
200:     /* x = inv_diagonal*x */
201:     x[idt]   = v[0]*s1 + v[2]*s2;
202:     x[1+idt] = v[1]*s1 + v[3]*s2;
203:   }

205:   VecRestoreArrayRead(bb,&b);
206:   VecRestoreArray(xx,&x);
207:   PetscLogFlops(4.0*a->nz - A->cmap->n);
208:   return(0);
209: }