Actual source code: lusol.c

petsc-3.14.6 2021-03-30
Report Typos and Errors

  2: /*
  3:         Provides an interface to the LUSOL package of ....

  5: */
  6: #include <../src/mat/impls/aij/seq/aij.h>

  8: #if defined(PETSC_HAVE_FORTRAN_UNDERSCORE)
  9: #define LU1FAC   lu1fac_
 10: #define LU6SOL   lu6sol_
 11: #define M1PAGE   m1page_
 12: #define M5SETX   m5setx_
 13: #define M6RDEL   m6rdel_
 14: #elif !defined(PETSC_HAVE_FORTRAN_CAPS)
 15: #define LU1FAC   lu1fac
 16: #define LU6SOL   lu6sol
 17: #define M1PAGE   m1page
 18: #define M5SETX   m5setx
 19: #define M6RDEL   m6rdel
 20: #endif

 22: /*
 23:     Dummy symbols that the MINOS files mi25bfac.f and mi15blas.f may require
 24: */
 25: PETSC_EXTERN void M1PAGE()
 26: {
 27:   ;
 28: }
 29: PETSC_EXTERN void M5SETX()
 30: {
 31:   ;
 32: }

 34: PETSC_EXTERN void M6RDEL()
 35: {
 36:   ;
 37: }

 39: PETSC_EXTERN void LU1FAC(int *m, int *n, int *nnz, int *size, int *luparm,
 40:                                  double *parmlu, double *data, int *indc, int *indr,
 41:                                  int *rowperm, int *colperm, int *collen, int *rowlen,
 42:                                  int *colstart, int *rowstart, int *rploc, int *cploc,
 43:                                  int *rpinv, int *cpinv, double *w, int *inform);

 45: PETSC_EXTERN void LU6SOL(int *mode, int *m, int *n, double *rhs, double *x,
 46:                                  int *size, int *luparm, double *parmlu, double *data,
 47:                                  int *indc, int *indr, int *rowperm, int *colperm,
 48:                                  int *collen, int *rowlen, int *colstart, int *rowstart,
 49:                                  int *inform);

 51: extern PetscErrorCode MatDuplicate_LUSOL(Mat,MatDuplicateOption,Mat*);

 53: typedef struct  {
 54:   double *data;
 55:   int    *indc;
 56:   int    *indr;

 58:   int    *ip;
 59:   int    *iq;
 60:   int    *lenc;
 61:   int    *lenr;
 62:   int    *locc;
 63:   int    *locr;
 64:   int    *iploc;
 65:   int    *iqloc;
 66:   int    *ipinv;
 67:   int    *iqinv;
 68:   double *mnsw;
 69:   double *mnsv;

 71:   double elbowroom;
 72:   double luroom;                /* Extra space allocated when factor fails   */
 73:   double parmlu[30];            /* Input/output to LUSOL                     */

 75:   int n;                        /* Number of rows/columns in matrix          */
 76:   int nz;                       /* Number of nonzeros                        */
 77:   int nnz;                      /* Number of nonzeros allocated for factors  */
 78:   int luparm[30];               /* Input/output to LUSOL                     */

 80:   PetscBool CleanUpLUSOL;

 82: } Mat_LUSOL;

 84: /*  LUSOL input/Output Parameters (Description uses C-style indexes
 85:  *
 86:  *  Input parameters                                        Typical value
 87:  *
 88:  *  luparm(0) = nout     File number for printed messages.         6
 89:  *  luparm(1) = lprint   Print level.                              0
 90:  *                    < 0 suppresses output.
 91:  *                    = 0 gives error messages.
 92:  *                    = 1 gives debug output from some of the
 93:  *                        other routines in LUSOL.
 94:  *                   >= 2 gives the pivot row and column and the
 95:  *                        no. of rows and columns involved at
 96:  *                        each elimination step in lu1fac.
 97:  *  luparm(2) = maxcol   lu1fac: maximum number of columns         5
 98:  *                        searched allowed in a Markowitz-type
 99:  *                        search for the next pivot element.
100:  *                        For some of the factorization, the
101:  *                        number of rows searched is
102:  *                        maxrow = maxcol - 1.
103:  *
104:  *
105:  *  Output parameters:
106:  *
107:  *  luparm(9) = inform   Return code from last call to any LU routine.
108:  *  luparm(10) = nsing    No. of singularities marked in the
109:  *                        output array w(*).
110:  *  luparm(11) = jsing    Column index of last singularity.
111:  *  luparm(12) = minlen   Minimum recommended value for  lena.
112:  *  luparm(13) = maxlen   ?
113:  *  luparm(14) = nupdat   No. of updates performed by the lu8 routines.
114:  *  luparm(15) = nrank    No. of nonempty rows of U.
115:  *  luparm(16) = ndens1   No. of columns remaining when the density of
116:  *                        the matrix being factorized reached dens1.
117:  *  luparm(17) = ndens2   No. of columns remaining when the density of
118:  *                        the matrix being factorized reached dens2.
119:  *  luparm(18) = jumin    The column index associated with dumin.
120:  *  luparm(19) = numl0    No. of columns in initial  L.
121:  *  luparm(20) = lenl0    Size of initial  L  (no. of nonzeros).
122:  *  luparm(21) = lenu0    Size of initial  U.
123:  *  luparm(22) = lenl     Size of current  L.
124:  *  luparm(23) = lenu     Size of current  U.
125:  *  luparm(24) = lrow     Length of row file.
126:  *  luparm(25) = ncp      No. of compressions of LU data structures.
127:  *  luparm(26) = mersum   lu1fac: sum of Markowitz merit counts.
128:  *  luparm(27) = nutri    lu1fac: triangular rows in U.
129:  *  luparm(28) = nltri    lu1fac: triangular rows in L.
130:  *  luparm(29) =
131:  *
132:  *
133:  *  Input parameters                                        Typical value
134:  *
135:  *  parmlu(0) = elmax1   Max multiplier allowed in  L           10.0
136:  *                        during factor.
137:  *  parmlu(1) = elmax2   Max multiplier allowed in  L           10.0
138:  *                        during updates.
139:  *  parmlu(2) = small    Absolute tolerance for             eps**0.8
140:  *                        treating reals as zero.     IBM double: 3.0d-13
141:  *  parmlu(3) = utol1    Absolute tol for flagging          eps**0.66667
142:  *                        small diagonals of U.       IBM double: 3.7d-11
143:  *  parmlu(4) = utol2    Relative tol for flagging          eps**0.66667
144:  *                        small diagonals of U.       IBM double: 3.7d-11
145:  *  parmlu(5) = uspace   Factor limiting waste space in  U.      3.0
146:  *                        In lu1fac, the row or column lists
147:  *                        are compressed if their length
148:  *                        exceeds uspace times the length of
149:  *                        either file after the last compression.
150:  *  parmlu(6) = dens1    The density at which the Markowitz      0.3
151:  *                        strategy should search maxcol columns
152:  *                        and no rows.
153:  *  parmlu(7) = dens2    the density at which the Markowitz      0.6
154:  *                        strategy should search only 1 column
155:  *                        or (preferably) use a dense LU for
156:  *                        all the remaining rows and columns.
157:  *
158:  *
159:  *  Output parameters:
160:  *
161:  *  parmlu(9) = amax     Maximum element in  A.
162:  *  parmlu(10) = elmax    Maximum multiplier in current  L.
163:  *  parmlu(11) = umax     Maximum element in current  U.
164:  *  parmlu(12) = dumax    Maximum diagonal in  U.
165:  *  parmlu(13) = dumin    Minimum diagonal in  U.
166:  *  parmlu(14) =
167:  *  parmlu(15) =
168:  *  parmlu(16) =
169:  *  parmlu(17) =
170:  *  parmlu(18) =
171:  *  parmlu(19) = resid    lu6sol: residual after solve with U or U'.
172:  *  ...
173:  *  parmlu(29) =
174:  */

176: #define Factorization_Tolerance       1e-1
177: #define Factorization_Pivot_Tolerance pow(2.2204460492503131E-16, 2.0 / 3.0)
178: #define Factorization_Small_Tolerance 1e-15 /* pow(DBL_EPSILON, 0.8) */

180: PetscErrorCode MatDestroy_LUSOL(Mat A)
181: {
183:   Mat_LUSOL      *lusol=(Mat_LUSOL*)A->spptr;

186:   if (lusol && lusol->CleanUpLUSOL) {
187:     PetscFree(lusol->ip);
188:     PetscFree(lusol->iq);
189:     PetscFree(lusol->lenc);
190:     PetscFree(lusol->lenr);
191:     PetscFree(lusol->locc);
192:     PetscFree(lusol->locr);
193:     PetscFree(lusol->iploc);
194:     PetscFree(lusol->iqloc);
195:     PetscFree(lusol->ipinv);
196:     PetscFree(lusol->iqinv);
197:     PetscFree(lusol->mnsw);
198:     PetscFree(lusol->mnsv);
199:     PetscFree3(lusol->data,lusol->indc,lusol->indr);
200:   }
201:   PetscFree(A->spptr);
202:   MatDestroy_SeqAIJ(A);
203:   return(0);
204: }

206: PetscErrorCode MatSolve_LUSOL(Mat A,Vec b,Vec x)
207: {
208:   Mat_LUSOL      *lusol=(Mat_LUSOL*)A->spptr;
209:   double         *xx;
210:   const double   *bb;
211:   int            mode=5;
213:   int            i,m,n,nnz,status;

216:   VecGetArray(x, &xx);
217:   VecGetArrayRead(b, &bb);

219:   m   = n = lusol->n;
220:   nnz = lusol->nnz;

222:   for (i = 0; i < m; i++) lusol->mnsv[i] = bb[i];

224:   LU6SOL(&mode, &m, &n, lusol->mnsv, xx, &nnz,
225:          lusol->luparm, lusol->parmlu, lusol->data,
226:          lusol->indc, lusol->indr, lusol->ip, lusol->iq,
227:          lusol->lenc, lusol->lenr, lusol->locc, lusol->locr, &status);

229:   if (status) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"solve failed, error code %d",status);

231:   VecRestoreArray(x, &xx);
232:   VecRestoreArrayRead(b, &bb);
233:   return(0);
234: }

236: PetscErrorCode MatLUFactorNumeric_LUSOL(Mat F,Mat A,const MatFactorInfo *info)
237: {
238:   Mat_SeqAIJ     *a;
239:   Mat_LUSOL      *lusol = (Mat_LUSOL*)F->spptr;
241:   int            m, n, nz, nnz, status;
242:   int            i, rs, re;
243:   int            factorizations;

246:   MatGetSize(A,&m,&n);
247:   a    = (Mat_SeqAIJ*)A->data;

249:   if (m != lusol->n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"factorization struct inconsistent");

251:   factorizations = 0;
252:   do {
253:     /*******************************************************************/
254:     /* Check the workspace allocation.                                 */
255:     /*******************************************************************/

257:     nz  = a->nz;
258:     nnz = PetscMax(lusol->nnz, (int)(lusol->elbowroom*nz));
259:     nnz = PetscMax(nnz, 5*n);

261:     if (nnz < lusol->luparm[12]) {
262:       nnz = (int)(lusol->luroom * lusol->luparm[12]);
263:     } else if ((factorizations > 0) && (lusol->luroom < 6)) {
264:       lusol->luroom += 0.1;
265:     }

267:     nnz = PetscMax(nnz, (int)(lusol->luroom*(lusol->luparm[22] + lusol->luparm[23])));

269:     if (nnz > lusol->nnz) {
270:       PetscFree3(lusol->data,lusol->indc,lusol->indr);
271:       PetscMalloc3(nnz,&lusol->data,nnz,&lusol->indc,nnz,&lusol->indr);
272:       lusol->nnz = nnz;
273:     }

275:     /*******************************************************************/
276:     /* Fill in the data for the problem.      (1-based Fortran style)  */
277:     /*******************************************************************/

279:     nz = 0;
280:     for (i = 0; i < n; i++) {
281:       rs = a->i[i];
282:       re = a->i[i+1];

284:       while (rs < re) {
285:         if (a->a[rs] != 0.0) {
286:           lusol->indc[nz] = i + 1;
287:           lusol->indr[nz] = a->j[rs] + 1;
288:           lusol->data[nz] = a->a[rs];
289:           nz++;
290:         }
291:         rs++;
292:       }
293:     }

295:     /*******************************************************************/
296:     /* Do the factorization.                                           */
297:     /*******************************************************************/

299:     LU1FAC(&m, &n, &nz, &nnz,
300:            lusol->luparm, lusol->parmlu, lusol->data,
301:            lusol->indc, lusol->indr, lusol->ip, lusol->iq,
302:            lusol->lenc, lusol->lenr, lusol->locc, lusol->locr,
303:            lusol->iploc, lusol->iqloc, lusol->ipinv,
304:            lusol->iqinv, lusol->mnsw, &status);

306:     switch (status) {
307:     case 0:         /* factored */
308:       break;

310:     case 7:         /* insufficient memory */
311:       break;

313:     case 1:
314:     case -1:        /* singular */
315:       SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"Singular matrix");

317:     case 3:
318:     case 4:         /* error conditions */
319:       SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"matrix error");

321:     default:        /* unknown condition */
322:       SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"matrix unknown return code");
323:     }

325:     factorizations++;
326:   } while (status == 7);
327:   F->ops->solve   = MatSolve_LUSOL;
328:   F->assembled    = PETSC_TRUE;
329:   F->preallocated = PETSC_TRUE;
330:   return(0);
331: }

333: PetscErrorCode MatLUFactorSymbolic_LUSOL(Mat F,Mat A, IS r, IS c,const MatFactorInfo *info)
334: {
335:   /************************************************************************/
336:   /* Input                                                                */
337:   /*     A  - matrix to factor                                            */
338:   /*     r  - row permutation (ignored)                                   */
339:   /*     c  - column permutation (ignored)                                */
340:   /*                                                                      */
341:   /* Output                                                               */
342:   /*     F  - matrix storing the factorization;                           */
343:   /************************************************************************/
344:   Mat_LUSOL      *lusol;
346:   int            i, m, n, nz, nnz;

349:   /************************************************************************/
350:   /* Check the arguments.                                                 */
351:   /************************************************************************/

353:   MatGetSize(A, &m, &n);
354:   nz   = ((Mat_SeqAIJ*)A->data)->nz;

356:   /************************************************************************/
357:   /* Create the factorization.                                            */
358:   /************************************************************************/

360:   F->ops->lufactornumeric = MatLUFactorNumeric_LUSOL;
361:   lusol                   = (Mat_LUSOL*)(F->spptr);

363:   /************************************************************************/
364:   /* Initialize parameters                                                */
365:   /************************************************************************/

367:   for (i = 0; i < 30; i++) {
368:     lusol->luparm[i] = 0;
369:     lusol->parmlu[i] = 0;
370:   }

372:   lusol->luparm[1] = -1;
373:   lusol->luparm[2] = 5;
374:   lusol->luparm[7] = 1;

376:   lusol->parmlu[0] = 1 / Factorization_Tolerance;
377:   lusol->parmlu[1] = 1 / Factorization_Tolerance;
378:   lusol->parmlu[2] = Factorization_Small_Tolerance;
379:   lusol->parmlu[3] = Factorization_Pivot_Tolerance;
380:   lusol->parmlu[4] = Factorization_Pivot_Tolerance;
381:   lusol->parmlu[5] = 3.0;
382:   lusol->parmlu[6] = 0.3;
383:   lusol->parmlu[7] = 0.6;

385:   /************************************************************************/
386:   /* Allocate the workspace needed by LUSOL.                              */
387:   /************************************************************************/

389:   lusol->elbowroom = PetscMax(lusol->elbowroom, info->fill);
390:   nnz              = PetscMax((int)(lusol->elbowroom*nz), 5*n);

392:   lusol->n      = n;
393:   lusol->nz     = nz;
394:   lusol->nnz    = nnz;
395:   lusol->luroom = 1.75;

397:   PetscMalloc(sizeof(int)*n,&lusol->ip);
398:   PetscMalloc(sizeof(int)*n,&lusol->iq);
399:   PetscMalloc(sizeof(int)*n,&lusol->lenc);
400:   PetscMalloc(sizeof(int)*n,&lusol->lenr);
401:   PetscMalloc(sizeof(int)*n,&lusol->locc);
402:   PetscMalloc(sizeof(int)*n,&lusol->locr);
403:   PetscMalloc(sizeof(int)*n,&lusol->iploc);
404:   PetscMalloc(sizeof(int)*n,&lusol->iqloc);
405:   PetscMalloc(sizeof(int)*n,&lusol->ipinv);
406:   PetscMalloc(sizeof(int)*n,&lusol->iqinv);
407:   PetscMalloc(sizeof(double)*n,&lusol->mnsw);
408:   PetscMalloc(sizeof(double)*n,&lusol->mnsv);

410:   PetscMalloc3(nnz,&lusol->data,nnz,&lusol->indc,nnz,&lusol->indr);

412:   lusol->CleanUpLUSOL     = PETSC_TRUE;
413:   F->ops->lufactornumeric = MatLUFactorNumeric_LUSOL;
414:   return(0);
415: }

417: PetscErrorCode MatFactorGetSolverType_seqaij_lusol(Mat A,MatSolverType *type)
418: {
420:   *type = MATSOLVERLUSOL;
421:   return(0);
422: }

424: PETSC_EXTERN PetscErrorCode MatGetFactor_seqaij_lusol(Mat A,MatFactorType ftype,Mat *F)
425: {
426:   Mat            B;
427:   Mat_LUSOL      *lusol;
429:   int            m, n;

432:   MatGetSize(A, &m, &n);
433:   MatCreate(PetscObjectComm((PetscObject)A),&B);
434:   MatSetSizes(B,PETSC_DECIDE,PETSC_DECIDE,m,n);
435:   MatSetType(B,((PetscObject)A)->type_name);
436:   MatSeqAIJSetPreallocation(B,0,NULL);

438:   PetscNewLog(B,&lusol);
439:   B->spptr = lusol;

441:   B->ops->lufactorsymbolic = MatLUFactorSymbolic_LUSOL;
442:   B->ops->destroy          = MatDestroy_LUSOL;

444:   PetscObjectComposeFunction((PetscObject)B,"MatFactorGetSolverType_C",MatFactorGetSolverType_seqaij_lusol);

446:   B->factortype = MAT_FACTOR_LU;
447:   PetscFree(B->solvertype);
448:   PetscStrallocpy(MATSOLVERLUSOL,&B->solvertype);

450:   return(0);
451: }

453: PETSC_EXTERN PetscErrorCode MatSolverTypeRegister_Lusol(void)
454: {

458:   MatSolverTypeRegister(MATSOLVERLUSOL,MATSEQAIJ,        MAT_FACTOR_LU,MatGetFactor_seqaij_lusol);
459:   return(0);
460: }

462: /*MC
463:   MATSOLVERLUSOL - "lusol" - Provides direct solvers (LU) for sequential matrices
464:                          via the external package LUSOL.

466:   If LUSOL is installed (see the manual for
467:   instructions on how to declare the existence of external packages),

469:   Works with MATSEQAIJ matrices

471:    Level: beginner

473: .seealso: PCLU, PCFactorSetMatSolverType(), MatSolverType

475: M*/