Actual source code: ex13f90.F90

petsc-3.14.6 2021-03-30
Report Typos and Errors
  1: !
  2: !
  3: !/*T
  4: !   Concepts: KSP^basic sequential example
  5: !   Concepts: KSP^Laplacian, 2d
  6: !   Concepts: Laplacian, 2d
  7: !   Processors: 1
  8: !T*/
  9: ! -----------------------------------------------------------------------

 11:       module UserModule
 12: #include <petsc/finclude/petscksp.h>
 13:         use petscksp
 14:         type User
 15:           Vec x
 16:           Vec b
 17:           Mat A
 18:           KSP ksp
 19:           PetscInt m
 20:           PetscInt n
 21:         end type User
 22:       end module

 24:       program main
 25:       use UserModule
 26:       implicit none

 28: !    User-defined context that contains all the data structures used
 29: !    in the linear solution process.

 31: !   Vec    x,b      /* solution vector, right hand side vector and work vector */
 32: !   Mat    A        /* sparse matrix */
 33: !   KSP   ksp     /* linear solver context */
 34: !   int    m,n      /* grid dimensions */
 35: !
 36: !   Since we cannot store Scalars and integers in the same context,
 37: !   we store the integers/pointers in the user-defined context, and
 38: !   the scalar values are carried in the common block.
 39: !   The scalar values in this simplistic example could easily
 40: !   be recalculated in each routine, where they are needed.
 41: !
 42: !   Scalar hx2,hy2  /* 1/(m+1)*(m+1) and 1/(n+1)*(n+1) */

 44: !  Note: Any user-defined Fortran routines MUST be declared as external.

 46:       external UserInitializeLinearSolver
 47:       external UserFinalizeLinearSolver
 48:       external UserDoLinearSolver

 50: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 51: !                   Variable declarations
 52: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 54:       PetscScalar  hx,hy,x,y
 55:       type(User) userctx
 56:       PetscErrorCode ierr
 57:       PetscInt m,n,t,tmax,i,j
 58:       PetscBool  flg
 59:       PetscMPIInt size
 60:       PetscReal  enorm
 61:       PetscScalar cnorm
 62:       PetscScalar,ALLOCATABLE :: userx(:,:)
 63:       PetscScalar,ALLOCATABLE :: userb(:,:)
 64:       PetscScalar,ALLOCATABLE :: solution(:,:)
 65:       PetscScalar,ALLOCATABLE :: rho(:,:)

 67:       PetscReal hx2,hy2
 68:       common /param/ hx2,hy2

 70:       tmax = 2
 71:       m = 6
 72:       n = 7

 74: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 75: !                 Beginning of program
 76: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 78:       call PetscInitialize(PETSC_NULL_CHARACTER,ierr)
 79:       if (ierr .ne. 0) then
 80:         print*,'Unable to initialize PETSc'
 81:         stop
 82:       endif
 83:       call MPI_Comm_size(PETSC_COMM_WORLD,size,ierr)
 84:       if (size .ne. 1) then; SETERRA(PETSC_COMM_WORLD,PETSC_ERR_WRONG_MPI_SIZE,'This is a uniprocessor example only'); endif

 86: !  The next two lines are for testing only; these allow the user to
 87: !  decide the grid size at runtime.

 89:       call PetscOptionsGetInt(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-m',m,flg,ierr);CHKERRA(ierr)
 90:       call PetscOptionsGetInt(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-n',n,flg,ierr);CHKERRA(ierr)

 92: !  Create the empty sparse matrix and linear solver data structures

 94:       call UserInitializeLinearSolver(m,n,userctx,ierr);CHKERRA(ierr)

 96: !  Allocate arrays to hold the solution to the linear system.  This
 97: !  approach is not normally done in PETSc programs, but in this case,
 98: !  since we are calling these routines from a non-PETSc program, we
 99: !  would like to reuse the data structures from another code. So in
100: !  the context of a larger application these would be provided by
101: !  other (non-PETSc) parts of the application code.

103:       ALLOCATE (userx(m,n),userb(m,n),solution(m,n))

105: !  Allocate an array to hold the coefficients in the elliptic operator

107:        ALLOCATE (rho(m,n))

109: !  Fill up the array rho[] with the function rho(x,y) = x; fill the
110: !  right-hand-side b[] and the solution with a known problem for testing.

112:       hx = 1.0/real(m+1)
113:       hy = 1.0/real(n+1)
114:       y  = hy
115:       do 20 j=1,n
116:          x = hx
117:          do 10 i=1,m
118:             rho(i,j)      = x
119:             solution(i,j) = sin(2.*PETSC_PI*x)*sin(2.*PETSC_PI*y)
120:             userb(i,j)    = -2.*PETSC_PI*cos(2.*PETSC_PI*x)*sin(2.*PETSC_PI*y) +                                &
121:      &                      8*PETSC_PI*PETSC_PI*x*sin(2.*PETSC_PI*x)*sin(2.*PETSC_PI*y)
122:            x = x + hx
123:  10      continue
124:          y = y + hy
125:  20   continue

127: !  Loop over a bunch of timesteps, setting up and solver the linear
128: !  system for each time-step.
129: !  Note that this loop is somewhat artificial. It is intended to
130: !  demonstrate how one may reuse the linear solvers in each time-step.

132:       do 100 t=1,tmax
133:          call UserDoLinearSolver(rho,userctx,userb,userx,ierr);CHKERRA(ierr)

135: !        Compute error: Note that this could (and usually should) all be done
136: !        using the PETSc vector operations. Here we demonstrate using more
137: !        standard programming practices to show how they may be mixed with
138: !        PETSc.
139:          cnorm = 0.0
140:          do 90 j=1,n
141:             do 80 i=1,m
142:               cnorm = cnorm + PetscConj(solution(i,j)-userx(i,j))*(solution(i,j)-userx(i,j))
143:  80         continue
144:  90      continue
145:          enorm =  PetscRealPart(cnorm*hx*hy)
146:          write(6,115) m,n,enorm
147:  115     format ('m = ',I2,' n = ',I2,' error norm = ',1PE11.4)
148:  100  continue

150: !  We are finished solving linear systems, so we clean up the
151: !  data structures.

153:       DEALLOCATE (userx,userb,solution,rho)

155:       call UserFinalizeLinearSolver(userctx,ierr);CHKERRA(ierr)
156:       call PetscFinalize(ierr)
157:       end

159: ! ----------------------------------------------------------------
160:       subroutine UserInitializeLinearSolver(m,n,userctx,ierr)
161:       use UserModule
162:       implicit none

164:       PetscInt m,n
165:       PetscErrorCode ierr
166:       type(User) userctx

168:       common /param/ hx2,hy2
169:       PetscReal hx2,hy2

171: !  Local variable declararions
172:       Mat     A
173:       Vec     b,x
174:       KSP    ksp
175:       PetscInt Ntot,five,one


178: !  Here we assume use of a grid of size m x n, with all points on the
179: !  interior of the domain, i.e., we do not include the points corresponding
180: !  to homogeneous Dirichlet boundary conditions.  We assume that the domain
181: !  is [0,1]x[0,1].

183:       hx2 = (m+1)*(m+1)
184:       hy2 = (n+1)*(n+1)
185:       Ntot = m*n

187:       five = 5
188:       one = 1

190: !  Create the sparse matrix. Preallocate 5 nonzeros per row.

192:       call MatCreateSeqAIJ(PETSC_COMM_SELF,Ntot,Ntot,five,PETSC_NULL_INTEGER,A,ierr);CHKERRQ(ierr)
193: !
194: !  Create vectors. Here we create vectors with no memory allocated.
195: !  This way, we can use the data structures already in the program
196: !  by using VecPlaceArray() subroutine at a later stage.
197: !
198:       call VecCreateSeqWithArray(PETSC_COMM_SELF,one,Ntot,PETSC_NULL_SCALAR,b,ierr);CHKERRQ(ierr)
199:       call VecDuplicate(b,x,ierr);CHKERRQ(ierr)

201: !  Create linear solver context. This will be used repeatedly for all
202: !  the linear solves needed.

204:       call KSPCreate(PETSC_COMM_SELF,ksp,ierr);CHKERRQ(ierr)

206:       userctx%x = x
207:       userctx%b = b
208:       userctx%A = A
209:       userctx%ksp = ksp
210:       userctx%m = m
211:       userctx%n = n

213:       return
214:       end
215: ! -----------------------------------------------------------------------

217: !   Solves -div (rho grad psi) = F using finite differences.
218: !   rho is a 2-dimensional array of size m by n, stored in Fortran
219: !   style by columns. userb is a standard one-dimensional array.

221:       subroutine UserDoLinearSolver(rho,userctx,userb,userx,ierr)
222:       use UserModule
223:       implicit none

225:       PetscErrorCode ierr
226:       type(User) userctx
227:       PetscScalar rho(*),userb(*),userx(*)


230:       common /param/ hx2,hy2
231:       PetscReal hx2,hy2

233:       PC   pc
234:       KSP ksp
235:       Vec  b,x
236:       Mat  A
237:       PetscInt m,n,one
238:       PetscInt i,j,II,JJ
239:       PetscScalar  v

241:       one  = 1
242:       x    = userctx%x
243:       b    = userctx%b
244:       A    = userctx%A
245:       ksp  = userctx%ksp
246:       m    = userctx%m
247:       n    = userctx%n

249: !  This is not the most efficient way of generating the matrix,
250: !  but let's not worry about it.  We should have separate code for
251: !  the four corners, each edge and then the interior. Then we won't
252: !  have the slow if-tests inside the loop.
253: !
254: !  Compute the operator
255: !          -div rho grad
256: !  on an m by n grid with zero Dirichlet boundary conditions. The rho
257: !  is assumed to be given on the same grid as the finite difference
258: !  stencil is applied.  For a staggered grid, one would have to change
259: !  things slightly.

261:       II = 0
262:       do 110 j=1,n
263:          do 100 i=1,m
264:             if (j .gt. 1) then
265:                JJ = II - m
266:                v = -0.5*(rho(II+1) + rho(JJ+1))*hy2
267:                call MatSetValues(A,one,II,one,JJ,v,INSERT_VALUES,ierr);CHKERRQ(ierr)
268:             endif
269:             if (j .lt. n) then
270:                JJ = II + m
271:                v = -0.5*(rho(II+1) + rho(JJ+1))*hy2
272:                call MatSetValues(A,one,II,one,JJ,v,INSERT_VALUES,ierr);CHKERRQ(ierr)
273:             endif
274:             if (i .gt. 1) then
275:                JJ = II - 1
276:                v = -0.5*(rho(II+1) + rho(JJ+1))*hx2
277:                call MatSetValues(A,one,II,one,JJ,v,INSERT_VALUES,ierr);CHKERRQ(ierr)
278:             endif
279:             if (i .lt. m) then
280:                JJ = II + 1
281:                v = -0.5*(rho(II+1) + rho(JJ+1))*hx2
282:                call MatSetValues(A,one,II,one,JJ,v,INSERT_VALUES,ierr);CHKERRQ(ierr)
283:             endif
284:             v = 2*rho(II+1)*(hx2+hy2)
285:             call MatSetValues(A,one,II,one,II,v,INSERT_VALUES,ierr);CHKERRQ(ierr)
286:             II = II+1
287:  100     continue
288:  110  continue
289: !
290: !     Assemble matrix
291: !
292:       call MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY,ierr);CHKERRQ(ierr)
293:       call MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY,ierr);CHKERRQ(ierr)

295: !
296: !     Set operators. Here the matrix that defines the linear system
297: !     also serves as the preconditioning matrix. Since all the matrices
298: !     will have the same nonzero pattern here, we indicate this so the
299: !     linear solvers can take advantage of this.
300: !
301:       call KSPSetOperators(ksp,A,A,ierr);CHKERRQ(ierr)

303: !
304: !     Set linear solver defaults for this problem (optional).
305: !     - Here we set it to use direct LU factorization for the solution
306: !
307:       call KSPGetPC(ksp,pc,ierr);CHKERRQ(ierr)
308:       call PCSetType(pc,PCLU,ierr);CHKERRQ(ierr)

310: !
311: !     Set runtime options, e.g.,
312: !        -ksp_type <type> -pc_type <type> -ksp_monitor -ksp_rtol <rtol>
313: !     These options will override those specified above as long as
314: !     KSPSetFromOptions() is called _after_ any other customization
315: !     routines.
316: !
317: !     Run the program with the option -help to see all the possible
318: !     linear solver options.
319: !
320:       call KSPSetFromOptions(ksp,ierr);CHKERRQ(ierr)

322: !
323: !     This allows the PETSc linear solvers to compute the solution
324: !     directly in the user's array rather than in the PETSc vector.
325: !
326: !     This is essentially a hack and not highly recommend unless you
327: !     are quite comfortable with using PETSc. In general, users should
328: !     write their entire application using PETSc vectors rather than
329: !     arrays.
330: !
331:       call VecPlaceArray(x,userx,ierr);CHKERRQ(ierr)
332:       call VecPlaceArray(b,userb,ierr);CHKERRQ(ierr)

334: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
335: !                      Solve the linear system
336: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

338:       call KSPSolve(ksp,b,x,ierr);CHKERRQ(ierr)

340:       call VecResetArray(x,ierr);CHKERRQ(ierr)
341:       call VecResetArray(b,ierr);CHKERRQ(ierr)

343:       return
344:       end

346: ! ------------------------------------------------------------------------

348:       subroutine UserFinalizeLinearSolver(userctx,ierr)
349:       use UserModule
350:       implicit none

352:       PetscErrorCode ierr
353:       type(User) userctx

355: !
356: !     We are all done and don't need to solve any more linear systems, so
357: !     we free the work space.  All PETSc objects should be destroyed when
358: !     they are no longer needed.
359: !
360:       call VecDestroy(userctx%x,ierr);CHKERRQ(ierr)
361:       call VecDestroy(userctx%b,ierr);CHKERRQ(ierr)
362:       call MatDestroy(userctx%A,ierr);CHKERRQ(ierr)
363:       call KSPDestroy(userctx%ksp,ierr);CHKERRQ(ierr)

365:       return
366:       end

368: !
369: !/*TEST
370: !
371: !   test:
372: !      args: -m 19 -n 20 -ksp_gmres_cgs_refinement_type refine_always
373: !      output_file: output/ex13f90_1.out
374: !
375: !TEST*/