petsc-3.14.6 2021-03-30
Report Typos and Errors
MAT
ex74.c
Solves the constant-coefficient 1D heat equation
with an Implicit Runge-Kutta method using MatKAIJ.
du d^2 u
-- = a ----- ; 0 <= x <= 1;
dt dx^2
with periodic boundary conditions
2nd order central discretization in space:
[ d^2 u ] u_{i+1} - 2u_i + u_{i-1}
[ ----- ] = ------------------------
[ dx^2 ]i h^2
i = grid index; h = x_{i+1}-x_i (Uniform)
0 <= i < n h = 1.0/n
Thus,
du
-- = Ju; J = (a/h^2) tridiagonal(1,-2,1)_n
dt
Implicit Runge-Kutta method:
U^(k) = u^n + dt \\sum_i a_{ki} JU^{i}
u^{n+1} = u^n + dt \\sum_i b_i JU^{i}
i = 1,...,s (s -> number of stages)
At each time step, we solve
[ 1 ] 1
[ -- I \\otimes A^{-1} - J \\otimes I ] U = -- u^n \\otimes A^{-1}
[ dt ] dt
where A is the Butcher tableaux of the implicit
Runge-Kutta method,
with MATKAIJ and KSP.
Available IRK Methods:
gauss n-stage Gauss method