Actual source code: rvector.c

petsc-3.13.6 2020-09-29
Report Typos and Errors
  1: /*
  2:      Provides the interface functions for vector operations that have PetscScalar/PetscReal in the signature
  3:    These are the vector functions the user calls.
  4: */
  5:  #include <petsc/private/vecimpl.h>
  6: #if defined(PETSC_HAVE_CUDA)
  7:  #include <../src/vec/vec/impls/dvecimpl.h>
  8:  #include <petsc/private/cudavecimpl.h>
  9: #endif
 10: static PetscInt VecGetSubVectorSavedStateId = -1;

 12: PETSC_EXTERN PetscErrorCode VecValidValues(Vec vec,PetscInt argnum,PetscBool begin)
 13: {
 14: #if defined(PETSC_USE_DEBUG)
 15:   PetscErrorCode    ierr;
 16:   PetscInt          n,i;
 17:   const PetscScalar *x;

 20: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_VIENNACL)
 21:   if ((vec->petscnative || vec->ops->getarray) && (vec->offloadmask & PETSC_OFFLOAD_CPU)) {
 22: #else
 23:   if (vec->petscnative || vec->ops->getarray) {
 24: #endif
 25:     VecGetLocalSize(vec,&n);
 26:     VecGetArrayRead(vec,&x);
 27:     for (i=0; i<n; i++) {
 28:       if (begin) {
 29:         if (PetscIsInfOrNanScalar(x[i])) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_FP,"Vec entry at local location %D is not-a-number or infinite at beginning of function: Parameter number %D",i,argnum);
 30:       } else {
 31:         if (PetscIsInfOrNanScalar(x[i])) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_FP,"Vec entry at local location %D is not-a-number or infinite at end of function: Parameter number %D",i,argnum);
 32:       }
 33:     }
 34:     VecRestoreArrayRead(vec,&x);
 35:   }
 36:   return(0);
 37: #else
 38:   return 0;
 39: #endif
 40: }

 42: /*@
 43:    VecMaxPointwiseDivide - Computes the maximum of the componentwise division max = max_i abs(x_i/y_i).

 45:    Logically Collective on Vec

 47:    Input Parameters:
 48: .  x, y  - the vectors

 50:    Output Parameter:
 51: .  max - the result

 53:    Level: advanced

 55:    Notes:
 56:     x and y may be the same vector
 57:           if a particular y_i is zero, it is treated as 1 in the above formula

 59: .seealso: VecPointwiseDivide(), VecPointwiseMult(), VecPointwiseMax(), VecPointwiseMin(), VecPointwiseMaxAbs()
 60: @*/
 61: PetscErrorCode  VecMaxPointwiseDivide(Vec x,Vec y,PetscReal *max)
 62: {

 72:   VecCheckSameSize(x,1,y,2);
 73:   (*x->ops->maxpointwisedivide)(x,y,max);
 74:   return(0);
 75: }

 77: /*@
 78:    VecDot - Computes the vector dot product.

 80:    Collective on Vec

 82:    Input Parameters:
 83: .  x, y - the vectors

 85:    Output Parameter:
 86: .  val - the dot product

 88:    Performance Issues:
 89: $    per-processor memory bandwidth
 90: $    interprocessor latency
 91: $    work load inbalance that causes certain processes to arrive much earlier than others

 93:    Notes for Users of Complex Numbers:
 94:    For complex vectors, VecDot() computes
 95: $     val = (x,y) = y^H x,
 96:    where y^H denotes the conjugate transpose of y. Note that this corresponds to the usual "mathematicians" complex
 97:    inner product where the SECOND argument gets the complex conjugate. Since the BLASdot() complex conjugates the first
 98:    first argument we call the BLASdot() with the arguments reversed.

100:    Use VecTDot() for the indefinite form
101: $     val = (x,y) = y^T x,
102:    where y^T denotes the transpose of y.

104:    Level: intermediate


107: .seealso: VecMDot(), VecTDot(), VecNorm(), VecDotBegin(), VecDotEnd(), VecDotRealPart()
108: @*/
109: PetscErrorCode  VecDot(Vec x,Vec y,PetscScalar *val)
110: {

120:   VecCheckSameSize(x,1,y,2);

122:   PetscLogEventBegin(VEC_Dot,x,y,0,0);
123:   (*x->ops->dot)(x,y,val);
124:   PetscLogEventEnd(VEC_Dot,x,y,0,0);
125:   return(0);
126: }

128: /*@
129:    VecDotRealPart - Computes the real part of the vector dot product.

131:    Collective on Vec

133:    Input Parameters:
134: .  x, y - the vectors

136:    Output Parameter:
137: .  val - the real part of the dot product;

139:    Performance Issues:
140: $    per-processor memory bandwidth
141: $    interprocessor latency
142: $    work load inbalance that causes certain processes to arrive much earlier than others

144:    Notes for Users of Complex Numbers:
145:      See VecDot() for more details on the definition of the dot product for complex numbers

147:      For real numbers this returns the same value as VecDot()

149:      For complex numbers in C^n (that is a vector of n components with a complex number for each component) this is equal to the usual real dot product on the
150:      the space R^{2n} (that is a vector of 2n components with the real or imaginary part of the complex numbers for components)

152:    Developer Note: This is not currently optimized to compute only the real part of the dot product.

154:    Level: intermediate


157: .seealso: VecMDot(), VecTDot(), VecNorm(), VecDotBegin(), VecDotEnd(), VecDot(), VecDotNorm2()
158: @*/
159: PetscErrorCode  VecDotRealPart(Vec x,Vec y,PetscReal *val)
160: {
162:   PetscScalar    fdot;

165:   VecDot(x,y,&fdot);
166:   *val = PetscRealPart(fdot);
167:   return(0);
168: }

170: /*@
171:    VecNorm  - Computes the vector norm.

173:    Collective on Vec

175:    Input Parameters:
176: +  x - the vector
177: -  type - one of NORM_1, NORM_2, NORM_INFINITY.  Also available
178:           NORM_1_AND_2, which computes both norms and stores them
179:           in a two element array.

181:    Output Parameter:
182: .  val - the norm

184:    Notes:
185: $     NORM_1 denotes sum_i |x_i|
186: $     NORM_2 denotes sqrt(sum_i |x_i|^2)
187: $     NORM_INFINITY denotes max_i |x_i|

189:       For complex numbers NORM_1 will return the traditional 1 norm of the 2 norm of the complex numbers; that is the 1
190:       norm of the absolutely values of the complex entries. In PETSc 3.6 and earlier releases it returned the 1 norm of
191:       the 1 norm of the complex entries (what is returned by the BLAS routine asum()). Both are valid norms but most
192:       people expect the former.

194:    Level: intermediate

196:    Performance Issues:
197: $    per-processor memory bandwidth
198: $    interprocessor latency
199: $    work load inbalance that causes certain processes to arrive much earlier than others


202: .seealso: VecDot(), VecTDot(), VecNorm(), VecDotBegin(), VecDotEnd(), VecNormAvailable(),
203:           VecNormBegin(), VecNormEnd()

205: @*/

207: PetscErrorCode  VecNorm(Vec x,NormType type,PetscReal *val)
208: {
209:   PetscBool      flg;


217:   /*
218:    * Cached data?
219:    */
220:   if (type!=NORM_1_AND_2) {
221:     PetscObjectComposedDataGetReal((PetscObject)x,NormIds[type],*val,flg);
222:     if (flg) return(0);
223:   }
224:   PetscLogEventBegin(VEC_Norm,x,0,0,0);
225:   (*x->ops->norm)(x,type,val);
226:   PetscLogEventEnd(VEC_Norm,x,0,0,0);
227:   if (type!=NORM_1_AND_2) {
228:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[type],*val);
229:   }
230:   return(0);
231: }

233: /*@
234:    VecNormAvailable  - Returns the vector norm if it is already known.

236:    Not Collective

238:    Input Parameters:
239: +  x - the vector
240: -  type - one of NORM_1, NORM_2, NORM_INFINITY.  Also available
241:           NORM_1_AND_2, which computes both norms and stores them
242:           in a two element array.

244:    Output Parameter:
245: +  available - PETSC_TRUE if the val returned is valid
246: -  val - the norm

248:    Notes:
249: $     NORM_1 denotes sum_i |x_i|
250: $     NORM_2 denotes sqrt(sum_i (x_i)^2)
251: $     NORM_INFINITY denotes max_i |x_i|

253:    Level: intermediate

255:    Performance Issues:
256: $    per-processor memory bandwidth
257: $    interprocessor latency
258: $    work load inbalance that causes certain processes to arrive much earlier than others

260:    Compile Option:
261:    PETSC_HAVE_SLOW_BLAS_NORM2 will cause a C (loop unrolled) version of the norm to be used, rather
262:  than the BLAS. This should probably only be used when one is using the FORTRAN BLAS routines
263:  (as opposed to vendor provided) because the FORTRAN BLAS NRM2() routine is very slow.


266: .seealso: VecDot(), VecTDot(), VecNorm(), VecDotBegin(), VecDotEnd(), VecNorm()
267:           VecNormBegin(), VecNormEnd()

269: @*/
270: PetscErrorCode  VecNormAvailable(Vec x,NormType type,PetscBool  *available,PetscReal *val)
271: {


279:   *available = PETSC_FALSE;
280:   if (type!=NORM_1_AND_2) {
281:     PetscObjectComposedDataGetReal((PetscObject)x,NormIds[type],*val,*available);
282:   }
283:   return(0);
284: }

286: /*@
287:    VecNormalize - Normalizes a vector by 2-norm.

289:    Collective on Vec

291:    Input Parameters:
292: +  x - the vector

294:    Output Parameter:
295: .  x - the normalized vector
296: -  val - the vector norm before normalization

298:    Level: intermediate


301: @*/
302: PetscErrorCode  VecNormalize(Vec x,PetscReal *val)
303: {
305:   PetscReal      norm;

310:   PetscLogEventBegin(VEC_Normalize,x,0,0,0);
311:   VecNorm(x,NORM_2,&norm);
312:   if (norm == 0.0) {
313:     PetscInfo(x,"Vector of zero norm can not be normalized; Returning only the zero norm\n");
314:   } else if (norm != 1.0) {
315:     PetscScalar tmp = 1.0/norm;
316:     VecScale(x,tmp);
317:   }
318:   if (val) *val = norm;
319:   PetscLogEventEnd(VEC_Normalize,x,0,0,0);
320:   return(0);
321: }

323: /*@C
324:    VecMax - Determines the vector component with maximum real part and its location.

326:    Collective on Vec

328:    Input Parameter:
329: .  x - the vector

331:    Output Parameters:
332: +  p - the location of val (pass NULL if you don't want this)
333: -  val - the maximum component

335:    Notes:
336:    Returns the value PETSC_MIN_REAL and p = -1 if the vector is of length 0.

338:    Returns the smallest index with the maximum value
339:    Level: intermediate


342: .seealso: VecNorm(), VecMin()
343: @*/
344: PetscErrorCode  VecMax(Vec x,PetscInt *p,PetscReal *val)
345: {

352:   PetscLogEventBegin(VEC_Max,x,0,0,0);
353:   (*x->ops->max)(x,p,val);
354:   PetscLogEventEnd(VEC_Max,x,0,0,0);
355:   return(0);
356: }

358: /*@C
359:    VecMin - Determines the vector component with minimum real part and its location.

361:    Collective on Vec

363:    Input Parameters:
364: .  x - the vector

366:    Output Parameter:
367: +  p - the location of val (pass NULL if you don't want this location)
368: -  val - the minimum component

370:    Level: intermediate

372:    Notes:
373:    Returns the value PETSC_MAX_REAL and p = -1 if the vector is of length 0.

375:    This returns the smallest index with the minumum value


378: .seealso: VecMax()
379: @*/
380: PetscErrorCode  VecMin(Vec x,PetscInt *p,PetscReal *val)
381: {

388:   PetscLogEventBegin(VEC_Min,x,0,0,0);
389:   (*x->ops->min)(x,p,val);
390:   PetscLogEventEnd(VEC_Min,x,0,0,0);
391:   return(0);
392: }

394: /*@
395:    VecTDot - Computes an indefinite vector dot product. That is, this
396:    routine does NOT use the complex conjugate.

398:    Collective on Vec

400:    Input Parameters:
401: .  x, y - the vectors

403:    Output Parameter:
404: .  val - the dot product

406:    Notes for Users of Complex Numbers:
407:    For complex vectors, VecTDot() computes the indefinite form
408: $     val = (x,y) = y^T x,
409:    where y^T denotes the transpose of y.

411:    Use VecDot() for the inner product
412: $     val = (x,y) = y^H x,
413:    where y^H denotes the conjugate transpose of y.

415:    Level: intermediate

417: .seealso: VecDot(), VecMTDot()
418: @*/
419: PetscErrorCode  VecTDot(Vec x,Vec y,PetscScalar *val)
420: {

430:   VecCheckSameSize(x,1,y,2);

432:   PetscLogEventBegin(VEC_TDot,x,y,0,0);
433:   (*x->ops->tdot)(x,y,val);
434:   PetscLogEventEnd(VEC_TDot,x,y,0,0);
435:   return(0);
436: }

438: /*@
439:    VecScale - Scales a vector.

441:    Not collective on Vec

443:    Input Parameters:
444: +  x - the vector
445: -  alpha - the scalar

447:    Output Parameter:
448: .  x - the scaled vector

450:    Note:
451:    For a vector with n components, VecScale() computes
452: $      x[i] = alpha * x[i], for i=1,...,n.

454:    Level: intermediate


457: @*/
458: PetscErrorCode  VecScale(Vec x, PetscScalar alpha)
459: {
460:   PetscReal      norms[4] = {0.0,0.0,0.0, 0.0};
461:   PetscBool      flgs[4];
463:   PetscInt       i;

468:   if (x->stash.insertmode != NOT_SET_VALUES) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled vector");
469:   PetscLogEventBegin(VEC_Scale,x,0,0,0);
470:   if (alpha != (PetscScalar)1.0) {
471:     VecSetErrorIfLocked(x,1);
472:     /* get current stashed norms */
473:     for (i=0; i<4; i++) {
474:       PetscObjectComposedDataGetReal((PetscObject)x,NormIds[i],norms[i],flgs[i]);
475:     }
476:     (*x->ops->scale)(x,alpha);
477:     PetscObjectStateIncrease((PetscObject)x);
478:     /* put the scaled stashed norms back into the Vec */
479:     for (i=0; i<4; i++) {
480:       if (flgs[i]) {
481:         PetscObjectComposedDataSetReal((PetscObject)x,NormIds[i],PetscAbsScalar(alpha)*norms[i]);
482:       }
483:     }
484:   }
485:   PetscLogEventEnd(VEC_Scale,x,0,0,0);
486:   return(0);
487: }

489: /*@
490:    VecSet - Sets all components of a vector to a single scalar value.

492:    Logically Collective on Vec

494:    Input Parameters:
495: +  x  - the vector
496: -  alpha - the scalar

498:    Output Parameter:
499: .  x  - the vector

501:    Note:
502:    For a vector of dimension n, VecSet() computes
503: $     x[i] = alpha, for i=1,...,n,
504:    so that all vector entries then equal the identical
505:    scalar value, alpha.  Use the more general routine
506:    VecSetValues() to set different vector entries.

508:    You CANNOT call this after you have called VecSetValues() but before you call
509:    VecAssemblyBegin/End().

511:    Level: beginner

513: .seealso VecSetValues(), VecSetValuesBlocked(), VecSetRandom()

515: @*/
516: PetscErrorCode  VecSet(Vec x,PetscScalar alpha)
517: {
518:   PetscReal      val;

524:   if (x->stash.insertmode != NOT_SET_VALUES) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"You cannot call this after you have called VecSetValues() but\n before you have called VecAssemblyBegin/End()");
526:   VecSetErrorIfLocked(x,1);

528:   PetscLogEventBegin(VEC_Set,x,0,0,0);
529:   (*x->ops->set)(x,alpha);
530:   PetscLogEventEnd(VEC_Set,x,0,0,0);
531:   PetscObjectStateIncrease((PetscObject)x);

533:   /*  norms can be simply set (if |alpha|*N not too large) */
534:   val  = PetscAbsScalar(alpha);
535:   if (x->map->N == 0) {
536:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_1],0.0l);
537:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_INFINITY],0.0);
538:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_2],0.0);
539:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_FROBENIUS],0.0);
540:   } else if (val > PETSC_MAX_REAL/x->map->N) {
541:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_INFINITY],val);
542:   } else {
543:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_1],x->map->N * val);
544:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_INFINITY],val);
545:     val  = PetscSqrtReal((PetscReal)x->map->N) * val;
546:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_2],val);
547:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_FROBENIUS],val);
548:   }
549:   return(0);
550: }


553: /*@
554:    VecAXPY - Computes y = alpha x + y.

556:    Logically Collective on Vec

558:    Input Parameters:
559: +  alpha - the scalar
560: -  x, y  - the vectors

562:    Output Parameter:
563: .  y - output vector

565:    Level: intermediate

567:    Notes:
568:     x and y MUST be different vectors
569:     This routine is optimized for alpha of 0.0, otherwise it calls the BLAS routine

571: $    VecAXPY(y,alpha,x)                   y = alpha x           +      y
572: $    VecAYPX(y,beta,x)                    y =       x           + beta y
573: $    VecAXPBY(y,alpha,beta,x)             y = alpha x           + beta y
574: $    VecWAXPY(w,alpha,x,y)                w = alpha x           +      y
575: $    VecAXPBYPCZ(w,alpha,beta,gamma,x,y)  z = alpha x           + beta y + gamma z
576: $    VecMAXPY(y,nv,alpha[],x[])           y = sum alpha[i] x[i] +      y


579: .seealso:  VecAYPX(), VecMAXPY(), VecWAXPY(), VecAXPBYPCZ(), VecAXPBY()
580: @*/
581: PetscErrorCode  VecAXPY(Vec y,PetscScalar alpha,Vec x)
582: {

591:   VecCheckSameSize(x,1,y,3);
592:   if (x == y) SETERRQ(PetscObjectComm((PetscObject)x),PETSC_ERR_ARG_IDN,"x and y cannot be the same vector");
594:   if (alpha == (PetscScalar)0.0) return(0);
595:   VecSetErrorIfLocked(y,1);

597:   VecLockReadPush(x);
598:   PetscLogEventBegin(VEC_AXPY,x,y,0,0);
599:   (*y->ops->axpy)(y,alpha,x);
600:   PetscLogEventEnd(VEC_AXPY,x,y,0,0);
601:   VecLockReadPop(x);
602:   PetscObjectStateIncrease((PetscObject)y);
603:   return(0);
604: }

606: /*@
607:    VecAXPBY - Computes y = alpha x + beta y.

609:    Logically Collective on Vec

611:    Input Parameters:
612: +  alpha,beta - the scalars
613: -  x, y  - the vectors

615:    Output Parameter:
616: .  y - output vector

618:    Level: intermediate

620:    Notes:
621:     x and y MUST be different vectors
622:     The implementation is optimized for alpha and/or beta values of 0.0 and 1.0


625: .seealso: VecAYPX(), VecMAXPY(), VecWAXPY(), VecAXPY(), VecAXPBYPCZ()
626: @*/
627: PetscErrorCode  VecAXPBY(Vec y,PetscScalar alpha,PetscScalar beta,Vec x)
628: {

637:   VecCheckSameSize(y,1,x,4);
638:   if (x == y) SETERRQ(PetscObjectComm((PetscObject)x),PETSC_ERR_ARG_IDN,"x and y cannot be the same vector");
641:   if (alpha == (PetscScalar)0.0 && beta == (PetscScalar)1.0) return(0);
642:   VecSetErrorIfLocked(y,1);
643:   PetscLogEventBegin(VEC_AXPY,x,y,0,0);
644:   (*y->ops->axpby)(y,alpha,beta,x);
645:   PetscLogEventEnd(VEC_AXPY,x,y,0,0);
646:   PetscObjectStateIncrease((PetscObject)y);
647:   return(0);
648: }

650: /*@
651:    VecAXPBYPCZ - Computes z = alpha x + beta y + gamma z

653:    Logically Collective on Vec

655:    Input Parameters:
656: +  alpha,beta, gamma - the scalars
657: -  x, y, z  - the vectors

659:    Output Parameter:
660: .  z - output vector

662:    Level: intermediate

664:    Notes:
665:     x, y and z must be different vectors
666:     The implementation is optimized for alpha of 1.0 and gamma of 1.0 or 0.0


669: .seealso:  VecAYPX(), VecMAXPY(), VecWAXPY(), VecAXPY(), VecAXPBY()
670: @*/
671: PetscErrorCode  VecAXPBYPCZ(Vec z,PetscScalar alpha,PetscScalar beta,PetscScalar gamma,Vec x,Vec y)
672: {

684:   VecCheckSameSize(x,1,y,5);
685:   VecCheckSameSize(x,1,z,6);
686:   if (x == y || x == z) SETERRQ(PetscObjectComm((PetscObject)x),PETSC_ERR_ARG_IDN,"x, y, and z must be different vectors");
687:   if (y == z) SETERRQ(PetscObjectComm((PetscObject)y),PETSC_ERR_ARG_IDN,"x, y, and z must be different vectors");
691:   if (alpha == (PetscScalar)0.0 && beta == (PetscScalar)0.0 && gamma == (PetscScalar)1.0) return(0);
692:   VecSetErrorIfLocked(z,1);

694:   PetscLogEventBegin(VEC_AXPBYPCZ,x,y,z,0);
695:   (*y->ops->axpbypcz)(z,alpha,beta,gamma,x,y);
696:   PetscLogEventEnd(VEC_AXPBYPCZ,x,y,z,0);
697:   PetscObjectStateIncrease((PetscObject)z);
698:   return(0);
699: }

701: /*@
702:    VecAYPX - Computes y = x + beta y.

704:    Logically Collective on Vec

706:    Input Parameters:
707: +  beta - the scalar
708: -  x, y  - the vectors

710:    Output Parameter:
711: .  y - output vector

713:    Level: intermediate

715:    Notes:
716:     x and y MUST be different vectors
717:     The implementation is optimized for beta of -1.0, 0.0, and 1.0


720: .seealso:  VecMAXPY(), VecWAXPY(), VecAXPY(), VecAXPBYPCZ(), VecAXPBY()
721: @*/
722: PetscErrorCode  VecAYPX(Vec y,PetscScalar beta,Vec x)
723: {

732:   VecCheckSameSize(x,1,y,3);
733:   if (x == y) SETERRQ(PetscObjectComm((PetscObject)x),PETSC_ERR_ARG_IDN,"x and y must be different vectors");
735:   VecSetErrorIfLocked(y,1);

737:   PetscLogEventBegin(VEC_AYPX,x,y,0,0);
738:    (*y->ops->aypx)(y,beta,x);
739:   PetscLogEventEnd(VEC_AYPX,x,y,0,0);
740:   PetscObjectStateIncrease((PetscObject)y);
741:   return(0);
742: }


745: /*@
746:    VecWAXPY - Computes w = alpha x + y.

748:    Logically Collective on Vec

750:    Input Parameters:
751: +  alpha - the scalar
752: -  x, y  - the vectors

754:    Output Parameter:
755: .  w - the result

757:    Level: intermediate

759:    Notes:
760:     w cannot be either x or y, but x and y can be the same
761:     The implementation is optimzed for alpha of -1.0, 0.0, and 1.0


764: .seealso: VecAXPY(), VecAYPX(), VecAXPBY(), VecMAXPY(), VecAXPBYPCZ()
765: @*/
766: PetscErrorCode  VecWAXPY(Vec w,PetscScalar alpha,Vec x,Vec y)
767: {

779:   VecCheckSameSize(x,3,y,4);
780:   VecCheckSameSize(x,3,w,1);
781:   if (w == y) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Result vector w cannot be same as input vector y, suggest VecAXPY()");
782:   if (w == x) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Result vector w cannot be same as input vector x, suggest VecAYPX()");
784:   VecSetErrorIfLocked(w,1);

786:   PetscLogEventBegin(VEC_WAXPY,x,y,w,0);
787:    (*w->ops->waxpy)(w,alpha,x,y);
788:   PetscLogEventEnd(VEC_WAXPY,x,y,w,0);
789:   PetscObjectStateIncrease((PetscObject)w);
790:   return(0);
791: }


794: /*@C
795:    VecSetValues - Inserts or adds values into certain locations of a vector.

797:    Not Collective

799:    Input Parameters:
800: +  x - vector to insert in
801: .  ni - number of elements to add
802: .  ix - indices where to add
803: .  y - array of values
804: -  iora - either INSERT_VALUES or ADD_VALUES, where
805:    ADD_VALUES adds values to any existing entries, and
806:    INSERT_VALUES replaces existing entries with new values

808:    Notes:
809:    VecSetValues() sets x[ix[i]] = y[i], for i=0,...,ni-1.

811:    Calls to VecSetValues() with the INSERT_VALUES and ADD_VALUES
812:    options cannot be mixed without intervening calls to the assembly
813:    routines.

815:    These values may be cached, so VecAssemblyBegin() and VecAssemblyEnd()
816:    MUST be called after all calls to VecSetValues() have been completed.

818:    VecSetValues() uses 0-based indices in Fortran as well as in C.

820:    If you call VecSetOption(x, VEC_IGNORE_NEGATIVE_INDICES,PETSC_TRUE),
821:    negative indices may be passed in ix. These rows are
822:    simply ignored. This allows easily inserting element load matrices
823:    with homogeneous Dirchlet boundary conditions that you don't want represented
824:    in the vector.

826:    Level: beginner

828: .seealso:  VecAssemblyBegin(), VecAssemblyEnd(), VecSetValuesLocal(),
829:            VecSetValue(), VecSetValuesBlocked(), InsertMode, INSERT_VALUES, ADD_VALUES, VecGetValues()
830: @*/
831: PetscErrorCode  VecSetValues(Vec x,PetscInt ni,const PetscInt ix[],const PetscScalar y[],InsertMode iora)
832: {

837:   if (!ni) return(0);

842:   PetscLogEventBegin(VEC_SetValues,x,0,0,0);
843:   (*x->ops->setvalues)(x,ni,ix,y,iora);
844:   PetscLogEventEnd(VEC_SetValues,x,0,0,0);
845:   PetscObjectStateIncrease((PetscObject)x);
846:   return(0);
847: }

849: /*@C
850:    VecGetValues - Gets values from certain locations of a vector. Currently
851:           can only get values on the same processor

853:     Not Collective

855:    Input Parameters:
856: +  x - vector to get values from
857: .  ni - number of elements to get
858: -  ix - indices where to get them from (in global 1d numbering)

860:    Output Parameter:
861: .   y - array of values

863:    Notes:
864:    The user provides the allocated array y; it is NOT allocated in this routine

866:    VecGetValues() gets y[i] = x[ix[i]], for i=0,...,ni-1.

868:    VecAssemblyBegin() and VecAssemblyEnd()  MUST be called before calling this

870:    VecGetValues() uses 0-based indices in Fortran as well as in C.

872:    If you call VecSetOption(x, VEC_IGNORE_NEGATIVE_INDICES,PETSC_TRUE),
873:    negative indices may be passed in ix. These rows are
874:    simply ignored.

876:    Level: beginner

878: .seealso:  VecAssemblyBegin(), VecAssemblyEnd(), VecSetValues()
879: @*/
880: PetscErrorCode  VecGetValues(Vec x,PetscInt ni,const PetscInt ix[],PetscScalar y[])
881: {

886:   if (!ni) return(0);
890:   (*x->ops->getvalues)(x,ni,ix,y);
891:   return(0);
892: }

894: /*@C
895:    VecSetValuesBlocked - Inserts or adds blocks of values into certain locations of a vector.

897:    Not Collective

899:    Input Parameters:
900: +  x - vector to insert in
901: .  ni - number of blocks to add
902: .  ix - indices where to add in block count, rather than element count
903: .  y - array of values
904: -  iora - either INSERT_VALUES or ADD_VALUES, where
905:    ADD_VALUES adds values to any existing entries, and
906:    INSERT_VALUES replaces existing entries with new values

908:    Notes:
909:    VecSetValuesBlocked() sets x[bs*ix[i]+j] = y[bs*i+j],
910:    for j=0,...,bs-1, for i=0,...,ni-1. where bs was set with VecSetBlockSize().

912:    Calls to VecSetValuesBlocked() with the INSERT_VALUES and ADD_VALUES
913:    options cannot be mixed without intervening calls to the assembly
914:    routines.

916:    These values may be cached, so VecAssemblyBegin() and VecAssemblyEnd()
917:    MUST be called after all calls to VecSetValuesBlocked() have been completed.

919:    VecSetValuesBlocked() uses 0-based indices in Fortran as well as in C.

921:    Negative indices may be passed in ix, these rows are
922:    simply ignored. This allows easily inserting element load matrices
923:    with homogeneous Dirchlet boundary conditions that you don't want represented
924:    in the vector.

926:    Level: intermediate

928: .seealso:  VecAssemblyBegin(), VecAssemblyEnd(), VecSetValuesBlockedLocal(),
929:            VecSetValues()
930: @*/
931: PetscErrorCode  VecSetValuesBlocked(Vec x,PetscInt ni,const PetscInt ix[],const PetscScalar y[],InsertMode iora)
932: {

937:   if (!ni) return(0);

942:   PetscLogEventBegin(VEC_SetValues,x,0,0,0);
943:   (*x->ops->setvaluesblocked)(x,ni,ix,y,iora);
944:   PetscLogEventEnd(VEC_SetValues,x,0,0,0);
945:   PetscObjectStateIncrease((PetscObject)x);
946:   return(0);
947: }


950: /*@C
951:    VecSetValuesLocal - Inserts or adds values into certain locations of a vector,
952:    using a local ordering of the nodes.

954:    Not Collective

956:    Input Parameters:
957: +  x - vector to insert in
958: .  ni - number of elements to add
959: .  ix - indices where to add
960: .  y - array of values
961: -  iora - either INSERT_VALUES or ADD_VALUES, where
962:    ADD_VALUES adds values to any existing entries, and
963:    INSERT_VALUES replaces existing entries with new values

965:    Level: intermediate

967:    Notes:
968:    VecSetValuesLocal() sets x[ix[i]] = y[i], for i=0,...,ni-1.

970:    Calls to VecSetValues() with the INSERT_VALUES and ADD_VALUES
971:    options cannot be mixed without intervening calls to the assembly
972:    routines.

974:    These values may be cached, so VecAssemblyBegin() and VecAssemblyEnd()
975:    MUST be called after all calls to VecSetValuesLocal() have been completed.

977:    VecSetValuesLocal() uses 0-based indices in Fortran as well as in C.

979: .seealso:  VecAssemblyBegin(), VecAssemblyEnd(), VecSetValues(), VecSetLocalToGlobalMapping(),
980:            VecSetValuesBlockedLocal()
981: @*/
982: PetscErrorCode  VecSetValuesLocal(Vec x,PetscInt ni,const PetscInt ix[],const PetscScalar y[],InsertMode iora)
983: {
985:   PetscInt       lixp[128],*lix = lixp;

989:   if (!ni) return(0);

994:   PetscLogEventBegin(VEC_SetValues,x,0,0,0);
995:   if (!x->ops->setvalueslocal) {
996:     if (!x->map->mapping) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Local to global never set with VecSetLocalToGlobalMapping()");
997:     if (ni > 128) {
998:       PetscMalloc1(ni,&lix);
999:     }
1000:     ISLocalToGlobalMappingApply(x->map->mapping,ni,(PetscInt*)ix,lix);
1001:     (*x->ops->setvalues)(x,ni,lix,y,iora);
1002:     if (ni > 128) {
1003:       PetscFree(lix);
1004:     }
1005:   } else {
1006:     (*x->ops->setvalueslocal)(x,ni,ix,y,iora);
1007:   }
1008:   PetscLogEventEnd(VEC_SetValues,x,0,0,0);
1009:   PetscObjectStateIncrease((PetscObject)x);
1010:   return(0);
1011: }

1013: /*@
1014:    VecSetValuesBlockedLocal - Inserts or adds values into certain locations of a vector,
1015:    using a local ordering of the nodes.

1017:    Not Collective

1019:    Input Parameters:
1020: +  x - vector to insert in
1021: .  ni - number of blocks to add
1022: .  ix - indices where to add in block count, not element count
1023: .  y - array of values
1024: -  iora - either INSERT_VALUES or ADD_VALUES, where
1025:    ADD_VALUES adds values to any existing entries, and
1026:    INSERT_VALUES replaces existing entries with new values

1028:    Level: intermediate

1030:    Notes:
1031:    VecSetValuesBlockedLocal() sets x[bs*ix[i]+j] = y[bs*i+j],
1032:    for j=0,..bs-1, for i=0,...,ni-1, where bs has been set with VecSetBlockSize().

1034:    Calls to VecSetValuesBlockedLocal() with the INSERT_VALUES and ADD_VALUES
1035:    options cannot be mixed without intervening calls to the assembly
1036:    routines.

1038:    These values may be cached, so VecAssemblyBegin() and VecAssemblyEnd()
1039:    MUST be called after all calls to VecSetValuesBlockedLocal() have been completed.

1041:    VecSetValuesBlockedLocal() uses 0-based indices in Fortran as well as in C.


1044: .seealso:  VecAssemblyBegin(), VecAssemblyEnd(), VecSetValues(), VecSetValuesBlocked(),
1045:            VecSetLocalToGlobalMapping()
1046: @*/
1047: PetscErrorCode  VecSetValuesBlockedLocal(Vec x,PetscInt ni,const PetscInt ix[],const PetscScalar y[],InsertMode iora)
1048: {
1050:   PetscInt       lixp[128],*lix = lixp;

1054:   if (!ni) return(0);
1058:   if (ni > 128) {
1059:     PetscMalloc1(ni,&lix);
1060:   }

1062:   PetscLogEventBegin(VEC_SetValues,x,0,0,0);
1063:   ISLocalToGlobalMappingApplyBlock(x->map->mapping,ni,(PetscInt*)ix,lix);
1064:   (*x->ops->setvaluesblocked)(x,ni,lix,y,iora);
1065:   PetscLogEventEnd(VEC_SetValues,x,0,0,0);
1066:   if (ni > 128) {
1067:     PetscFree(lix);
1068:   }
1069:   PetscObjectStateIncrease((PetscObject)x);
1070:   return(0);
1071: }

1073: /*@
1074:    VecMTDot - Computes indefinite vector multiple dot products.
1075:    That is, it does NOT use the complex conjugate.

1077:    Collective on Vec

1079:    Input Parameters:
1080: +  x - one vector
1081: .  nv - number of vectors
1082: -  y - array of vectors.  Note that vectors are pointers

1084:    Output Parameter:
1085: .  val - array of the dot products

1087:    Notes for Users of Complex Numbers:
1088:    For complex vectors, VecMTDot() computes the indefinite form
1089: $      val = (x,y) = y^T x,
1090:    where y^T denotes the transpose of y.

1092:    Use VecMDot() for the inner product
1093: $      val = (x,y) = y^H x,
1094:    where y^H denotes the conjugate transpose of y.

1096:    Level: intermediate


1099: .seealso: VecMDot(), VecTDot()
1100: @*/
1101: PetscErrorCode  VecMTDot(Vec x,PetscInt nv,const Vec y[],PetscScalar val[])
1102: {

1108:   if (!nv) return(0);
1115:   VecCheckSameSize(x,1,*y,3);

1117:   PetscLogEventBegin(VEC_MTDot,x,*y,0,0);
1118:   (*x->ops->mtdot)(x,nv,y,val);
1119:   PetscLogEventEnd(VEC_MTDot,x,*y,0,0);
1120:   return(0);
1121: }

1123: /*@
1124:    VecMDot - Computes vector multiple dot products.

1126:    Collective on Vec

1128:    Input Parameters:
1129: +  x - one vector
1130: .  nv - number of vectors
1131: -  y - array of vectors.

1133:    Output Parameter:
1134: .  val - array of the dot products (does not allocate the array)

1136:    Notes for Users of Complex Numbers:
1137:    For complex vectors, VecMDot() computes
1138: $     val = (x,y) = y^H x,
1139:    where y^H denotes the conjugate transpose of y.

1141:    Use VecMTDot() for the indefinite form
1142: $     val = (x,y) = y^T x,
1143:    where y^T denotes the transpose of y.

1145:    Level: intermediate


1148: .seealso: VecMTDot(), VecDot()
1149: @*/
1150: PetscErrorCode  VecMDot(Vec x,PetscInt nv,const Vec y[],PetscScalar val[])
1151: {

1157:   if (!nv) return(0);
1158:   if (nv < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Number of vectors (given %D) cannot be negative",nv);
1165:   VecCheckSameSize(x,1,*y,3);

1167:   PetscLogEventBegin(VEC_MDot,x,*y,0,0);
1168:   (*x->ops->mdot)(x,nv,y,val);
1169:   PetscLogEventEnd(VEC_MDot,x,*y,0,0);
1170:   return(0);
1171: }

1173: /*@
1174:    VecMAXPY - Computes y = y + sum alpha[i] x[i]

1176:    Logically Collective on Vec

1178:    Input Parameters:
1179: +  nv - number of scalars and x-vectors
1180: .  alpha - array of scalars
1181: .  y - one vector
1182: -  x - array of vectors

1184:    Level: intermediate

1186:    Notes:
1187:     y cannot be any of the x vectors

1189: .seealso:  VecAYPX(), VecWAXPY(), VecAXPY(), VecAXPBYPCZ(), VecAXPBY()
1190: @*/
1191: PetscErrorCode  VecMAXPY(Vec y,PetscInt nv,const PetscScalar alpha[],Vec x[])
1192: {
1194:   PetscInt       i;
1195:   PetscBool      nonzero;

1200:   if (!nv) return(0);
1201:   if (nv < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Number of vectors (given %D) cannot be negative",nv);
1208:   VecCheckSameSize(y,1,*x,4);
1210:   for (i=0, nonzero = PETSC_FALSE; i<nv && !nonzero; i++) nonzero = (PetscBool)(nonzero || alpha[i] != (PetscScalar)0.0);
1211:   if (!nonzero) return(0);
1212:   VecSetErrorIfLocked(y,1);
1213:   PetscLogEventBegin(VEC_MAXPY,*x,y,0,0);
1214:   (*y->ops->maxpy)(y,nv,alpha,x);
1215:   PetscLogEventEnd(VEC_MAXPY,*x,y,0,0);
1216:   PetscObjectStateIncrease((PetscObject)y);
1217:   return(0);
1218: }

1220: /*@
1221:    VecGetSubVector - Gets a vector representing part of another vector

1223:    Collective on IS

1225:    Input Arguments:
1226: + X - vector from which to extract a subvector
1227: - is - index set representing portion of X to extract

1229:    Output Arguments:
1230: . Y - subvector corresponding to is

1232:    Level: advanced

1234:    Notes:
1235:    The subvector Y should be returned with VecRestoreSubVector().

1237:    This function may return a subvector without making a copy, therefore it is not safe to use the original vector while
1238:    modifying the subvector.  Other non-overlapping subvectors can still be obtained from X using this function.

1240: .seealso: MatCreateSubMatrix()
1241: @*/
1242: PetscErrorCode  VecGetSubVector(Vec X,IS is,Vec *Y)
1243: {
1244:   PetscErrorCode   ierr;
1245:   Vec              Z;

1251:   if (X->ops->getsubvector) {
1252:     (*X->ops->getsubvector)(X,is,&Z);
1253:   } else { /* Default implementation currently does no caching */
1254:     PetscInt  gstart,gend,start;
1255:     PetscBool contiguous,gcontiguous;
1256:     VecGetOwnershipRange(X,&gstart,&gend);
1257:     ISContiguousLocal(is,gstart,gend,&start,&contiguous);
1258:     MPIU_Allreduce(&contiguous,&gcontiguous,1,MPIU_BOOL,MPI_LAND,PetscObjectComm((PetscObject)is));
1259:     if (gcontiguous) { /* We can do a no-copy implementation */
1260:       PetscInt n,N,bs;
1261:       PetscInt state;

1263:       ISGetSize(is,&N);
1264:       ISGetLocalSize(is,&n);
1265:       VecGetBlockSize(X,&bs);

1267:       if (n%bs || bs == 1) bs = -1; /* Do not decide block size if we do not have to */
1268:       VecLockGet(X,&state);
1269:       if (state) {
1270:         const PetscScalar *x;
1271:         VecGetArrayRead(X,&x);
1272:         VecCreate(PetscObjectComm((PetscObject)X),&Z);
1273:         VecSetType(Z,((PetscObject)X)->type_name);
1274:         VecSetSizes(Z,n,N);
1275:         VecSetBlockSize(Z,bs);
1276:         VecPlaceArray(Z,(PetscScalar*)x+start);
1277:         VecLockReadPush(Z);
1278:         VecRestoreArrayRead(X,&x);
1279:       } else {
1280:         PetscScalar *x;
1281:         VecGetArray(X,&x);
1282:         VecCreate(PetscObjectComm((PetscObject)X),&Z);
1283:         VecSetType(Z,((PetscObject)X)->type_name);
1284:         VecSetSizes(Z,n,N);
1285:         VecSetBlockSize(Z,bs);
1286:         VecPlaceArray(Z,(PetscScalar*)x+start);
1287:         VecRestoreArray(X,&x);
1288:       }
1289:       Z->ops->placearray = NULL;
1290:       Z->ops->replacearray = NULL;
1291:     } else { /* Have to create a scatter and do a copy */
1292:       VecScatter scatter;
1293:       PetscInt   n,N;
1294:       ISGetLocalSize(is,&n);
1295:       ISGetSize(is,&N);
1296:       VecCreate(PetscObjectComm((PetscObject)is),&Z);
1297:       VecSetSizes(Z,n,N);
1298:       VecSetType(Z,((PetscObject)X)->type_name);
1299:       VecScatterCreate(X,is,Z,NULL,&scatter);
1300:       VecScatterBegin(scatter,X,Z,INSERT_VALUES,SCATTER_FORWARD);
1301:       VecScatterEnd(scatter,X,Z,INSERT_VALUES,SCATTER_FORWARD);
1302:       PetscObjectCompose((PetscObject)Z,"VecGetSubVector_Scatter",(PetscObject)scatter);
1303:       VecScatterDestroy(&scatter);
1304:     }
1305:   }
1306:   /* Record the state when the subvector was gotten so we know whether its values need to be put back */
1307:   if (VecGetSubVectorSavedStateId < 0) {PetscObjectComposedDataRegister(&VecGetSubVectorSavedStateId);}
1308:   PetscObjectComposedDataSetInt((PetscObject)Z,VecGetSubVectorSavedStateId,1);
1309:   *Y   = Z;
1310:   return(0);
1311: }

1313: /*@
1314:    VecRestoreSubVector - Restores a subvector extracted using VecGetSubVector()

1316:    Collective on IS

1318:    Input Arguments:
1319: + X - vector from which subvector was obtained
1320: . is - index set representing the subset of X
1321: - Y - subvector being restored

1323:    Level: advanced

1325: .seealso: VecGetSubVector()
1326: @*/
1327: PetscErrorCode  VecRestoreSubVector(Vec X,IS is,Vec *Y)
1328: {

1336:   if (X->ops->restoresubvector) {
1337:     (*X->ops->restoresubvector)(X,is,Y);
1338:   } else {
1339:     PETSC_UNUSED PetscObjectState dummystate = 0;
1340:     PetscBool valid;
1341:     PetscObjectComposedDataGetInt((PetscObject)*Y,VecGetSubVectorSavedStateId,dummystate,valid);
1342:     if (!valid) {
1343:       VecScatter scatter;

1345:       PetscObjectQuery((PetscObject)*Y,"VecGetSubVector_Scatter",(PetscObject*)&scatter);
1346:       if (scatter) {
1347:         VecScatterBegin(scatter,*Y,X,INSERT_VALUES,SCATTER_REVERSE);
1348:         VecScatterEnd(scatter,*Y,X,INSERT_VALUES,SCATTER_REVERSE);
1349:       }
1350:     }
1351:     VecDestroy(Y);
1352:   }
1353:   return(0);
1354: }

1356: /*@
1357:    VecGetLocalVectorRead - Maps the local portion of a vector into a
1358:    vector.  You must call VecRestoreLocalVectorRead() when the local
1359:    vector is no longer needed.

1361:    Not collective.

1363:    Input parameter:
1364: .  v - The vector for which the local vector is desired.

1366:    Output parameter:
1367: .  w - Upon exit this contains the local vector.

1369:    Level: beginner

1371:    Notes:
1372:    This function is similar to VecGetArrayRead() which maps the local
1373:    portion into a raw pointer.  VecGetLocalVectorRead() is usually
1374:    almost as efficient as VecGetArrayRead() but in certain circumstances
1375:    VecGetLocalVectorRead() can be much more efficient than
1376:    VecGetArrayRead().  This is because the construction of a contiguous
1377:    array representing the vector data required by VecGetArrayRead() can
1378:    be an expensive operation for certain vector types.  For example, for
1379:    GPU vectors VecGetArrayRead() requires that the data between device
1380:    and host is synchronized.

1382:    Unlike VecGetLocalVector(), this routine is not collective and
1383:    preserves cached information.

1385: .seealso: VecRestoreLocalVectorRead(), VecGetLocalVector(), VecGetArrayRead(), VecGetArray()
1386: @*/
1387: PetscErrorCode VecGetLocalVectorRead(Vec v,Vec w)
1388: {
1390:   PetscScalar    *a;

1395:   VecCheckSameLocalSize(v,1,w,2);
1396:   if (v->ops->getlocalvectorread) {
1397:     (*v->ops->getlocalvectorread)(v,w);
1398:   } else {
1399:     VecGetArrayRead(v,(const PetscScalar**)&a);
1400:     VecPlaceArray(w,a);
1401:   }
1402:   return(0);
1403: }

1405: /*@
1406:    VecRestoreLocalVectorRead - Unmaps the local portion of a vector
1407:    previously mapped into a vector using VecGetLocalVectorRead().

1409:    Not collective.

1411:    Input parameter:
1412: +  v - The local portion of this vector was previously mapped into w using VecGetLocalVectorRead().
1413: -  w - The vector into which the local portion of v was mapped.

1415:    Level: beginner

1417: .seealso: VecGetLocalVectorRead(), VecGetLocalVector(), VecGetArrayRead(), VecGetArray()
1418: @*/
1419: PetscErrorCode VecRestoreLocalVectorRead(Vec v,Vec w)
1420: {
1422:   PetscScalar    *a;

1427:   if (v->ops->restorelocalvectorread) {
1428:     (*v->ops->restorelocalvectorread)(v,w);
1429:   } else {
1430:     VecGetArrayRead(w,(const PetscScalar**)&a);
1431:     VecRestoreArrayRead(v,(const PetscScalar**)&a);
1432:     VecResetArray(w);
1433:   }
1434:   return(0);
1435: }

1437: /*@
1438:    VecGetLocalVector - Maps the local portion of a vector into a
1439:    vector.

1441:    Collective on v, not collective on w.

1443:    Input parameter:
1444: .  v - The vector for which the local vector is desired.

1446:    Output parameter:
1447: .  w - Upon exit this contains the local vector.

1449:    Level: beginner

1451:    Notes:
1452:    This function is similar to VecGetArray() which maps the local
1453:    portion into a raw pointer.  VecGetLocalVector() is usually about as
1454:    efficient as VecGetArray() but in certain circumstances
1455:    VecGetLocalVector() can be much more efficient than VecGetArray().
1456:    This is because the construction of a contiguous array representing
1457:    the vector data required by VecGetArray() can be an expensive
1458:    operation for certain vector types.  For example, for GPU vectors
1459:    VecGetArray() requires that the data between device and host is
1460:    synchronized.

1462: .seealso: VecRestoreLocalVector(), VecGetLocalVectorRead(), VecGetArrayRead(), VecGetArray()
1463: @*/
1464: PetscErrorCode VecGetLocalVector(Vec v,Vec w)
1465: {
1467:   PetscScalar    *a;

1472:   VecCheckSameLocalSize(v,1,w,2);
1473:   if (v->ops->getlocalvector) {
1474:     (*v->ops->getlocalvector)(v,w);
1475:   } else {
1476:     VecGetArray(v,&a);
1477:     VecPlaceArray(w,a);
1478:   }
1479:   return(0);
1480: }

1482: /*@
1483:    VecRestoreLocalVector - Unmaps the local portion of a vector
1484:    previously mapped into a vector using VecGetLocalVector().

1486:    Logically collective.

1488:    Input parameter:
1489: +  v - The local portion of this vector was previously mapped into w using VecGetLocalVector().
1490: -  w - The vector into which the local portion of v was mapped.

1492:    Level: beginner

1494: .seealso: VecGetLocalVector(), VecGetLocalVectorRead(), VecRestoreLocalVectorRead(), LocalVectorRead(), VecGetArrayRead(), VecGetArray()
1495: @*/
1496: PetscErrorCode VecRestoreLocalVector(Vec v,Vec w)
1497: {
1499:   PetscScalar    *a;

1504:   if (v->ops->restorelocalvector) {
1505:     (*v->ops->restorelocalvector)(v,w);
1506:   } else {
1507:     VecGetArray(w,&a);
1508:     VecRestoreArray(v,&a);
1509:     VecResetArray(w);
1510:   }
1511:   return(0);
1512: }

1514: /*@C
1515:    VecGetArray - Returns a pointer to a contiguous array that contains this
1516:    processor's portion of the vector data. For the standard PETSc
1517:    vectors, VecGetArray() returns a pointer to the local data array and
1518:    does not use any copies. If the underlying vector data is not stored
1519:    in a contiguous array this routine will copy the data to a contiguous
1520:    array and return a pointer to that. You MUST call VecRestoreArray()
1521:    when you no longer need access to the array.

1523:    Logically Collective on Vec

1525:    Input Parameter:
1526: .  x - the vector

1528:    Output Parameter:
1529: .  a - location to put pointer to the array

1531:    Fortran Note:
1532:    This routine is used differently from Fortran 77
1533: $    Vec         x
1534: $    PetscScalar x_array(1)
1535: $    PetscOffset i_x
1536: $    PetscErrorCode ierr
1537: $       call VecGetArray(x,x_array,i_x,ierr)
1538: $
1539: $   Access first local entry in vector with
1540: $      value = x_array(i_x + 1)
1541: $
1542: $      ...... other code
1543: $       call VecRestoreArray(x,x_array,i_x,ierr)
1544:    For Fortran 90 see VecGetArrayF90()

1546:    See the Fortran chapter of the users manual and
1547:    petsc/src/snes/tutorials/ex5f.F for details.

1549:    Level: beginner

1551: .seealso: VecRestoreArray(), VecGetArrayRead(), VecGetArrays(), VecGetArrayF90(), VecGetArrayReadF90(), VecPlaceArray(), VecGetArray2d(),
1552:           VecGetArrayPair(), VecRestoreArrayPair(), VecGetArrayWrite(), VecRestoreArrayWrite()
1553: @*/
1554: PetscErrorCode VecGetArray(Vec x,PetscScalar **a)
1555: {
1557: #if defined(PETSC_HAVE_VIENNACL)
1558:   PetscBool      is_viennacltype = PETSC_FALSE;
1559: #endif

1563:   VecSetErrorIfLocked(x,1);
1564:   if (x->petscnative) {
1565: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
1566:     if (x->offloadmask == PETSC_OFFLOAD_GPU) {
1567: #if defined(PETSC_HAVE_VIENNACL)
1568:       PetscObjectTypeCompareAny((PetscObject)x,&is_viennacltype,VECSEQVIENNACL,VECMPIVIENNACL,VECVIENNACL,"");
1569:       if (is_viennacltype) {
1570:         VecViennaCLCopyFromGPU(x);
1571:       } else
1572: #endif
1573:       {
1574: #if defined(PETSC_HAVE_CUDA)
1575:         VecCUDACopyFromGPU(x);
1576: #endif
1577:       }
1578:     } else if (x->offloadmask == PETSC_OFFLOAD_UNALLOCATED) {
1579: #if defined(PETSC_HAVE_VIENNACL)
1580:       PetscObjectTypeCompareAny((PetscObject)x,&is_viennacltype,VECSEQVIENNACL,VECMPIVIENNACL,VECVIENNACL,"");
1581:       if (is_viennacltype) {
1582:         VecViennaCLAllocateCheckHost(x);
1583:       } else
1584: #endif
1585:       {
1586: #if defined(PETSC_HAVE_CUDA)
1587:         VecCUDAAllocateCheckHost(x);
1588: #endif
1589:       }
1590:     }
1591: #endif
1592:     *a = *((PetscScalar**)x->data);
1593:   } else {
1594:     if (x->ops->getarray) {
1595:       (*x->ops->getarray)(x,a);
1596:     } else SETERRQ1(PetscObjectComm((PetscObject)x),PETSC_ERR_SUP,"Cannot get array for vector type \"%s\"",((PetscObject)x)->type_name);
1597:   }
1598:   return(0);
1599: }

1601: /*@C
1602:    VecGetArrayInPlace - Like VecGetArray(), but if this is a CUDA vector and it is currently offloaded to GPU,
1603:    the returned pointer will be a GPU pointer to the GPU memory that contains this processor's portion of the
1604:    vector data. Otherwise, it functions as VecGetArray().

1606:    Logically Collective on Vec

1608:    Input Parameter:
1609: .  x - the vector

1611:    Output Parameter:
1612: .  a - location to put pointer to the array

1614:    Level: beginner

1616: .seealso: VecRestoreArrayInPlace(), VecRestoreArrayInPlace(), VecRestoreArray(), VecGetArrayRead(), VecGetArrays(), VecGetArrayF90(), VecGetArrayReadF90(),
1617:           VecPlaceArray(), VecGetArray2d(), VecGetArrayPair(), VecRestoreArrayPair(), VecGetArrayWrite(), VecRestoreArrayWrite()
1618: @*/
1619: PetscErrorCode VecGetArrayInPlace(Vec x,PetscScalar **a)
1620: {

1625:   VecSetErrorIfLocked(x,1);

1627: #if defined(PETSC_HAVE_CUDA)
1628:   if (x->petscnative && (x->offloadmask & PETSC_OFFLOAD_GPU)) { /* Prefer working on GPU when offloadmask is PETSC_OFFLOAD_BOTH */
1629:     PetscBool is_cudatype = PETSC_FALSE;
1630:     PetscObjectTypeCompareAny((PetscObject)x,&is_cudatype,VECSEQCUDA,VECMPICUDA,VECCUDA,"");
1631:     if (is_cudatype) {
1632:       VecCUDAGetArray(x,a);
1633:       x->offloadmask = PETSC_OFFLOAD_GPU; /* Change the mask once GPU gets write access, don't wait until restore array */
1634:       return(0);
1635:     }
1636:   }
1637: #endif
1638:   VecGetArray(x,a);
1639:   return(0);
1640: }

1642: /*@C
1643:    VecGetArrayWrite - Returns a pointer to a contiguous array that WILL contains this
1644:    processor's portion of the vector data. The values in this array are NOT valid, the routine calling this
1645:    routine is responsible for putting values into the array; any values it does not set will be invalid

1647:    Logically Collective on Vec

1649:    Input Parameter:
1650: .  x - the vector

1652:    Output Parameter:
1653: .  a - location to put pointer to the array

1655:    Level: intermediate

1657:    This is for vectors associate with GPUs, the vector is not copied up before giving access. If you need correct
1658:    values in the array use VecGetArray()

1660:    Concepts: vector^accessing local values

1662: .seealso: VecRestoreArray(), VecGetArrayRead(), VecGetArrays(), VecGetArrayF90(), VecGetArrayReadF90(), VecPlaceArray(), VecGetArray2d(),
1663:           VecGetArrayPair(), VecRestoreArrayPair(), VecGetArray(), VecRestoreArrayWrite()
1664: @*/
1665: PetscErrorCode VecGetArrayWrite(Vec x,PetscScalar **a)
1666: {

1671:   VecSetErrorIfLocked(x,1);
1672:   if (!x->ops->getarraywrite) {
1673:     VecGetArray(x,a);
1674:   } else {
1675:     (*x->ops->getarraywrite)(x,a);
1676:   }
1677:   return(0);
1678: }

1680: /*@C
1681:    VecGetArrayRead - Get read-only pointer to contiguous array containing this processor's portion of the vector data.

1683:    Not Collective

1685:    Input Parameters:
1686: .  x - the vector

1688:    Output Parameter:
1689: .  a - the array

1691:    Level: beginner

1693:    Notes:
1694:    The array must be returned using a matching call to VecRestoreArrayRead().

1696:    Unlike VecGetArray(), this routine is not collective and preserves cached information like vector norms.

1698:    Standard PETSc vectors use contiguous storage so that this routine does not perform a copy.  Other vector
1699:    implementations may require a copy, but must such implementations should cache the contiguous representation so that
1700:    only one copy is performed when this routine is called multiple times in sequence.

1702: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrayPair(), VecRestoreArrayPair()
1703: @*/
1704: PetscErrorCode VecGetArrayRead(Vec x,const PetscScalar **a)
1705: {
1707: #if defined(PETSC_HAVE_VIENNACL)
1708:   PetscBool      is_viennacltype = PETSC_FALSE;
1709: #endif

1713:   if (x->petscnative) {
1714: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
1715:     if (x->offloadmask == PETSC_OFFLOAD_GPU) {
1716: #if defined(PETSC_HAVE_VIENNACL)
1717:       PetscObjectTypeCompareAny((PetscObject)x,&is_viennacltype,VECSEQVIENNACL,VECMPIVIENNACL,VECVIENNACL,"");
1718:       if (is_viennacltype) {
1719:         VecViennaCLCopyFromGPU(x);
1720:       } else
1721: #endif
1722:       {
1723: #if defined(PETSC_HAVE_CUDA)
1724:         VecCUDACopyFromGPU(x);
1725: #endif
1726:       }
1727:     }
1728: #endif
1729:     *a = *((PetscScalar **)x->data);
1730:   } else if (x->ops->getarrayread) {
1731:     (*x->ops->getarrayread)(x,a);
1732:   } else {
1733:     (*x->ops->getarray)(x,(PetscScalar**)a);
1734:   }
1735:   return(0);
1736: }

1738: /*@C
1739:    VecGetArrayReadInPlace - Like VecGetArrayRead(), but if this is a CUDA vector and it is currently offloaded to GPU,
1740:    the returned pointer will be a GPU pointer to the GPU memory that contains this processor's portion of the
1741:    vector data. Otherwise, it functions as VecGetArrayRead().

1743:    Not Collective

1745:    Input Parameters:
1746: .  x - the vector

1748:    Output Parameter:
1749: .  a - the array

1751:    Level: beginner

1753:    Notes:
1754:    The array must be returned using a matching call to VecRestoreArrayReadInPlace().


1757: .seealso: VecRestoreArrayReadInPlace(), VecGetArray(), VecRestoreArray(), VecGetArrayPair(), VecRestoreArrayPair(), VecGetArrayInPlace()
1758: @*/
1759: PetscErrorCode VecGetArrayReadInPlace(Vec x,const PetscScalar **a)
1760: {

1765: #if defined(PETSC_HAVE_CUDA)
1766:   if (x->petscnative && x->offloadmask & PETSC_OFFLOAD_GPU) {
1767:     PetscBool is_cudatype = PETSC_FALSE;
1768:     PetscObjectTypeCompareAny((PetscObject)x,&is_cudatype,VECSEQCUDA,VECMPICUDA,VECCUDA,"");
1769:     if (is_cudatype) {
1770:       VecCUDAGetArrayRead(x,a);
1771:       return(0);
1772:     }
1773:   }
1774: #endif
1775:   VecGetArrayRead(x,a);
1776:   return(0);
1777: }

1779: /*@C
1780:    VecGetArrays - Returns a pointer to the arrays in a set of vectors
1781:    that were created by a call to VecDuplicateVecs().  You MUST call
1782:    VecRestoreArrays() when you no longer need access to the array.

1784:    Logically Collective on Vec

1786:    Input Parameter:
1787: +  x - the vectors
1788: -  n - the number of vectors

1790:    Output Parameter:
1791: .  a - location to put pointer to the array

1793:    Fortran Note:
1794:    This routine is not supported in Fortran.

1796:    Level: intermediate

1798: .seealso: VecGetArray(), VecRestoreArrays()
1799: @*/
1800: PetscErrorCode  VecGetArrays(const Vec x[],PetscInt n,PetscScalar **a[])
1801: {
1803:   PetscInt       i;
1804:   PetscScalar    **q;

1810:   if (n <= 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Must get at least one array n = %D",n);
1811:   PetscMalloc1(n,&q);
1812:   for (i=0; i<n; ++i) {
1813:     VecGetArray(x[i],&q[i]);
1814:   }
1815:   *a = q;
1816:   return(0);
1817: }

1819: /*@C
1820:    VecRestoreArrays - Restores a group of vectors after VecGetArrays()
1821:    has been called.

1823:    Logically Collective on Vec

1825:    Input Parameters:
1826: +  x - the vector
1827: .  n - the number of vectors
1828: -  a - location of pointer to arrays obtained from VecGetArrays()

1830:    Notes:
1831:    For regular PETSc vectors this routine does not involve any copies. For
1832:    any special vectors that do not store local vector data in a contiguous
1833:    array, this routine will copy the data back into the underlying
1834:    vector data structure from the arrays obtained with VecGetArrays().

1836:    Fortran Note:
1837:    This routine is not supported in Fortran.

1839:    Level: intermediate

1841: .seealso: VecGetArrays(), VecRestoreArray()
1842: @*/
1843: PetscErrorCode  VecRestoreArrays(const Vec x[],PetscInt n,PetscScalar **a[])
1844: {
1846:   PetscInt       i;
1847:   PetscScalar    **q = *a;


1854:   for (i=0; i<n; ++i) {
1855:     VecRestoreArray(x[i],&q[i]);
1856:   }
1857:   PetscFree(q);
1858:   return(0);
1859: }

1861: /*@C
1862:    VecRestoreArray - Restores a vector after VecGetArray() has been called.

1864:    Logically Collective on Vec

1866:    Input Parameters:
1867: +  x - the vector
1868: -  a - location of pointer to array obtained from VecGetArray()

1870:    Level: beginner

1872: .seealso: VecGetArray(), VecRestoreArrayRead(), VecRestoreArrays(), VecRestoreArrayF90(), VecRestoreArrayReadF90(), VecPlaceArray(), VecRestoreArray2d(),
1873:           VecGetArrayPair(), VecRestoreArrayPair()
1874: @*/
1875: PetscErrorCode VecRestoreArray(Vec x,PetscScalar **a)
1876: {

1881:   if (x->petscnative) {
1882: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
1883:     x->offloadmask = PETSC_OFFLOAD_CPU;
1884: #endif
1885:   } else {
1886:     (*x->ops->restorearray)(x,a);
1887:   }
1888:   if (a) *a = NULL;
1889:   PetscObjectStateIncrease((PetscObject)x);
1890:   return(0);
1891: }

1893: /*@C
1894:    VecRestoreArrayInPlace - Restores a vector after VecGetArrayInPlace() has been called.

1896:    Logically Collective on Vec

1898:    Input Parameters:
1899: +  x - the vector
1900: -  a - location of pointer to array obtained from VecGetArrayInPlace()

1902:    Level: beginner

1904: .seealso: VecGetArrayInPlace(), VecGetArray(), VecRestoreArrayRead(), VecRestoreArrays(), VecRestoreArrayF90(), VecRestoreArrayReadF90(),
1905:           VecPlaceArray(), VecRestoreArray2d(), VecGetArrayPair(), VecRestoreArrayPair()
1906: @*/
1907: PetscErrorCode VecRestoreArrayInPlace(Vec x,PetscScalar **a)
1908: {

1913: #if defined(PETSC_HAVE_CUDA)
1914:   if (x->petscnative && x->offloadmask == PETSC_OFFLOAD_GPU) {
1915:     PetscBool is_cudatype = PETSC_FALSE;
1916:     PetscObjectTypeCompareAny((PetscObject)x,&is_cudatype,VECSEQCUDA,VECMPICUDA,VECCUDA,"");
1917:     if (is_cudatype) {
1918:       VecCUDARestoreArray(x,a);
1919:       return(0);
1920:     }
1921:   }
1922: #endif
1923:   VecRestoreArray(x,a);
1924:   return(0);
1925: }


1928: /*@C
1929:    VecRestoreArrayWrite - Restores a vector after VecGetArrayWrite() has been called.

1931:    Logically Collective on Vec

1933:    Input Parameters:
1934: +  x - the vector
1935: -  a - location of pointer to array obtained from VecGetArray()

1937:    Level: beginner

1939: .seealso: VecGetArray(), VecRestoreArrayRead(), VecRestoreArrays(), VecRestoreArrayF90(), VecRestoreArrayReadF90(), VecPlaceArray(), VecRestoreArray2d(),
1940:           VecGetArrayPair(), VecRestoreArrayPair(), VecGetArrayWrite()
1941: @*/
1942: PetscErrorCode VecRestoreArrayWrite(Vec x,PetscScalar **a)
1943: {

1948:   if (x->petscnative) {
1949: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
1950:     x->offloadmask = PETSC_OFFLOAD_CPU;
1951: #endif
1952:   } else {
1953:     if (x->ops->restorearraywrite) {
1954:       (*x->ops->restorearraywrite)(x,a);
1955:     } else {
1956:       (*x->ops->restorearray)(x,a);
1957:     }
1958:   }
1959:   if (a) *a = NULL;
1960:   PetscObjectStateIncrease((PetscObject)x);
1961:   return(0);
1962: }

1964: /*@C
1965:    VecRestoreArrayRead - Restore array obtained with VecGetArrayRead()

1967:    Not Collective

1969:    Input Parameters:
1970: +  vec - the vector
1971: -  array - the array

1973:    Level: beginner

1975: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrayPair(), VecRestoreArrayPair()
1976: @*/
1977: PetscErrorCode VecRestoreArrayRead(Vec x,const PetscScalar **a)
1978: {

1983:   if (x->petscnative) {
1984:     /* nothing */
1985:   } else if (x->ops->restorearrayread) {
1986:     (*x->ops->restorearrayread)(x,a);
1987:   } else {
1988:     (*x->ops->restorearray)(x,(PetscScalar**)a);
1989:   }
1990:   if (a) *a = NULL;
1991:   return(0);
1992: }

1994: /*@C
1995:    VecRestoreArrayReadInPlace - Restore array obtained with VecGetArrayReadInPlace()

1997:    Not Collective

1999:    Input Parameters:
2000: +  vec - the vector
2001: -  array - the array

2003:    Level: beginner

2005: .seealso: VecGetArrayReadInPlace(), VecRestoreArrayInPlace(), VecGetArray(), VecRestoreArray(), VecGetArrayPair(), VecRestoreArrayPair()
2006: @*/
2007: PetscErrorCode VecRestoreArrayReadInPlace(Vec x,const PetscScalar **a)
2008: {

2012:   VecRestoreArrayRead(x,a);
2013:   return(0);
2014: }

2016: /*@
2017:    VecPlaceArray - Allows one to replace the array in a vector with an
2018:    array provided by the user. This is useful to avoid copying an array
2019:    into a vector.

2021:    Not Collective

2023:    Input Parameters:
2024: +  vec - the vector
2025: -  array - the array

2027:    Notes:
2028:    You can return to the original array with a call to VecResetArray()

2030:    Level: developer

2032: .seealso: VecGetArray(), VecRestoreArray(), VecReplaceArray(), VecResetArray()

2034: @*/
2035: PetscErrorCode  VecPlaceArray(Vec vec,const PetscScalar array[])
2036: {

2043:   if (vec->ops->placearray) {
2044:     (*vec->ops->placearray)(vec,array);
2045:   } else SETERRQ(PetscObjectComm((PetscObject)vec),PETSC_ERR_SUP,"Cannot place array in this type of vector");
2046:   PetscObjectStateIncrease((PetscObject)vec);
2047:   return(0);
2048: }

2050: /*@C
2051:    VecReplaceArray - Allows one to replace the array in a vector with an
2052:    array provided by the user. This is useful to avoid copying an array
2053:    into a vector.

2055:    Not Collective

2057:    Input Parameters:
2058: +  vec - the vector
2059: -  array - the array

2061:    Notes:
2062:    This permanently replaces the array and frees the memory associated
2063:    with the old array.

2065:    The memory passed in MUST be obtained with PetscMalloc() and CANNOT be
2066:    freed by the user. It will be freed when the vector is destroyed.

2068:    Not supported from Fortran

2070:    Level: developer

2072: .seealso: VecGetArray(), VecRestoreArray(), VecPlaceArray(), VecResetArray()

2074: @*/
2075: PetscErrorCode  VecReplaceArray(Vec vec,const PetscScalar array[])
2076: {

2082:   if (vec->ops->replacearray) {
2083:     (*vec->ops->replacearray)(vec,array);
2084:   } else SETERRQ(PetscObjectComm((PetscObject)vec),PETSC_ERR_SUP,"Cannot replace array in this type of vector");
2085:   PetscObjectStateIncrease((PetscObject)vec);
2086:   return(0);
2087: }


2090: /*@C
2091:    VecCUDAGetArray - Provides access to the CUDA buffer inside a vector.

2093:    This function has semantics similar to VecGetArray():  the pointer
2094:    returned by this function points to a consistent view of the vector
2095:    data.  This may involve a copy operation of data from the host to the
2096:    device if the data on the device is out of date.  If the device
2097:    memory hasn't been allocated previously it will be allocated as part
2098:    of this function call.  VecCUDAGetArray() assumes that
2099:    the user will modify the vector data.  This is similar to
2100:    intent(inout) in fortran.

2102:    The CUDA device pointer has to be released by calling
2103:    VecCUDARestoreArray().  Upon restoring the vector data
2104:    the data on the host will be marked as out of date.  A subsequent
2105:    access of the host data will thus incur a data transfer from the
2106:    device to the host.


2109:    Input Parameter:
2110: .  v - the vector

2112:    Output Parameter:
2113: .  a - the CUDA device pointer

2115:    Fortran note:
2116:    This function is not currently available from Fortran.

2118:    Level: intermediate

2120: .seealso: VecCUDARestoreArray(), VecCUDAGetArrayRead(), VecCUDAGetArrayWrite(), VecGetArray(), VecGetArrayRead()
2121: @*/
2122: PETSC_EXTERN PetscErrorCode VecCUDAGetArray(Vec v, PetscScalar **a)
2123: {
2124: #if defined(PETSC_HAVE_CUDA)
2126: #endif

2130: #if defined(PETSC_HAVE_CUDA)
2131:   *a   = 0;
2132:   VecCUDACopyToGPU(v);
2133:   *a   = ((Vec_CUDA*)v->spptr)->GPUarray;
2134: #endif
2135:   return(0);
2136: }

2138: /*@C
2139:    VecCUDARestoreArray - Restore a CUDA device pointer previously acquired with VecCUDAGetArray().

2141:    This marks the host data as out of date.  Subsequent access to the
2142:    vector data on the host side with for instance VecGetArray() incurs a
2143:    data transfer.

2145:    Input Parameter:
2146: +  v - the vector
2147: -  a - the CUDA device pointer.  This pointer is invalid after
2148:        VecCUDARestoreArray() returns.

2150:    Fortran note:
2151:    This function is not currently available from Fortran.

2153:    Level: intermediate

2155: .seealso: VecCUDAGetArray(), VecCUDAGetArrayRead(), VecCUDAGetArrayWrite(), VecGetArray(), VecRestoreArray(), VecGetArrayRead()
2156: @*/
2157: PETSC_EXTERN PetscErrorCode VecCUDARestoreArray(Vec v, PetscScalar **a)
2158: {

2163: #if defined(PETSC_HAVE_CUDA)
2164:   v->offloadmask = PETSC_OFFLOAD_GPU;
2165: #endif

2167:   PetscObjectStateIncrease((PetscObject)v);
2168:   return(0);
2169: }

2171: /*@C
2172:    VecCUDAGetArrayRead - Provides read access to the CUDA buffer inside a vector.

2174:    This function is analogous to VecGetArrayRead():  The pointer
2175:    returned by this function points to a consistent view of the vector
2176:    data.  This may involve a copy operation of data from the host to the
2177:    device if the data on the device is out of date.  If the device
2178:    memory hasn't been allocated previously it will be allocated as part
2179:    of this function call.  VecCUDAGetArrayRead() assumes that the
2180:    user will not modify the vector data.  This is analgogous to
2181:    intent(in) in Fortran.

2183:    The CUDA device pointer has to be released by calling
2184:    VecCUDARestoreArrayRead().  If the data on the host side was
2185:    previously up to date it will remain so, i.e. data on both the device
2186:    and the host is up to date.  Accessing data on the host side does not
2187:    incur a device to host data transfer.

2189:    Input Parameter:
2190: .  v - the vector

2192:    Output Parameter:
2193: .  a - the CUDA pointer.

2195:    Fortran note:
2196:    This function is not currently available from Fortran.

2198:    Level: intermediate

2200: .seealso: VecCUDARestoreArrayRead(), VecCUDAGetArray(), VecCUDAGetArrayWrite(), VecGetArray(), VecGetArrayRead()
2201: @*/
2202: PETSC_EXTERN PetscErrorCode VecCUDAGetArrayRead(Vec v, const PetscScalar **a)
2203: {
2204: #if defined(PETSC_HAVE_CUDA)
2206: #endif

2210: #if defined(PETSC_HAVE_CUDA)
2211:   *a   = 0;
2212:   VecCUDACopyToGPU(v);
2213:   *a   = ((Vec_CUDA*)v->spptr)->GPUarray;
2214: #endif
2215:   return(0);
2216: }

2218: /*@C
2219:    VecCUDARestoreArrayRead - Restore a CUDA device pointer previously acquired with VecCUDAGetArrayRead().

2221:    If the data on the host side was previously up to date it will remain
2222:    so, i.e. data on both the device and the host is up to date.
2223:    Accessing data on the host side e.g. with VecGetArray() does not
2224:    incur a device to host data transfer.

2226:    Input Parameter:
2227: +  v - the vector
2228: -  a - the CUDA device pointer.  This pointer is invalid after
2229:        VecCUDARestoreArrayRead() returns.

2231:    Fortran note:
2232:    This function is not currently available from Fortran.

2234:    Level: intermediate

2236: .seealso: VecCUDAGetArrayRead(), VecCUDAGetArrayWrite(), VecCUDAGetArray(), VecGetArray(), VecRestoreArray(), VecGetArrayRead()
2237: @*/
2238: PETSC_EXTERN PetscErrorCode VecCUDARestoreArrayRead(Vec v, const PetscScalar **a)
2239: {
2242:   *a = NULL;
2243:   return(0);
2244: }

2246: /*@C
2247:    VecCUDAGetArrayWrite - Provides write access to the CUDA buffer inside a vector.

2249:    The data pointed to by the device pointer is uninitialized.  The user
2250:    may not read from this data.  Furthermore, the entire array needs to
2251:    be filled by the user to obtain well-defined behaviour.  The device
2252:    memory will be allocated by this function if it hasn't been allocated
2253:    previously.  This is analogous to intent(out) in Fortran.

2255:    The device pointer needs to be released with
2256:    VecCUDARestoreArrayWrite().  When the pointer is released the
2257:    host data of the vector is marked as out of data.  Subsequent access
2258:    of the host data with e.g. VecGetArray() incurs a device to host data
2259:    transfer.


2262:    Input Parameter:
2263: .  v - the vector

2265:    Output Parameter:
2266: .  a - the CUDA pointer

2268:    Fortran note:
2269:    This function is not currently available from Fortran.

2271:    Level: advanced

2273: .seealso: VecCUDARestoreArrayWrite(), VecCUDAGetArray(), VecCUDAGetArrayRead(), VecCUDAGetArrayWrite(), VecGetArray(), VecGetArrayRead()
2274: @*/
2275: PETSC_EXTERN PetscErrorCode VecCUDAGetArrayWrite(Vec v, PetscScalar **a)
2276: {
2277: #if defined(PETSC_HAVE_CUDA)
2279: #endif

2283: #if defined(PETSC_HAVE_CUDA)
2284:   *a   = 0;
2285:   VecCUDAAllocateCheck(v);
2286:   *a   = ((Vec_CUDA*)v->spptr)->GPUarray;
2287: #endif
2288:   return(0);
2289: }

2291: /*@C
2292:    VecCUDARestoreArrayWrite - Restore a CUDA device pointer previously acquired with VecCUDAGetArrayWrite().

2294:    Data on the host will be marked as out of date.  Subsequent access of
2295:    the data on the host side e.g. with VecGetArray() will incur a device
2296:    to host data transfer.

2298:    Input Parameter:
2299: +  v - the vector
2300: -  a - the CUDA device pointer.  This pointer is invalid after
2301:        VecCUDARestoreArrayWrite() returns.

2303:    Fortran note:
2304:    This function is not currently available from Fortran.

2306:    Level: intermediate

2308: .seealso: VecCUDAGetArrayWrite(), VecCUDAGetArray(), VecCUDAGetArrayRead(), VecCUDAGetArrayWrite(), VecGetArray(), VecRestoreArray(), VecGetArrayRead()
2309: @*/
2310: PETSC_EXTERN PetscErrorCode VecCUDARestoreArrayWrite(Vec v, PetscScalar **a)
2311: {

2316: #if defined(PETSC_HAVE_CUDA)
2317:   v->offloadmask = PETSC_OFFLOAD_GPU;
2318: #endif

2320:   PetscObjectStateIncrease((PetscObject)v);
2321:   return(0);
2322: }

2324: /*@C
2325:    VecCUDAPlaceArray - Allows one to replace the GPU array in a vector with a
2326:    GPU array provided by the user. This is useful to avoid copying an
2327:    array into a vector.

2329:    Not Collective

2331:    Input Parameters:
2332: +  vec - the vector
2333: -  array - the GPU array

2335:    Notes:
2336:    You can return to the original GPU array with a call to VecCUDAResetArray()
2337:    It is not possible to use VecCUDAPlaceArray() and VecPlaceArray() at the
2338:    same time on the same vector.

2340:    Level: developer

2342: .seealso: VecPlaceArray(), VecGetArray(), VecRestoreArray(), VecReplaceArray(), VecResetArray(), VecCUDAResetArray(), VecCUDAReplaceArray()

2344: @*/
2345: PetscErrorCode VecCUDAPlaceArray(Vec vin,PetscScalar *a)
2346: {

2351: #if defined(PETSC_HAVE_CUDA)
2352:   VecCUDACopyToGPU(vin);
2353:   if (((Vec_Seq*)vin->data)->unplacedarray) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"VecCUDAPlaceArray()/VecPlaceArray() was already called on this vector, without a call to VecCUDAResetArray()/VecResetArray()");
2354:   ((Vec_Seq*)vin->data)->unplacedarray  = (PetscScalar *) ((Vec_CUDA*)vin->spptr)->GPUarray; /* save previous GPU array so reset can bring it back */
2355:   ((Vec_CUDA*)vin->spptr)->GPUarray = a;
2356:   vin->offloadmask = PETSC_OFFLOAD_GPU;
2357: #endif
2358:   PetscObjectStateIncrease((PetscObject)vin);
2359:   return(0);
2360: }

2362: /*@C
2363:    VecCUDAReplaceArray - Allows one to replace the GPU array in a vector
2364:    with a GPU array provided by the user. This is useful to avoid copying
2365:    a GPU array into a vector.

2367:    Not Collective

2369:    Input Parameters:
2370: +  vec - the vector
2371: -  array - the GPU array

2373:    Notes:
2374:    This permanently replaces the GPU array and frees the memory associated
2375:    with the old GPU array.

2377:    The memory passed in CANNOT be freed by the user. It will be freed
2378:    when the vector is destroyed.

2380:    Not supported from Fortran

2382:    Level: developer

2384: .seealso: VecGetArray(), VecRestoreArray(), VecPlaceArray(), VecResetArray(), VecCUDAResetArray(), VecCUDAPlaceArray(), VecReplaceArray()

2386: @*/
2387: PetscErrorCode VecCUDAReplaceArray(Vec vin,PetscScalar *a)
2388: {
2389: #if defined(PETSC_HAVE_CUDA)
2390:   cudaError_t err;
2391: #endif

2396: #if defined(PETSC_HAVE_CUDA)
2397:   err = cudaFree(((Vec_CUDA*)vin->spptr)->GPUarray);CHKERRCUDA(err);
2398:   ((Vec_CUDA*)vin->spptr)->GPUarray = a;
2399:   vin->offloadmask = PETSC_OFFLOAD_GPU;
2400: #endif
2401:   PetscObjectStateIncrease((PetscObject)vin);
2402:   return(0);
2403: }

2405: /*@C
2406:    VecCUDAResetArray - Resets a vector to use its default memory. Call this
2407:    after the use of VecCUDAPlaceArray().

2409:    Not Collective

2411:    Input Parameters:
2412: .  vec - the vector

2414:    Level: developer

2416: .seealso: VecGetArray(), VecRestoreArray(), VecReplaceArray(), VecPlaceArray(), VecResetArray(), VecCUDAPlaceArray(), VecCUDAReplaceArray()

2418: @*/
2419: PetscErrorCode VecCUDAResetArray(Vec vin)
2420: {

2425: #if defined(PETSC_HAVE_CUDA)
2426:   VecCUDACopyToGPU(vin);
2427:   ((Vec_CUDA*)vin->spptr)->GPUarray = (PetscScalar *) ((Vec_Seq*)vin->data)->unplacedarray;
2428:   ((Vec_Seq*)vin->data)->unplacedarray = 0;
2429:   vin->offloadmask = PETSC_OFFLOAD_GPU;
2430: #endif
2431:   PetscObjectStateIncrease((PetscObject)vin);
2432:   return(0);
2433: }

2435: /*MC
2436:     VecDuplicateVecsF90 - Creates several vectors of the same type as an existing vector
2437:     and makes them accessible via a Fortran90 pointer.

2439:     Synopsis:
2440:     VecDuplicateVecsF90(Vec x,PetscInt n,{Vec, pointer :: y(:)},integer ierr)

2442:     Collective on Vec

2444:     Input Parameters:
2445: +   x - a vector to mimic
2446: -   n - the number of vectors to obtain

2448:     Output Parameters:
2449: +   y - Fortran90 pointer to the array of vectors
2450: -   ierr - error code

2452:     Example of Usage:
2453: .vb
2454:  #include <petsc/finclude/petscvec.h>
2455:     use petscvec

2457:     Vec x
2458:     Vec, pointer :: y(:)
2459:     ....
2460:     call VecDuplicateVecsF90(x,2,y,ierr)
2461:     call VecSet(y(2),alpha,ierr)
2462:     call VecSet(y(2),alpha,ierr)
2463:     ....
2464:     call VecDestroyVecsF90(2,y,ierr)
2465: .ve

2467:     Notes:
2468:     Not yet supported for all F90 compilers

2470:     Use VecDestroyVecsF90() to free the space.

2472:     Level: beginner

2474: .seealso:  VecDestroyVecsF90(), VecDuplicateVecs()

2476: M*/

2478: /*MC
2479:     VecRestoreArrayF90 - Restores a vector to a usable state after a call to
2480:     VecGetArrayF90().

2482:     Synopsis:
2483:     VecRestoreArrayF90(Vec x,{Scalar, pointer :: xx_v(:)},integer ierr)

2485:     Logically Collective on Vec

2487:     Input Parameters:
2488: +   x - vector
2489: -   xx_v - the Fortran90 pointer to the array

2491:     Output Parameter:
2492: .   ierr - error code

2494:     Example of Usage:
2495: .vb
2496:  #include <petsc/finclude/petscvec.h>
2497:     use petscvec

2499:     PetscScalar, pointer :: xx_v(:)
2500:     ....
2501:     call VecGetArrayF90(x,xx_v,ierr)
2502:     xx_v(3) = a
2503:     call VecRestoreArrayF90(x,xx_v,ierr)
2504: .ve

2506:     Level: beginner

2508: .seealso:  VecGetArrayF90(), VecGetArray(), VecRestoreArray(), UsingFortran, VecRestoreArrayReadF90()

2510: M*/

2512: /*MC
2513:     VecDestroyVecsF90 - Frees a block of vectors obtained with VecDuplicateVecsF90().

2515:     Synopsis:
2516:     VecDestroyVecsF90(PetscInt n,{Vec, pointer :: x(:)},PetscErrorCode ierr)

2518:     Collective on Vec

2520:     Input Parameters:
2521: +   n - the number of vectors previously obtained
2522: -   x - pointer to array of vector pointers

2524:     Output Parameter:
2525: .   ierr - error code

2527:     Notes:
2528:     Not yet supported for all F90 compilers

2530:     Level: beginner

2532: .seealso:  VecDestroyVecs(), VecDuplicateVecsF90()

2534: M*/

2536: /*MC
2537:     VecGetArrayF90 - Accesses a vector array from Fortran90. For default PETSc
2538:     vectors, VecGetArrayF90() returns a pointer to the local data array. Otherwise,
2539:     this routine is implementation dependent. You MUST call VecRestoreArrayF90()
2540:     when you no longer need access to the array.

2542:     Synopsis:
2543:     VecGetArrayF90(Vec x,{Scalar, pointer :: xx_v(:)},integer ierr)

2545:     Logically Collective on Vec

2547:     Input Parameter:
2548: .   x - vector

2550:     Output Parameters:
2551: +   xx_v - the Fortran90 pointer to the array
2552: -   ierr - error code

2554:     Example of Usage:
2555: .vb
2556:  #include <petsc/finclude/petscvec.h>
2557:     use petscvec

2559:     PetscScalar, pointer :: xx_v(:)
2560:     ....
2561:     call VecGetArrayF90(x,xx_v,ierr)
2562:     xx_v(3) = a
2563:     call VecRestoreArrayF90(x,xx_v,ierr)
2564: .ve

2566:     If you ONLY intend to read entries from the array and not change any entries you should use VecGetArrayReadF90().

2568:     Level: beginner

2570: .seealso:  VecRestoreArrayF90(), VecGetArray(), VecRestoreArray(), VecGetArrayReadF90(), UsingFortran

2572: M*/

2574:  /*MC
2575:     VecGetArrayReadF90 - Accesses a read only array from Fortran90. For default PETSc
2576:     vectors, VecGetArrayF90() returns a pointer to the local data array. Otherwise,
2577:     this routine is implementation dependent. You MUST call VecRestoreArrayReadF90()
2578:     when you no longer need access to the array.

2580:     Synopsis:
2581:     VecGetArrayReadF90(Vec x,{Scalar, pointer :: xx_v(:)},integer ierr)

2583:     Logically Collective on Vec

2585:     Input Parameter:
2586: .   x - vector

2588:     Output Parameters:
2589: +   xx_v - the Fortran90 pointer to the array
2590: -   ierr - error code

2592:     Example of Usage:
2593: .vb
2594:  #include <petsc/finclude/petscvec.h>
2595:     use petscvec

2597:     PetscScalar, pointer :: xx_v(:)
2598:     ....
2599:     call VecGetArrayReadF90(x,xx_v,ierr)
2600:     a = xx_v(3)
2601:     call VecRestoreArrayReadF90(x,xx_v,ierr)
2602: .ve

2604:     If you intend to write entries into the array you must use VecGetArrayF90().

2606:     Level: beginner

2608: .seealso:  VecRestoreArrayReadF90(), VecGetArray(), VecRestoreArray(), VecGetArrayRead(), VecRestoreArrayRead(), VecGetArrayF90(), UsingFortran

2610: M*/

2612: /*MC
2613:     VecRestoreArrayReadF90 - Restores a readonly vector to a usable state after a call to
2614:     VecGetArrayReadF90().

2616:     Synopsis:
2617:     VecRestoreArrayReadF90(Vec x,{Scalar, pointer :: xx_v(:)},integer ierr)

2619:     Logically Collective on Vec

2621:     Input Parameters:
2622: +   x - vector
2623: -   xx_v - the Fortran90 pointer to the array

2625:     Output Parameter:
2626: .   ierr - error code

2628:     Example of Usage:
2629: .vb
2630:  #include <petsc/finclude/petscvec.h>
2631:     use petscvec

2633:     PetscScalar, pointer :: xx_v(:)
2634:     ....
2635:     call VecGetArrayReadF90(x,xx_v,ierr)
2636:     a = xx_v(3)
2637:     call VecRestoreArrayReadF90(x,xx_v,ierr)
2638: .ve

2640:     Level: beginner

2642: .seealso:  VecGetArrayReadF90(), VecGetArray(), VecRestoreArray(), VecGetArrayRead(), VecRestoreArrayRead(),UsingFortran, VecRestoreArrayF90()

2644: M*/

2646: /*@C
2647:    VecGetArray2d - Returns a pointer to a 2d contiguous array that contains this
2648:    processor's portion of the vector data.  You MUST call VecRestoreArray2d()
2649:    when you no longer need access to the array.

2651:    Logically Collective

2653:    Input Parameter:
2654: +  x - the vector
2655: .  m - first dimension of two dimensional array
2656: .  n - second dimension of two dimensional array
2657: .  mstart - first index you will use in first coordinate direction (often 0)
2658: -  nstart - first index in the second coordinate direction (often 0)

2660:    Output Parameter:
2661: .  a - location to put pointer to the array

2663:    Level: developer

2665:   Notes:
2666:    For a vector obtained from DMCreateLocalVector() mstart and nstart are likely
2667:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
2668:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
2669:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray2d().

2671:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

2673: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
2674:           VecRestoreArray2d(), DMDAVecGetArray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
2675:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
2676: @*/
2677: PetscErrorCode  VecGetArray2d(Vec x,PetscInt m,PetscInt n,PetscInt mstart,PetscInt nstart,PetscScalar **a[])
2678: {
2680:   PetscInt       i,N;
2681:   PetscScalar    *aa;

2687:   VecGetLocalSize(x,&N);
2688:   if (m*n != N) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 2d array dimensions %D by %D",N,m,n);
2689:   VecGetArray(x,&aa);

2691:   PetscMalloc1(m,a);
2692:   for (i=0; i<m; i++) (*a)[i] = aa + i*n - nstart;
2693:   *a -= mstart;
2694:   return(0);
2695: }

2697: /*@C
2698:    VecGetArray2dWrite - Returns a pointer to a 2d contiguous array that will contain this
2699:    processor's portion of the vector data.  You MUST call VecRestoreArray2dWrite()
2700:    when you no longer need access to the array.

2702:    Logically Collective

2704:    Input Parameter:
2705: +  x - the vector
2706: .  m - first dimension of two dimensional array
2707: .  n - second dimension of two dimensional array
2708: .  mstart - first index you will use in first coordinate direction (often 0)
2709: -  nstart - first index in the second coordinate direction (often 0)

2711:    Output Parameter:
2712: .  a - location to put pointer to the array

2714:    Level: developer

2716:   Notes:
2717:    For a vector obtained from DMCreateLocalVector() mstart and nstart are likely
2718:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
2719:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
2720:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray2d().

2722:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

2724:    Concepts: vector^accessing local values as 2d array

2726: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
2727:           VecRestoreArray2d(), DMDAVecGetArray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
2728:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
2729: @*/
2730: PetscErrorCode  VecGetArray2dWrite(Vec x,PetscInt m,PetscInt n,PetscInt mstart,PetscInt nstart,PetscScalar **a[])
2731: {
2733:   PetscInt       i,N;
2734:   PetscScalar    *aa;

2740:   VecGetLocalSize(x,&N);
2741:   if (m*n != N) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 2d array dimensions %D by %D",N,m,n);
2742:   VecGetArrayWrite(x,&aa);

2744:   PetscMalloc1(m,a);
2745:   for (i=0; i<m; i++) (*a)[i] = aa + i*n - nstart;
2746:   *a -= mstart;
2747:   return(0);
2748: }

2750: /*@C
2751:    VecRestoreArray2d - Restores a vector after VecGetArray2d() has been called.

2753:    Logically Collective

2755:    Input Parameters:
2756: +  x - the vector
2757: .  m - first dimension of two dimensional array
2758: .  n - second dimension of the two dimensional array
2759: .  mstart - first index you will use in first coordinate direction (often 0)
2760: .  nstart - first index in the second coordinate direction (often 0)
2761: -  a - location of pointer to array obtained from VecGetArray2d()

2763:    Level: developer

2765:    Notes:
2766:    For regular PETSc vectors this routine does not involve any copies. For
2767:    any special vectors that do not store local vector data in a contiguous
2768:    array, this routine will copy the data back into the underlying
2769:    vector data structure from the array obtained with VecGetArray().

2771:    This routine actually zeros out the a pointer.

2773: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
2774:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
2775:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
2776: @*/
2777: PetscErrorCode  VecRestoreArray2d(Vec x,PetscInt m,PetscInt n,PetscInt mstart,PetscInt nstart,PetscScalar **a[])
2778: {
2780:   void           *dummy;

2786:   dummy = (void*)(*a + mstart);
2787:   PetscFree(dummy);
2788:   VecRestoreArray(x,NULL);
2789:   return(0);
2790: }

2792: /*@C
2793:    VecRestoreArray2dWrite - Restores a vector after VecGetArray2dWrite() has been called.

2795:    Logically Collective

2797:    Input Parameters:
2798: +  x - the vector
2799: .  m - first dimension of two dimensional array
2800: .  n - second dimension of the two dimensional array
2801: .  mstart - first index you will use in first coordinate direction (often 0)
2802: .  nstart - first index in the second coordinate direction (often 0)
2803: -  a - location of pointer to array obtained from VecGetArray2d()

2805:    Level: developer

2807:    Notes:
2808:    For regular PETSc vectors this routine does not involve any copies. For
2809:    any special vectors that do not store local vector data in a contiguous
2810:    array, this routine will copy the data back into the underlying
2811:    vector data structure from the array obtained with VecGetArray().

2813:    This routine actually zeros out the a pointer.

2815: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
2816:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
2817:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
2818: @*/
2819: PetscErrorCode  VecRestoreArray2dWrite(Vec x,PetscInt m,PetscInt n,PetscInt mstart,PetscInt nstart,PetscScalar **a[])
2820: {
2822:   void           *dummy;

2828:   dummy = (void*)(*a + mstart);
2829:   PetscFree(dummy);
2830:   VecRestoreArrayWrite(x,NULL);
2831:   return(0);
2832: }

2834: /*@C
2835:    VecGetArray1d - Returns a pointer to a 1d contiguous array that contains this
2836:    processor's portion of the vector data.  You MUST call VecRestoreArray1d()
2837:    when you no longer need access to the array.

2839:    Logically Collective

2841:    Input Parameter:
2842: +  x - the vector
2843: .  m - first dimension of two dimensional array
2844: -  mstart - first index you will use in first coordinate direction (often 0)

2846:    Output Parameter:
2847: .  a - location to put pointer to the array

2849:    Level: developer

2851:   Notes:
2852:    For a vector obtained from DMCreateLocalVector() mstart are likely
2853:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
2854:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners().

2856:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

2858: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
2859:           VecRestoreArray2d(), DMDAVecGetArray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
2860:           VecGetArray2d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
2861: @*/
2862: PetscErrorCode  VecGetArray1d(Vec x,PetscInt m,PetscInt mstart,PetscScalar *a[])
2863: {
2865:   PetscInt       N;

2871:   VecGetLocalSize(x,&N);
2872:   if (m != N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local array size %D does not match 1d array dimensions %D",N,m);
2873:   VecGetArray(x,a);
2874:   *a  -= mstart;
2875:   return(0);
2876: }

2878:  /*@C
2879:    VecGetArray1dWrite - Returns a pointer to a 1d contiguous array that will contain this
2880:    processor's portion of the vector data.  You MUST call VecRestoreArray1dWrite()
2881:    when you no longer need access to the array.

2883:    Logically Collective

2885:    Input Parameter:
2886: +  x - the vector
2887: .  m - first dimension of two dimensional array
2888: -  mstart - first index you will use in first coordinate direction (often 0)

2890:    Output Parameter:
2891: .  a - location to put pointer to the array

2893:    Level: developer

2895:   Notes:
2896:    For a vector obtained from DMCreateLocalVector() mstart are likely
2897:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
2898:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners().

2900:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

2902: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
2903:           VecRestoreArray2d(), DMDAVecGetArray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
2904:           VecGetArray2d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
2905: @*/
2906: PetscErrorCode  VecGetArray1dWrite(Vec x,PetscInt m,PetscInt mstart,PetscScalar *a[])
2907: {
2909:   PetscInt       N;

2915:   VecGetLocalSize(x,&N);
2916:   if (m != N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local array size %D does not match 1d array dimensions %D",N,m);
2917:   VecGetArrayWrite(x,a);
2918:   *a  -= mstart;
2919:   return(0);
2920: }

2922: /*@C
2923:    VecRestoreArray1d - Restores a vector after VecGetArray1d() has been called.

2925:    Logically Collective

2927:    Input Parameters:
2928: +  x - the vector
2929: .  m - first dimension of two dimensional array
2930: .  mstart - first index you will use in first coordinate direction (often 0)
2931: -  a - location of pointer to array obtained from VecGetArray21()

2933:    Level: developer

2935:    Notes:
2936:    For regular PETSc vectors this routine does not involve any copies. For
2937:    any special vectors that do not store local vector data in a contiguous
2938:    array, this routine will copy the data back into the underlying
2939:    vector data structure from the array obtained with VecGetArray1d().

2941:    This routine actually zeros out the a pointer.

2943: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
2944:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
2945:           VecGetArray1d(), VecRestoreArray2d(), VecGetArray4d(), VecRestoreArray4d()
2946: @*/
2947: PetscErrorCode  VecRestoreArray1d(Vec x,PetscInt m,PetscInt mstart,PetscScalar *a[])
2948: {

2954:   VecRestoreArray(x,NULL);
2955:   return(0);
2956: }

2958: /*@C
2959:    VecRestoreArray1dWrite - Restores a vector after VecGetArray1dWrite() has been called.

2961:    Logically Collective

2963:    Input Parameters:
2964: +  x - the vector
2965: .  m - first dimension of two dimensional array
2966: .  mstart - first index you will use in first coordinate direction (often 0)
2967: -  a - location of pointer to array obtained from VecGetArray21()

2969:    Level: developer

2971:    Notes:
2972:    For regular PETSc vectors this routine does not involve any copies. For
2973:    any special vectors that do not store local vector data in a contiguous
2974:    array, this routine will copy the data back into the underlying
2975:    vector data structure from the array obtained with VecGetArray1d().

2977:    This routine actually zeros out the a pointer.

2979:    Concepts: vector^accessing local values as 1d array

2981: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
2982:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
2983:           VecGetArray1d(), VecRestoreArray2d(), VecGetArray4d(), VecRestoreArray4d()
2984: @*/
2985: PetscErrorCode  VecRestoreArray1dWrite(Vec x,PetscInt m,PetscInt mstart,PetscScalar *a[])
2986: {

2992:   VecRestoreArrayWrite(x,NULL);
2993:   return(0);
2994: }

2996: /*@C
2997:    VecGetArray3d - Returns a pointer to a 3d contiguous array that contains this
2998:    processor's portion of the vector data.  You MUST call VecRestoreArray3d()
2999:    when you no longer need access to the array.

3001:    Logically Collective

3003:    Input Parameter:
3004: +  x - the vector
3005: .  m - first dimension of three dimensional array
3006: .  n - second dimension of three dimensional array
3007: .  p - third dimension of three dimensional array
3008: .  mstart - first index you will use in first coordinate direction (often 0)
3009: .  nstart - first index in the second coordinate direction (often 0)
3010: -  pstart - first index in the third coordinate direction (often 0)

3012:    Output Parameter:
3013: .  a - location to put pointer to the array

3015:    Level: developer

3017:   Notes:
3018:    For a vector obtained from DMCreateLocalVector() mstart, nstart, and pstart are likely
3019:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
3020:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
3021:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray3d().

3023:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

3025: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
3026:           VecRestoreArray2d(), DMDAVecGetarray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
3027:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
3028: @*/
3029: PetscErrorCode  VecGetArray3d(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscScalar ***a[])
3030: {
3032:   PetscInt       i,N,j;
3033:   PetscScalar    *aa,**b;

3039:   VecGetLocalSize(x,&N);
3040:   if (m*n*p != N) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 3d array dimensions %D by %D by %D",N,m,n,p);
3041:   VecGetArray(x,&aa);

3043:   PetscMalloc1(m*sizeof(PetscScalar**)+m*n,a);
3044:   b    = (PetscScalar**)((*a) + m);
3045:   for (i=0; i<m; i++) (*a)[i] = b + i*n - nstart;
3046:   for (i=0; i<m; i++)
3047:     for (j=0; j<n; j++)
3048:       b[i*n+j] = aa + i*n*p + j*p - pstart;

3050:   *a -= mstart;
3051:   return(0);
3052: }

3054: /*@C
3055:    VecGetArray3dWrite - Returns a pointer to a 3d contiguous array that will contain this
3056:    processor's portion of the vector data.  You MUST call VecRestoreArray3dWrite()
3057:    when you no longer need access to the array.

3059:    Logically Collective

3061:    Input Parameter:
3062: +  x - the vector
3063: .  m - first dimension of three dimensional array
3064: .  n - second dimension of three dimensional array
3065: .  p - third dimension of three dimensional array
3066: .  mstart - first index you will use in first coordinate direction (often 0)
3067: .  nstart - first index in the second coordinate direction (often 0)
3068: -  pstart - first index in the third coordinate direction (often 0)

3070:    Output Parameter:
3071: .  a - location to put pointer to the array

3073:    Level: developer

3075:   Notes:
3076:    For a vector obtained from DMCreateLocalVector() mstart, nstart, and pstart are likely
3077:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
3078:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
3079:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray3d().

3081:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

3083:    Concepts: vector^accessing local values as 3d array

3085: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
3086:           VecRestoreArray2d(), DMDAVecGetarray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
3087:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
3088: @*/
3089: PetscErrorCode  VecGetArray3dWrite(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscScalar ***a[])
3090: {
3092:   PetscInt       i,N,j;
3093:   PetscScalar    *aa,**b;

3099:   VecGetLocalSize(x,&N);
3100:   if (m*n*p != N) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 3d array dimensions %D by %D by %D",N,m,n,p);
3101:   VecGetArrayWrite(x,&aa);

3103:   PetscMalloc1(m*sizeof(PetscScalar**)+m*n,a);
3104:   b    = (PetscScalar**)((*a) + m);
3105:   for (i=0; i<m; i++) (*a)[i] = b + i*n - nstart;
3106:   for (i=0; i<m; i++)
3107:     for (j=0; j<n; j++)
3108:       b[i*n+j] = aa + i*n*p + j*p - pstart;

3110:   *a -= mstart;
3111:   return(0);
3112: }

3114: /*@C
3115:    VecRestoreArray3d - Restores a vector after VecGetArray3d() has been called.

3117:    Logically Collective

3119:    Input Parameters:
3120: +  x - the vector
3121: .  m - first dimension of three dimensional array
3122: .  n - second dimension of the three dimensional array
3123: .  p - third dimension of the three dimensional array
3124: .  mstart - first index you will use in first coordinate direction (often 0)
3125: .  nstart - first index in the second coordinate direction (often 0)
3126: .  pstart - first index in the third coordinate direction (often 0)
3127: -  a - location of pointer to array obtained from VecGetArray3d()

3129:    Level: developer

3131:    Notes:
3132:    For regular PETSc vectors this routine does not involve any copies. For
3133:    any special vectors that do not store local vector data in a contiguous
3134:    array, this routine will copy the data back into the underlying
3135:    vector data structure from the array obtained with VecGetArray().

3137:    This routine actually zeros out the a pointer.

3139: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
3140:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
3141:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d(), VecGet
3142: @*/
3143: PetscErrorCode  VecRestoreArray3d(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscScalar ***a[])
3144: {
3146:   void           *dummy;

3152:   dummy = (void*)(*a + mstart);
3153:   PetscFree(dummy);
3154:   VecRestoreArray(x,NULL);
3155:   return(0);
3156: }

3158: /*@C
3159:    VecRestoreArray3dWrite - Restores a vector after VecGetArray3dWrite() has been called.

3161:    Logically Collective

3163:    Input Parameters:
3164: +  x - the vector
3165: .  m - first dimension of three dimensional array
3166: .  n - second dimension of the three dimensional array
3167: .  p - third dimension of the three dimensional array
3168: .  mstart - first index you will use in first coordinate direction (often 0)
3169: .  nstart - first index in the second coordinate direction (often 0)
3170: .  pstart - first index in the third coordinate direction (often 0)
3171: -  a - location of pointer to array obtained from VecGetArray3d()

3173:    Level: developer

3175:    Notes:
3176:    For regular PETSc vectors this routine does not involve any copies. For
3177:    any special vectors that do not store local vector data in a contiguous
3178:    array, this routine will copy the data back into the underlying
3179:    vector data structure from the array obtained with VecGetArray().

3181:    This routine actually zeros out the a pointer.

3183: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
3184:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
3185:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d(), VecGet
3186: @*/
3187: PetscErrorCode  VecRestoreArray3dWrite(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscScalar ***a[])
3188: {
3190:   void           *dummy;

3196:   dummy = (void*)(*a + mstart);
3197:   PetscFree(dummy);
3198:   VecRestoreArrayWrite(x,NULL);
3199:   return(0);
3200: }

3202: /*@C
3203:    VecGetArray4d - Returns a pointer to a 4d contiguous array that contains this
3204:    processor's portion of the vector data.  You MUST call VecRestoreArray4d()
3205:    when you no longer need access to the array.

3207:    Logically Collective

3209:    Input Parameter:
3210: +  x - the vector
3211: .  m - first dimension of four dimensional array
3212: .  n - second dimension of four dimensional array
3213: .  p - third dimension of four dimensional array
3214: .  q - fourth dimension of four dimensional array
3215: .  mstart - first index you will use in first coordinate direction (often 0)
3216: .  nstart - first index in the second coordinate direction (often 0)
3217: .  pstart - first index in the third coordinate direction (often 0)
3218: -  qstart - first index in the fourth coordinate direction (often 0)

3220:    Output Parameter:
3221: .  a - location to put pointer to the array

3223:    Level: beginner

3225:   Notes:
3226:    For a vector obtained from DMCreateLocalVector() mstart, nstart, and pstart are likely
3227:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
3228:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
3229:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray3d().

3231:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

3233: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
3234:           VecRestoreArray2d(), DMDAVecGetarray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
3235:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
3236: @*/
3237: PetscErrorCode  VecGetArray4d(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt q,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscInt qstart,PetscScalar ****a[])
3238: {
3240:   PetscInt       i,N,j,k;
3241:   PetscScalar    *aa,***b,**c;

3247:   VecGetLocalSize(x,&N);
3248:   if (m*n*p*q != N) SETERRQ5(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 4d array dimensions %D by %D by %D by %D",N,m,n,p,q);
3249:   VecGetArray(x,&aa);

3251:   PetscMalloc1(m*sizeof(PetscScalar***)+m*n*sizeof(PetscScalar**)+m*n*p,a);
3252:   b    = (PetscScalar***)((*a) + m);
3253:   c    = (PetscScalar**)(b + m*n);
3254:   for (i=0; i<m; i++) (*a)[i] = b + i*n - nstart;
3255:   for (i=0; i<m; i++)
3256:     for (j=0; j<n; j++)
3257:       b[i*n+j] = c + i*n*p + j*p - pstart;
3258:   for (i=0; i<m; i++)
3259:     for (j=0; j<n; j++)
3260:       for (k=0; k<p; k++)
3261:         c[i*n*p+j*p+k] = aa + i*n*p*q + j*p*q + k*q - qstart;
3262:   *a -= mstart;
3263:   return(0);
3264: }

3266: /*@C
3267:    VecGetArray4dWrite - Returns a pointer to a 4d contiguous array that will contain this
3268:    processor's portion of the vector data.  You MUST call VecRestoreArray4dWrite()
3269:    when you no longer need access to the array.

3271:    Logically Collective

3273:    Input Parameter:
3274: +  x - the vector
3275: .  m - first dimension of four dimensional array
3276: .  n - second dimension of four dimensional array
3277: .  p - third dimension of four dimensional array
3278: .  q - fourth dimension of four dimensional array
3279: .  mstart - first index you will use in first coordinate direction (often 0)
3280: .  nstart - first index in the second coordinate direction (often 0)
3281: .  pstart - first index in the third coordinate direction (often 0)
3282: -  qstart - first index in the fourth coordinate direction (often 0)

3284:    Output Parameter:
3285: .  a - location to put pointer to the array

3287:    Level: beginner

3289:   Notes:
3290:    For a vector obtained from DMCreateLocalVector() mstart, nstart, and pstart are likely
3291:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
3292:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
3293:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray3d().

3295:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

3297:    Concepts: vector^accessing local values as 3d array

3299: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
3300:           VecRestoreArray2d(), DMDAVecGetarray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
3301:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
3302: @*/
3303: PetscErrorCode  VecGetArray4dWrite(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt q,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscInt qstart,PetscScalar ****a[])
3304: {
3306:   PetscInt       i,N,j,k;
3307:   PetscScalar    *aa,***b,**c;

3313:   VecGetLocalSize(x,&N);
3314:   if (m*n*p*q != N) SETERRQ5(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 4d array dimensions %D by %D by %D by %D",N,m,n,p,q);
3315:   VecGetArrayWrite(x,&aa);

3317:   PetscMalloc1(m*sizeof(PetscScalar***)+m*n*sizeof(PetscScalar**)+m*n*p,a);
3318:   b    = (PetscScalar***)((*a) + m);
3319:   c    = (PetscScalar**)(b + m*n);
3320:   for (i=0; i<m; i++) (*a)[i] = b + i*n - nstart;
3321:   for (i=0; i<m; i++)
3322:     for (j=0; j<n; j++)
3323:       b[i*n+j] = c + i*n*p + j*p - pstart;
3324:   for (i=0; i<m; i++)
3325:     for (j=0; j<n; j++)
3326:       for (k=0; k<p; k++)
3327:         c[i*n*p+j*p+k] = aa + i*n*p*q + j*p*q + k*q - qstart;
3328:   *a -= mstart;
3329:   return(0);
3330: }

3332: /*@C
3333:    VecRestoreArray4d - Restores a vector after VecGetArray3d() has been called.

3335:    Logically Collective

3337:    Input Parameters:
3338: +  x - the vector
3339: .  m - first dimension of four dimensional array
3340: .  n - second dimension of the four dimensional array
3341: .  p - third dimension of the four dimensional array
3342: .  q - fourth dimension of the four dimensional array
3343: .  mstart - first index you will use in first coordinate direction (often 0)
3344: .  nstart - first index in the second coordinate direction (often 0)
3345: .  pstart - first index in the third coordinate direction (often 0)
3346: .  qstart - first index in the fourth coordinate direction (often 0)
3347: -  a - location of pointer to array obtained from VecGetArray4d()

3349:    Level: beginner

3351:    Notes:
3352:    For regular PETSc vectors this routine does not involve any copies. For
3353:    any special vectors that do not store local vector data in a contiguous
3354:    array, this routine will copy the data back into the underlying
3355:    vector data structure from the array obtained with VecGetArray().

3357:    This routine actually zeros out the a pointer.

3359: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
3360:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
3361:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d(), VecGet
3362: @*/
3363: PetscErrorCode  VecRestoreArray4d(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt q,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscInt qstart,PetscScalar ****a[])
3364: {
3366:   void           *dummy;

3372:   dummy = (void*)(*a + mstart);
3373:   PetscFree(dummy);
3374:   VecRestoreArray(x,NULL);
3375:   return(0);
3376: }

3378: /*@C
3379:    VecRestoreArray4dWrite - Restores a vector after VecGetArray3dWrite() has been called.

3381:    Logically Collective

3383:    Input Parameters:
3384: +  x - the vector
3385: .  m - first dimension of four dimensional array
3386: .  n - second dimension of the four dimensional array
3387: .  p - third dimension of the four dimensional array
3388: .  q - fourth dimension of the four dimensional array
3389: .  mstart - first index you will use in first coordinate direction (often 0)
3390: .  nstart - first index in the second coordinate direction (often 0)
3391: .  pstart - first index in the third coordinate direction (often 0)
3392: .  qstart - first index in the fourth coordinate direction (often 0)
3393: -  a - location of pointer to array obtained from VecGetArray4d()

3395:    Level: beginner

3397:    Notes:
3398:    For regular PETSc vectors this routine does not involve any copies. For
3399:    any special vectors that do not store local vector data in a contiguous
3400:    array, this routine will copy the data back into the underlying
3401:    vector data structure from the array obtained with VecGetArray().

3403:    This routine actually zeros out the a pointer.

3405: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
3406:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
3407:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d(), VecGet
3408: @*/
3409: PetscErrorCode  VecRestoreArray4dWrite(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt q,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscInt qstart,PetscScalar ****a[])
3410: {
3412:   void           *dummy;

3418:   dummy = (void*)(*a + mstart);
3419:   PetscFree(dummy);
3420:   VecRestoreArrayWrite(x,NULL);
3421:   return(0);
3422: }

3424: /*@C
3425:    VecGetArray2dRead - Returns a pointer to a 2d contiguous array that contains this
3426:    processor's portion of the vector data.  You MUST call VecRestoreArray2dRead()
3427:    when you no longer need access to the array.

3429:    Logically Collective

3431:    Input Parameter:
3432: +  x - the vector
3433: .  m - first dimension of two dimensional array
3434: .  n - second dimension of two dimensional array
3435: .  mstart - first index you will use in first coordinate direction (often 0)
3436: -  nstart - first index in the second coordinate direction (often 0)

3438:    Output Parameter:
3439: .  a - location to put pointer to the array

3441:    Level: developer

3443:   Notes:
3444:    For a vector obtained from DMCreateLocalVector() mstart and nstart are likely
3445:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
3446:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
3447:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray2d().

3449:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

3451: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
3452:           VecRestoreArray2d(), DMDAVecGetArray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
3453:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
3454: @*/
3455: PetscErrorCode  VecGetArray2dRead(Vec x,PetscInt m,PetscInt n,PetscInt mstart,PetscInt nstart,PetscScalar **a[])
3456: {
3457:   PetscErrorCode    ierr;
3458:   PetscInt          i,N;
3459:   const PetscScalar *aa;

3465:   VecGetLocalSize(x,&N);
3466:   if (m*n != N) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 2d array dimensions %D by %D",N,m,n);
3467:   VecGetArrayRead(x,&aa);

3469:   PetscMalloc1(m,a);
3470:   for (i=0; i<m; i++) (*a)[i] = (PetscScalar*) aa + i*n - nstart;
3471:   *a -= mstart;
3472:   return(0);
3473: }

3475: /*@C
3476:    VecRestoreArray2dRead - Restores a vector after VecGetArray2dRead() has been called.

3478:    Logically Collective

3480:    Input Parameters:
3481: +  x - the vector
3482: .  m - first dimension of two dimensional array
3483: .  n - second dimension of the two dimensional array
3484: .  mstart - first index you will use in first coordinate direction (often 0)
3485: .  nstart - first index in the second coordinate direction (often 0)
3486: -  a - location of pointer to array obtained from VecGetArray2d()

3488:    Level: developer

3490:    Notes:
3491:    For regular PETSc vectors this routine does not involve any copies. For
3492:    any special vectors that do not store local vector data in a contiguous
3493:    array, this routine will copy the data back into the underlying
3494:    vector data structure from the array obtained with VecGetArray().

3496:    This routine actually zeros out the a pointer.

3498: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
3499:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
3500:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
3501: @*/
3502: PetscErrorCode  VecRestoreArray2dRead(Vec x,PetscInt m,PetscInt n,PetscInt mstart,PetscInt nstart,PetscScalar **a[])
3503: {
3505:   void           *dummy;

3511:   dummy = (void*)(*a + mstart);
3512:   PetscFree(dummy);
3513:   VecRestoreArrayRead(x,NULL);
3514:   return(0);
3515: }

3517: /*@C
3518:    VecGetArray1dRead - Returns a pointer to a 1d contiguous array that contains this
3519:    processor's portion of the vector data.  You MUST call VecRestoreArray1dRead()
3520:    when you no longer need access to the array.

3522:    Logically Collective

3524:    Input Parameter:
3525: +  x - the vector
3526: .  m - first dimension of two dimensional array
3527: -  mstart - first index you will use in first coordinate direction (often 0)

3529:    Output Parameter:
3530: .  a - location to put pointer to the array

3532:    Level: developer

3534:   Notes:
3535:    For a vector obtained from DMCreateLocalVector() mstart are likely
3536:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
3537:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners().

3539:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

3541: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
3542:           VecRestoreArray2d(), DMDAVecGetArray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
3543:           VecGetArray2d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
3544: @*/
3545: PetscErrorCode  VecGetArray1dRead(Vec x,PetscInt m,PetscInt mstart,PetscScalar *a[])
3546: {
3548:   PetscInt       N;

3554:   VecGetLocalSize(x,&N);
3555:   if (m != N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local array size %D does not match 1d array dimensions %D",N,m);
3556:   VecGetArrayRead(x,(const PetscScalar**)a);
3557:   *a  -= mstart;
3558:   return(0);
3559: }

3561: /*@C
3562:    VecRestoreArray1dRead - Restores a vector after VecGetArray1dRead() has been called.

3564:    Logically Collective

3566:    Input Parameters:
3567: +  x - the vector
3568: .  m - first dimension of two dimensional array
3569: .  mstart - first index you will use in first coordinate direction (often 0)
3570: -  a - location of pointer to array obtained from VecGetArray21()

3572:    Level: developer

3574:    Notes:
3575:    For regular PETSc vectors this routine does not involve any copies. For
3576:    any special vectors that do not store local vector data in a contiguous
3577:    array, this routine will copy the data back into the underlying
3578:    vector data structure from the array obtained with VecGetArray1dRead().

3580:    This routine actually zeros out the a pointer.

3582: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
3583:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
3584:           VecGetArray1d(), VecRestoreArray2d(), VecGetArray4d(), VecRestoreArray4d()
3585: @*/
3586: PetscErrorCode  VecRestoreArray1dRead(Vec x,PetscInt m,PetscInt mstart,PetscScalar *a[])
3587: {

3593:   VecRestoreArrayRead(x,NULL);
3594:   return(0);
3595: }


3598: /*@C
3599:    VecGetArray3dRead - Returns a pointer to a 3d contiguous array that contains this
3600:    processor's portion of the vector data.  You MUST call VecRestoreArray3dRead()
3601:    when you no longer need access to the array.

3603:    Logically Collective

3605:    Input Parameter:
3606: +  x - the vector
3607: .  m - first dimension of three dimensional array
3608: .  n - second dimension of three dimensional array
3609: .  p - third dimension of three dimensional array
3610: .  mstart - first index you will use in first coordinate direction (often 0)
3611: .  nstart - first index in the second coordinate direction (often 0)
3612: -  pstart - first index in the third coordinate direction (often 0)

3614:    Output Parameter:
3615: .  a - location to put pointer to the array

3617:    Level: developer

3619:   Notes:
3620:    For a vector obtained from DMCreateLocalVector() mstart, nstart, and pstart are likely
3621:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
3622:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
3623:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray3dRead().

3625:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

3627: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
3628:           VecRestoreArray2d(), DMDAVecGetarray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
3629:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
3630: @*/
3631: PetscErrorCode  VecGetArray3dRead(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscScalar ***a[])
3632: {
3633:   PetscErrorCode    ierr;
3634:   PetscInt          i,N,j;
3635:   const PetscScalar *aa;
3636:   PetscScalar       **b;

3642:   VecGetLocalSize(x,&N);
3643:   if (m*n*p != N) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 3d array dimensions %D by %D by %D",N,m,n,p);
3644:   VecGetArrayRead(x,&aa);

3646:   PetscMalloc1(m*sizeof(PetscScalar**)+m*n,a);
3647:   b    = (PetscScalar**)((*a) + m);
3648:   for (i=0; i<m; i++) (*a)[i] = b + i*n - nstart;
3649:   for (i=0; i<m; i++)
3650:     for (j=0; j<n; j++)
3651:       b[i*n+j] = (PetscScalar *)aa + i*n*p + j*p - pstart;

3653:   *a -= mstart;
3654:   return(0);
3655: }

3657: /*@C
3658:    VecRestoreArray3dRead - Restores a vector after VecGetArray3dRead() has been called.

3660:    Logically Collective

3662:    Input Parameters:
3663: +  x - the vector
3664: .  m - first dimension of three dimensional array
3665: .  n - second dimension of the three dimensional array
3666: .  p - third dimension of the three dimensional array
3667: .  mstart - first index you will use in first coordinate direction (often 0)
3668: .  nstart - first index in the second coordinate direction (often 0)
3669: .  pstart - first index in the third coordinate direction (often 0)
3670: -  a - location of pointer to array obtained from VecGetArray3dRead()

3672:    Level: developer

3674:    Notes:
3675:    For regular PETSc vectors this routine does not involve any copies. For
3676:    any special vectors that do not store local vector data in a contiguous
3677:    array, this routine will copy the data back into the underlying
3678:    vector data structure from the array obtained with VecGetArray().

3680:    This routine actually zeros out the a pointer.

3682: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
3683:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
3684:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d(), VecGet
3685: @*/
3686: PetscErrorCode  VecRestoreArray3dRead(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscScalar ***a[])
3687: {
3689:   void           *dummy;

3695:   dummy = (void*)(*a + mstart);
3696:   PetscFree(dummy);
3697:   VecRestoreArrayRead(x,NULL);
3698:   return(0);
3699: }

3701: /*@C
3702:    VecGetArray4dRead - Returns a pointer to a 4d contiguous array that contains this
3703:    processor's portion of the vector data.  You MUST call VecRestoreArray4dRead()
3704:    when you no longer need access to the array.

3706:    Logically Collective

3708:    Input Parameter:
3709: +  x - the vector
3710: .  m - first dimension of four dimensional array
3711: .  n - second dimension of four dimensional array
3712: .  p - third dimension of four dimensional array
3713: .  q - fourth dimension of four dimensional array
3714: .  mstart - first index you will use in first coordinate direction (often 0)
3715: .  nstart - first index in the second coordinate direction (often 0)
3716: .  pstart - first index in the third coordinate direction (often 0)
3717: -  qstart - first index in the fourth coordinate direction (often 0)

3719:    Output Parameter:
3720: .  a - location to put pointer to the array

3722:    Level: beginner

3724:   Notes:
3725:    For a vector obtained from DMCreateLocalVector() mstart, nstart, and pstart are likely
3726:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
3727:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
3728:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray3d().

3730:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

3732: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
3733:           VecRestoreArray2d(), DMDAVecGetarray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
3734:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
3735: @*/
3736: PetscErrorCode  VecGetArray4dRead(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt q,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscInt qstart,PetscScalar ****a[])
3737: {
3738:   PetscErrorCode    ierr;
3739:   PetscInt          i,N,j,k;
3740:   const PetscScalar *aa;
3741:   PetscScalar       ***b,**c;

3747:   VecGetLocalSize(x,&N);
3748:   if (m*n*p*q != N) SETERRQ5(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 4d array dimensions %D by %D by %D by %D",N,m,n,p,q);
3749:   VecGetArrayRead(x,&aa);

3751:   PetscMalloc1(m*sizeof(PetscScalar***)+m*n*sizeof(PetscScalar**)+m*n*p,a);
3752:   b    = (PetscScalar***)((*a) + m);
3753:   c    = (PetscScalar**)(b + m*n);
3754:   for (i=0; i<m; i++) (*a)[i] = b + i*n - nstart;
3755:   for (i=0; i<m; i++)
3756:     for (j=0; j<n; j++)
3757:       b[i*n+j] = c + i*n*p + j*p - pstart;
3758:   for (i=0; i<m; i++)
3759:     for (j=0; j<n; j++)
3760:       for (k=0; k<p; k++)
3761:         c[i*n*p+j*p+k] = (PetscScalar*) aa + i*n*p*q + j*p*q + k*q - qstart;
3762:   *a -= mstart;
3763:   return(0);
3764: }

3766: /*@C
3767:    VecRestoreArray4dRead - Restores a vector after VecGetArray3d() has been called.

3769:    Logically Collective

3771:    Input Parameters:
3772: +  x - the vector
3773: .  m - first dimension of four dimensional array
3774: .  n - second dimension of the four dimensional array
3775: .  p - third dimension of the four dimensional array
3776: .  q - fourth dimension of the four dimensional array
3777: .  mstart - first index you will use in first coordinate direction (often 0)
3778: .  nstart - first index in the second coordinate direction (often 0)
3779: .  pstart - first index in the third coordinate direction (often 0)
3780: .  qstart - first index in the fourth coordinate direction (often 0)
3781: -  a - location of pointer to array obtained from VecGetArray4dRead()

3783:    Level: beginner

3785:    Notes:
3786:    For regular PETSc vectors this routine does not involve any copies. For
3787:    any special vectors that do not store local vector data in a contiguous
3788:    array, this routine will copy the data back into the underlying
3789:    vector data structure from the array obtained with VecGetArray().

3791:    This routine actually zeros out the a pointer.

3793: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
3794:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
3795:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d(), VecGet
3796: @*/
3797: PetscErrorCode  VecRestoreArray4dRead(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt q,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscInt qstart,PetscScalar ****a[])
3798: {
3800:   void           *dummy;

3806:   dummy = (void*)(*a + mstart);
3807:   PetscFree(dummy);
3808:   VecRestoreArrayRead(x,NULL);
3809:   return(0);
3810: }

3812: #if defined(PETSC_USE_DEBUG)

3814: /*@
3815:    VecLockGet  - Gets the current lock status of a vector

3817:    Logically Collective on Vec

3819:    Input Parameter:
3820: .  x - the vector

3822:    Output Parameter:
3823: .  state - greater than zero indicates the vector is locked for read; less then zero indicates the vector is
3824:            locked for write; equal to zero means the vector is unlocked, that is, it is free to read or write.

3826:    Level: beginner

3828: .seealso: VecRestoreArray(), VecGetArrayRead(), VecLockReadPush(), VecLockReadPop()
3829: @*/
3830: PetscErrorCode VecLockGet(Vec x,PetscInt *state)
3831: {
3834:   *state = x->lock;
3835:   return(0);
3836: }

3838: /*@
3839:    VecLockReadPush  - Pushes a read-only lock on a vector to prevent it from writing

3841:    Logically Collective on Vec

3843:    Input Parameter:
3844: .  x - the vector

3846:    Notes:
3847:     If this is set then calls to VecGetArray() or VecSetValues() or any other routines that change the vectors values will fail.

3849:     The call can be nested, i.e., called multiple times on the same vector, but each VecLockReadPush(x) has to have one matching
3850:     VecLockReadPop(x), which removes the latest read-only lock.

3852:    Level: beginner

3854: .seealso: VecRestoreArray(), VecGetArrayRead(), VecLockReadPop(), VecLockGet()
3855: @*/
3856: PetscErrorCode VecLockReadPush(Vec x)
3857: {
3860:   if (x->lock < 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Vector is already locked for exclusive write access but you want to read it");
3861:   x->lock++;
3862:   return(0);
3863: }

3865: /*@
3866:    VecLockReadPop  - Pops a read-only lock from a vector

3868:    Logically Collective on Vec

3870:    Input Parameter:
3871: .  x - the vector

3873:    Level: beginner

3875: .seealso: VecRestoreArray(), VecGetArrayRead(), VecLockReadPush(), VecLockGet()
3876: @*/
3877: PetscErrorCode VecLockReadPop(Vec x)
3878: {
3881:   x->lock--;
3882:   if (x->lock < 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Vector has been unlocked from read-only access too many times");
3883:   return(0);
3884: }

3886: /*@C
3887:    VecLockWriteSet_Private  - Lock or unlock a vector for exclusive read/write access

3889:    Logically Collective on Vec

3891:    Input Parameter:
3892: +  x   - the vector
3893: -  flg - PETSC_TRUE to lock the vector for writing; PETSC_FALSE to unlock it.

3895:    Notes:
3896:     The function is usefull in split-phase computations, which usually have a begin phase and an end phase.
3897:     One can call VecLockWriteSet_Private(x,PETSC_TRUE) in the begin phase to lock a vector for exclusive
3898:     access, and call VecLockWriteSet_Private(x,PETSC_FALSE) in the end phase to unlock the vector from exclusive
3899:     access. In this way, one is ensured no other operations can access the vector in between. The code may like


3902:        VecGetArray(x,&xdata); // begin phase
3903:        VecLockWriteSet_Private(v,PETSC_TRUE);

3905:        Other operations, which can not acceess x anymore (they can access xdata, of course)

3907:        VecRestoreArray(x,&vdata); // end phase
3908:        VecLockWriteSet_Private(v,PETSC_FALSE);

3910:     The call can not be nested on the same vector, in other words, one can not call VecLockWriteSet_Private(x,PETSC_TRUE)
3911:     again before calling VecLockWriteSet_Private(v,PETSC_FALSE).

3913:    Level: beginner

3915: .seealso: VecRestoreArray(), VecGetArrayRead(), VecLockReadPush(), VecLockReadPop(), VecLockGet()
3916: @*/
3917: PetscErrorCode VecLockWriteSet_Private(Vec x,PetscBool flg)
3918: {
3921:   if (flg) {
3922:     if (x->lock > 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Vector is already locked for read-only access but you want to write it");
3923:     else if (x->lock < 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Vector is already locked for exclusive write access but you want to write it");
3924:     else x->lock = -1;
3925:   } else {
3926:     if (x->lock != -1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Vector is not locked for exclusive write access but you want to unlock it from that");
3927:     x->lock = 0;
3928:   }
3929:   return(0);
3930: }

3932: /*@
3933:    VecLockPush  - Pushes a read-only lock on a vector to prevent it from writing

3935:    Level: deprecated

3937: .seealso: VecLockReadPush()
3938: @*/
3939: PetscErrorCode VecLockPush(Vec x)
3940: {
3943:   VecLockReadPush(x);
3944:   return(0);
3945: }

3947: /*@
3948:    VecLockPop  - Pops a read-only lock from a vector

3950:    Level: deprecated

3952: .seealso: VecLockReadPop()
3953: @*/
3954: PetscErrorCode VecLockPop(Vec x)
3955: {
3958:   VecLockReadPop(x);
3959:   return(0);
3960: }

3962: #endif