Actual source code: snesj.c
petsc-3.13.6 2020-09-29
2: #include <petsc/private/snesimpl.h>
3: #include <petscdm.h>
5: /*@C
6: SNESComputeJacobianDefault - Computes the Jacobian using finite differences.
8: Collective on SNES
10: Input Parameters:
11: + x1 - compute Jacobian at this point
12: - ctx - Section 1.5 Writing Application Codes with PETSc's function context, as set with SNESSetFunction()
14: Output Parameters:
15: + J - Jacobian matrix (not altered in this routine)
16: - B - newly computed Jacobian matrix to use with preconditioner (generally the same as J)
18: Options Database Key:
19: + -snes_fd - Activates SNESComputeJacobianDefault()
20: . -snes_test_err - Square root of function error tolerance, default square root of machine
21: epsilon (1.e-8 in double, 3.e-4 in single)
22: - -mat_fd_type - Either wp or ds (see MATMFFD_WP or MATMFFD_DS)
24: Notes:
25: This routine is slow and expensive, and is not currently optimized
26: to take advantage of sparsity in the problem. Although
27: SNESComputeJacobianDefault() is not recommended for general use
28: in large-scale applications, It can be useful in checking the
29: correctness of a user-provided Jacobian.
31: An alternative routine that uses coloring to exploit matrix sparsity is
32: SNESComputeJacobianDefaultColor().
34: Level: intermediate
36: .seealso: SNESSetJacobian(), SNESComputeJacobianDefaultColor(), MatCreateSNESMF()
37: @*/
38: PetscErrorCode SNESComputeJacobianDefault(SNES snes,Vec x1,Mat J,Mat B,void *ctx)
39: {
40: Vec j1a,j2a,x2;
41: PetscErrorCode ierr;
42: PetscInt i,N,start,end,j,value,root;
43: PetscScalar dx,*y,wscale;
44: const PetscScalar *xx;
45: PetscReal amax,epsilon = PETSC_SQRT_MACHINE_EPSILON;
46: PetscReal dx_min = 1.e-16,dx_par = 1.e-1,unorm;
47: MPI_Comm comm;
48: PetscBool assembled,use_wp = PETSC_TRUE,flg;
49: const char *list[2] = {"ds","wp"};
50: PetscMPIInt size;
51: const PetscInt *ranges;
54: /* Since this Jacobian will possibly have "extra" nonzero locations just turn off errors for these locations */
55: MatSetOption(B,MAT_NEW_NONZERO_ALLOCATION_ERR, PETSC_FALSE);
56: PetscOptionsGetReal(((PetscObject)snes)->options,((PetscObject)snes)->prefix,"-snes_test_err",&epsilon,0);
58: PetscObjectGetComm((PetscObject)x1,&comm);
59: MPI_Comm_size(comm,&size);
60: MatAssembled(B,&assembled);
61: if (assembled) {
62: MatZeroEntries(B);
63: }
64: if (!snes->nvwork) {
65: if (snes->dm) {
66: DMGetGlobalVector(snes->dm,&j1a);
67: DMGetGlobalVector(snes->dm,&j2a);
68: DMGetGlobalVector(snes->dm,&x2);
69: } else {
70: snes->nvwork = 3;
71: VecDuplicateVecs(x1,snes->nvwork,&snes->vwork);
72: PetscLogObjectParents(snes,snes->nvwork,snes->vwork);
73: j1a = snes->vwork[0]; j2a = snes->vwork[1]; x2 = snes->vwork[2];
74: }
75: }
77: VecGetSize(x1,&N);
78: VecGetOwnershipRange(x1,&start,&end);
79: SNESComputeFunction(snes,x1,j1a);
81: PetscOptionsBegin(PetscObjectComm((PetscObject)snes),((PetscObject)snes)->prefix,"Differencing options","SNES");
82: PetscOptionsEList("-mat_fd_type","Algorithm to compute difference parameter","SNESComputeJacobianDefault",list,2,"wp",&value,&flg);
83: PetscOptionsEnd();
84: if (flg && !value) use_wp = PETSC_FALSE;
86: if (use_wp) {
87: VecNorm(x1,NORM_2,&unorm);
88: }
89: /* Compute Jacobian approximation, 1 column at a time.
90: x1 = current iterate, j1a = F(x1)
91: x2 = perturbed iterate, j2a = F(x2)
92: */
93: for (i=0; i<N; i++) {
94: VecCopy(x1,x2);
95: if (i>= start && i<end) {
96: VecGetArrayRead(x1,&xx);
97: if (use_wp) dx = PetscSqrtReal(1.0 + unorm);
98: else dx = xx[i-start];
99: VecRestoreArrayRead(x1,&xx);
100: if (PetscAbsScalar(dx) < dx_min) dx = (PetscRealPart(dx) < 0. ? -1. : 1.) * dx_par;
101: dx *= epsilon;
102: wscale = 1.0/dx;
103: VecSetValues(x2,1,&i,&dx,ADD_VALUES);
104: } else {
105: wscale = 0.0;
106: }
107: VecAssemblyBegin(x2);
108: VecAssemblyEnd(x2);
109: SNESComputeFunction(snes,x2,j2a);
110: VecAXPY(j2a,-1.0,j1a);
111: /* Communicate scale=1/dx_i to all processors */
112: VecGetOwnershipRanges(x1,&ranges);
113: root = size;
114: for (j=size-1; j>-1; j--) {
115: root--;
116: if (i>=ranges[j]) break;
117: }
118: MPI_Bcast(&wscale,1,MPIU_SCALAR,root,comm);
120: VecScale(j2a,wscale);
121: VecNorm(j2a,NORM_INFINITY,&amax); amax *= 1.e-14;
122: VecGetArray(j2a,&y);
123: for (j=start; j<end; j++) {
124: if (PetscAbsScalar(y[j-start]) > amax || j == i) {
125: MatSetValues(B,1,&j,1,&i,y+j-start,INSERT_VALUES);
126: }
127: }
128: VecRestoreArray(j2a,&y);
129: }
130: if (snes->dm) {
131: DMRestoreGlobalVector(snes->dm,&j1a);
132: DMRestoreGlobalVector(snes->dm,&j2a);
133: DMRestoreGlobalVector(snes->dm,&x2);
134: }
135: MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
136: MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
137: if (B != J) {
138: MatAssemblyBegin(J,MAT_FINAL_ASSEMBLY);
139: MatAssemblyEnd(J,MAT_FINAL_ASSEMBLY);
140: }
141: return(0);
142: }