Actual source code: matrart.c

petsc-3.13.6 2020-09-29
Report Typos and Errors

  2: /*
  3:   Defines projective product routines where A is a SeqAIJ matrix
  4:           C = R * A * R^T
  5: */

  7:  #include <../src/mat/impls/aij/seq/aij.h>
  8:  #include <../src/mat/utils/freespace.h>
  9:  #include <../src/mat/impls/dense/seq/dense.h>

 11: PetscErrorCode MatDestroy_SeqAIJ_RARt(Mat A)
 12: {
 14:   Mat_SeqAIJ     *a    = (Mat_SeqAIJ*)A->data;
 15:   Mat_RARt       *rart = a->rart;

 18:   MatTransposeColoringDestroy(&rart->matcoloring);
 19:   MatDestroy(&rart->Rt);
 20:   MatDestroy(&rart->RARt);
 21:   MatDestroy(&rart->ARt);
 22:   PetscFree(rart->work);

 24:   A->ops->destroy = rart->destroy;
 25:   if (A->ops->destroy) {
 26:     (*A->ops->destroy)(A);
 27:   }
 28:   PetscFree(rart);
 29:   return(0);
 30: }

 32: PetscErrorCode MatRARtSymbolic_SeqAIJ_SeqAIJ_colorrart(Mat A,Mat R,PetscReal fill,Mat C)
 33: {
 34:   PetscErrorCode       ierr;
 35:   Mat                  P;
 36:   PetscInt             *rti,*rtj;
 37:   Mat_RARt             *rart;
 38:   MatColoring          coloring;
 39:   MatTransposeColoring matcoloring;
 40:   ISColoring           iscoloring;
 41:   Mat                  Rt_dense,RARt_dense;
 42:   Mat_SeqAIJ           *c;

 45:   /* create symbolic P=Rt */
 46:   MatGetSymbolicTranspose_SeqAIJ(R,&rti,&rtj);
 47:   MatCreateSeqAIJWithArrays(PETSC_COMM_SELF,R->cmap->n,R->rmap->n,rti,rtj,NULL,&P);

 49:   /* get symbolic C=Pt*A*P */
 50:   MatPtAPSymbolic_SeqAIJ_SeqAIJ_SparseAxpy(A,P,fill,C);
 51:   MatSetBlockSizes(C,PetscAbs(R->rmap->bs),PetscAbs(R->rmap->bs));
 52:   C->ops->rartnumeric = MatRARtNumeric_SeqAIJ_SeqAIJ_colorrart;

 54:   /* create a supporting struct */
 55:   PetscNew(&rart);
 56:   c       = (Mat_SeqAIJ*)C->data;
 57:   c->rart = rart;

 59:   /* ------ Use coloring ---------- */
 60:   /* inode causes memory problem */
 61:   MatSetOption(C,MAT_USE_INODES,PETSC_FALSE);

 63:   /* Create MatTransposeColoring from symbolic C=R*A*R^T */
 64:   MatColoringCreate(C,&coloring);
 65:   MatColoringSetDistance(coloring,2);
 66:   MatColoringSetType(coloring,MATCOLORINGSL);
 67:   MatColoringSetFromOptions(coloring);
 68:   MatColoringApply(coloring,&iscoloring);
 69:   MatColoringDestroy(&coloring);
 70:   MatTransposeColoringCreate(C,iscoloring,&matcoloring);

 72:   rart->matcoloring = matcoloring;
 73:   ISColoringDestroy(&iscoloring);

 75:   /* Create Rt_dense */
 76:   MatCreate(PETSC_COMM_SELF,&Rt_dense);
 77:   MatSetSizes(Rt_dense,A->cmap->n,matcoloring->ncolors,A->cmap->n,matcoloring->ncolors);
 78:   MatSetType(Rt_dense,MATSEQDENSE);
 79:   MatSeqDenseSetPreallocation(Rt_dense,NULL);

 81:   Rt_dense->assembled = PETSC_TRUE;
 82:   rart->Rt            = Rt_dense;

 84:   /* Create RARt_dense = R*A*Rt_dense */
 85:   MatCreate(PETSC_COMM_SELF,&RARt_dense);
 86:   MatSetSizes(RARt_dense,C->rmap->n,matcoloring->ncolors,C->rmap->n,matcoloring->ncolors);
 87:   MatSetType(RARt_dense,MATSEQDENSE);
 88:   MatSeqDenseSetPreallocation(RARt_dense,NULL);

 90:   rart->RARt = RARt_dense;

 92:   /* Allocate work array to store columns of A*R^T used in MatMatMatMultNumeric_SeqAIJ_SeqAIJ_SeqDense() */
 93:   PetscMalloc1(A->rmap->n*4,&rart->work);

 95:   rart->destroy       = C->ops->destroy;
 96:   C->ops->destroy     = MatDestroy_SeqAIJ_RARt;

 98:   /* clean up */
 99:   MatRestoreSymbolicTranspose_SeqAIJ(R,&rti,&rtj);
100:   MatDestroy(&P);

102: #if defined(PETSC_USE_INFO)
103:   {
104:     PetscReal density= (PetscReal)(c->nz)/(RARt_dense->rmap->n*RARt_dense->cmap->n);
105:     PetscInfo(C,"C=R*(A*Rt) via coloring C - use sparse-dense inner products\n"); 
106:     PetscInfo6(C,"RARt_den %D %D; Rt %D %D (RARt->nz %D)/(m*ncolors)=%g\n",RARt_dense->rmap->n,RARt_dense->cmap->n,R->cmap->n,R->rmap->n,c->nz,density);
107:   }
108: #endif
109:   return(0);
110: }

112: /*
113:  RAB = R * A * B, R and A in seqaij format, B in dense format;
114: */
115: PetscErrorCode MatMatMatMultNumeric_SeqAIJ_SeqAIJ_SeqDense(Mat R,Mat A,Mat B,Mat RAB,PetscScalar *work)
116: {
117:   Mat_SeqAIJ        *a=(Mat_SeqAIJ*)A->data,*r=(Mat_SeqAIJ*)R->data;
118:   PetscErrorCode    ierr;
119:   PetscScalar       r1,r2,r3,r4;
120:   const PetscScalar *b,*b1,*b2,*b3,*b4;
121:   MatScalar         *aa,*ra;
122:   PetscInt          cn =B->cmap->n,bm=B->rmap->n,col,i,j,n,*ai=a->i,*aj,am=A->rmap->n;
123:   PetscInt          am2=2*am,am3=3*am,bm4=4*bm;
124:   PetscScalar       *d,*c,*c2,*c3,*c4;
125:   PetscInt          *rj,rm=R->rmap->n,dm=RAB->rmap->n,dn=RAB->cmap->n;
126:   PetscInt         rm2=2*rm,rm3=3*rm,colrm;

129:   if (!dm || !dn) return(0);
130:   if (bm != A->cmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Number columns in A %D not equal rows in B %D\n",A->cmap->n,bm);
131:   if (am != R->cmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Number columns in R %D not equal rows in A %D\n",R->cmap->n,am);
132:   if (R->rmap->n != RAB->rmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Number rows in RAB %D not equal rows in R %D\n",RAB->rmap->n,R->rmap->n);
133:   if (B->cmap->n != RAB->cmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Number columns in RAB %D not equal columns in B %D\n",RAB->cmap->n,B->cmap->n);

135:   { /*
136:      This approach is not as good as original ones (will be removed later), but it reveals that
137:      AB_den=A*B takes almost all execution time in R*A*B for src/ksp/ksp/tutorials/ex56.c
138:      */
139:     PetscBool via_matmatmult=PETSC_FALSE;
140:     PetscOptionsGetBool(NULL,NULL,"-matrart_via_matmatmult",&via_matmatmult,NULL);
141:     if (via_matmatmult) {
142:       Mat AB_den = NULL;
143:       MatCreate(PetscObjectComm((PetscObject)A),&AB_den);
144:       MatMatMultSymbolic_SeqAIJ_SeqDense(A,B,0.0,AB_den);
145:       MatMatMultNumeric_SeqAIJ_SeqDense(A,B,AB_den);
146:       MatMatMultNumeric_SeqAIJ_SeqDense(R,AB_den,RAB);
147:       MatDestroy(&AB_den);
148:       return(0);
149:     }
150:   }

152:   MatDenseGetArrayRead(B,&b);
153:   MatDenseGetArray(RAB,&d);
154:   b1   = b; b2 = b1 + bm; b3 = b2 + bm; b4 = b3 + bm;
155:   c    = work; c2 = c + am; c3 = c2 + am; c4 = c3 + am;
156:   for (col=0; col<cn-4; col += 4) {  /* over columns of C */
157:     for (i=0; i<am; i++) {        /* over rows of A in those columns */
158:       r1 = r2 = r3 = r4 = 0.0;
159:       n  = ai[i+1] - ai[i];
160:       aj = a->j + ai[i];
161:       aa = a->a + ai[i];
162:       for (j=0; j<n; j++) {
163:         r1 += (*aa)*b1[*aj];
164:         r2 += (*aa)*b2[*aj];
165:         r3 += (*aa)*b3[*aj];
166:         r4 += (*aa++)*b4[*aj++];
167:       }
168:       c[i]       = r1;
169:       c[am  + i] = r2;
170:       c[am2 + i] = r3;
171:       c[am3 + i] = r4;
172:     }
173:     b1 += bm4;
174:     b2 += bm4;
175:     b3 += bm4;
176:     b4 += bm4;

178:     /* RAB[:,col] = R*C[:,col] */
179:     colrm = col*rm;
180:     for (i=0; i<rm; i++) {        /* over rows of R in those columns */
181:       r1 = r2 = r3 = r4 = 0.0;
182:       n  = r->i[i+1] - r->i[i];
183:       rj = r->j + r->i[i];
184:       ra = r->a + r->i[i];
185:       for (j=0; j<n; j++) {
186:         r1 += (*ra)*c[*rj];
187:         r2 += (*ra)*c2[*rj];
188:         r3 += (*ra)*c3[*rj];
189:         r4 += (*ra++)*c4[*rj++];
190:       }
191:       d[colrm + i]       = r1;
192:       d[colrm + rm + i]  = r2;
193:       d[colrm + rm2 + i] = r3;
194:       d[colrm + rm3 + i] = r4;
195:     }
196:   }
197:   for (; col<cn; col++) {     /* over extra columns of C */
198:     for (i=0; i<am; i++) {  /* over rows of A in those columns */
199:       r1 = 0.0;
200:       n  = a->i[i+1] - a->i[i];
201:       aj = a->j + a->i[i];
202:       aa = a->a + a->i[i];
203:       for (j=0; j<n; j++) {
204:         r1 += (*aa++)*b1[*aj++];
205:       }
206:       c[i] = r1;
207:     }
208:     b1 += bm;

210:     for (i=0; i<rm; i++) {  /* over rows of R in those columns */
211:       r1 = 0.0;
212:       n  = r->i[i+1] - r->i[i];
213:       rj = r->j + r->i[i];
214:       ra = r->a + r->i[i];
215:       for (j=0; j<n; j++) {
216:         r1 += (*ra++)*c[*rj++];
217:       }
218:       d[col*rm + i] = r1;
219:     }
220:   }
221:   PetscLogFlops(cn*2.0*(a->nz + r->nz));

223:   MatDenseRestoreArrayRead(B,&b);
224:   MatDenseRestoreArray(RAB,&d);
225:   MatAssemblyBegin(RAB,MAT_FINAL_ASSEMBLY);
226:   MatAssemblyEnd(RAB,MAT_FINAL_ASSEMBLY);
227:   return(0);
228: }

230: PetscErrorCode MatRARtNumeric_SeqAIJ_SeqAIJ_colorrart(Mat A,Mat R,Mat C)
231: {
232:   PetscErrorCode       ierr;
233:   Mat_SeqAIJ           *c = (Mat_SeqAIJ*)C->data;
234:   Mat_RARt             *rart=c->rart;
235:   MatTransposeColoring matcoloring;
236:   Mat                  Rt,RARt;

239:   /* Get dense Rt by Apply MatTransposeColoring to R */
240:   matcoloring = rart->matcoloring;
241:   Rt          = rart->Rt;
242:   MatTransColoringApplySpToDen(matcoloring,R,Rt);

244:   /* Get dense RARt = R*A*Rt -- dominates! */
245:   RARt = rart->RARt;
246:   MatMatMatMultNumeric_SeqAIJ_SeqAIJ_SeqDense(R,A,Rt,RARt,rart->work);

248:   /* Recover C from C_dense */
249:   MatTransColoringApplyDenToSp(matcoloring,RARt,C);
250:   return(0);
251: }

253: PetscErrorCode MatRARtSymbolic_SeqAIJ_SeqAIJ_matmattransposemult(Mat A,Mat R,PetscReal fill,Mat C)
254: {
256:   Mat            ARt;
257:   Mat_SeqAIJ     *c;
258:   Mat_RARt       *rart;
259:   Mat_Product    *product = C->product;
260:   MatProductAlgorithm alg=product->alg;

263:   /* create symbolic ARt = A*R^T  */
264:   MatProductCreate(A,R,NULL,&ARt);
265:   MatProductSetType(ARt,MATPRODUCT_ABt);
266:   MatProductSetAlgorithm(ARt,"sorted");
267:   MatProductSetFill(ARt,fill);
268:   MatProductSetFromOptions(ARt);
269:   MatProductSymbolic(ARt);

271:   /* compute symbolic C = R*ARt */
272:   C->product->alg = "sorted"; /* set algorithm for C = R*ARt */
273:   MatMatMultSymbolic_SeqAIJ_SeqAIJ(R,ARt,fill,C);
274:   C->product->alg = alg; /* resume original algorithm for C */

276:   C->ops->rartnumeric = MatRARtNumeric_SeqAIJ_SeqAIJ_matmattransposemult;

278:   PetscNew(&rart);
279:   c         = (Mat_SeqAIJ*)C->data;
280:   c->rart   = rart;
281:   rart->ARt = ARt;
282:   rart->destroy   = C->ops->destroy;
283:   C->ops->destroy = MatDestroy_SeqAIJ_RARt;
284: #if defined(PETSC_USE_INFO)
285:   PetscInfo(C,"Use ARt=A*R^T, C=R*ARt via MatMatTransposeMult(). Coloring can be applied to A*R^T.\n");
286: #endif
287:   return(0);
288: }

290: PetscErrorCode MatRARtNumeric_SeqAIJ_SeqAIJ_matmattransposemult(Mat A,Mat R,Mat C)
291: {
292:   PetscErrorCode  ierr;
293:   Mat_SeqAIJ      *c=(Mat_SeqAIJ*)C->data;
294:   Mat_RARt        *rart=c->rart;
295:   Mat             ARt=rart->ARt;

298:   MatMatTransposeMultNumeric_SeqAIJ_SeqAIJ(A,R,ARt); /* dominate! */
299:   MatMatMultNumeric_SeqAIJ_SeqAIJ(R,ARt,C);
300:   return(0);
301: }

303: PetscErrorCode MatRARtSymbolic_SeqAIJ_SeqAIJ(Mat A,Mat R,PetscReal fill,Mat C)
304: {
306:   Mat            Rt;
307:   Mat_SeqAIJ     *c;
308:   Mat_RARt       *rart;

311:   MatTranspose_SeqAIJ(R,MAT_INITIAL_MATRIX,&Rt);
312:   MatMatMatMultSymbolic_SeqAIJ_SeqAIJ_SeqAIJ(R,A,Rt,fill,C);

314:   PetscNew(&rart);
315:   rart->Rt = Rt;
316:   c        = (Mat_SeqAIJ*)C->data;
317:   c->rart  = rart;
318:   rart->destroy       = C->ops->destroy;
319:   C->ops->destroy     = MatDestroy_SeqAIJ_RARt;
320:   C->ops->rartnumeric = MatRARtNumeric_SeqAIJ_SeqAIJ;
321: #if defined(PETSC_USE_INFO)
322:   PetscInfo(C,"Use Rt=R^T and C=R*A*Rt via MatMatMatMult() to avoid sparse inner products\n");
323: #endif
324:   return(0);
325: }

327: PetscErrorCode MatRARtNumeric_SeqAIJ_SeqAIJ(Mat A,Mat R,Mat C)
328: {
329:   PetscErrorCode  ierr;
330:   Mat_SeqAIJ      *c = (Mat_SeqAIJ*)C->data;
331:   Mat_RARt        *rart = c->rart;
332:   Mat             Rt = rart->Rt;

335:   MatTranspose_SeqAIJ(R,MAT_REUSE_MATRIX,&Rt);
336:   MatMatMatMultNumeric_SeqAIJ_SeqAIJ_SeqAIJ(R,A,Rt,C);
337:   return(0);
338: }

340: PetscErrorCode MatRARt_SeqAIJ_SeqAIJ(Mat A,Mat R,MatReuse scall,PetscReal fill,Mat *C)
341: {
343:   const char     *algTypes[3] = {"matmatmatmult","matmattransposemult","coloring_rart"};
344:   PetscInt       alg=0; /* set default algorithm */

347:   if (scall == MAT_INITIAL_MATRIX) {
348:     PetscOptionsBegin(PetscObjectComm((PetscObject)A),((PetscObject)A)->prefix,"MatRARt","Mat");
349:     PetscOptionsEList("-matrart_via","Algorithmic approach","MatRARt",algTypes,3,algTypes[0],&alg,NULL);
350:     PetscOptionsEnd();

352:     PetscLogEventBegin(MAT_RARtSymbolic,A,R,0,0);
353:     MatCreate(PETSC_COMM_SELF,C);
354:     switch (alg) {
355:     case 1:
356:       /* via matmattransposemult: ARt=A*R^T, C=R*ARt - matrix coloring can be applied to A*R^T */
357:       MatRARtSymbolic_SeqAIJ_SeqAIJ_matmattransposemult(A,R,fill,*C);
358:       break;
359:     case 2:
360:       /* via coloring_rart: apply coloring C = R*A*R^T                          */
361:       MatRARtSymbolic_SeqAIJ_SeqAIJ_colorrart(A,R,fill,*C);
362:       break;
363:     default:
364:       /* via matmatmatmult: Rt=R^T, C=R*A*Rt - avoid inefficient sparse inner products */
365:       MatRARtSymbolic_SeqAIJ_SeqAIJ(A,R,fill,*C);
366:       break;
367:     }
368:     PetscLogEventEnd(MAT_RARtSymbolic,A,R,0,0);
369:   }

371:   PetscLogEventBegin(MAT_RARtNumeric,A,R,0,0);
372:   ((*C)->ops->rartnumeric)(A,R,*C);
373:   PetscLogEventEnd(MAT_RARtNumeric,A,R,0,0);
374:   return(0);
375: }

377: /* ------------------------------------------------------------- */
378: PetscErrorCode MatProductSymbolic_RARt_SeqAIJ_SeqAIJ(Mat C)
379: {
380:   PetscErrorCode      ierr;
381:   Mat_Product         *product = C->product;
382:   Mat                 A=product->A,R=product->B;
383:   MatProductAlgorithm alg=product->alg;
384:   PetscReal           fill=product->fill;
385:   PetscBool           flg;

388:   PetscStrcmp(alg,"r*a*rt",&flg);
389:   if (flg) {
390:     MatRARtSymbolic_SeqAIJ_SeqAIJ(A,R,fill,C);
391:     goto next;
392:   }

394:   PetscStrcmp(alg,"r*art",&flg);
395:   if (flg) {
396:     MatRARtSymbolic_SeqAIJ_SeqAIJ_matmattransposemult(A,R,fill,C);
397:     goto next;
398:   }

400:   PetscStrcmp(alg,"coloring_rart",&flg);
401:   if (flg) {
402:     MatRARtSymbolic_SeqAIJ_SeqAIJ_colorrart(A,R,fill,C);
403:     goto next;
404:   }

406:   SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"MatProductAlgorithm is not supported");

408: next:
409:   C->ops->productnumeric = MatProductNumeric_RARt;
410:   return(0);
411: }