Actual source code: cg.c
petsc-3.13.6 2020-09-29
2: /*
3: This file implements the conjugate gradient method in PETSc as part of
4: KSP. You can use this as a starting point for implementing your own
5: Krylov method that is not provided with PETSc.
7: The following basic routines are required for each Krylov method.
8: KSPCreate_XXX() - Creates the Krylov context
9: KSPSetFromOptions_XXX() - Sets runtime options
10: KSPSolve_XXX() - Runs the Krylov method
11: KSPDestroy_XXX() - Destroys the Krylov context, freeing all
12: memory it needed
13: Here the "_XXX" denotes a particular implementation, in this case
14: we use _CG (e.g. KSPCreate_CG, KSPDestroy_CG). These routines are
15: are actually called via the common user interface routines
16: KSPSetType(), KSPSetFromOptions(), KSPSolve(), and KSPDestroy() so the
17: Section 1.5 Writing Application Codes with PETSc code interface remains identical for all preconditioners.
19: Other basic routines for the KSP objects include
20: KSPSetUp_XXX()
21: KSPView_XXX() - Prints details of solver being used.
23: Detailed Notes:
24: By default, this code implements the CG (Conjugate Gradient) method,
25: which is valid for real symmetric (and complex Hermitian) positive
26: definite matrices. Note that for the complex Hermitian case, the
27: VecDot() arguments within the code MUST remain in the order given
28: for correct computation of inner products.
30: Reference: Hestenes and Steifel, 1952.
32: By switching to the indefinite vector inner product, VecTDot(), the
33: same code is used for the complex symmetric case as well. The user
34: must call KSPCGSetType(ksp,KSP_CG_SYMMETRIC) or use the option
35: -ksp_cg_type symmetric to invoke this variant for the complex case.
36: Note, however, that the complex symmetric code is NOT valid for
37: all such matrices ... and thus we don't recommend using this method.
38: */
39: /*
40: cgimpl.h defines the simple data structured used to store information
41: related to the type of matrix (e.g. complex symmetric) being solved and
42: data used during the optional Lanczo process used to compute eigenvalues
43: */
44: #include <../src/ksp/ksp/impls/cg/cgimpl.h>
45: extern PetscErrorCode KSPComputeExtremeSingularValues_CG(KSP,PetscReal*,PetscReal*);
46: extern PetscErrorCode KSPComputeEigenvalues_CG(KSP,PetscInt,PetscReal*,PetscReal*,PetscInt*);
48: /*
49: KSPSetUp_CG - Sets up the workspace needed by the CG method.
51: This is called once, usually automatically by KSPSolve() or KSPSetUp()
52: but can be called directly by KSPSetUp()
53: */
54: static PetscErrorCode KSPSetUp_CG(KSP ksp)
55: {
56: KSP_CG *cgP = (KSP_CG*)ksp->data;
58: PetscInt maxit = ksp->max_it,nwork = 3;
61: /* get work vectors needed by CG */
62: if (cgP->singlereduction) nwork += 2;
63: KSPSetWorkVecs(ksp,nwork);
65: /*
66: If user requested computations of eigenvalues then allocate work
67: work space needed
68: */
69: if (ksp->calc_sings) {
70: /* get space to store tridiagonal matrix for Lanczos */
71: PetscMalloc4(maxit+1,&cgP->e,maxit+1,&cgP->d,maxit+1,&cgP->ee,maxit+1,&cgP->dd);
72: PetscLogObjectMemory((PetscObject)ksp,2*(maxit+1)*(sizeof(PetscScalar)+sizeof(PetscReal)));
74: ksp->ops->computeextremesingularvalues = KSPComputeExtremeSingularValues_CG;
75: ksp->ops->computeeigenvalues = KSPComputeEigenvalues_CG;
76: }
77: return(0);
78: }
80: /*
81: A macro used in the following KSPSolve_CG and KSPSolve_CG_SingleReduction routines
82: */
83: #define VecXDot(x,y,a) (((cg->type) == (KSP_CG_HERMITIAN)) ? VecDot(x,y,a) : VecTDot(x,y,a))
85: /*
86: KSPSolve_CG - This routine actually applies the conjugate gradient method
88: Note : this routine can be replaced with another one (see below) which implements
89: another variant of CG.
91: Input Parameter:
92: . ksp - the Krylov space object that was set to use conjugate gradient, by, for
93: example, KSPCreate(MPI_Comm,KSP *ksp); KSPSetType(ksp,KSPCG);
94: */
95: static PetscErrorCode KSPSolve_CG(KSP ksp)
96: {
98: PetscInt i,stored_max_it,eigs;
99: PetscScalar dpi = 0.0,a = 1.0,beta,betaold = 1.0,b = 0,*e = 0,*d = 0,dpiold;
100: PetscReal dp = 0.0;
101: Vec X,B,Z,R,P,W;
102: KSP_CG *cg;
103: Mat Amat,Pmat;
104: PetscBool diagonalscale;
107: PCGetDiagonalScale(ksp->pc,&diagonalscale);
108: if (diagonalscale) SETERRQ1(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"Krylov method %s does not support diagonal scaling",((PetscObject)ksp)->type_name);
110: cg = (KSP_CG*)ksp->data;
111: eigs = ksp->calc_sings;
112: stored_max_it = ksp->max_it;
113: X = ksp->vec_sol;
114: B = ksp->vec_rhs;
115: R = ksp->work[0];
116: Z = ksp->work[1];
117: P = ksp->work[2];
118: W = Z;
120: if (eigs) {e = cg->e; d = cg->d; e[0] = 0.0; }
121: PCGetOperators(ksp->pc,&Amat,&Pmat);
123: ksp->its = 0;
124: if (!ksp->guess_zero) {
125: KSP_MatMult(ksp,Amat,X,R); /* r <- b - Ax */
126: VecAYPX(R,-1.0,B);
127: } else {
128: VecCopy(B,R); /* r <- b (x is 0) */
129: }
131: switch (ksp->normtype) {
132: case KSP_NORM_PRECONDITIONED:
133: KSP_PCApply(ksp,R,Z); /* z <- Br */
134: VecNorm(Z,NORM_2,&dp); /* dp <- z'*z = e'*A'*B'*B*A*e */
135: KSPCheckNorm(ksp,dp);
136: break;
137: case KSP_NORM_UNPRECONDITIONED:
138: VecNorm(R,NORM_2,&dp); /* dp <- r'*r = e'*A'*A*e */
139: KSPCheckNorm(ksp,dp);
140: break;
141: case KSP_NORM_NATURAL:
142: KSP_PCApply(ksp,R,Z); /* z <- Br */
143: VecXDot(Z,R,&beta); /* beta <- z'*r */
144: KSPCheckDot(ksp,beta);
145: dp = PetscSqrtReal(PetscAbsScalar(beta)); /* dp <- r'*z = r'*B*r = e'*A'*B*A*e */
146: break;
147: case KSP_NORM_NONE:
148: dp = 0.0;
149: break;
150: default: SETERRQ1(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"%s",KSPNormTypes[ksp->normtype]);
151: }
152: KSPLogResidualHistory(ksp,dp);
153: KSPMonitor(ksp,0,dp);
154: ksp->rnorm = dp;
156: (*ksp->converged)(ksp,0,dp,&ksp->reason,ksp->cnvP); /* test for convergence */
157: if (ksp->reason) return(0);
159: if (ksp->normtype != KSP_NORM_PRECONDITIONED && (ksp->normtype != KSP_NORM_NATURAL)) {
160: KSP_PCApply(ksp,R,Z); /* z <- Br */
161: }
162: if (ksp->normtype != KSP_NORM_NATURAL) {
163: VecXDot(Z,R,&beta); /* beta <- z'*r */
164: KSPCheckDot(ksp,beta);
165: }
167: i = 0;
168: do {
169: ksp->its = i+1;
170: if (beta == 0.0) {
171: ksp->reason = KSP_CONVERGED_ATOL;
172: PetscInfo(ksp,"converged due to beta = 0\n");
173: break;
174: #if !defined(PETSC_USE_COMPLEX)
175: } else if ((i > 0) && (beta*betaold < 0.0)) {
176: if (ksp->errorifnotconverged) SETERRQ2(PetscObjectComm((PetscObject)ksp),PETSC_ERR_NOT_CONVERGED,"Diverged due to indefinite preconditioner, beta %g, betaold %g",(double)beta,(double)betaold);
177: ksp->reason = KSP_DIVERGED_INDEFINITE_PC;
178: PetscInfo(ksp,"diverging due to indefinite preconditioner\n");
179: break;
180: #endif
181: }
182: if (!i) {
183: VecCopy(Z,P); /* p <- z */
184: b = 0.0;
185: } else {
186: b = beta/betaold;
187: if (eigs) {
188: if (ksp->max_it != stored_max_it) SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"Can not change maxit AND calculate eigenvalues");
189: e[i] = PetscSqrtReal(PetscAbsScalar(b))/a;
190: }
191: VecAYPX(P,b,Z); /* p <- z + b* p */
192: }
193: dpiold = dpi;
194: KSP_MatMult(ksp,Amat,P,W); /* w <- Ap */
195: VecXDot(P,W,&dpi); /* dpi <- p'w */
196: KSPCheckDot(ksp,dpi);
197: betaold = beta;
199: if ((dpi == 0.0) || ((i > 0) && ((PetscSign(PetscRealPart(dpi))*PetscSign(PetscRealPart(dpiold))) < 0.0))) {
200: if (ksp->errorifnotconverged) SETERRQ2(PetscObjectComm((PetscObject)ksp),PETSC_ERR_NOT_CONVERGED,"Diverged due to indefinite matrix, dpi %g, dpiold %g",(double)PetscRealPart(dpi),(double)PetscRealPart(dpiold));
201: ksp->reason = KSP_DIVERGED_INDEFINITE_MAT;
202: PetscInfo(ksp,"diverging due to indefinite or negative definite matrix\n");
203: break;
204: }
205: a = beta/dpi; /* a = beta/p'w */
206: if (eigs) d[i] = PetscSqrtReal(PetscAbsScalar(b))*e[i] + 1.0/a;
207: VecAXPY(X,a,P); /* x <- x + ap */
208: VecAXPY(R,-a,W); /* r <- r - aw */
209: if (ksp->normtype == KSP_NORM_PRECONDITIONED && ksp->chknorm < i+2) {
210: KSP_PCApply(ksp,R,Z); /* z <- Br */
211: VecNorm(Z,NORM_2,&dp); /* dp <- z'*z */
212: KSPCheckNorm(ksp,dp);
213: } else if (ksp->normtype == KSP_NORM_UNPRECONDITIONED && ksp->chknorm < i+2) {
214: VecNorm(R,NORM_2,&dp); /* dp <- r'*r */
215: KSPCheckNorm(ksp,dp);
216: } else if (ksp->normtype == KSP_NORM_NATURAL) {
217: KSP_PCApply(ksp,R,Z); /* z <- Br */
218: VecXDot(Z,R,&beta); /* beta <- r'*z */
219: KSPCheckDot(ksp,beta);
220: dp = PetscSqrtReal(PetscAbsScalar(beta));
221: } else {
222: dp = 0.0;
223: }
224: ksp->rnorm = dp;
225: KSPLogResidualHistory(ksp,dp);
226: if (eigs) cg->ned = ksp->its;
227: KSPMonitor(ksp,i+1,dp);
228: (*ksp->converged)(ksp,i+1,dp,&ksp->reason,ksp->cnvP);
229: if (ksp->reason) break;
231: if ((ksp->normtype != KSP_NORM_PRECONDITIONED && (ksp->normtype != KSP_NORM_NATURAL)) || (ksp->chknorm >= i+2)) {
232: KSP_PCApply(ksp,R,Z); /* z <- Br */
233: }
234: if ((ksp->normtype != KSP_NORM_NATURAL) || (ksp->chknorm >= i+2)) {
235: VecXDot(Z,R,&beta); /* beta <- z'*r */
236: KSPCheckDot(ksp,beta);
237: }
239: i++;
240: } while (i<ksp->max_it);
241: if (i >= ksp->max_it) ksp->reason = KSP_DIVERGED_ITS;
242: return(0);
243: }
245: /*
246: KSPSolve_CG_SingleReduction
248: This variant of CG is identical in exact arithmetic to the standard algorithm,
249: but is rearranged to use only a single reduction stage per iteration, using additional
250: intermediate vectors.
252: See KSPCGUseSingleReduction_CG()
254: */
255: static PetscErrorCode KSPSolve_CG_SingleReduction(KSP ksp)
256: {
258: PetscInt i,stored_max_it,eigs;
259: PetscScalar dpi = 0.0,a = 1.0,beta,betaold = 1.0,b = 0,*e = 0,*d = 0,delta,dpiold,tmp[2];
260: PetscReal dp = 0.0;
261: Vec X,B,Z,R,P,S,W,tmpvecs[2];
262: KSP_CG *cg;
263: Mat Amat,Pmat;
264: PetscBool diagonalscale;
267: PCGetDiagonalScale(ksp->pc,&diagonalscale);
268: if (diagonalscale) SETERRQ1(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"Krylov method %s does not support diagonal scaling",((PetscObject)ksp)->type_name);
270: cg = (KSP_CG*)ksp->data;
271: eigs = ksp->calc_sings;
272: stored_max_it = ksp->max_it;
273: X = ksp->vec_sol;
274: B = ksp->vec_rhs;
275: R = ksp->work[0];
276: Z = ksp->work[1];
277: P = ksp->work[2];
278: S = ksp->work[3];
279: W = ksp->work[4];
281: if (eigs) {e = cg->e; d = cg->d; e[0] = 0.0; }
282: PCGetOperators(ksp->pc,&Amat,&Pmat);
284: ksp->its = 0;
285: if (!ksp->guess_zero) {
286: KSP_MatMult(ksp,Amat,X,R); /* r <- b - Ax */
287: VecAYPX(R,-1.0,B);
288: } else {
289: VecCopy(B,R); /* r <- b (x is 0) */
290: }
292: switch (ksp->normtype) {
293: case KSP_NORM_PRECONDITIONED:
294: KSP_PCApply(ksp,R,Z); /* z <- Br */
295: VecNorm(Z,NORM_2,&dp); /* dp <- z'*z = e'*A'*B'*B*A'*e' */
296: KSPCheckNorm(ksp,dp);
297: break;
298: case KSP_NORM_UNPRECONDITIONED:
299: VecNorm(R,NORM_2,&dp); /* dp <- r'*r = e'*A'*A*e */
300: KSPCheckNorm(ksp,dp);
301: break;
302: case KSP_NORM_NATURAL:
303: KSP_PCApply(ksp,R,Z); /* z <- Br */
304: KSP_MatMult(ksp,Amat,Z,S);
305: VecXDot(Z,S,&delta); /* delta <- z'*A*z = r'*B*A*B*r */
306: VecXDot(Z,R,&beta); /* beta <- z'*r */
307: KSPCheckDot(ksp,beta);
308: dp = PetscSqrtReal(PetscAbsScalar(beta)); /* dp <- r'*z = r'*B*r = e'*A'*B*A*e */
309: break;
310: case KSP_NORM_NONE:
311: dp = 0.0;
312: break;
313: default: SETERRQ1(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"%s",KSPNormTypes[ksp->normtype]);
314: }
315: KSPLogResidualHistory(ksp,dp);
316: KSPMonitor(ksp,0,dp);
317: ksp->rnorm = dp;
319: (*ksp->converged)(ksp,0,dp,&ksp->reason,ksp->cnvP); /* test for convergence */
320: if (ksp->reason) return(0);
322: if (ksp->normtype != KSP_NORM_PRECONDITIONED && (ksp->normtype != KSP_NORM_NATURAL)) {
323: KSP_PCApply(ksp,R,Z); /* z <- Br */
324: }
325: if (ksp->normtype != KSP_NORM_NATURAL) {
326: KSP_MatMult(ksp,Amat,Z,S);
327: VecXDot(Z,S,&delta); /* delta <- z'*A*z = r'*B*A*B*r */
328: VecXDot(Z,R,&beta); /* beta <- z'*r */
329: KSPCheckDot(ksp,beta);
330: }
332: i = 0;
333: do {
334: ksp->its = i+1;
335: if (beta == 0.0) {
336: ksp->reason = KSP_CONVERGED_ATOL;
337: PetscInfo(ksp,"converged due to beta = 0\n");
338: break;
339: #if !defined(PETSC_USE_COMPLEX)
340: } else if ((i > 0) && (beta*betaold < 0.0)) {
341: if (ksp->errorifnotconverged) SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_NOT_CONVERGED,"Diverged due to indefinite preconditioner");
342: ksp->reason = KSP_DIVERGED_INDEFINITE_PC;
343: PetscInfo(ksp,"diverging due to indefinite preconditioner\n");
344: break;
345: #endif
346: }
347: if (!i) {
348: VecCopy(Z,P); /* p <- z */
349: b = 0.0;
350: } else {
351: b = beta/betaold;
352: if (eigs) {
353: if (ksp->max_it != stored_max_it) SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"Can not change maxit AND calculate eigenvalues");
354: e[i] = PetscSqrtReal(PetscAbsScalar(b))/a;
355: }
356: VecAYPX(P,b,Z); /* p <- z + b* p */
357: }
358: dpiold = dpi;
359: if (!i) {
360: KSP_MatMult(ksp,Amat,P,W); /* w <- Ap */
361: VecXDot(P,W,&dpi); /* dpi <- p'w */
362: } else {
363: VecAYPX(W,beta/betaold,S); /* w <- Ap */
364: dpi = delta - beta*beta*dpiold/(betaold*betaold); /* dpi <- p'w */
365: }
366: betaold = beta;
367: KSPCheckDot(ksp,beta);
369: if ((dpi == 0.0) || ((i > 0) && (PetscRealPart(dpi*dpiold) <= 0.0))) {
370: if (ksp->errorifnotconverged) SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_NOT_CONVERGED,"Diverged due to indefinite matrix");
371: ksp->reason = KSP_DIVERGED_INDEFINITE_MAT;
372: PetscInfo(ksp,"diverging due to indefinite or negative definite matrix\n");
373: break;
374: }
375: a = beta/dpi; /* a = beta/p'w */
376: if (eigs) d[i] = PetscSqrtReal(PetscAbsScalar(b))*e[i] + 1.0/a;
377: VecAXPY(X,a,P); /* x <- x + ap */
378: VecAXPY(R,-a,W); /* r <- r - aw */
379: if (ksp->normtype == KSP_NORM_PRECONDITIONED && ksp->chknorm < i+2) {
380: KSP_PCApply(ksp,R,Z); /* z <- Br */
381: KSP_MatMult(ksp,Amat,Z,S);
382: VecNorm(Z,NORM_2,&dp); /* dp <- z'*z */
383: KSPCheckNorm(ksp,dp);
384: } else if (ksp->normtype == KSP_NORM_UNPRECONDITIONED && ksp->chknorm < i+2) {
385: VecNorm(R,NORM_2,&dp); /* dp <- r'*r */
386: KSPCheckNorm(ksp,dp);
387: } else if (ksp->normtype == KSP_NORM_NATURAL) {
388: KSP_PCApply(ksp,R,Z); /* z <- Br */
389: tmpvecs[0] = S; tmpvecs[1] = R;
390: KSP_MatMult(ksp,Amat,Z,S);
391: VecMDot(Z,2,tmpvecs,tmp); /* delta <- z'*A*z = r'*B*A*B*r */
392: delta = tmp[0]; beta = tmp[1]; /* beta <- z'*r */
393: KSPCheckDot(ksp,beta);
394: dp = PetscSqrtReal(PetscAbsScalar(beta)); /* dp <- r'*z = r'*B*r = e'*A'*B*A*e */
395: } else {
396: dp = 0.0;
397: }
398: ksp->rnorm = dp;
399: KSPLogResidualHistory(ksp,dp);
400: if (eigs) cg->ned = ksp->its;
401: KSPMonitor(ksp,i+1,dp);
402: (*ksp->converged)(ksp,i+1,dp,&ksp->reason,ksp->cnvP);
403: if (ksp->reason) break;
405: if ((ksp->normtype != KSP_NORM_PRECONDITIONED && (ksp->normtype != KSP_NORM_NATURAL)) || (ksp->chknorm >= i+2)) {
406: KSP_PCApply(ksp,R,Z); /* z <- Br */
407: KSP_MatMult(ksp,Amat,Z,S);
408: }
409: if ((ksp->normtype != KSP_NORM_NATURAL) || (ksp->chknorm >= i+2)) {
410: tmpvecs[0] = S; tmpvecs[1] = R;
411: VecMDot(Z,2,tmpvecs,tmp);
412: delta = tmp[0]; beta = tmp[1]; /* delta <- z'*A*z = r'*B'*A*B*r */
413: KSPCheckDot(ksp,beta); /* beta <- z'*r */
414: }
416: i++;
417: } while (i<ksp->max_it);
418: if (i >= ksp->max_it) ksp->reason = KSP_DIVERGED_ITS;
419: return(0);
420: }
422: /*
423: KSPDestroy_CG - Frees resources allocated in KSPSetup_CG and clears function
424: compositions from KSPCreate_CG. If adding your own KSP implementation,
425: you must be sure to free all allocated resources here to prevent
426: leaks.
427: */
428: PetscErrorCode KSPDestroy_CG(KSP ksp)
429: {
430: KSP_CG *cg = (KSP_CG*)ksp->data;
434: /* free space used for singular value calculations */
435: if (ksp->calc_sings) {
436: PetscFree4(cg->e,cg->d,cg->ee,cg->dd);
437: }
438: KSPDestroyDefault(ksp);
439: PetscObjectComposeFunction((PetscObject)ksp,"KSPCGSetType_C",NULL);
440: PetscObjectComposeFunction((PetscObject)ksp,"KSPCGUseSingleReduction_C",NULL);
441: return(0);
442: }
444: /*
445: KSPView_CG - Prints information about the current Krylov method being used.
446: If your Krylov method has special options or flags that information
447: should be printed here.
448: */
449: PetscErrorCode KSPView_CG(KSP ksp,PetscViewer viewer)
450: {
451: KSP_CG *cg = (KSP_CG*)ksp->data;
453: PetscBool iascii;
456: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
457: if (iascii) {
458: #if defined(PETSC_USE_COMPLEX)
459: PetscViewerASCIIPrintf(viewer," variant %s\n",KSPCGTypes[cg->type]);
460: #endif
461: if (cg->singlereduction) {
462: PetscViewerASCIIPrintf(viewer," using single-reduction variant\n");
463: }
464: }
465: return(0);
466: }
468: /*
469: KSPSetFromOptions_CG - Checks the options database for options related to the
470: conjugate gradient method.
471: */
472: PetscErrorCode KSPSetFromOptions_CG(PetscOptionItems *PetscOptionsObject,KSP ksp)
473: {
475: KSP_CG *cg = (KSP_CG*)ksp->data;
476: PetscBool flg;
479: PetscOptionsHead(PetscOptionsObject,"KSP CG and CGNE options");
480: #if defined(PETSC_USE_COMPLEX)
481: PetscOptionsEnum("-ksp_cg_type","Matrix is Hermitian or complex symmetric","KSPCGSetType",KSPCGTypes,(PetscEnum)cg->type,
482: (PetscEnum*)&cg->type,NULL);
483: #endif
484: PetscOptionsBool("-ksp_cg_single_reduction","Merge inner products into single MPIU_Allreduce()","KSPCGUseSingleReduction",cg->singlereduction,&cg->singlereduction,&flg);
485: if (flg) {
486: KSPCGUseSingleReduction(ksp,cg->singlereduction);
487: }
488: PetscOptionsTail();
489: return(0);
490: }
492: /*
493: KSPCGSetType_CG - This is an option that is SPECIFIC to this particular Krylov method.
494: This routine is registered below in KSPCreate_CG() and called from the
495: routine KSPCGSetType() (see the file cgtype.c).
496: */
497: PetscErrorCode KSPCGSetType_CG(KSP ksp,KSPCGType type)
498: {
499: KSP_CG *cg = (KSP_CG*)ksp->data;
502: cg->type = type;
503: return(0);
504: }
506: /*
507: KSPCGUseSingleReduction_CG
509: This routine sets a flag to use a variant of CG. Note that (in somewhat
510: atypical fashion) it also swaps out the routine called when KSPSolve()
511: is invoked.
512: */
513: static PetscErrorCode KSPCGUseSingleReduction_CG(KSP ksp,PetscBool flg)
514: {
515: KSP_CG *cg = (KSP_CG*)ksp->data;
518: cg->singlereduction = flg;
519: if (cg->singlereduction) {
520: ksp->ops->solve = KSPSolve_CG_SingleReduction;
521: } else {
522: ksp->ops->solve = KSPSolve_CG;
523: }
524: return(0);
525: }
527: /*
528: KSPCreate_CG - Creates the data structure for the Krylov method CG and sets the
529: function pointers for all the routines it needs to call (KSPSolve_CG() etc)
531: It must be labeled as PETSC_EXTERN to be dynamically linkable in C++
532: */
533: /*MC
534: KSPCG - The Preconditioned Conjugate Gradient (PCG) iterative method
536: Options Database Keys:
537: + -ksp_cg_type Hermitian - (for complex matrices only) indicates the matrix is Hermitian, see KSPCGSetType()
538: . -ksp_cg_type symmetric - (for complex matrices only) indicates the matrix is symmetric
539: - -ksp_cg_single_reduction - performs both inner products needed in the algorithm with a single MPIU_Allreduce() call, see KSPCGUseSingleReduction()
541: Level: beginner
543: Notes:
544: The PCG method requires both the matrix and preconditioner to be symmetric positive (or negative) (semi) definite.
545:
546: Only left preconditioning is supported; there are several ways to motivate preconditioned CG, but they all produce the same algorithm.
547: One can interpret preconditioning A with B to mean any of the following\:
548: .n (1) Solve a left-preconditioned system BAx = Bb, using inv(B) to define an inner product in the algorithm.
549: .n (2) Solve a right-preconditioned system ABy = b, x = By, using B to define an inner product in the algorithm.
550: .n (3) Solve a symmetrically-preconditioned system, E^TAEy = E^Tb, x = Ey, where B = EE^T.
551: .n (4) Solve Ax=b with CG, but use the inner product defined by B to define the method [2].
552: .n In all cases, the resulting algorithm only requires Section 1.5 Writing Application Codes with PETSc of B to vectors.
554: For complex numbers there are two different CG methods, one for Hermitian symmetric matrices and one for non-Hermitian symmetric matrices. Use
555: KSPCGSetType() to indicate which type you are using.
557: Developer Notes:
558: KSPSolve_CG() should actually query the matrix to determine if it is Hermitian symmetric or not and NOT require the user to
559: indicate it to the KSP object.
561: References:
562: + 1. - Magnus R. Hestenes and Eduard Stiefel, Methods of Conjugate Gradients for Solving Linear Systems,
563: Journal of Research of the National Bureau of Standards Vol. 49, No. 6, December 1952 Research Paper 2379
564: - 2. - Josef Malek and Zdenek Strakos, Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs,
565: SIAM, 2014.
567: .seealso: KSPCreate(), KSPSetType(), KSPType (for list of available types), KSP,
568: KSPCGSetType(), KSPCGUseSingleReduction(), KSPPIPECG, KSPGROPPCG
570: M*/
571: PETSC_EXTERN PetscErrorCode KSPCreate_CG(KSP ksp)
572: {
574: KSP_CG *cg;
577: PetscNewLog(ksp,&cg);
578: #if !defined(PETSC_USE_COMPLEX)
579: cg->type = KSP_CG_SYMMETRIC;
580: #else
581: cg->type = KSP_CG_HERMITIAN;
582: #endif
583: ksp->data = (void*)cg;
585: KSPSetSupportedNorm(ksp,KSP_NORM_PRECONDITIONED,PC_LEFT,3);
586: KSPSetSupportedNorm(ksp,KSP_NORM_UNPRECONDITIONED,PC_LEFT,2);
587: KSPSetSupportedNorm(ksp,KSP_NORM_NATURAL,PC_LEFT,2);
588: KSPSetSupportedNorm(ksp,KSP_NORM_NONE,PC_LEFT,1);
590: /*
591: Sets the functions that are associated with this data structure
592: (in C++ this is the same as defining virtual functions)
593: */
594: ksp->ops->setup = KSPSetUp_CG;
595: ksp->ops->solve = KSPSolve_CG;
596: ksp->ops->destroy = KSPDestroy_CG;
597: ksp->ops->view = KSPView_CG;
598: ksp->ops->setfromoptions = KSPSetFromOptions_CG;
599: ksp->ops->buildsolution = KSPBuildSolutionDefault;
600: ksp->ops->buildresidual = KSPBuildResidualDefault;
602: /*
603: Attach the function KSPCGSetType_CG() to this object. The routine
604: KSPCGSetType() checks for this attached function and calls it if it finds
605: it. (Sort of like a dynamic member function that can be added at run time
606: */
607: PetscObjectComposeFunction((PetscObject)ksp,"KSPCGSetType_C",KSPCGSetType_CG);
608: PetscObjectComposeFunction((PetscObject)ksp,"KSPCGUseSingleReduction_C",KSPCGUseSingleReduction_CG);
609: return(0);
610: }