Actual source code: petscsystypes.h
petsc-3.13.6 2020-09-29
1: #if !defined(PETSCSYSTYPES_H)
2: #define PETSCSYSTYPES_H
4: #include <petscconf.h>
5: #include <petscfix.h>
7: /*MC
8: PetscErrorCode - datatype used for return error code from almost all PETSc functions
10: Level: beginner
12: .seealso: CHKERRQ, SETERRQ
13: M*/
14: typedef int PetscErrorCode;
16: /*MC
18: PetscClassId - A unique id used to identify each PETSc class.
20: Notes:
21: Use PetscClassIdRegister() to obtain a new value for a new class being created. Usually
22: XXXInitializePackage() calls it for each class it defines.
24: Developer Notes:
25: Internal integer stored in the _p_PetscObject data structure.
26: These are all computed by an offset from the lowest one, PETSC_SMALLEST_CLASSID.
28: Level: developer
30: .seealso: PetscClassIdRegister(), PetscLogEventRegister(), PetscHeaderCreate()
31: M*/
32: typedef int PetscClassId;
34: /*MC
35: PetscMPIInt - datatype used to represent 'int' parameters to MPI functions.
37: Level: intermediate
39: Notes:
40: usually this is the same as PetscInt, but if PETSc was built with --with-64-bit-indices but
41: standard C/Fortran integers are 32 bit then this is NOT the same as PetscInt; it remains 32 bit.
43: PetscMPIIntCast(a,&b) checks if the given PetscInt a will fit in a PetscMPIInt, if not it
44: generates a PETSC_ERR_ARG_OUTOFRANGE error.
46: .seealso: PetscBLASInt, PetscInt, PetscMPIIntCast()
48: M*/
49: typedef int PetscMPIInt;
51: /*MC
52: PetscEnum - datatype used to pass enum types within PETSc functions.
54: Level: intermediate
56: .seealso: PetscOptionsGetEnum(), PetscOptionsEnum(), PetscBagRegisterEnum()
57: M*/
58: typedef enum { ENUM_DUMMY } PetscEnum;
60: typedef short PetscShort;
61: typedef char PetscChar;
62: typedef float PetscFloat;
64: /*MC
65: PetscInt - PETSc type that represents an integer, used primarily to
66: represent size of arrays and indexing into arrays. Its size can be configured with the option --with-64-bit-indices to be either 32-bit (default) or 64-bit.
68: Notes:
69: For MPI calls that require datatypes, use MPIU_INT as the datatype for PetscInt. It will automatically work correctly regardless of the size of PetscInt.
71: Level: beginner
73: .seealso: PetscBLASInt, PetscMPIInt, PetscReal, PetscScalar, PetscComplex, PetscInt, MPIU_REAL, MPIU_SCALAR, MPIU_COMPLEX, MPIU_INT
74: M*/
76: #if defined(PETSC_HAVE_STDINT_H)
77: # include <stdint.h>
78: #endif
79: #if defined (PETSC_HAVE_INTTYPES_H)
80: # if !defined(__STDC_FORMAT_MACROS)
81: # define __STDC_FORMAT_MACROS /* required for using PRId64 from c++ */
82: # endif
83: # include <inttypes.h>
84: # if !defined(PRId64)
85: # define PRId64 "ld"
86: # endif
87: #endif
89: #if defined(PETSC_HAVE_STDINT_H) && defined(PETSC_HAVE_INTTYPES_H) && defined(PETSC_HAVE_MPI_INT64_T) /* MPI_INT64_T is not guaranteed to be a macro */
90: typedef int64_t PetscInt64;
91: #elif (PETSC_SIZEOF_LONG_LONG == 8)
92: typedef long long PetscInt64;
93: #elif defined(PETSC_HAVE___INT64)
94: typedef __int64 PetscInt64;
95: #else
96: # error "cannot determine PetscInt64 type"
97: #endif
99: #if defined(PETSC_USE_64BIT_INDICES)
100: typedef PetscInt64 PetscInt;
101: #else
102: typedef int PetscInt;
103: #endif
105: /*MC
106: PetscBLASInt - datatype used to represent 'int' parameters to BLAS/LAPACK functions.
108: Notes:
109: Usually this is the same as PetscInt, but if PETSc was built with --with-64-bit-indices but
110: standard C/Fortran integers are 32 bit then this is NOT the same as PetscInt it remains 32 bit
111: (except on very rare BLAS/LAPACK implementations that support 64 bit integers see the notes below).
113: PetscErrorCode PetscBLASIntCast(a,&b) checks if the given PetscInt a will fit in a PetscBLASInt, if not it
114: generates a PETSC_ERR_ARG_OUTOFRANGE error
116: Installation Notes:
117: ./configure automatically determines the size of the integers used by BLAS/LAPACK except when --with-batch is used
118: in that situation one must know (by some other means) if the integers used by BLAS/LAPACK are 64 bit and if so pass the flag --known-64-bit-blas-indice
120: MATLAB ships with BLAS and LAPACK that use 64 bit integers, for example if you run ./configure with, the option
121: --with-blaslapack-lib=[/Applications/MATLAB_R2010b.app/bin/maci64/libmwblas.dylib,/Applications/MATLAB_R2010b.app/bin/maci64/libmwlapack.dylib]
123: MKL ships with both 32 and 64 bit integer versions of the BLAS and LAPACK. If you pass the flag -with-64-bit-blas-indices PETSc will link
124: against the 64 bit version, otherwise it use the 32 bit version
126: OpenBLAS can be built to use 64 bit integers. The ./configure options --download-openblas -with-64-bit-blas-indices will build a 64 bit integer version
128: External packages such as hypre, ML, SuperLU etc do not provide any support for passing 64 bit integers to BLAS/LAPACK so cannot
129: be used with PETSc when PETSc links against 64 bit integer BLAS/LAPACK. ./configure will generate an error if you attempt to link PETSc against any of
130: these external libraries while using 64 bit integer BLAS/LAPACK.
132: Level: intermediate
134: .seealso: PetscMPIInt, PetscInt, PetscBLASIntCast()
136: M*/
137: #if defined(PETSC_HAVE_64BIT_BLAS_INDICES)
138: typedef PetscInt64 PetscBLASInt;
139: #else
140: typedef int PetscBLASInt;
141: #endif
143: /*E
144: PetscBool - Logical variable. Actually an int in C and a logical in Fortran.
146: Level: beginner
148: Developer Note:
149: Why have PetscBool , why not use bool in C? The problem is that K and R C, C99 and C++ all have different mechanisms for
150: boolean values. It is not easy to have a simple macro that that will work properly in all circumstances with all three mechanisms.
152: .seealso: PETSC_TRUE, PETSC_FALSE, PetscNot()
153: E*/
154: typedef enum { PETSC_FALSE,PETSC_TRUE } PetscBool;
156: /*MC
157: PetscReal - PETSc type that represents a real number version of PetscScalar
160: Notes:
161: For MPI calls that require datatypes, use MPIU_REAL as the datatype for PetscScalar and MPIU_SUM, MPIU_MAX, etc. for operations.
162: They will automatically work correctly regardless of the size of PetscReal.
164: See PetscScalar for details on how to ./configure the size of PetscReal.
166: Level: beginner
168: .seealso: PetscScalar, PetscComplex, PetscInt, MPIU_REAL, MPIU_SCALAR, MPIU_COMPLEX, MPIU_INT
169: M*/
171: #if defined(PETSC_USE_REAL_SINGLE)
172: typedef float PetscReal;
173: #elif defined(PETSC_USE_REAL_DOUBLE)
174: typedef double PetscReal;
175: #elif defined(PETSC_USE_REAL___FLOAT128)
176: # if defined(__cplusplus)
177: extern "C" {
178: # endif
179: # include <quadmath.h>
180: # if defined(__cplusplus)
181: }
182: # endif
183: typedef __float128 PetscReal;
184: #elif defined(PETSC_USE_REAL___FP16)
185: typedef __fp16 PetscReal;
186: #endif /* PETSC_USE_REAL_* */
188: /*MC
189: PetscComplex - PETSc type that represents a complex number with precision matching that of PetscReal.
191: Synopsis:
192: #include <petscsys.h>
193: PetscComplex number = 1. + 2.*PETSC_i;
195: Notes:
196: For MPI calls that require datatypes, use MPIU_COMPLEX as the datatype for PetscComplex and MPIU_SUM etc for operations.
197: They will automatically work correctly regardless of the size of PetscComplex.
199: See PetscScalar for details on how to ./configure the size of PetscReal
201: Complex numbers are automatically available if PETSc was able to find a working complex implementation
203: Level: beginner
205: .seealso: PetscReal, PetscScalar, PetscComplex, PetscInt, MPIU_REAL, MPIU_SCALAR, MPIU_COMPLEX, MPIU_INT, PETSC_i
206: M*/
208: #if defined(__cplusplus) && defined(PETSC_HAVE_CXX_COMPLEX) && !defined(PETSC_USE_REAL___FLOAT128)
209: # if !defined(PETSC_SKIP_COMPLEX)
210: /* C++ support of complex number */
211: # define PETSC_HAVE_COMPLEX 1
212: # if defined(PETSC_HAVE_CUDA) && __CUDACC_VER_MAJOR__ > 6
213: /* complex headers in thrust only available in CUDA 7.0 and above */
214: # define petsccomplexlib thrust
215: # include <thrust/complex.h>
216: # else
217: # define petsccomplexlib std
218: # include <complex>
219: # endif
220: # if defined(PETSC_USE_REAL_SINGLE)
221: typedef petsccomplexlib::complex<float> PetscComplex;
222: # elif defined(PETSC_USE_REAL_DOUBLE)
223: typedef petsccomplexlib::complex<double> PetscComplex;
224: # elif defined(PETSC_USE_REAL___FLOAT128)
225: typedef petsccomplexlib::complex<__float128> PetscComplex; /* Notstandard and not expected to work, use __complex128 */
226: # endif /* PETSC_USE_REAL_ */
227: # endif /* ! PETSC_SKIP_COMPLEX */
228: # if !defined(PETSC_SKIP_CXX_COMPLEX_FIX)
229: # include <petsccxxcomplexfix.h>
230: # endif /* ! PETSC_SKIP_CXX_COMPLEX_FIX */
231: #elif defined(PETSC_HAVE_C99_COMPLEX) && !defined(PETSC_USE_REAL___FP16)
232: # if !defined(PETSC_SKIP_COMPLEX)
233: # define PETSC_HAVE_COMPLEX 1
234: # include <complex.h>
235: # if defined(PETSC_USE_REAL_SINGLE) || defined(PETSC_USE_REAL___FP16)
236: typedef float _Complex PetscComplex;
237: # elif defined(PETSC_USE_REAL_DOUBLE)
238: typedef double _Complex PetscComplex;
239: # elif defined(PETSC_USE_REAL___FLOAT128)
240: typedef __complex128 PetscComplex;
241: # endif /* PETSC_USE_REAL_* */
242: # endif /* !PETSC_SKIP_COMPLEX */
243: #elif (defined(PETSC_USE_COMPLEX) && !defined(PETSC_SKIP_COMPLEX))
244: # error "PETSc was configured --with-scalar-type=complex, but a language-appropriate complex library is not available"
245: #endif /* !PETSC_SKIP_COMPLEX */
247: /*MC
248: PetscScalar - PETSc type that represents either a double precision real number, a double precision
249: complex number, a single precision real number, a __float128 real or complex or a __fp16 real - if the code is configured
250: with --with-scalar-type=real,complex --with-precision=single,double,__float128,__fp16
252: Notes:
253: For MPI calls that require datatypes, use MPIU_SCALAR as the datatype for PetscScalar and MPIU_SUM, MPIU_MAX etc for operations. They will automatically work correctly regardless of the size of PetscScalar.
255: Level: beginner
257: .seealso: PetscReal, PetscComplex, PetscInt, MPIU_REAL, MPIU_SCALAR, MPIU_COMPLEX, MPIU_INT, PetscRealPart(), PetscImaginaryPart()
258: M*/
260: #if (defined(PETSC_USE_COMPLEX) && !defined(PETSC_SKIP_COMPLEX))
261: typedef PetscComplex PetscScalar;
262: #else /* PETSC_USE_COMPLEX */
263: typedef PetscReal PetscScalar;
264: #endif /* PETSC_USE_COMPLEX */
266: /*E
267: PetscCopyMode - Determines how an array or PetscObject passed to certain functions is copied or retained by the aggregate PetscObject
269: Level: beginner
271: For the array input:
272: $ PETSC_COPY_VALUES - the array values are copied into new space, the user is free to reuse or delete the passed in array
273: $ PETSC_OWN_POINTER - the array values are NOT copied, the object takes ownership of the array and will free it later, the user cannot change or
274: $ delete the array. The array MUST have been obtained with PetscMalloc(). Hence this mode cannot be used in Fortran.
275: $ PETSC_USE_POINTER - the array values are NOT copied, the object uses the array but does NOT take ownership of the array. The user cannot use
276: $ the array but the user must delete the array after the object is destroyed.
278: For the PetscObject input:
279: $ PETSC_COPY_VALUES - the input PetscObject is cloned into the aggregate PetscObject; the user is free to reuse/modify the input PetscObject without side effects.
280: $ PETSC_OWN_POINTER - the input PetscObject is referenced by pointer (with reference count), thus should not be modified by the user. (Modification may cause errors or unintended side-effects in this or a future version of PETSc.)
281: For either case above, the input PetscObject should be destroyed by the user when no longer needed (the aggregate object increases its reference count).
282: $ PETSC_USE_POINTER - invalid for PetscObject inputs.
284: E*/
285: typedef enum {PETSC_COPY_VALUES, PETSC_OWN_POINTER, PETSC_USE_POINTER} PetscCopyMode;
287: /*MC
288: PETSC_FALSE - False value of PetscBool
290: Level: beginner
292: Note:
293: Zero integer
295: .seealso: PetscBool, PETSC_TRUE
296: M*/
298: /*MC
299: PETSC_TRUE - True value of PetscBool
301: Level: beginner
303: Note:
304: Nonzero integer
306: .seealso: PetscBool, PETSC_FALSE
307: M*/
309: /*MC
310: PetscLogDouble - Used for logging times
312: Notes:
313: Contains double precision numbers that are not used in the numerical computations, but rather in logging, timing etc.
315: Level: developer
317: M*/
318: typedef double PetscLogDouble;
320: /*E
321: PetscDataType - Used for handling different basic data types.
323: Level: beginner
325: Notes:
326: Use of this should be avoided if one can directly use MPI_Datatype instead.
328: PETSC_INT is the datatype for a PetscInt, regardless of whether it is 4 or 8 bytes.
329: PETSC_REAL, PETSC_COMPLEX and PETSC_SCALAR are the datatypes for PetscReal, PetscComplex and PetscScalar, regardless of their sizes.
331: Developer comment:
332: It would be nice if we could always just use MPI Datatypes, why can we not?
334: If you change any values in PetscDatatype make sure you update their usage in
335: share/petsc/matlab/PetscBagRead.m
337: TODO: Add PETSC_INT32 and remove use of improper PETSC_ENUM
339: .seealso: PetscBinaryRead(), PetscBinaryWrite(), PetscDataTypeToMPIDataType(),
340: PetscDataTypeGetSize()
342: E*/
343: typedef enum {PETSC_DATATYPE_UNKNOWN = 0,
344: PETSC_DOUBLE = 1, PETSC_COMPLEX = 2, PETSC_LONG = 3, PETSC_SHORT = 4, PETSC_FLOAT = 5,
345: PETSC_CHAR = 6, PETSC_BIT_LOGICAL = 7, PETSC_ENUM = 8, PETSC_BOOL = 9, PETSC___FLOAT128 = 10,
346: PETSC_OBJECT = 11, PETSC_FUNCTION = 12, PETSC_STRING = 13, PETSC___FP16 = 14, PETSC_STRUCT = 15,
347: PETSC_INT = 16, PETSC_INT64 = 17} PetscDataType;
349: #if defined(PETSC_USE_REAL_SINGLE)
350: # define PETSC_REAL PETSC_FLOAT
351: #elif defined(PETSC_USE_REAL_DOUBLE)
352: # define PETSC_REAL PETSC_DOUBLE
353: #elif defined(PETSC_USE_REAL___FLOAT128)
354: # define PETSC_REAL PETSC___FLOAT128
355: #elif defined(PETSC_USE_REAL___FP16)
356: # define PETSC_REAL PETSC___FP16
357: #else
358: # define PETSC_REAL PETSC_DOUBLE
359: #endif
361: #if defined(PETSC_USE_COMPLEX)
362: # define PETSC_SCALAR PETSC_COMPLEX
363: #else
364: # define PETSC_SCALAR PETSC_REAL
365: #endif
367: #define PETSC_FORTRANADDR PETSC_LONG
369: /*S
370: PetscToken - 'Token' used for managing tokenizing strings
372: Level: intermediate
374: .seealso: PetscTokenCreate(), PetscTokenFind(), PetscTokenDestroy()
375: S*/
376: typedef struct _p_PetscToken* PetscToken;
378: /*S
379: PetscObject - any PETSc object, PetscViewer, Mat, Vec, KSP etc
381: Level: beginner
383: Note:
384: This is the base class from which all PETSc objects are derived from.
386: .seealso: PetscObjectDestroy(), PetscObjectView(), PetscObjectGetName(), PetscObjectSetName(), PetscObjectReference(), PetscObjectDereference()
387: S*/
388: typedef struct _p_PetscObject* PetscObject;
390: /*MC
391: PetscObjectId - unique integer Id for a PetscObject
393: Level: developer
395: Notes:
396: Unlike pointer values, object ids are never reused.
398: .seealso: PetscObjectState, PetscObjectGetId()
399: M*/
400: typedef PetscInt64 PetscObjectId;
402: /*MC
403: PetscObjectState - integer state for a PetscObject
405: Level: developer
407: Notes:
408: Object state is always-increasing and (for objects that track state) can be used to determine if an object has
409: changed since the last time you interacted with it. It is 64-bit so that it will not overflow for a very long time.
411: .seealso: PetscObjectId, PetscObjectStateGet(), PetscObjectStateIncrease(), PetscObjectStateSet()
412: M*/
413: typedef PetscInt64 PetscObjectState;
415: /*S
416: PetscFunctionList - Linked list of functions, possibly stored in dynamic libraries, accessed
417: by string name
419: Level: advanced
421: .seealso: PetscFunctionListAdd(), PetscFunctionListDestroy()
422: S*/
423: typedef struct _n_PetscFunctionList *PetscFunctionList;
425: /*E
426: PetscFileMode - Access mode for a file.
428: Level: beginner
430: $ FILE_MODE_READ - open a file at its beginning for reading
431: $ FILE_MODE_WRITE - open a file at its beginning for writing (will create if the file does not exist)
432: $ FILE_MODE_APPEND - open a file at end for writing
433: $ FILE_MODE_UPDATE - open a file for updating, meaning for reading and writing
434: $ FILE_MODE_APPEND_UPDATE - open a file for updating, meaning for reading and writing, at the end
436: .seealso: PetscViewerFileSetMode()
437: E*/
438: typedef enum {FILE_MODE_READ, FILE_MODE_WRITE, FILE_MODE_APPEND, FILE_MODE_UPDATE, FILE_MODE_APPEND_UPDATE} PetscFileMode;
440: typedef void* PetscDLHandle;
441: typedef enum {PETSC_DL_DECIDE=0,PETSC_DL_NOW=1,PETSC_DL_LOCAL=2} PetscDLMode;
443: /*S
444: PetscObjectList - Linked list of PETSc objects, each accessible by string name
446: Level: developer
448: Notes:
449: Used by PetscObjectCompose() and PetscObjectQuery()
451: .seealso: PetscObjectListAdd(), PetscObjectListDestroy(), PetscObjectListFind(), PetscObjectCompose(), PetscObjectQuery(), PetscFunctionList
452: S*/
453: typedef struct _n_PetscObjectList *PetscObjectList;
455: /*S
456: PetscDLLibrary - Linked list of dynamics libraries to search for functions
458: Level: advanced
460: .seealso: PetscDLLibraryOpen()
461: S*/
462: typedef struct _n_PetscDLLibrary *PetscDLLibrary;
464: /*S
465: PetscContainer - Simple PETSc object that contains a pointer to any required data
467: Level: advanced
469: .seealso: PetscObject, PetscContainerCreate()
470: S*/
471: typedef struct _p_PetscContainer* PetscContainer;
473: /*S
474: PetscRandom - Abstract PETSc object that manages generating random numbers
476: Level: intermediate
478: .seealso: PetscRandomCreate(), PetscRandomGetValue(), PetscRandomType
479: S*/
480: typedef struct _p_PetscRandom* PetscRandom;
482: /*
483: In binary files variables are stored using the following lengths,
484: regardless of how they are stored in memory on any one particular
485: machine. Use these rather then sizeof() in computing sizes for
486: PetscBinarySeek().
487: */
488: #define PETSC_BINARY_INT_SIZE (32/8)
489: #define PETSC_BINARY_FLOAT_SIZE (32/8)
490: #define PETSC_BINARY_CHAR_SIZE (8/8)
491: #define PETSC_BINARY_SHORT_SIZE (16/8)
492: #define PETSC_BINARY_DOUBLE_SIZE (64/8)
493: #define PETSC_BINARY_SCALAR_SIZE sizeof(PetscScalar)
495: /*E
496: PetscBinarySeekType - argument to PetscBinarySeek()
498: Level: advanced
500: .seealso: PetscBinarySeek(), PetscBinarySynchronizedSeek()
501: E*/
502: typedef enum {PETSC_BINARY_SEEK_SET = 0,PETSC_BINARY_SEEK_CUR = 1,PETSC_BINARY_SEEK_END = 2} PetscBinarySeekType;
504: /*E
505: PetscBuildTwoSidedType - algorithm for setting up two-sided communication
507: $ PETSC_BUILDTWOSIDED_ALLREDUCE - classical algorithm using an MPI_Allreduce with
508: $ a buffer of length equal to the communicator size. Not memory-scalable due to
509: $ the large reduction size. Requires only MPI-1.
510: $ PETSC_BUILDTWOSIDED_IBARRIER - nonblocking algorithm based on MPI_Issend and MPI_Ibarrier.
511: $ Proved communication-optimal in Hoefler, Siebert, and Lumsdaine (2010). Requires MPI-3.
512: $ PETSC_BUILDTWOSIDED_REDSCATTER - similar to above, but use more optimized function
513: $ that only communicates the part of the reduction that is necessary. Requires MPI-2.
515: Level: developer
517: .seealso: PetscCommBuildTwoSided(), PetscCommBuildTwoSidedSetType(), PetscCommBuildTwoSidedGetType()
518: E*/
519: typedef enum {
520: PETSC_BUILDTWOSIDED_NOTSET = -1,
521: PETSC_BUILDTWOSIDED_ALLREDUCE = 0,
522: PETSC_BUILDTWOSIDED_IBARRIER = 1,
523: PETSC_BUILDTWOSIDED_REDSCATTER = 2
524: /* Updates here must be accompanied by updates in finclude/petscsys.h and the string array in mpits.c */
525: } PetscBuildTwoSidedType;
527: /* NOTE: If you change this, you must also change the values in src/vec/f90-mod/petscvec.h */
528: /*E
529: InsertMode - Whether entries are inserted or added into vectors or matrices
531: Level: beginner
533: .seealso: VecSetValues(), MatSetValues(), VecSetValue(), VecSetValuesBlocked(),
534: VecSetValuesLocal(), VecSetValuesBlockedLocal(), MatSetValuesBlocked(),
535: MatSetValuesBlockedLocal(), MatSetValuesLocal(), VecScatterBegin(), VecScatterEnd()
536: E*/
537: typedef enum {NOT_SET_VALUES, INSERT_VALUES, ADD_VALUES, MAX_VALUES, MIN_VALUES, INSERT_ALL_VALUES, ADD_ALL_VALUES, INSERT_BC_VALUES, ADD_BC_VALUES} InsertMode;
539: /*MC
540: INSERT_VALUES - Put a value into a vector or matrix, overwrites any previous value
542: Level: beginner
544: .seealso: InsertMode, VecSetValues(), MatSetValues(), VecSetValue(), VecSetValuesBlocked(),
545: VecSetValuesLocal(), VecSetValuesBlockedLocal(), MatSetValuesBlocked(), ADD_VALUES,
546: MatSetValuesBlockedLocal(), MatSetValuesLocal(), VecScatterBegin(), VecScatterEnd(), MAX_VALUES
548: M*/
550: /*MC
551: ADD_VALUES - Adds a value into a vector or matrix, if there previously was no value, just puts the
552: value into that location
554: Level: beginner
556: .seealso: InsertMode, VecSetValues(), MatSetValues(), VecSetValue(), VecSetValuesBlocked(),
557: VecSetValuesLocal(), VecSetValuesBlockedLocal(), MatSetValuesBlocked(), INSERT_VALUES,
558: MatSetValuesBlockedLocal(), MatSetValuesLocal(), VecScatterBegin(), VecScatterEnd(), MAX_VALUES
560: M*/
562: /*MC
563: MAX_VALUES - Puts the maximum of the scattered/gathered value and the current value into each location
565: Level: beginner
567: .seealso: InsertMode, VecScatterBegin(), VecScatterEnd(), ADD_VALUES, INSERT_VALUES
569: M*/
571: /*MC
572: MIN_VALUES - Puts the minimal of the scattered/gathered value and the current value into each location
574: Level: beginner
576: .seealso: InsertMode, VecScatterBegin(), VecScatterEnd(), ADD_VALUES, INSERT_VALUES
578: M*/
581: /*S
582: PetscSubcomm - A decomposition of an MPI communicator into subcommunicators
584: Notes:
585: After a call to PetscSubcommSetType(), PetscSubcommSetTypeGeneral(), or PetscSubcommSetFromOptions() one may call
586: $ PetscSubcommChild() returns the associated subcommunicator on this process
587: $ PetscSubcommContiguousParent() returns a parent communitor but with all child of the same subcommunicator having contiguous rank
589: Sample Usage:
590: PetscSubcommCreate()
591: PetscSubcommSetNumber()
592: PetscSubcommSetType(PETSC_SUBCOMM_INTERLACED);
593: ccomm = PetscSubcommChild()
594: PetscSubcommDestroy()
596: Level: advanced
598: Notes:
599: $ PETSC_SUBCOMM_GENERAL - similar to MPI_Comm_split() each process sets the new communicator (color) they will belong to and the order within that communicator
600: $ PETSC_SUBCOMM_CONTIGUOUS - each new communicator contains a set of process with contiguous ranks in the original MPI communicator
601: $ PETSC_SUBCOMM_INTERLACED - each new communictor contains a set of processes equally far apart in rank from the others in that new communicator
603: Example: Consider a communicator with six processes split into 3 subcommunicators.
604: $ PETSC_SUBCOMM_CONTIGUOUS - the first communicator contains rank 0,1 the second rank 2,3 and the third rank 4,5 in the original ordering of the original communicator
605: $ PETSC_SUBCOMM_INTERLACED - the first communicator contains rank 0,3, the second 1,4 and the third 2,5
607: Developer Notes:
608: This is used in objects such as PCREDUNDANT to manage the subcommunicators on which the redundant computations
609: are performed.
612: .seealso: PetscSubcommCreate(), PetscSubcommSetNumber(), PetscSubcommSetType(), PetscSubcommView(), PetscSubcommSetFromOptions()
614: S*/
615: typedef struct _n_PetscSubcomm* PetscSubcomm;
616: typedef enum {PETSC_SUBCOMM_GENERAL=0,PETSC_SUBCOMM_CONTIGUOUS=1,PETSC_SUBCOMM_INTERLACED=2} PetscSubcommType;
618: /*S
619: PetscHeap - A simple class for managing heaps
621: Level: intermediate
623: .seealso: PetscHeapCreate(), PetscHeapAdd(), PetscHeapPop(), PetscHeapPeek(), PetscHeapStash(), PetscHeapUnstash(), PetscHeapView(), PetscHeapDestroy()
624: S*/
625: typedef struct _PetscHeap *PetscHeap;
627: typedef struct _n_PetscShmComm* PetscShmComm;
628: typedef struct _n_PetscOmpCtrl* PetscOmpCtrl;
630: /*S
631: PetscSegBuffer - a segmented extendable buffer
633: Level: developer
635: .seealso: PetscSegBufferCreate(), PetscSegBufferGet(), PetscSegBufferExtract(), PetscSegBufferDestroy()
636: S*/
637: typedef struct _n_PetscSegBuffer *PetscSegBuffer;
639: typedef struct _n_PetscOptionsHelpPrinted *PetscOptionsHelpPrinted;
641: #endif