Actual source code: mathfit.c
petsc-3.12.5 2020-03-29
1: #include <petscsys.h>
2: #include <petscblaslapack.h>
4: /*@C
5: PetscLinearRegression - Gives the best least-squares linear fit to some x-y data points
7: Input Parameters:
8: + n - The number of points
9: . x - The x-values
10: - y - The y-values
12: Output Parameters:
13: + slope - The slope of the best-fit line
14: - intercept - The y-intercept of the best-fit line
16: Level: intermediate
18: .seealso: PetscConvEstGetConvRate()
19: @*/
20: PetscErrorCode PetscLinearRegression(PetscInt n, const PetscReal x[], const PetscReal y[], PetscReal *slope, PetscReal *intercept)
21: {
22: PetscScalar H[4];
23: PetscReal *X, *Y, beta[2];
24: PetscInt i, j, k;
28: *slope = *intercept = 0.0;
29: PetscMalloc2(n*2, &X, n*2, &Y);
30: for (k = 0; k < n; ++k) {
31: /* X[n,2] = [1, x] */
32: X[k*2+0] = 1.0;
33: X[k*2+1] = x[k];
34: }
35: /* H = X^T X */
36: for (i = 0; i < 2; ++i) {
37: for (j = 0; j < 2; ++j) {
38: H[i*2+j] = 0.0;
39: for (k = 0; k < n; ++k) {
40: H[i*2+j] += X[k*2+i] * X[k*2+j];
41: }
42: }
43: }
44: /* H = (X^T X)^{-1} */
45: {
46: PetscBLASInt two = 2, ipiv[2], info;
47: PetscScalar work[2];
49: PetscFPTrapPush(PETSC_FP_TRAP_OFF);
50: PetscStackCallBLAS("LAPACKgetrf", LAPACKgetrf_(&two, &two, H, &two, ipiv, &info));
51: PetscStackCallBLAS("LAPACKgetri", LAPACKgetri_(&two, H, &two, ipiv, work, &two, &info));
52: PetscFPTrapPop();
53: }
54: /* Y = H X^T */
55: for (i = 0; i < 2; ++i) {
56: for (k = 0; k < n; ++k) {
57: Y[i*n+k] = 0.0;
58: for (j = 0; j < 2; ++j) {
59: Y[i*n+k] += PetscRealPart(H[i*2+j]) * X[k*2+j];
60: }
61: }
62: }
63: /* beta = Y error = [y-intercept, slope] */
64: for (i = 0; i < 2; ++i) {
65: beta[i] = 0.0;
66: for (k = 0; k < n; ++k) {
67: beta[i] += Y[i*n+k] * y[k];
68: }
69: }
70: PetscFree2(X, Y);
71: *intercept = beta[0];
72: *slope = beta[1];
73: return(0);
74: }