Actual source code: bjacobi.c
petsc-3.12.5 2020-03-29
2: /*
3: Defines a block Jacobi preconditioner.
4: */
6: #include <../src/ksp/pc/impls/bjacobi/bjacobi.h>
8: static PetscErrorCode PCSetUp_BJacobi_Singleblock(PC,Mat,Mat);
9: static PetscErrorCode PCSetUp_BJacobi_Multiblock(PC,Mat,Mat);
10: static PetscErrorCode PCSetUp_BJacobi_Multiproc(PC);
12: static PetscErrorCode PCSetUp_BJacobi(PC pc)
13: {
14: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
15: Mat mat = pc->mat,pmat = pc->pmat;
17: PetscBool hasop;
18: PetscInt N,M,start,i,sum,end;
19: PetscInt bs,i_start=-1,i_end=-1;
20: PetscMPIInt rank,size;
21: const char *pprefix,*mprefix;
24: MPI_Comm_rank(PetscObjectComm((PetscObject)pc),&rank);
25: MPI_Comm_size(PetscObjectComm((PetscObject)pc),&size);
26: MatGetLocalSize(pc->pmat,&M,&N);
27: MatGetBlockSize(pc->pmat,&bs);
29: if (jac->n > 0 && jac->n < size) {
30: PCSetUp_BJacobi_Multiproc(pc);
31: return(0);
32: }
34: /* --------------------------------------------------------------------------
35: Determines the number of blocks assigned to each processor
36: -----------------------------------------------------------------------------*/
38: /* local block count given */
39: if (jac->n_local > 0 && jac->n < 0) {
40: MPIU_Allreduce(&jac->n_local,&jac->n,1,MPIU_INT,MPI_SUM,PetscObjectComm((PetscObject)pc));
41: if (jac->l_lens) { /* check that user set these correctly */
42: sum = 0;
43: for (i=0; i<jac->n_local; i++) {
44: if (jac->l_lens[i]/bs*bs !=jac->l_lens[i]) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat blocksize doesn't match block Jacobi layout");
45: sum += jac->l_lens[i];
46: }
47: if (sum != M) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Local lens set incorrectly");
48: } else {
49: PetscMalloc1(jac->n_local,&jac->l_lens);
50: for (i=0; i<jac->n_local; i++) jac->l_lens[i] = bs*((M/bs)/jac->n_local + (((M/bs) % jac->n_local) > i));
51: }
52: } else if (jac->n > 0 && jac->n_local < 0) { /* global block count given */
53: /* global blocks given: determine which ones are local */
54: if (jac->g_lens) {
55: /* check if the g_lens is has valid entries */
56: for (i=0; i<jac->n; i++) {
57: if (!jac->g_lens[i]) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Zero block not allowed");
58: if (jac->g_lens[i]/bs*bs != jac->g_lens[i]) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat blocksize doesn't match block Jacobi layout");
59: }
60: if (size == 1) {
61: jac->n_local = jac->n;
62: PetscMalloc1(jac->n_local,&jac->l_lens);
63: PetscArraycpy(jac->l_lens,jac->g_lens,jac->n_local);
64: /* check that user set these correctly */
65: sum = 0;
66: for (i=0; i<jac->n_local; i++) sum += jac->l_lens[i];
67: if (sum != M) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Global lens set incorrectly");
68: } else {
69: MatGetOwnershipRange(pc->pmat,&start,&end);
70: /* loop over blocks determing first one owned by me */
71: sum = 0;
72: for (i=0; i<jac->n+1; i++) {
73: if (sum == start) { i_start = i; goto start_1;}
74: if (i < jac->n) sum += jac->g_lens[i];
75: }
76: SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Block sizes used in PCBJacobiSetTotalBlocks()\nare not compatible with parallel matrix layout");
77: start_1:
78: for (i=i_start; i<jac->n+1; i++) {
79: if (sum == end) { i_end = i; goto end_1; }
80: if (i < jac->n) sum += jac->g_lens[i];
81: }
82: SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Block sizes used in PCBJacobiSetTotalBlocks()\nare not compatible with parallel matrix layout");
83: end_1:
84: jac->n_local = i_end - i_start;
85: PetscMalloc1(jac->n_local,&jac->l_lens);
86: PetscArraycpy(jac->l_lens,jac->g_lens+i_start,jac->n_local);
87: }
88: } else { /* no global blocks given, determine then using default layout */
89: jac->n_local = jac->n/size + ((jac->n % size) > rank);
90: PetscMalloc1(jac->n_local,&jac->l_lens);
91: for (i=0; i<jac->n_local; i++) {
92: jac->l_lens[i] = ((M/bs)/jac->n_local + (((M/bs) % jac->n_local) > i))*bs;
93: if (!jac->l_lens[i]) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Too many blocks given");
94: }
95: }
96: } else if (jac->n < 0 && jac->n_local < 0) { /* no blocks given */
97: jac->n = size;
98: jac->n_local = 1;
99: PetscMalloc1(1,&jac->l_lens);
100: jac->l_lens[0] = M;
101: } else { /* jac->n > 0 && jac->n_local > 0 */
102: if (!jac->l_lens) {
103: PetscMalloc1(jac->n_local,&jac->l_lens);
104: for (i=0; i<jac->n_local; i++) jac->l_lens[i] = bs*((M/bs)/jac->n_local + (((M/bs) % jac->n_local) > i));
105: }
106: }
107: if (jac->n_local < 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Number of blocks is less than number of processors");
109: /* -------------------------
110: Determines mat and pmat
111: ---------------------------*/
112: MatHasOperation(pc->mat,MATOP_GET_DIAGONAL_BLOCK,&hasop);
113: if (!hasop && size == 1) {
114: mat = pc->mat;
115: pmat = pc->pmat;
116: } else {
117: if (pc->useAmat) {
118: /* use block from Amat matrix, not Pmat for local MatMult() */
119: MatGetDiagonalBlock(pc->mat,&mat);
120: /* make submatrix have same prefix as entire matrix */
121: PetscObjectGetOptionsPrefix((PetscObject)pc->mat,&mprefix);
122: PetscObjectSetOptionsPrefix((PetscObject)mat,mprefix);
123: }
124: if (pc->pmat != pc->mat || !pc->useAmat) {
125: MatGetDiagonalBlock(pc->pmat,&pmat);
126: /* make submatrix have same prefix as entire matrix */
127: PetscObjectGetOptionsPrefix((PetscObject)pc->pmat,&pprefix);
128: PetscObjectSetOptionsPrefix((PetscObject)pmat,pprefix);
129: } else pmat = mat;
130: }
132: /* ------
133: Setup code depends on the number of blocks
134: */
135: if (jac->n_local == 1) {
136: PCSetUp_BJacobi_Singleblock(pc,mat,pmat);
137: } else {
138: PCSetUp_BJacobi_Multiblock(pc,mat,pmat);
139: }
140: return(0);
141: }
143: /* Default destroy, if it has never been setup */
144: static PetscErrorCode PCDestroy_BJacobi(PC pc)
145: {
146: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
150: PetscFree(jac->g_lens);
151: PetscFree(jac->l_lens);
152: PetscFree(pc->data);
153: return(0);
154: }
157: static PetscErrorCode PCSetFromOptions_BJacobi(PetscOptionItems *PetscOptionsObject,PC pc)
158: {
159: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
161: PetscInt blocks,i;
162: PetscBool flg;
165: PetscOptionsHead(PetscOptionsObject,"Block Jacobi options");
166: PetscOptionsInt("-pc_bjacobi_blocks","Total number of blocks","PCBJacobiSetTotalBlocks",jac->n,&blocks,&flg);
167: if (flg) {PCBJacobiSetTotalBlocks(pc,blocks,NULL);}
168: PetscOptionsInt("-pc_bjacobi_local_blocks","Local number of blocks","PCBJacobiSetLocalBlocks",jac->n_local,&blocks,&flg);
169: if (flg) {PCBJacobiSetLocalBlocks(pc,blocks,NULL);}
170: if (jac->ksp) {
171: /* The sub-KSP has already been set up (e.g., PCSetUp_BJacobi_Singleblock), but KSPSetFromOptions was not called
172: * unless we had already been called. */
173: for (i=0; i<jac->n_local; i++) {
174: KSPSetFromOptions(jac->ksp[i]);
175: }
176: }
177: PetscOptionsTail();
178: return(0);
179: }
181: #include <petscdraw.h>
182: static PetscErrorCode PCView_BJacobi(PC pc,PetscViewer viewer)
183: {
184: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
185: PC_BJacobi_Multiproc *mpjac = (PC_BJacobi_Multiproc*)jac->data;
186: PetscErrorCode ierr;
187: PetscMPIInt rank;
188: PetscInt i;
189: PetscBool iascii,isstring,isdraw;
190: PetscViewer sviewer;
193: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
194: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSTRING,&isstring);
195: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
196: if (iascii) {
197: if (pc->useAmat) {
198: PetscViewerASCIIPrintf(viewer," using Amat local matrix, number of blocks = %D\n",jac->n);
199: }
200: PetscViewerASCIIPrintf(viewer," number of blocks = %D\n",jac->n);
201: MPI_Comm_rank(PetscObjectComm((PetscObject)pc),&rank);
202: if (jac->same_local_solves) {
203: PetscViewerASCIIPrintf(viewer," Local solve is same for all blocks, in the following KSP and PC objects:\n");
204: if (jac->ksp && !jac->psubcomm) {
205: PetscViewerGetSubViewer(viewer,PETSC_COMM_SELF,&sviewer);
206: if (!rank) {
207: PetscViewerASCIIPushTab(viewer);
208: KSPView(jac->ksp[0],sviewer);
209: PetscViewerASCIIPopTab(viewer);
210: }
211: PetscViewerRestoreSubViewer(viewer,PETSC_COMM_SELF,&sviewer);
212: } else if (mpjac && jac->ksp && mpjac->psubcomm) {
213: PetscViewerGetSubViewer(viewer,mpjac->psubcomm->child,&sviewer);
214: if (!mpjac->psubcomm->color) {
215: PetscViewerASCIIPushTab(viewer);
216: KSPView(*(jac->ksp),sviewer);
217: PetscViewerASCIIPopTab(viewer);
218: }
219: PetscViewerRestoreSubViewer(viewer,mpjac->psubcomm->child,&sviewer);
220: }
221: } else {
222: PetscInt n_global;
223: MPIU_Allreduce(&jac->n_local,&n_global,1,MPIU_INT,MPI_MAX,PetscObjectComm((PetscObject)pc));
224: PetscViewerASCIIPushSynchronized(viewer);
225: PetscViewerASCIIPrintf(viewer," Local solve info for each block is in the following KSP and PC objects:\n");
226: PetscViewerASCIISynchronizedPrintf(viewer,"[%d] number of local blocks = %D, first local block number = %D\n",
227: rank,jac->n_local,jac->first_local);
228: PetscViewerASCIIPushTab(viewer);
229: PetscViewerGetSubViewer(viewer,PETSC_COMM_SELF,&sviewer);
230: for (i=0; i<jac->n_local; i++) {
231: PetscViewerASCIISynchronizedPrintf(viewer,"[%d] local block number %D\n",rank,i);
232: KSPView(jac->ksp[i],sviewer);
233: PetscViewerASCIISynchronizedPrintf(viewer,"- - - - - - - - - - - - - - - - - -\n");
234: }
235: PetscViewerRestoreSubViewer(viewer,PETSC_COMM_SELF,&sviewer);
236: PetscViewerASCIIPopTab(viewer);
237: PetscViewerFlush(viewer);
238: PetscViewerASCIIPopSynchronized(viewer);
239: }
240: } else if (isstring) {
241: PetscViewerStringSPrintf(viewer," blks=%D",jac->n);
242: PetscViewerGetSubViewer(viewer,PETSC_COMM_SELF,&sviewer);
243: if (jac->ksp) {KSPView(jac->ksp[0],sviewer);}
244: PetscViewerRestoreSubViewer(viewer,PETSC_COMM_SELF,&sviewer);
245: } else if (isdraw) {
246: PetscDraw draw;
247: char str[25];
248: PetscReal x,y,bottom,h;
250: PetscViewerDrawGetDraw(viewer,0,&draw);
251: PetscDrawGetCurrentPoint(draw,&x,&y);
252: PetscSNPrintf(str,25,"Number blocks %D",jac->n);
253: PetscDrawStringBoxed(draw,x,y,PETSC_DRAW_RED,PETSC_DRAW_BLACK,str,NULL,&h);
254: bottom = y - h;
255: PetscDrawPushCurrentPoint(draw,x,bottom);
256: /* warning the communicator on viewer is different then on ksp in parallel */
257: if (jac->ksp) {KSPView(jac->ksp[0],viewer);}
258: PetscDrawPopCurrentPoint(draw);
259: }
260: return(0);
261: }
263: /* -------------------------------------------------------------------------------------*/
265: static PetscErrorCode PCBJacobiGetSubKSP_BJacobi(PC pc,PetscInt *n_local,PetscInt *first_local,KSP **ksp)
266: {
267: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
270: if (!pc->setupcalled) SETERRQ(PetscObjectComm((PetscObject)pc),PETSC_ERR_ARG_WRONGSTATE,"Must call KSPSetUp() or PCSetUp() first");
272: if (n_local) *n_local = jac->n_local;
273: if (first_local) *first_local = jac->first_local;
274: *ksp = jac->ksp;
275: jac->same_local_solves = PETSC_FALSE; /* Assume that local solves are now different;
276: not necessarily true though! This flag is
277: used only for PCView_BJacobi() */
278: return(0);
279: }
281: static PetscErrorCode PCBJacobiSetTotalBlocks_BJacobi(PC pc,PetscInt blocks,PetscInt *lens)
282: {
283: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
287: if (pc->setupcalled > 0 && jac->n!=blocks) SETERRQ(PetscObjectComm((PetscObject)pc),PETSC_ERR_ORDER,"Cannot alter number of blocks after PCSetUp()/KSPSetUp() has been called");
288: jac->n = blocks;
289: if (!lens) jac->g_lens = 0;
290: else {
291: PetscMalloc1(blocks,&jac->g_lens);
292: PetscLogObjectMemory((PetscObject)pc,blocks*sizeof(PetscInt));
293: PetscArraycpy(jac->g_lens,lens,blocks);
294: }
295: return(0);
296: }
298: static PetscErrorCode PCBJacobiGetTotalBlocks_BJacobi(PC pc, PetscInt *blocks, const PetscInt *lens[])
299: {
300: PC_BJacobi *jac = (PC_BJacobi*) pc->data;
303: *blocks = jac->n;
304: if (lens) *lens = jac->g_lens;
305: return(0);
306: }
308: static PetscErrorCode PCBJacobiSetLocalBlocks_BJacobi(PC pc,PetscInt blocks,const PetscInt lens[])
309: {
310: PC_BJacobi *jac;
314: jac = (PC_BJacobi*)pc->data;
316: jac->n_local = blocks;
317: if (!lens) jac->l_lens = 0;
318: else {
319: PetscMalloc1(blocks,&jac->l_lens);
320: PetscLogObjectMemory((PetscObject)pc,blocks*sizeof(PetscInt));
321: PetscArraycpy(jac->l_lens,lens,blocks);
322: }
323: return(0);
324: }
326: static PetscErrorCode PCBJacobiGetLocalBlocks_BJacobi(PC pc, PetscInt *blocks, const PetscInt *lens[])
327: {
328: PC_BJacobi *jac = (PC_BJacobi*) pc->data;
331: *blocks = jac->n_local;
332: if (lens) *lens = jac->l_lens;
333: return(0);
334: }
336: /* -------------------------------------------------------------------------------------*/
338: /*@C
339: PCBJacobiGetSubKSP - Gets the local KSP contexts for all blocks on
340: this processor.
342: Not Collective
344: Input Parameter:
345: . pc - the preconditioner context
347: Output Parameters:
348: + n_local - the number of blocks on this processor, or NULL
349: . first_local - the global number of the first block on this processor, or NULL
350: - ksp - the array of KSP contexts
352: Notes:
353: After PCBJacobiGetSubKSP() the array of KSP contexts is not to be freed.
355: Currently for some matrix implementations only 1 block per processor
356: is supported.
358: You must call KSPSetUp() or PCSetUp() before calling PCBJacobiGetSubKSP().
360: Fortran Usage: You must pass in a KSP array that is large enough to contain all the local KSPs.
361: You can call PCBJacobiGetSubKSP(pc,nlocal,firstlocal,PETSC_NULL_KSP,ierr) to determine how large the
362: KSP array must be.
364: Level: advanced
366: .seealso: PCBJacobiGetSubKSP()
367: @*/
368: PetscErrorCode PCBJacobiGetSubKSP(PC pc,PetscInt *n_local,PetscInt *first_local,KSP *ksp[])
369: {
374: PetscUseMethod(pc,"PCBJacobiGetSubKSP_C",(PC,PetscInt*,PetscInt*,KSP **),(pc,n_local,first_local,ksp));
375: return(0);
376: }
378: /*@
379: PCBJacobiSetTotalBlocks - Sets the global number of blocks for the block
380: Jacobi preconditioner.
382: Collective on PC
384: Input Parameters:
385: + pc - the preconditioner context
386: . blocks - the number of blocks
387: - lens - [optional] integer array containing the size of each block
389: Options Database Key:
390: . -pc_bjacobi_blocks <blocks> - Sets the number of global blocks
392: Notes:
393: Currently only a limited number of blocking configurations are supported.
394: All processors sharing the PC must call this routine with the same data.
396: Level: intermediate
398: .seealso: PCSetUseAmat(), PCBJacobiSetLocalBlocks()
399: @*/
400: PetscErrorCode PCBJacobiSetTotalBlocks(PC pc,PetscInt blocks,const PetscInt lens[])
401: {
406: if (blocks <= 0) SETERRQ(PetscObjectComm((PetscObject)pc),PETSC_ERR_ARG_OUTOFRANGE,"Must have positive blocks");
407: PetscTryMethod(pc,"PCBJacobiSetTotalBlocks_C",(PC,PetscInt,const PetscInt[]),(pc,blocks,lens));
408: return(0);
409: }
411: /*@C
412: PCBJacobiGetTotalBlocks - Gets the global number of blocks for the block
413: Jacobi preconditioner.
415: Not Collective
417: Input Parameter:
418: . pc - the preconditioner context
420: Output parameters:
421: + blocks - the number of blocks
422: - lens - integer array containing the size of each block
424: Level: intermediate
426: .seealso: PCSetUseAmat(), PCBJacobiGetLocalBlocks()
427: @*/
428: PetscErrorCode PCBJacobiGetTotalBlocks(PC pc, PetscInt *blocks, const PetscInt *lens[])
429: {
435: PetscUseMethod(pc,"PCBJacobiGetTotalBlocks_C",(PC,PetscInt*, const PetscInt *[]),(pc,blocks,lens));
436: return(0);
437: }
439: /*@
440: PCBJacobiSetLocalBlocks - Sets the local number of blocks for the block
441: Jacobi preconditioner.
443: Not Collective
445: Input Parameters:
446: + pc - the preconditioner context
447: . blocks - the number of blocks
448: - lens - [optional] integer array containing size of each block
450: Options Database Key:
451: . -pc_bjacobi_local_blocks <blocks> - Sets the number of local blocks
453: Note:
454: Currently only a limited number of blocking configurations are supported.
456: Level: intermediate
458: .seealso: PCSetUseAmat(), PCBJacobiSetTotalBlocks()
459: @*/
460: PetscErrorCode PCBJacobiSetLocalBlocks(PC pc,PetscInt blocks,const PetscInt lens[])
461: {
466: if (blocks < 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Must have nonegative blocks");
467: PetscTryMethod(pc,"PCBJacobiSetLocalBlocks_C",(PC,PetscInt,const PetscInt []),(pc,blocks,lens));
468: return(0);
469: }
471: /*@C
472: PCBJacobiGetLocalBlocks - Gets the local number of blocks for the block
473: Jacobi preconditioner.
475: Not Collective
477: Input Parameters:
478: + pc - the preconditioner context
479: . blocks - the number of blocks
480: - lens - [optional] integer array containing size of each block
482: Note:
483: Currently only a limited number of blocking configurations are supported.
485: Level: intermediate
487: .seealso: PCSetUseAmat(), PCBJacobiGetTotalBlocks()
488: @*/
489: PetscErrorCode PCBJacobiGetLocalBlocks(PC pc, PetscInt *blocks, const PetscInt *lens[])
490: {
496: PetscUseMethod(pc,"PCBJacobiGetLocalBlocks_C",(PC,PetscInt*, const PetscInt *[]),(pc,blocks,lens));
497: return(0);
498: }
500: /* -----------------------------------------------------------------------------------*/
502: /*MC
503: PCBJACOBI - Use block Jacobi preconditioning, each block is (approximately) solved with
504: its own KSP object.
506: Options Database Keys:
507: + -pc_use_amat - use Amat to apply block of operator in inner Krylov method
508: - -pc_bjacobi_blocks <n> - use n total blocks
510: Notes:
511: Each processor can have one or more blocks, or a single block can be shared by several processes. Defaults to one block per processor.
513: To set options on the solvers for each block append -sub_ to all the KSP, KSP, and PC
514: options database keys. For example, -sub_pc_type ilu -sub_pc_factor_levels 1 -sub_ksp_type preonly
516: To set the options on the solvers separate for each block call PCBJacobiGetSubKSP()
517: and set the options directly on the resulting KSP object (you can access its PC
518: KSPGetPC())
520: For GPU-based vectors (CUDA, ViennaCL) it is recommended to use exactly one block per MPI process for best
521: performance. Different block partitioning may lead to additional data transfers
522: between host and GPU that lead to degraded performance.
524: The options prefix for each block is sub_, for example -sub_pc_type lu.
526: When multiple processes share a single block, each block encompasses exactly all the unknowns owned its set of processes.
528: Level: beginner
530: .seealso: PCCreate(), PCSetType(), PCType (for list of available types), PC,
531: PCASM, PCSetUseAmat(), PCGetUseAmat(), PCBJacobiGetSubKSP(), PCBJacobiSetTotalBlocks(),
532: PCBJacobiSetLocalBlocks(), PCSetModifySubMatrices()
533: M*/
535: PETSC_EXTERN PetscErrorCode PCCreate_BJacobi(PC pc)
536: {
538: PetscMPIInt rank;
539: PC_BJacobi *jac;
542: PetscNewLog(pc,&jac);
543: MPI_Comm_rank(PetscObjectComm((PetscObject)pc),&rank);
545: pc->ops->apply = 0;
546: pc->ops->applytranspose = 0;
547: pc->ops->setup = PCSetUp_BJacobi;
548: pc->ops->destroy = PCDestroy_BJacobi;
549: pc->ops->setfromoptions = PCSetFromOptions_BJacobi;
550: pc->ops->view = PCView_BJacobi;
551: pc->ops->applyrichardson = 0;
553: pc->data = (void*)jac;
554: jac->n = -1;
555: jac->n_local = -1;
556: jac->first_local = rank;
557: jac->ksp = 0;
558: jac->same_local_solves = PETSC_TRUE;
559: jac->g_lens = 0;
560: jac->l_lens = 0;
561: jac->psubcomm = 0;
563: PetscObjectComposeFunction((PetscObject)pc,"PCBJacobiGetSubKSP_C",PCBJacobiGetSubKSP_BJacobi);
564: PetscObjectComposeFunction((PetscObject)pc,"PCBJacobiSetTotalBlocks_C",PCBJacobiSetTotalBlocks_BJacobi);
565: PetscObjectComposeFunction((PetscObject)pc,"PCBJacobiGetTotalBlocks_C",PCBJacobiGetTotalBlocks_BJacobi);
566: PetscObjectComposeFunction((PetscObject)pc,"PCBJacobiSetLocalBlocks_C",PCBJacobiSetLocalBlocks_BJacobi);
567: PetscObjectComposeFunction((PetscObject)pc,"PCBJacobiGetLocalBlocks_C",PCBJacobiGetLocalBlocks_BJacobi);
568: return(0);
569: }
571: /* --------------------------------------------------------------------------------------------*/
572: /*
573: These are for a single block per processor; works for AIJ, BAIJ; Seq and MPI
574: */
575: static PetscErrorCode PCReset_BJacobi_Singleblock(PC pc)
576: {
577: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
578: PC_BJacobi_Singleblock *bjac = (PC_BJacobi_Singleblock*)jac->data;
579: PetscErrorCode ierr;
582: KSPReset(jac->ksp[0]);
583: VecDestroy(&bjac->x);
584: VecDestroy(&bjac->y);
585: return(0);
586: }
588: static PetscErrorCode PCDestroy_BJacobi_Singleblock(PC pc)
589: {
590: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
591: PC_BJacobi_Singleblock *bjac = (PC_BJacobi_Singleblock*)jac->data;
592: PetscErrorCode ierr;
595: PCReset_BJacobi_Singleblock(pc);
596: KSPDestroy(&jac->ksp[0]);
597: PetscFree(jac->ksp);
598: PetscFree(jac->l_lens);
599: PetscFree(jac->g_lens);
600: PetscFree(bjac);
601: PetscFree(pc->data);
602: return(0);
603: }
605: static PetscErrorCode PCSetUpOnBlocks_BJacobi_Singleblock(PC pc)
606: {
607: PetscErrorCode ierr;
608: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
609: KSP subksp = jac->ksp[0];
610: KSPConvergedReason reason;
613: KSPSetUp(subksp);
614: KSPGetConvergedReason(subksp,&reason);
615: if (reason == KSP_DIVERGED_PC_FAILED) {
616: pc->failedreason = PC_SUBPC_ERROR;
617: }
618: return(0);
619: }
621: static PetscErrorCode PCApply_BJacobi_Singleblock(PC pc,Vec x,Vec y)
622: {
623: PetscErrorCode ierr;
624: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
625: PC_BJacobi_Singleblock *bjac = (PC_BJacobi_Singleblock*)jac->data;
628: VecGetLocalVectorRead(x, bjac->x);
629: VecGetLocalVector(y, bjac->y);
630: /* Since the inner KSP matrix may point directly to the diagonal block of an MPI matrix the inner
631: matrix may change even if the outter KSP/PC has not updated the preconditioner, this will trigger a rebuild
632: of the inner preconditioner automatically unless we pass down the outter preconditioners reuse flag.*/
633: KSPSetReusePreconditioner(jac->ksp[0],pc->reusepreconditioner);
634: KSPSolve(jac->ksp[0],bjac->x,bjac->y);
635: KSPCheckSolve(jac->ksp[0],pc,bjac->y);
636: VecRestoreLocalVectorRead(x, bjac->x);
637: VecRestoreLocalVector(y, bjac->y);
638: return(0);
639: }
641: static PetscErrorCode PCApplySymmetricLeft_BJacobi_Singleblock(PC pc,Vec x,Vec y)
642: {
643: PetscErrorCode ierr;
644: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
645: PC_BJacobi_Singleblock *bjac = (PC_BJacobi_Singleblock*)jac->data;
646: PetscScalar *y_array;
647: const PetscScalar *x_array;
648: PC subpc;
651: /*
652: The VecPlaceArray() is to avoid having to copy the
653: y vector into the bjac->x vector. The reason for
654: the bjac->x vector is that we need a sequential vector
655: for the sequential solve.
656: */
657: VecGetArrayRead(x,&x_array);
658: VecGetArray(y,&y_array);
659: VecPlaceArray(bjac->x,x_array);
660: VecPlaceArray(bjac->y,y_array);
661: /* apply the symmetric left portion of the inner PC operator */
662: /* note this by-passes the inner KSP and its options completely */
663: KSPGetPC(jac->ksp[0],&subpc);
664: PCApplySymmetricLeft(subpc,bjac->x,bjac->y);
665: VecResetArray(bjac->x);
666: VecResetArray(bjac->y);
667: VecRestoreArrayRead(x,&x_array);
668: VecRestoreArray(y,&y_array);
669: return(0);
670: }
672: static PetscErrorCode PCApplySymmetricRight_BJacobi_Singleblock(PC pc,Vec x,Vec y)
673: {
674: PetscErrorCode ierr;
675: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
676: PC_BJacobi_Singleblock *bjac = (PC_BJacobi_Singleblock*)jac->data;
677: PetscScalar *y_array;
678: const PetscScalar *x_array;
679: PC subpc;
682: /*
683: The VecPlaceArray() is to avoid having to copy the
684: y vector into the bjac->x vector. The reason for
685: the bjac->x vector is that we need a sequential vector
686: for the sequential solve.
687: */
688: VecGetArrayRead(x,&x_array);
689: VecGetArray(y,&y_array);
690: VecPlaceArray(bjac->x,x_array);
691: VecPlaceArray(bjac->y,y_array);
693: /* apply the symmetric right portion of the inner PC operator */
694: /* note this by-passes the inner KSP and its options completely */
696: KSPGetPC(jac->ksp[0],&subpc);
697: PCApplySymmetricRight(subpc,bjac->x,bjac->y);
699: VecRestoreArrayRead(x,&x_array);
700: VecRestoreArray(y,&y_array);
701: return(0);
702: }
704: static PetscErrorCode PCApplyTranspose_BJacobi_Singleblock(PC pc,Vec x,Vec y)
705: {
706: PetscErrorCode ierr;
707: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
708: PC_BJacobi_Singleblock *bjac = (PC_BJacobi_Singleblock*)jac->data;
709: PetscScalar *y_array;
710: const PetscScalar *x_array;
713: /*
714: The VecPlaceArray() is to avoid having to copy the
715: y vector into the bjac->x vector. The reason for
716: the bjac->x vector is that we need a sequential vector
717: for the sequential solve.
718: */
719: VecGetArrayRead(x,&x_array);
720: VecGetArray(y,&y_array);
721: VecPlaceArray(bjac->x,x_array);
722: VecPlaceArray(bjac->y,y_array);
723: KSPSolveTranspose(jac->ksp[0],bjac->x,bjac->y);
724: KSPCheckSolve(jac->ksp[0],pc,bjac->y);
725: VecResetArray(bjac->x);
726: VecResetArray(bjac->y);
727: VecRestoreArrayRead(x,&x_array);
728: VecRestoreArray(y,&y_array);
729: return(0);
730: }
732: static PetscErrorCode PCSetUp_BJacobi_Singleblock(PC pc,Mat mat,Mat pmat)
733: {
734: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
735: PetscErrorCode ierr;
736: PetscInt m;
737: KSP ksp;
738: PC_BJacobi_Singleblock *bjac;
739: PetscBool wasSetup = PETSC_TRUE;
740: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_VIENNACL)
741: PetscBool is_gpumatrix = PETSC_FALSE;
742: #endif
745: if (!pc->setupcalled) {
746: const char *prefix;
748: if (!jac->ksp) {
749: wasSetup = PETSC_FALSE;
751: KSPCreate(PETSC_COMM_SELF,&ksp);
752: KSPSetErrorIfNotConverged(ksp,pc->erroriffailure);
753: PetscObjectIncrementTabLevel((PetscObject)ksp,(PetscObject)pc,1);
754: PetscLogObjectParent((PetscObject)pc,(PetscObject)ksp);
755: KSPSetType(ksp,KSPPREONLY);
756: PCGetOptionsPrefix(pc,&prefix);
757: KSPSetOptionsPrefix(ksp,prefix);
758: KSPAppendOptionsPrefix(ksp,"sub_");
760: pc->ops->reset = PCReset_BJacobi_Singleblock;
761: pc->ops->destroy = PCDestroy_BJacobi_Singleblock;
762: pc->ops->apply = PCApply_BJacobi_Singleblock;
763: pc->ops->applysymmetricleft = PCApplySymmetricLeft_BJacobi_Singleblock;
764: pc->ops->applysymmetricright = PCApplySymmetricRight_BJacobi_Singleblock;
765: pc->ops->applytranspose = PCApplyTranspose_BJacobi_Singleblock;
766: pc->ops->setuponblocks = PCSetUpOnBlocks_BJacobi_Singleblock;
768: PetscMalloc1(1,&jac->ksp);
769: jac->ksp[0] = ksp;
771: PetscNewLog(pc,&bjac);
772: jac->data = (void*)bjac;
773: } else {
774: ksp = jac->ksp[0];
775: bjac = (PC_BJacobi_Singleblock*)jac->data;
776: }
778: /*
779: The reason we need to generate these vectors is to serve
780: as the right-hand side and solution vector for the solve on the
781: block. We do not need to allocate space for the vectors since
782: that is provided via VecPlaceArray() just before the call to
783: KSPSolve() on the block.
784: */
785: MatGetSize(pmat,&m,&m);
786: VecCreateSeqWithArray(PETSC_COMM_SELF,1,m,NULL,&bjac->x);
787: VecCreateSeqWithArray(PETSC_COMM_SELF,1,m,NULL,&bjac->y);
788: #if defined(PETSC_HAVE_CUDA)
789: PetscObjectTypeCompareAny((PetscObject)pmat,&is_gpumatrix,MATAIJCUSPARSE,MATSEQAIJCUSPARSE,MATMPIAIJCUSPARSE,"");
790: if (is_gpumatrix) {
791: VecSetType(bjac->x,VECCUDA);
792: VecSetType(bjac->y,VECCUDA);
793: }
794: #endif
795: #if defined(PETSC_HAVE_VIENNACL)
796: PetscObjectTypeCompareAny((PetscObject)pmat,&is_gpumatrix,MATAIJVIENNACL,MATSEQAIJVIENNACL,MATMPIAIJVIENNACL,"");
797: if (is_gpumatrix) {
798: VecSetType(bjac->x,VECVIENNACL);
799: VecSetType(bjac->y,VECVIENNACL);
800: }
801: #endif
802: PetscLogObjectParent((PetscObject)pc,(PetscObject)bjac->x);
803: PetscLogObjectParent((PetscObject)pc,(PetscObject)bjac->y);
804: } else {
805: ksp = jac->ksp[0];
806: bjac = (PC_BJacobi_Singleblock*)jac->data;
807: }
808: if (pc->useAmat) {
809: KSPSetOperators(ksp,mat,pmat);
810: } else {
811: KSPSetOperators(ksp,pmat,pmat);
812: }
813: if (!wasSetup && pc->setfromoptionscalled) {
814: /* If PCSetFromOptions_BJacobi is called later, KSPSetFromOptions will be called at that time. */
815: KSPSetFromOptions(ksp);
816: }
817: return(0);
818: }
820: /* ---------------------------------------------------------------------------------------------*/
821: static PetscErrorCode PCReset_BJacobi_Multiblock(PC pc)
822: {
823: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
824: PC_BJacobi_Multiblock *bjac = (PC_BJacobi_Multiblock*)jac->data;
825: PetscErrorCode ierr;
826: PetscInt i;
829: if (bjac && bjac->pmat) {
830: MatDestroyMatrices(jac->n_local,&bjac->pmat);
831: if (pc->useAmat) {
832: MatDestroyMatrices(jac->n_local,&bjac->mat);
833: }
834: }
836: for (i=0; i<jac->n_local; i++) {
837: KSPReset(jac->ksp[i]);
838: if (bjac && bjac->x) {
839: VecDestroy(&bjac->x[i]);
840: VecDestroy(&bjac->y[i]);
841: ISDestroy(&bjac->is[i]);
842: }
843: }
844: PetscFree(jac->l_lens);
845: PetscFree(jac->g_lens);
846: return(0);
847: }
849: static PetscErrorCode PCDestroy_BJacobi_Multiblock(PC pc)
850: {
851: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
852: PC_BJacobi_Multiblock *bjac = (PC_BJacobi_Multiblock*)jac->data;
853: PetscErrorCode ierr;
854: PetscInt i;
857: PCReset_BJacobi_Multiblock(pc);
858: if (bjac) {
859: PetscFree2(bjac->x,bjac->y);
860: PetscFree(bjac->starts);
861: PetscFree(bjac->is);
862: }
863: PetscFree(jac->data);
864: for (i=0; i<jac->n_local; i++) {
865: KSPDestroy(&jac->ksp[i]);
866: }
867: PetscFree(jac->ksp);
868: PetscFree(pc->data);
869: return(0);
870: }
872: static PetscErrorCode PCSetUpOnBlocks_BJacobi_Multiblock(PC pc)
873: {
874: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
875: PetscErrorCode ierr;
876: PetscInt i,n_local = jac->n_local;
877: KSPConvergedReason reason;
880: for (i=0; i<n_local; i++) {
881: KSPSetUp(jac->ksp[i]);
882: KSPGetConvergedReason(jac->ksp[i],&reason);
883: if (reason == KSP_DIVERGED_PC_FAILED) {
884: pc->failedreason = PC_SUBPC_ERROR;
885: }
886: }
887: return(0);
888: }
890: /*
891: Preconditioner for block Jacobi
892: */
893: static PetscErrorCode PCApply_BJacobi_Multiblock(PC pc,Vec x,Vec y)
894: {
895: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
896: PetscErrorCode ierr;
897: PetscInt i,n_local = jac->n_local;
898: PC_BJacobi_Multiblock *bjac = (PC_BJacobi_Multiblock*)jac->data;
899: PetscScalar *yin;
900: const PetscScalar *xin;
903: VecGetArrayRead(x,&xin);
904: VecGetArray(y,&yin);
905: for (i=0; i<n_local; i++) {
906: /*
907: To avoid copying the subvector from x into a workspace we instead
908: make the workspace vector array point to the subpart of the array of
909: the global vector.
910: */
911: VecPlaceArray(bjac->x[i],xin+bjac->starts[i]);
912: VecPlaceArray(bjac->y[i],yin+bjac->starts[i]);
914: PetscLogEventBegin(PC_ApplyOnBlocks,jac->ksp[i],bjac->x[i],bjac->y[i],0);
915: KSPSolve(jac->ksp[i],bjac->x[i],bjac->y[i]);
916: KSPCheckSolve(jac->ksp[i],pc,bjac->y[i]);
917: PetscLogEventEnd(PC_ApplyOnBlocks,jac->ksp[i],bjac->x[i],bjac->y[i],0);
919: VecResetArray(bjac->x[i]);
920: VecResetArray(bjac->y[i]);
921: }
922: VecRestoreArrayRead(x,&xin);
923: VecRestoreArray(y,&yin);
924: return(0);
925: }
927: /*
928: Preconditioner for block Jacobi
929: */
930: static PetscErrorCode PCApplyTranspose_BJacobi_Multiblock(PC pc,Vec x,Vec y)
931: {
932: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
933: PetscErrorCode ierr;
934: PetscInt i,n_local = jac->n_local;
935: PC_BJacobi_Multiblock *bjac = (PC_BJacobi_Multiblock*)jac->data;
936: PetscScalar *yin;
937: const PetscScalar *xin;
940: VecGetArrayRead(x,&xin);
941: VecGetArray(y,&yin);
942: for (i=0; i<n_local; i++) {
943: /*
944: To avoid copying the subvector from x into a workspace we instead
945: make the workspace vector array point to the subpart of the array of
946: the global vector.
947: */
948: VecPlaceArray(bjac->x[i],xin+bjac->starts[i]);
949: VecPlaceArray(bjac->y[i],yin+bjac->starts[i]);
951: PetscLogEventBegin(PC_ApplyTransposeOnBlocks,jac->ksp[i],bjac->x[i],bjac->y[i],0);
952: KSPSolveTranspose(jac->ksp[i],bjac->x[i],bjac->y[i]);
953: KSPCheckSolve(jac->ksp[i],pc,bjac->y[i]);
954: PetscLogEventEnd(PC_ApplyTransposeOnBlocks,jac->ksp[i],bjac->x[i],bjac->y[i],0);
956: VecResetArray(bjac->x[i]);
957: VecResetArray(bjac->y[i]);
958: }
959: VecRestoreArrayRead(x,&xin);
960: VecRestoreArray(y,&yin);
961: return(0);
962: }
964: static PetscErrorCode PCSetUp_BJacobi_Multiblock(PC pc,Mat mat,Mat pmat)
965: {
966: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
967: PetscErrorCode ierr;
968: PetscInt m,n_local,N,M,start,i;
969: const char *prefix,*pprefix,*mprefix;
970: KSP ksp;
971: Vec x,y;
972: PC_BJacobi_Multiblock *bjac = (PC_BJacobi_Multiblock*)jac->data;
973: PC subpc;
974: IS is;
975: MatReuse scall;
976: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_VIENNACL)
977: PetscBool is_gpumatrix = PETSC_FALSE;
978: #endif
981: MatGetLocalSize(pc->pmat,&M,&N);
983: n_local = jac->n_local;
985: if (pc->useAmat) {
986: PetscBool same;
987: PetscObjectTypeCompare((PetscObject)mat,((PetscObject)pmat)->type_name,&same);
988: if (!same) SETERRQ(PetscObjectComm((PetscObject)pc),PETSC_ERR_ARG_INCOMP,"Matrices not of same type");
989: }
991: if (!pc->setupcalled) {
992: scall = MAT_INITIAL_MATRIX;
994: if (!jac->ksp) {
995: pc->ops->reset = PCReset_BJacobi_Multiblock;
996: pc->ops->destroy = PCDestroy_BJacobi_Multiblock;
997: pc->ops->apply = PCApply_BJacobi_Multiblock;
998: pc->ops->applytranspose= PCApplyTranspose_BJacobi_Multiblock;
999: pc->ops->setuponblocks = PCSetUpOnBlocks_BJacobi_Multiblock;
1001: PetscNewLog(pc,&bjac);
1002: PetscMalloc1(n_local,&jac->ksp);
1003: PetscLogObjectMemory((PetscObject)pc,sizeof(n_local*sizeof(KSP)));
1004: PetscMalloc2(n_local,&bjac->x,n_local,&bjac->y);
1005: PetscMalloc1(n_local,&bjac->starts);
1006: PetscLogObjectMemory((PetscObject)pc,sizeof(n_local*sizeof(PetscScalar)));
1008: jac->data = (void*)bjac;
1009: PetscMalloc1(n_local,&bjac->is);
1010: PetscLogObjectMemory((PetscObject)pc,sizeof(n_local*sizeof(IS)));
1012: for (i=0; i<n_local; i++) {
1013: KSPCreate(PETSC_COMM_SELF,&ksp);
1014: KSPSetErrorIfNotConverged(ksp,pc->erroriffailure);
1015: PetscObjectIncrementTabLevel((PetscObject)ksp,(PetscObject)pc,1);
1016: PetscLogObjectParent((PetscObject)pc,(PetscObject)ksp);
1017: KSPSetType(ksp,KSPPREONLY);
1018: KSPGetPC(ksp,&subpc);
1019: PCGetOptionsPrefix(pc,&prefix);
1020: KSPSetOptionsPrefix(ksp,prefix);
1021: KSPAppendOptionsPrefix(ksp,"sub_");
1023: jac->ksp[i] = ksp;
1024: }
1025: } else {
1026: bjac = (PC_BJacobi_Multiblock*)jac->data;
1027: }
1029: start = 0;
1030: for (i=0; i<n_local; i++) {
1031: m = jac->l_lens[i];
1032: /*
1033: The reason we need to generate these vectors is to serve
1034: as the right-hand side and solution vector for the solve on the
1035: block. We do not need to allocate space for the vectors since
1036: that is provided via VecPlaceArray() just before the call to
1037: KSPSolve() on the block.
1039: */
1040: VecCreateSeq(PETSC_COMM_SELF,m,&x);
1041: VecCreateSeqWithArray(PETSC_COMM_SELF,1,m,NULL,&y);
1042: #if defined(PETSC_HAVE_CUDA)
1043: PetscObjectTypeCompareAny((PetscObject)pmat,&is_gpumatrix,MATAIJCUSPARSE,MATSEQAIJCUSPARSE,MATMPIAIJCUSPARSE,"");
1044: if (is_gpumatrix) {
1045: VecSetType(x,VECCUDA);
1046: VecSetType(y,VECCUDA);
1047: }
1048: #endif
1049: #if defined(PETSC_HAVE_VIENNACL)
1050: PetscObjectTypeCompareAny((PetscObject)pmat,&is_gpumatrix,MATAIJVIENNACL,MATSEQAIJVIENNACL,MATMPIAIJVIENNACL,"");
1051: if (is_gpumatrix) {
1052: VecSetType(x,VECVIENNACL);
1053: VecSetType(y,VECVIENNACL);
1054: }
1055: #endif
1056: PetscLogObjectParent((PetscObject)pc,(PetscObject)x);
1057: PetscLogObjectParent((PetscObject)pc,(PetscObject)y);
1059: bjac->x[i] = x;
1060: bjac->y[i] = y;
1061: bjac->starts[i] = start;
1063: ISCreateStride(PETSC_COMM_SELF,m,start,1,&is);
1064: bjac->is[i] = is;
1065: PetscLogObjectParent((PetscObject)pc,(PetscObject)is);
1067: start += m;
1068: }
1069: } else {
1070: bjac = (PC_BJacobi_Multiblock*)jac->data;
1071: /*
1072: Destroy the blocks from the previous iteration
1073: */
1074: if (pc->flag == DIFFERENT_NONZERO_PATTERN) {
1075: MatDestroyMatrices(n_local,&bjac->pmat);
1076: if (pc->useAmat) {
1077: MatDestroyMatrices(n_local,&bjac->mat);
1078: }
1079: scall = MAT_INITIAL_MATRIX;
1080: } else scall = MAT_REUSE_MATRIX;
1081: }
1083: MatCreateSubMatrices(pmat,n_local,bjac->is,bjac->is,scall,&bjac->pmat);
1084: if (pc->useAmat) {
1085: MatCreateSubMatrices(mat,n_local,bjac->is,bjac->is,scall,&bjac->mat);
1086: }
1087: /* Return control to the user so that the submatrices can be modified (e.g., to apply
1088: different boundary conditions for the submatrices than for the global problem) */
1089: PCModifySubMatrices(pc,n_local,bjac->is,bjac->is,bjac->pmat,pc->modifysubmatricesP);
1091: PetscObjectGetOptionsPrefix((PetscObject)pmat,&pprefix);
1092: for (i=0; i<n_local; i++) {
1093: PetscLogObjectParent((PetscObject)pc,(PetscObject)bjac->pmat[i]);
1094: PetscObjectSetOptionsPrefix((PetscObject)bjac->pmat[i],pprefix);
1095: if (pc->useAmat) {
1096: PetscLogObjectParent((PetscObject)pc,(PetscObject)bjac->mat[i]);
1097: PetscObjectGetOptionsPrefix((PetscObject)mat,&mprefix);
1098: PetscObjectSetOptionsPrefix((PetscObject)bjac->mat[i],mprefix);
1099: KSPSetOperators(jac->ksp[i],bjac->mat[i],bjac->pmat[i]);
1100: } else {
1101: KSPSetOperators(jac->ksp[i],bjac->pmat[i],bjac->pmat[i]);
1102: }
1103: if (pc->setfromoptionscalled) {
1104: KSPSetFromOptions(jac->ksp[i]);
1105: }
1106: }
1107: return(0);
1108: }
1110: /* ---------------------------------------------------------------------------------------------*/
1111: /*
1112: These are for a single block with multiple processes;
1113: */
1114: static PetscErrorCode PCReset_BJacobi_Multiproc(PC pc)
1115: {
1116: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
1117: PC_BJacobi_Multiproc *mpjac = (PC_BJacobi_Multiproc*)jac->data;
1118: PetscErrorCode ierr;
1121: VecDestroy(&mpjac->ysub);
1122: VecDestroy(&mpjac->xsub);
1123: MatDestroy(&mpjac->submats);
1124: if (jac->ksp) {KSPReset(jac->ksp[0]);}
1125: return(0);
1126: }
1128: static PetscErrorCode PCDestroy_BJacobi_Multiproc(PC pc)
1129: {
1130: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
1131: PC_BJacobi_Multiproc *mpjac = (PC_BJacobi_Multiproc*)jac->data;
1132: PetscErrorCode ierr;
1135: PCReset_BJacobi_Multiproc(pc);
1136: KSPDestroy(&jac->ksp[0]);
1137: PetscFree(jac->ksp);
1138: PetscSubcommDestroy(&mpjac->psubcomm);
1140: PetscFree(mpjac);
1141: PetscFree(pc->data);
1142: return(0);
1143: }
1145: static PetscErrorCode PCApply_BJacobi_Multiproc(PC pc,Vec x,Vec y)
1146: {
1147: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
1148: PC_BJacobi_Multiproc *mpjac = (PC_BJacobi_Multiproc*)jac->data;
1149: PetscErrorCode ierr;
1150: PetscScalar *yarray;
1151: const PetscScalar *xarray;
1152: KSPConvergedReason reason;
1155: /* place x's and y's local arrays into xsub and ysub */
1156: VecGetArrayRead(x,&xarray);
1157: VecGetArray(y,&yarray);
1158: VecPlaceArray(mpjac->xsub,xarray);
1159: VecPlaceArray(mpjac->ysub,yarray);
1161: /* apply preconditioner on each matrix block */
1162: PetscLogEventBegin(PC_ApplyOnBlocks,jac->ksp[0],mpjac->xsub,mpjac->ysub,0);
1163: KSPSolve(jac->ksp[0],mpjac->xsub,mpjac->ysub);
1164: KSPCheckSolve(jac->ksp[0],pc,mpjac->ysub);
1165: PetscLogEventEnd(PC_ApplyOnBlocks,jac->ksp[0],mpjac->xsub,mpjac->ysub,0);
1166: KSPGetConvergedReason(jac->ksp[0],&reason);
1167: if (reason == KSP_DIVERGED_PC_FAILED) {
1168: pc->failedreason = PC_SUBPC_ERROR;
1169: }
1171: VecResetArray(mpjac->xsub);
1172: VecResetArray(mpjac->ysub);
1173: VecRestoreArrayRead(x,&xarray);
1174: VecRestoreArray(y,&yarray);
1175: return(0);
1176: }
1178: static PetscErrorCode PCSetUp_BJacobi_Multiproc(PC pc)
1179: {
1180: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
1181: PC_BJacobi_Multiproc *mpjac = (PC_BJacobi_Multiproc*)jac->data;
1182: PetscErrorCode ierr;
1183: PetscInt m,n;
1184: MPI_Comm comm,subcomm=0;
1185: const char *prefix;
1186: PetscBool wasSetup = PETSC_TRUE;
1187: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_VIENNACL)
1188: PetscBool is_gpumatrix = PETSC_FALSE;
1189: #endif
1193: PetscObjectGetComm((PetscObject)pc,&comm);
1194: if (jac->n_local > 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Only a single block in a subcommunicator is supported");
1195: jac->n_local = 1; /* currently only a single block is supported for a subcommunicator */
1196: if (!pc->setupcalled) {
1197: wasSetup = PETSC_FALSE;
1198: PetscNewLog(pc,&mpjac);
1199: jac->data = (void*)mpjac;
1201: /* initialize datastructure mpjac */
1202: if (!jac->psubcomm) {
1203: /* Create default contiguous subcommunicatiors if user does not provide them */
1204: PetscSubcommCreate(comm,&jac->psubcomm);
1205: PetscSubcommSetNumber(jac->psubcomm,jac->n);
1206: PetscSubcommSetType(jac->psubcomm,PETSC_SUBCOMM_CONTIGUOUS);
1207: PetscLogObjectMemory((PetscObject)pc,sizeof(PetscSubcomm));
1208: }
1209: mpjac->psubcomm = jac->psubcomm;
1210: subcomm = PetscSubcommChild(mpjac->psubcomm);
1212: /* Get matrix blocks of pmat */
1213: MatGetMultiProcBlock(pc->pmat,subcomm,MAT_INITIAL_MATRIX,&mpjac->submats);
1215: /* create a new PC that processors in each subcomm have copy of */
1216: PetscMalloc1(1,&jac->ksp);
1217: KSPCreate(subcomm,&jac->ksp[0]);
1218: KSPSetErrorIfNotConverged(jac->ksp[0],pc->erroriffailure);
1219: PetscObjectIncrementTabLevel((PetscObject)jac->ksp[0],(PetscObject)pc,1);
1220: PetscLogObjectParent((PetscObject)pc,(PetscObject)jac->ksp[0]);
1221: KSPSetOperators(jac->ksp[0],mpjac->submats,mpjac->submats);
1222: KSPGetPC(jac->ksp[0],&mpjac->pc);
1224: PCGetOptionsPrefix(pc,&prefix);
1225: KSPSetOptionsPrefix(jac->ksp[0],prefix);
1226: KSPAppendOptionsPrefix(jac->ksp[0],"sub_");
1227: /*
1228: PetscMPIInt rank,subsize,subrank;
1229: MPI_Comm_rank(comm,&rank);
1230: MPI_Comm_size(subcomm,&subsize);
1231: MPI_Comm_rank(subcomm,&subrank);
1233: MatGetLocalSize(mpjac->submats,&m,NULL);
1234: MatGetSize(mpjac->submats,&n,NULL);
1235: PetscSynchronizedPrintf(comm,"[%d], sub-size %d,sub-rank %d\n",rank,subsize,subrank);
1236: PetscSynchronizedFlush(comm,PETSC_STDOUT);
1237: */
1239: /* create dummy vectors xsub and ysub */
1240: MatGetLocalSize(mpjac->submats,&m,&n);
1241: VecCreateMPIWithArray(subcomm,1,n,PETSC_DECIDE,NULL,&mpjac->xsub);
1242: VecCreateMPIWithArray(subcomm,1,m,PETSC_DECIDE,NULL,&mpjac->ysub);
1243: #if defined(PETSC_HAVE_CUDA)
1244: PetscObjectTypeCompareAny((PetscObject)mpjac->submats,&is_gpumatrix,MATAIJCUSPARSE,MATMPIAIJCUSPARSE,"");
1245: if (is_gpumatrix) {
1246: VecSetType(mpjac->xsub,VECMPICUDA);
1247: VecSetType(mpjac->ysub,VECMPICUDA);
1248: }
1249: #endif
1250: #if defined(PETSC_HAVE_VIENNACL)
1251: PetscObjectTypeCompareAny((PetscObject)mpjac->submats,&is_gpumatrix,MATAIJVIENNACL,MATMPIAIJVIENNACL,"");
1252: if (is_gpumatrix) {
1253: VecSetType(mpjac->xsub,VECMPIVIENNACL);
1254: VecSetType(mpjac->ysub,VECMPIVIENNACL);
1255: }
1256: #endif
1257: PetscLogObjectParent((PetscObject)pc,(PetscObject)mpjac->xsub);
1258: PetscLogObjectParent((PetscObject)pc,(PetscObject)mpjac->ysub);
1260: pc->ops->reset = PCReset_BJacobi_Multiproc;
1261: pc->ops->destroy = PCDestroy_BJacobi_Multiproc;
1262: pc->ops->apply = PCApply_BJacobi_Multiproc;
1263: } else { /* pc->setupcalled */
1264: subcomm = PetscSubcommChild(mpjac->psubcomm);
1265: if (pc->flag == DIFFERENT_NONZERO_PATTERN) {
1266: /* destroy old matrix blocks, then get new matrix blocks */
1267: if (mpjac->submats) {MatDestroy(&mpjac->submats);}
1268: MatGetMultiProcBlock(pc->pmat,subcomm,MAT_INITIAL_MATRIX,&mpjac->submats);
1269: } else {
1270: MatGetMultiProcBlock(pc->pmat,subcomm,MAT_REUSE_MATRIX,&mpjac->submats);
1271: }
1272: KSPSetOperators(jac->ksp[0],mpjac->submats,mpjac->submats);
1273: }
1275: if (!wasSetup && pc->setfromoptionscalled) {
1276: KSPSetFromOptions(jac->ksp[0]);
1277: }
1278: return(0);
1279: }