Actual source code: petscsystypes.h
petsc-3.12.5 2020-03-29
1: #if !defined(PETSCSYSTYPES_H)
2: #define PETSCSYSTYPES_H
4: #include <petscconf.h>
5: #include <petscfix.h>
7: /*MC
8: PetscErrorCode - datatype used for return error code from almost all PETSc functions
10: Level: beginner
12: .seealso: CHKERRQ, SETERRQ
13: M*/
14: typedef int PetscErrorCode;
16: /*MC
18: PetscClassId - A unique id used to identify each PETSc class.
20: Notes:
21: Use PetscClassIdRegister() to obtain a new value for a new class being created. Usually
22: XXXInitializePackage() calls it for each class it defines.
24: Developer Notes:
25: Internal integer stored in the _p_PetscObject data structure.
26: These are all computed by an offset from the lowest one, PETSC_SMALLEST_CLASSID.
28: Level: developer
30: .seealso: PetscClassIdRegister(), PetscLogEventRegister(), PetscHeaderCreate()
31: M*/
32: typedef int PetscClassId;
34: /*MC
35: PetscMPIInt - datatype used to represent 'int' parameters to MPI functions.
37: Level: intermediate
39: Notes:
40: usually this is the same as PetscInt, but if PETSc was built with --with-64-bit-indices but
41: standard C/Fortran integers are 32 bit then this is NOT the same as PetscInt; it remains 32 bit.
43: PetscMPIIntCast(a,&b) checks if the given PetscInt a will fit in a PetscMPIInt, if not it
44: generates a PETSC_ERR_ARG_OUTOFRANGE error.
46: .seealso: PetscBLASInt, PetscInt, PetscMPIIntCast()
48: M*/
49: typedef int PetscMPIInt;
51: /*MC
52: PetscEnum - datatype used to pass enum types within PETSc functions.
54: Level: intermediate
56: .seealso: PetscOptionsGetEnum(), PetscOptionsEnum(), PetscBagRegisterEnum()
57: M*/
58: typedef enum { ENUM_DUMMY } PetscEnum;
60: typedef short PetscShort;
61: typedef char PetscChar;
62: typedef float PetscFloat;
64: /*MC
65: PetscInt - PETSc type that represents an integer, used primarily to
66: represent size of arrays and indexing into arrays. Its size can be configured with the option --with-64-bit-indices to be either 32-bit (default) or 64-bit.
68: Notes:
69: For MPI calls that require datatypes, use MPIU_INT as the datatype for PetscInt. It will automatically work correctly regardless of the size of PetscInt.
71: Level: beginner
73: .seealso: PetscBLASInt, PetscMPIInt, PetscReal, PetscScalar, PetscComplex, PetscInt, MPIU_REAL, MPIU_SCALAR, MPIU_COMPLEX, MPIU_INT
74: M*/
76: #if defined(PETSC_HAVE_STDINT_H)
77: # include <stdint.h>
78: #endif
79: #if defined (PETSC_HAVE_INTTYPES_H)
80: # if !defined(__STDC_FORMAT_MACROS)
81: # define __STDC_FORMAT_MACROS /* required for using PRId64 from c++ */
82: # endif
83: # include <inttypes.h>
84: # if !defined(PRId64)
85: # define PRId64 "ld"
86: # endif
87: #endif
89: #if defined(PETSC_HAVE_STDINT_H) && defined(PETSC_HAVE_INTTYPES_H) && defined(PETSC_HAVE_MPI_INT64_T) /* MPI_INT64_T is not guaranteed to be a macro */
90: typedef int64_t PetscInt64;
91: #elif (PETSC_SIZEOF_LONG_LONG == 8)
92: typedef long long PetscInt64;
93: #elif defined(PETSC_HAVE___INT64)
94: typedef __int64 PetscInt64;
95: #else
96: # error "cannot determine PetscInt64 type"
97: #endif
99: #if defined(PETSC_USE_64BIT_INDICES)
100: typedef PetscInt64 PetscInt;
101: #else
102: typedef int PetscInt;
103: #endif
105: /*MC
106: PetscBLASInt - datatype used to represent 'int' parameters to BLAS/LAPACK functions.
108: Notes:
109: Usually this is the same as PetscInt, but if PETSc was built with --with-64-bit-indices but
110: standard C/Fortran integers are 32 bit then this is NOT the same as PetscInt it remains 32 bit
111: (except on very rare BLAS/LAPACK implementations that support 64 bit integers see the notes below).
113: PetscErrorCode PetscBLASIntCast(a,&b) checks if the given PetscInt a will fit in a PetscBLASInt, if not it
114: generates a PETSC_ERR_ARG_OUTOFRANGE error
116: Installation Notes:
117: ./configure automatically determines the size of the integers used by BLAS/LAPACK except when --with-batch is used
118: in that situation one must know (by some other means) if the integers used by BLAS/LAPACK are 64 bit and if so pass the flag --known-64-bit-blas-indice
120: MATLAB ships with BLAS and LAPACK that use 64 bit integers, for example if you run ./configure with, the option
121: --with-blaslapack-lib=[/Applications/MATLAB_R2010b.app/bin/maci64/libmwblas.dylib,/Applications/MATLAB_R2010b.app/bin/maci64/libmwlapack.dylib]
123: MKL ships with both 32 and 64 bit integer versions of the BLAS and LAPACK. If you pass the flag -with-64-bit-blas-indices PETSc will link
124: against the 64 bit version, otherwise it use the 32 bit version
126: OpenBLAS can be built to use 64 bit integers. The ./configure options --download-openblas -with-64-bit-blas-indices will build a 64 bit integer version
128: External packages such as hypre, ML, SuperLU etc do not provide any support for passing 64 bit integers to BLAS/LAPACK so cannot
129: be used with PETSc when PETSc links against 64 bit integer BLAS/LAPACK. ./configure will generate an error if you attempt to link PETSc against any of
130: these external libraries while using 64 bit integer BLAS/LAPACK.
132: Level: intermediate
134: .seealso: PetscMPIInt, PetscInt, PetscBLASIntCast()
136: M*/
137: #if defined(PETSC_HAVE_64BIT_BLAS_INDICES)
138: typedef PetscInt64 PetscBLASInt;
139: #else
140: typedef int PetscBLASInt;
141: #endif
143: /*E
144: PetscBool - Logical variable. Actually an int in C and a logical in Fortran.
146: Level: beginner
148: Developer Note:
149: Why have PetscBool , why not use bool in C? The problem is that K and R C, C99 and C++ all have different mechanisms for
150: boolean values. It is not easy to have a simple macro that that will work properly in all circumstances with all three mechanisms.
152: .seealso: PETSC_TRUE, PETSC_FALSE, PetscNot()
153: E*/
154: typedef enum { PETSC_FALSE,PETSC_TRUE } PetscBool;
156: /*MC
157: PetscReal - PETSc type that represents a real number version of PetscScalar
160: Notes:
161: For MPI calls that require datatypes, use MPIU_REAL as the datatype for PetscScalar and MPIU_SUM, MPIU_MAX, etc. for operations.
162: They will automatically work correctly regardless of the size of PetscReal.
164: See PetscScalar for details on how to ./configure the size of PetscReal.
166: Level: beginner
168: .seealso: PetscScalar, PetscComplex, PetscInt, MPIU_REAL, MPIU_SCALAR, MPIU_COMPLEX, MPIU_INT
169: M*/
171: #if defined(PETSC_USE_REAL_SINGLE)
172: typedef float PetscReal;
173: #elif defined(PETSC_USE_REAL_DOUBLE)
174: typedef double PetscReal;
175: #elif defined(PETSC_USE_REAL___FLOAT128)
176: # if defined(__cplusplus)
177: extern "C" {
178: # endif
179: # include <quadmath.h>
180: # if defined(__cplusplus)
181: }
182: # endif
183: typedef __float128 PetscReal;
184: #elif defined(PETSC_USE_REAL___FP16)
185: typedef __fp16 PetscReal;
186: #endif /* PETSC_USE_REAL_* */
188: /*MC
189: PetscComplex - PETSc type that represents a complex number with precision matching that of PetscReal.
191: Synopsis:
192: #include <petscsys.h>
193: PetscComplex number = 1. + 2.*PETSC_i;
195: Notes:
196: For MPI calls that require datatypes, use MPIU_COMPLEX as the datatype for PetscComplex and MPIU_SUM etc for operations.
197: They will automatically work correctly regardless of the size of PetscComplex.
199: See PetscScalar for details on how to ./configure the size of PetscReal
201: Complex numbers are automatically available if PETSc was able to find a working complex implementation
203: Level: beginner
205: .seealso: PetscReal, PetscScalar, PetscComplex, PetscInt, MPIU_REAL, MPIU_SCALAR, MPIU_COMPLEX, MPIU_INT, PETSC_i
206: M*/
208: #if defined(__cplusplus) && defined(PETSC_HAVE_CXX_COMPLEX) && !defined(PETSC_USE_REAL___FLOAT128)
209: # if !defined(PETSC_SKIP_COMPLEX)
210: /* C++ support of complex number */
211: # define PETSC_HAVE_COMPLEX 1
212: # if defined(PETSC_HAVE_CUDA) && __CUDACC_VER_MAJOR__ > 6
213: /* complex headers in thrust only available in CUDA 7.0 and above */
214: # define petsccomplexlib thrust
215: # include <thrust/complex.h>
216: # else
217: # define petsccomplexlib std
218: # include <complex>
219: # endif
220: # if defined(PETSC_USE_REAL_SINGLE)
221: typedef petsccomplexlib::complex<float> PetscComplex;
222: # elif defined(PETSC_USE_REAL_DOUBLE)
223: typedef petsccomplexlib::complex<double> PetscComplex;
224: # elif defined(PETSC_USE_REAL___FLOAT128)
225: typedef petsccomplexlib::complex<__float128> PetscComplex; /* Notstandard and not expected to work, use __complex128 */
226: # endif /* PETSC_USE_REAL_ */
227: # endif /* ! PETSC_SKIP_COMPLEX */
228: # if !defined(PETSC_SKIP_CXX_COMPLEX_FIX)
229: # include <petsccxxcomplexfix.h>
230: # endif /* ! PETSC_SKIP_CXX_COMPLEX_FIX */
231: #elif defined(PETSC_HAVE_C99_COMPLEX) && !defined(PETSC_USE_REAL___FP16)
232: # if !defined(PETSC_SKIP_COMPLEX)
233: # define PETSC_HAVE_COMPLEX 1
234: # include <complex.h>
235: # if defined(PETSC_USE_REAL_SINGLE) || defined(PETSC_USE_REAL___FP16)
236: typedef float _Complex PetscComplex;
237: # elif defined(PETSC_USE_REAL_DOUBLE)
238: typedef double _Complex PetscComplex;
239: # elif defined(PETSC_USE_REAL___FLOAT128)
240: typedef __complex128 PetscComplex;
241: # endif /* PETSC_USE_REAL_* */
242: # endif /* !PETSC_SKIP_COMPLEX */
243: #elif (defined(PETSC_USE_COMPLEX) && !defined(PETSC_SKIP_COMPLEX))
244: # error "PETSc was configured --with-scalar-type=complex, but a language-appropriate complex library is not available"
245: #endif /* !PETSC_SKIP_COMPLEX */
247: /*MC
248: PetscScalar - PETSc type that represents either a double precision real number, a double precision
249: complex number, a single precision real number, a __float128 real or complex or a __fp16 real - if the code is configured
250: with --with-scalar-type=real,complex --with-precision=single,double,__float128,__fp16
252: Notes:
253: For MPI calls that require datatypes, use MPIU_SCALAR as the datatype for PetscScalar and MPIU_SUM, MPIU_MAX etc for operations. They will automatically work correctly regardless of the size of PetscScalar.
255: Level: beginner
257: .seealso: PetscReal, PetscComplex, PetscInt, MPIU_REAL, MPIU_SCALAR, MPIU_COMPLEX, MPIU_INT, PetscRealPart(), PetscImaginaryPart()
258: M*/
260: #if (defined(PETSC_USE_COMPLEX) && !defined(PETSC_SKIP_COMPLEX))
261: typedef PetscComplex PetscScalar;
262: #else /* PETSC_USE_COMPLEX */
263: typedef PetscReal PetscScalar;
264: #endif /* PETSC_USE_COMPLEX */
266: /*E
267: PetscCopyMode - Determines how an array passed to certain functions is copied or retained
269: Level: beginner
271: $ PETSC_COPY_VALUES - the array values are copied into new space, the user is free to reuse or delete the passed in array
272: $ PETSC_OWN_POINTER - the array values are NOT copied, the object takes ownership of the array and will free it later, the user cannot change or
273: $ delete the array. The array MUST have been obtained with PetscMalloc(). Hence this mode cannot be used in Fortran.
274: $ PETSC_USE_POINTER - the array values are NOT copied, the object uses the array but does NOT take ownership of the array. The user cannot use
275: the array but the user must delete the array after the object is destroyed.
277: E*/
278: typedef enum {PETSC_COPY_VALUES, PETSC_OWN_POINTER, PETSC_USE_POINTER} PetscCopyMode;
280: /*MC
281: PETSC_FALSE - False value of PetscBool
283: Level: beginner
285: Note:
286: Zero integer
288: .seealso: PetscBool, PETSC_TRUE
289: M*/
291: /*MC
292: PETSC_TRUE - True value of PetscBool
294: Level: beginner
296: Note:
297: Nonzero integer
299: .seealso: PetscBool, PETSC_FALSE
300: M*/
302: /*MC
303: PetscLogDouble - Used for logging times
305: Notes:
306: Contains double precision numbers that are not used in the numerical computations, but rather in logging, timing etc.
308: Level: developer
310: M*/
311: typedef double PetscLogDouble;
313: /*E
314: PetscDataType - Used for handling different basic data types.
316: Level: beginner
318: Notes:
319: Use of this should be avoided if one can directly use MPI_Datatype instead.
321: PETSC_INT is the datatype for a PetscInt, regardless of whether it is 4 or 8 bytes.
322: PETSC_REAL, PETSC_COMPLEX and PETSC_SCALAR are the datatypes for PetscReal, PetscComplex and PetscScalar, regardless of their sizes.
324: Developer comment:
325: It would be nice if we could always just use MPI Datatypes, why can we not?
327: If you change any values in PetscDatatype make sure you update their usage in
328: share/petsc/matlab/PetscBagRead.m
330: TODO: Add PETSC_INT32 and remove use of improper PETSC_ENUM
332: .seealso: PetscBinaryRead(), PetscBinaryWrite(), PetscDataTypeToMPIDataType(),
333: PetscDataTypeGetSize()
335: E*/
336: typedef enum {PETSC_DATATYPE_UNKNOWN = 0,
337: PETSC_DOUBLE = 1, PETSC_COMPLEX = 2, PETSC_LONG = 3, PETSC_SHORT = 4, PETSC_FLOAT = 5,
338: PETSC_CHAR = 6, PETSC_BIT_LOGICAL = 7, PETSC_ENUM = 8, PETSC_BOOL = 9, PETSC___FLOAT128 = 10,
339: PETSC_OBJECT = 11, PETSC_FUNCTION = 12, PETSC_STRING = 13, PETSC___FP16 = 14, PETSC_STRUCT = 15,
340: PETSC_INT = 16, PETSC_INT64 = 17} PetscDataType;
342: #if defined(PETSC_USE_REAL_SINGLE)
343: # define PETSC_REAL PETSC_FLOAT
344: #elif defined(PETSC_USE_REAL_DOUBLE)
345: # define PETSC_REAL PETSC_DOUBLE
346: #elif defined(PETSC_USE_REAL___FLOAT128)
347: # define PETSC_REAL PETSC___FLOAT128
348: #elif defined(PETSC_USE_REAL___FP16)
349: # define PETSC_REAL PETSC___FP16
350: #else
351: # define PETSC_REAL PETSC_DOUBLE
352: #endif
354: #if defined(PETSC_USE_COMPLEX)
355: # define PETSC_SCALAR PETSC_COMPLEX
356: #else
357: # define PETSC_SCALAR PETSC_REAL
358: #endif
360: #define PETSC_FORTRANADDR PETSC_LONG
362: /*S
363: PetscToken - 'Token' used for managing tokenizing strings
365: Level: intermediate
367: .seealso: PetscTokenCreate(), PetscTokenFind(), PetscTokenDestroy()
368: S*/
369: typedef struct _p_PetscToken* PetscToken;
371: /*S
372: PetscObject - any PETSc object, PetscViewer, Mat, Vec, KSP etc
374: Level: beginner
376: Note:
377: This is the base class from which all PETSc objects are derived from.
379: .seealso: PetscObjectDestroy(), PetscObjectView(), PetscObjectGetName(), PetscObjectSetName(), PetscObjectReference(), PetscObjectDereference()
380: S*/
381: typedef struct _p_PetscObject* PetscObject;
383: /*MC
384: PetscObjectId - unique integer Id for a PetscObject
386: Level: developer
388: Notes:
389: Unlike pointer values, object ids are never reused.
391: .seealso: PetscObjectState, PetscObjectGetId()
392: M*/
393: #if defined(PETSC_USING_F90) && !defined(PETSC_USE_FORTRANKIND) /* compaq F90 */
394: typedef int PetscObjectId;
395: #else
396: typedef PetscInt64 PetscObjectId;
397: #endif
399: /*MC
400: PetscObjectState - integer state for a PetscObject
402: Level: developer
404: Notes:
405: Object state is always-increasing and (for objects that track state) can be used to determine if an object has
406: changed since the last time you interacted with it. It is 64-bit so that it will not overflow for a very long time.
408: .seealso: PetscObjectId, PetscObjectStateGet(), PetscObjectStateIncrease(), PetscObjectStateSet()
409: M*/
410: #if defined(PETSC_USING_F90) && !defined(PETSC_USE_FORTRANKIND) /* compaq F90 */
411: typedef int PetscObjectState;
412: #else
413: typedef PetscInt64 PetscObjectState;
414: #endif
416: /*S
417: PetscFunctionList - Linked list of functions, possibly stored in dynamic libraries, accessed
418: by string name
420: Level: advanced
422: .seealso: PetscFunctionListAdd(), PetscFunctionListDestroy()
423: S*/
424: typedef struct _n_PetscFunctionList *PetscFunctionList;
426: /*E
427: PetscFileMode - Access mode for a file.
429: Level: beginner
431: $ FILE_MODE_READ - open a file at its beginning for reading
432: $ FILE_MODE_WRITE - open a file at its beginning for writing (will create if the file does not exist)
433: $ FILE_MODE_APPEND - open a file at end for writing
434: $ FILE_MODE_UPDATE - open a file for updating, meaning for reading and writing
435: $ FILE_MODE_APPEND_UPDATE - open a file for updating, meaning for reading and writing, at the end
437: .seealso: PetscViewerFileSetMode()
438: E*/
439: typedef enum {FILE_MODE_READ, FILE_MODE_WRITE, FILE_MODE_APPEND, FILE_MODE_UPDATE, FILE_MODE_APPEND_UPDATE} PetscFileMode;
441: typedef void* PetscDLHandle;
442: typedef enum {PETSC_DL_DECIDE=0,PETSC_DL_NOW=1,PETSC_DL_LOCAL=2} PetscDLMode;
444: /*S
445: PetscObjectList - Linked list of PETSc objects, each accessible by string name
447: Level: developer
449: Notes:
450: Used by PetscObjectCompose() and PetscObjectQuery()
452: .seealso: PetscObjectListAdd(), PetscObjectListDestroy(), PetscObjectListFind(), PetscObjectCompose(), PetscObjectQuery(), PetscFunctionList
453: S*/
454: typedef struct _n_PetscObjectList *PetscObjectList;
456: /*S
457: PetscDLLibrary - Linked list of dynamics libraries to search for functions
459: Level: advanced
461: .seealso: PetscDLLibraryOpen()
462: S*/
463: typedef struct _n_PetscDLLibrary *PetscDLLibrary;
465: /*S
466: PetscContainer - Simple PETSc object that contains a pointer to any required data
468: Level: advanced
470: .seealso: PetscObject, PetscContainerCreate()
471: S*/
472: typedef struct _p_PetscContainer* PetscContainer;
474: /*S
475: PetscRandom - Abstract PETSc object that manages generating random numbers
477: Level: intermediate
479: .seealso: PetscRandomCreate(), PetscRandomGetValue(), PetscRandomType
480: S*/
481: typedef struct _p_PetscRandom* PetscRandom;
483: /*
484: In binary files variables are stored using the following lengths,
485: regardless of how they are stored in memory on any one particular
486: machine. Use these rather then sizeof() in computing sizes for
487: PetscBinarySeek().
488: */
489: #define PETSC_BINARY_INT_SIZE (32/8)
490: #define PETSC_BINARY_FLOAT_SIZE (32/8)
491: #define PETSC_BINARY_CHAR_SIZE (8/8)
492: #define PETSC_BINARY_SHORT_SIZE (16/8)
493: #define PETSC_BINARY_DOUBLE_SIZE (64/8)
494: #define PETSC_BINARY_SCALAR_SIZE sizeof(PetscScalar)
496: /*E
497: PetscBinarySeekType - argument to PetscBinarySeek()
499: Level: advanced
501: .seealso: PetscBinarySeek(), PetscBinarySynchronizedSeek()
502: E*/
503: typedef enum {PETSC_BINARY_SEEK_SET = 0,PETSC_BINARY_SEEK_CUR = 1,PETSC_BINARY_SEEK_END = 2} PetscBinarySeekType;
505: /*E
506: PetscBuildTwoSidedType - algorithm for setting up two-sided communication
508: $ PETSC_BUILDTWOSIDED_ALLREDUCE - classical algorithm using an MPI_Allreduce with
509: $ a buffer of length equal to the communicator size. Not memory-scalable due to
510: $ the large reduction size. Requires only MPI-1.
511: $ PETSC_BUILDTWOSIDED_IBARRIER - nonblocking algorithm based on MPI_Issend and MPI_Ibarrier.
512: $ Proved communication-optimal in Hoefler, Siebert, and Lumsdaine (2010). Requires MPI-3.
513: $ PETSC_BUILDTWOSIDED_REDSCATTER - similar to above, but use more optimized function
514: $ that only communicates the part of the reduction that is necessary. Requires MPI-2.
516: Level: developer
518: .seealso: PetscCommBuildTwoSided(), PetscCommBuildTwoSidedSetType(), PetscCommBuildTwoSidedGetType()
519: E*/
520: typedef enum {
521: PETSC_BUILDTWOSIDED_NOTSET = -1,
522: PETSC_BUILDTWOSIDED_ALLREDUCE = 0,
523: PETSC_BUILDTWOSIDED_IBARRIER = 1,
524: PETSC_BUILDTWOSIDED_REDSCATTER = 2
525: /* Updates here must be accompanied by updates in finclude/petscsys.h and the string array in mpits.c */
526: } PetscBuildTwoSidedType;
528: /* NOTE: If you change this, you must also change the values in src/vec/f90-mod/petscvec.h */
529: /*E
530: InsertMode - Whether entries are inserted or added into vectors or matrices
532: Level: beginner
534: .seealso: VecSetValues(), MatSetValues(), VecSetValue(), VecSetValuesBlocked(),
535: VecSetValuesLocal(), VecSetValuesBlockedLocal(), MatSetValuesBlocked(),
536: MatSetValuesBlockedLocal(), MatSetValuesLocal(), VecScatterBegin(), VecScatterEnd()
537: E*/
538: typedef enum {NOT_SET_VALUES, INSERT_VALUES, ADD_VALUES, MAX_VALUES, MIN_VALUES, INSERT_ALL_VALUES, ADD_ALL_VALUES, INSERT_BC_VALUES, ADD_BC_VALUES} InsertMode;
540: /*MC
541: INSERT_VALUES - Put a value into a vector or matrix, overwrites any previous value
543: Level: beginner
545: .seealso: InsertMode, VecSetValues(), MatSetValues(), VecSetValue(), VecSetValuesBlocked(),
546: VecSetValuesLocal(), VecSetValuesBlockedLocal(), MatSetValuesBlocked(), ADD_VALUES,
547: MatSetValuesBlockedLocal(), MatSetValuesLocal(), VecScatterBegin(), VecScatterEnd(), MAX_VALUES
549: M*/
551: /*MC
552: ADD_VALUES - Adds a value into a vector or matrix, if there previously was no value, just puts the
553: value into that location
555: Level: beginner
557: .seealso: InsertMode, VecSetValues(), MatSetValues(), VecSetValue(), VecSetValuesBlocked(),
558: VecSetValuesLocal(), VecSetValuesBlockedLocal(), MatSetValuesBlocked(), INSERT_VALUES,
559: MatSetValuesBlockedLocal(), MatSetValuesLocal(), VecScatterBegin(), VecScatterEnd(), MAX_VALUES
561: M*/
563: /*MC
564: MAX_VALUES - Puts the maximum of the scattered/gathered value and the current value into each location
566: Level: beginner
568: .seealso: InsertMode, VecScatterBegin(), VecScatterEnd(), ADD_VALUES, INSERT_VALUES
570: M*/
572: /*MC
573: MIN_VALUES - Puts the minimal of the scattered/gathered value and the current value into each location
575: Level: beginner
577: .seealso: InsertMode, VecScatterBegin(), VecScatterEnd(), ADD_VALUES, INSERT_VALUES
579: M*/
582: /*S
583: PetscSubcomm - A decomposition of an MPI communicator into subcommunicators
585: Notes:
586: After a call to PetscSubcommSetType(), PetscSubcommSetTypeGeneral(), or PetscSubcommSetFromOptions() one may call
587: $ PetscSubcommChild() returns the associated subcommunicator on this process
588: $ PetscSubcommContiguousParent() returns a parent communitor but with all child of the same subcommunicator having contiguous rank
590: Sample Usage:
591: PetscSubcommCreate()
592: PetscSubcommSetNumber()
593: PetscSubcommSetType(PETSC_SUBCOMM_INTERLACED);
594: ccomm = PetscSubcommChild()
595: PetscSubcommDestroy()
597: Level: advanced
599: Notes:
600: $ PETSC_SUBCOMM_GENERAL - similar to MPI_Comm_split() each process sets the new communicator (color) they will belong to and the order within that communicator
601: $ PETSC_SUBCOMM_CONTIGUOUS - each new communicator contains a set of process with contiguous ranks in the original MPI communicator
602: $ PETSC_SUBCOMM_INTERLACED - each new communictor contains a set of processes equally far apart in rank from the others in that new communicator
604: Example: Consider a communicator with six processes split into 3 subcommunicators.
605: $ PETSC_SUBCOMM_CONTIGUOUS - the first communicator contains rank 0,1 the second rank 2,3 and the third rank 4,5 in the original ordering of the original communicator
606: $ PETSC_SUBCOMM_INTERLACED - the first communicator contains rank 0,3, the second 1,4 and the third 2,5
608: Developer Notes:
609: This is used in objects such as PCREDUNDANT to manage the subcommunicators on which the redundant computations
610: are performed.
613: .seealso: PetscSubcommCreate(), PetscSubcommSetNumber(), PetscSubcommSetType(), PetscSubcommView(), PetscSubcommSetFromOptions()
615: S*/
616: typedef struct _n_PetscSubcomm* PetscSubcomm;
617: typedef enum {PETSC_SUBCOMM_GENERAL=0,PETSC_SUBCOMM_CONTIGUOUS=1,PETSC_SUBCOMM_INTERLACED=2} PetscSubcommType;
619: /*S
620: PetscHeap - A simple class for managing heaps
622: Level: intermediate
624: .seealso: PetscHeapCreate(), PetscHeapAdd(), PetscHeapPop(), PetscHeapPeek(), PetscHeapStash(), PetscHeapUnstash(), PetscHeapView(), PetscHeapDestroy()
625: S*/
626: typedef struct _PetscHeap *PetscHeap;
628: typedef struct _n_PetscShmComm* PetscShmComm;
629: typedef struct _n_PetscOmpCtrl* PetscOmpCtrl;
631: /*S
632: PetscSegBuffer - a segmented extendable buffer
634: Level: developer
636: .seealso: PetscSegBufferCreate(), PetscSegBufferGet(), PetscSegBufferExtract(), PetscSegBufferDestroy()
637: S*/
638: typedef struct _n_PetscSegBuffer *PetscSegBuffer;
640: typedef struct _n_PetscOptionsHelpPrinted *PetscOptionsHelpPrinted;
642: #endif