1: #if !defined(PETSCFETYPES_H)
2: #define PETSCFETYPES_H 4: /*S
5: PetscSpace - PETSc object that manages a linear space, e.g. the space of d-dimensional polynomials of given degree
7: Level: beginner
9: .seealso: PetscSpaceCreate(), PetscDualSpaceCreate(), PetscSpaceSetType(), PetscSpaceType 10: S*/
11: typedef struct _p_PetscSpace *PetscSpace;
13: /*MC
14: PetscSpacePolynomialType - The type of polynomial space
16: Notes:
17: $ PETSCSPACE_POLYNOMIALTYPE_P - This is the normal polynomial space of degree q, P_q or Q_q.
18: $ PETSCSPACE_POLYNOMIALTYPE_PMINUS_HDIV - This is the smallest polynomial space contained in P_q/Q_q such that the divergence is in P_{q-1}/Q_{q-1}. Making this space is straightforward:
19: $ P^-_q = P_{q-1} + P_{(q-1)} x
20: $ where P_{(q-1)} is the space of homogeneous polynomials of degree q-1.
21: $ PETSCSPACE_POLYNOMIALTYPE_PMINUS_HCURL - This is the smallest polynomial space contained in P_q/Q_q such that the curl is in P_{q-1}/Q_{q-1}. Making this space is straightforward:
22: $ P^-_q = P_{q-1} + P_{(q-1)} rot x
23: $ where P_{(q-1)} is the space of homogeneous polynomials of degree q-1, and rot x is (-y, x) in 2D, and (z - y, x - z, y - x) in 3D, being the generators of the rotation algebra.
25: Level: beginner
27: .seealso: PetscSpace 28: M*/
29: typedef enum { PETSCSPACE_POLYNOMIALTYPE_P, PETSCSPACE_POLYNOMIALTYPE_PMINUS_HDIV, PETSCSPACE_POLYNOMIALTYPE_PMINUS_HCURL } PetscSpacePolynomialType;
30: PETSC_EXTERN const char * const PetscSpacePolynomialTypes[];
32: /*S
33: PetscDualSpace - PETSc object that manages the dual space to a linear space, e.g. the space of evaluation functionals at the vertices of a triangle
35: Level: beginner
37: .seealso: PetscDualSpaceCreate(), PetscSpaceCreate(), PetscDualSpaceSetType(), PetscDualSpaceType 38: S*/
39: typedef struct _p_PetscDualSpace *PetscDualSpace;
41: /*MC
42: PetscDualSpaceReferenceCell - The type of reference cell
44: Notes: This is used only for automatic creation of reference cells. A PetscDualSpace can accept an arbitary DM for a reference cell.
46: Level: beginner
48: .seealso: PetscSpace 49: M*/
50: typedef enum { PETSCDUALSPACE_REFCELL_SIMPLEX, PETSCDUALSPACE_REFCELL_TENSOR } PetscDualSpaceReferenceCell;
51: PETSC_EXTERN const char * const PetscDualSpaceReferenceCells[];
53: /*MC
54: PetscDualSpaceTransformType - The type of function transform
56: Notes: These transforms, and their inverses, are used to move functions and functionals between the reference element and real space. Suppose that we have a mapping $\phi$ which maps the reference cell to real space, and its Jacobian $J$. If we want to transform function $F$ on the reference element, so that it acts on real space, we use the pushforward transform $\sigma^*$. The pullback $\sigma_*$ is the inverse transform.
58: $ Covariant Piola: $\sigma^*(F) = J^{-T} F \circ \phi^{-1)$
59: $ Contravariant Piola: $\sigma^*(F) = 1/|J| J F \circ \phi^{-1)$
61: Note: For details, please see Rognes, Kirby, and Logg, Efficient Assembly of Hdiv and Hrot Conforming Finite Elements, SISC, 31(6), 4130-4151, arXiv 1205.3085, 2010
63: Level: beginner
65: .seealso: PetscDualSpaceGetDeRahm()
66: M*/
67: typedef enum {IDENTITY_TRANSFORM, COVARIANT_PIOLA_TRANSFORM, CONTRAVARIANT_PIOLA_TRANSFORM} PetscDualSpaceTransformType;
69: /*S
70: PetscFE - PETSc object that manages a finite element space, e.g. the P_1 Lagrange element
72: Level: beginner
74: .seealso: PetscFECreate(), PetscSpaceCreate(), PetscDualSpaceCreate(), PetscFESetType(), PetscFEType 75: S*/
76: typedef struct _p_PetscFE *PetscFE;
78: /*MC
79: PetscFEJacobianType - indicates which pointwise functions should be used to fill the Jacobian matrix
81: Level: beginner
83: .seealso: PetscFEIntegrateJacobian()
84: M*/
85: typedef enum { PETSCFE_JACOBIAN, PETSCFE_JACOBIAN_PRE, PETSCFE_JACOBIAN_DYN } PetscFEJacobianType;
87: #endif