

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

Mathematics and Computer Science Division
Argonne National Laboratory
9700 South Cass Avenue, Bldg. 240
Argonne, IL 60439

www.anl.gov

ANL/MCS-TM-322 Rev. 3.12

TAO Users Manual

Revision 3.12

Mathematics and Computer Science Division

About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,
at 9700 South Cass Avenue, Lemont, Illinois 60439. For information about Argonne
and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a
growing number of pre-1991 documents are available free via DOE's SciTech Connect
(http://www.osti.gov/scitech/)

Reports not in digital format may be purchased by the public from the National
Technical Information Service (NTIS):

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandra, VA 22312
www.ntis.gov
Phone: (800) 553-NTIS (6847) or (703) 605-6000
Fax: (703) 605-6900
Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the Office of
Scientific and Technical Information (OSTI):

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
www.osti.gov
Phone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@osti.gov

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of
document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,
Argonne National Laboratory, or UChicago Argonne, LLC.

ANL/MCS-TM-322 Rev. 3.12

TAO Users Manual

Revision 3.12

Prepared by
Alp Dener
Adam Denchfield
Todd Munson
Jason Sarich
Stefan Wild
Steven Benson
Lois Curfman McInnes

September 2019

This work was supported by the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357.

Contents

Preface v

Changes for Version 3.5 v

Changes for Version 2.0 v

Acknowledgments vi

License vii

1 Introduction 1

2 Getting Started 3
2.1 Writing Application Codes with TAO . 3
2.2 A Simple TAO Example . 4
2.3 Include Files . 4
2.4 TAO Solvers . 4
2.5 Function Evaluations . 6
2.6 Programming with PETSc . 6

3 Using TAO Solvers 11
3.1 Header File . 11
3.2 Creation and Destruction . 11
3.3 TAO Applications . 12

3.3.1 Defining Variables . 12
3.3.2 Application Context . 13
3.3.3 Objective Function and Gradient Routines 13
3.3.4 Hessian Evaluation . 15
3.3.5 Bounds on Variables . 16

3.4 Solving . 16
3.4.1 Convergence . 17
3.4.2 Viewing Status . 17
3.4.3 Obtaining a Solution . 18
3.4.4 Additional Options . 18

3.5 Special Problem Structures . 18
3.5.1 PDE-Constrained Optimization . 18

i

3.5.2 Nonlinear Least Squares . 20

3.5.3 Complementarity . 20

4 TAO Solvers 23

4.1 Unconstrained Minimization . 23

4.1.1 Nelder-Mead Method . 23

4.1.2 Limited-Memory, Variable-Metric Method 24

4.1.3 Nonlinear Conjugate Gradient Method 25

4.1.4 Newton Line Search Method . 25

4.1.5 Newton Trust-Region Method . 30

4.1.6 BMRM . 32

4.1.7 OWL-QN . 33

4.2 Bound-Constrained Optimization . 33

4.2.1 Bounded Newton-Krylov Methods 33

4.2.2 Bounded Nonlinear Conjugate Gradient 35

4.2.3 Trust-Region Newton Method . 36

4.2.4 Bound-constrained Limited-Memory Variable-Metric Method 37

4.2.5 Bounded Quasi-Newton-Krylov . 37

4.2.6 Bounded Quasi-Newton Line Search (BQNLS) 37

4.3 PDE-Constrained Optimization . 38

4.3.1 Linearly-Constrained Augmented Lagrangian Method 38

4.4 Nonlinear Least-Squares . 40

4.4.1 POUNDerS . 41

4.4.2 Bound-constrained Regularized Gauss-Newton 43

4.5 Complementarity . 44

4.5.1 Semismooth Methods . 44

4.6 Quadratic Solvers . 45

4.6.1 Gradient Projection Conjugate Gradient Method 45

4.6.2 Interior-Point Newton’s Method . 46

5 Advanced Options 47

5.1 Linear Solvers . 47

5.2 Monitors . 47

5.3 Convergence Tests . 48

5.4 Line Searches . 48

6 Adding a Solver 49

6.1 Header File . 50

6.2 TAO Interface with Solvers . 50

6.2.1 Solver Routine . 50

6.2.2 Creation Routine . 53

6.2.3 Destroy Routine . 54

6.2.4 SetUp Routine . 54

6.2.5 SetFromOptions Routine . 55

6.2.6 View Routine . 55

ii

6.2.7 Registering the Solver . 56

iii

iv

Preface

The Toolkit for Advanced Optimization (TAO) focuses on the development of algorithms
and software for the solution of large-scale optimization problems on high-performance
architectures. Areas of interest include unconstrained and bound-constrained optimization,
nonlinear least squares problems, optimization problems with partial differential equation
constraints, and variational inequalities and complementarity constraints.

The development of TAO was motivated by the scattered support for parallel compu-
tations and the lack of reuse of external toolkits in current optimization software. Our
aim is to produce high-quality optimization software for computing environments ranging
from workstations and laptops to massively parallel high-performance architectures. Our
design decisions are strongly motivated by the challenges inherent in the use of large-scale
distributed memory architectures and the reality of working with large, often poorly struc-
tured legacy codes for specific applications.

Changes in Version 3.5

TAO is now included in the PETSc distribution and the PETSc repository, thus it versions
will always match the PETSc version. The TaoSolver object is now simply Tao and there
is no TaoInitialize() or TaoFinalize(). Numerious changes have been made to make the
source code more PETSc-like. All future changes will be listed in the PETSc changes
documentation.

Changes in Version 2.0

TAO version numbers will now adhere to the new PETSc standard of Major-Minor-Patch.
Any patch-level changes will have an attempt to keep the applicatin programming interface
(API) untouched, but in any case backward compatibility with previous version of the minor
version will be maintained.

Many new features and interface changes were introduced in TAO version 2.0 (and
continue to be used in version 2.2.0). TAO applications created for previous versions will
need to be updated to work with the new version. We apologize for any inconvenience this
situation may cause; these changes were needed to keep the interface clean, clear, and easy
to use. Some of the most important changes are highlighted below.

Elimination of the TaoApplication Object. The largest change to the TAO pro-
gramming interface was the elimination of the TaoApplication data structure. In previous
versions of TAO, this structure was created by the application programmer for application-
specific data and routines. In order to more closely follow PETSc design principles, this
information is now directly attached to a Tao object instead. See Figure 2.1 for a listing of
what the most common TAO routines now look like without the TaoApplication object.

New Algorithms. TAO has a new algorithm for solving derivative-free nonlinear least
squares problems, POUNDerS, that can efficiently solve parameter optimization problems

v

when no derivatives are available and function evaluations are expensive. See Section 4.4.1
for more information on the details of the algorithm and Section 4.4 for how to use it.
TAO now also provides a new algorithm for the solution of optimization problems with
partial differential equation (PDE) constraints based on a linearly constrained augmented
Lagrangian (LCL) method. More information on PDE-constrained optimization and LCL
can be found in Section 4.3.

TaoLineSearch Object. TAO has promoted the line search to a full object. Any of the
available TAO line search algorithms (Armijo, Moré-Thuente, GPCG, and unit) can now be
selected regardless of the overlying TAO algorithm. Users can also create new line search
algorithms that may be more suitable for their applications. More information is available
in Section 5.4.

Better Adherence to PETSc Style. TAO now features a tighter association with PETSc
standards and practices. All TAO constructs now follow PETSc conventions and are writ-
ten in C. There is no longer a separate abstract class for vectors, matrices, and linear
solvers. TAO now uses these PETSc objects directly. We believe these changes make TAO
applications much easier to create and maintain for users already familiar with PETSc
programming. These changes also allow TAO to relax some of the previously imposed
requirements on the PETSc configuration. TAO now works with PETSc configured with
single-precision and quad-precision arithmetic when using GNU compilers and no longer
requires a C++ compiler. However, TAO is not compatible with PETSc installations using
complex data types.

Acknowledgments

We especially thank Jorge Moré for his leadership, vision, and effort on previous versions
of TAO.

TAO relies on PETSc for the linear algebra required to solve optimization problems,
and we have benefited from the PETSc team’s experience, tools, software, and advice. In
many ways, TAO is a natural outcome of the PETSc development.

TAO has benefited from the work of various researchers who have provided solvers, test
problems, and interfaces. In particular, we acknowledge Lisa Grignon, Elizabeth Dolan,
Boyana Norris, Gabriel Lopez-Calva, Yurii Zinchenko, Michael Gertz, Jarek Nieplocha,
Limin Zhang, Manojkumar Krishnan, and Evan Gawlik. We also thank all TAO users for
their comments, bug reports, and encouragement.

The development of TAO is supported by the Office of Advanced Scientific Comput-
ing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-
06CH11357. We also thank the Argonne Laboratory Computing Resource Center and the
National Energy Research Scientific Computing Center for allowing us to test and run TAO
applications on their machines.

vi

Copyright c© 2013, UChicago Argonne, LLC
Operator of Argonne National Laboratory
All rights reserved.
Toolkit for Advanced Optimization (TAO), Version 2.2.0
OPEN SOURCE LICENSE

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of con-
ditions and the following disclaimer. Software changes, modifications, or derivative
works, should be noted with comments and the author and organization’s name.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

• Neither the names of UChicago Argonne, LLC nor the Department of Energy nor the
names of its contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

• The software and the end-user documentation included with the redistribution, if any,
must include the following acknowledgment:
“This product includes software produced by UChicago Argonne, LLC under Contract
No. DE-AC02-06CH11357 with the Department of Energy.”

**
DISCLAIMER

THE SOFTWARE IS SUPPLIED “AS IS” WITHOUT WARRANTY OF ANY KIND.
NEITHER THE UNITED STATES GOVERNMENT, NOR THE UNITED STATES
DEPARTMENT OF ENERGY, NOR UCHICAGO ARGONNE, LLC, NOR ANY OF
THEIR EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR
ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY,
COMPLETENESS, OR USEFULNESS OF ANY INFORMATION, DATA,
APPARATUS, PRODUCT, OR PROCESS DISCLOSED, OR REPRESENTS THAT
ITS USE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS.

**

vii

viii

Chapter 1

Introduction

The Toolkit for Advanced Optimization (TAO) focuses on the design and implementation of
optimization software for solving large-scale optimization applications on high-performance
architectures. Our approach is motivated by the scattered support for parallel computations
and lack of reuse of linear algebra software in currently available optimization software. The
TAO design allows the reuse of toolkits that provide lower-level support (parallel sparse
matrix data structures, preconditioners, solvers), and thus we are able to build on top of
these toolkits instead of having to redevelop code. The advantages in terms of efficiency
and development time are significant. This chapter provides a short introduction to our
design philosophy and the importance of this design.

The TAO design philosophy place strong emphasis on the reuse of external tools where
appropriate. Our design enables bidirectional connection to lower-level linear algebra sup-
port (e.g., parallel sparse matrix data structures) provided in toolkits such as PETSc [3, 4, 5]
vas well as higher-level application frameworks. Our design decisions are strongly motivated
by the challenges inherent in the use of large-scale distributed memory architectures and
the reality of working with large and often poorly structured legacy codes for specific ap-
plications. Figure 1.1 illustrates how the TAO software works with external libraries and
application code.

The TAO solvers use fundamental PETSc objects to define and solve optimization prob-
lems: vectors, matrices, index sets, and linear solvers. The concepts of vectors and matrices
are standard, while an index set refers to a set of integers used to identify particular elements
of vectors or matrices. An optimization algorithm is a sequence of well-defined operations
on these objects. These operations include vector sums, inner products, and matrix-vector
multiplication.

With sufficiently flexible abstract interfaces, PETSc can support a variety of imple-
mentations of data structures and algorithms. These abstractions allow us to more easily
experiment with a range of algorithmic and data structure options for realistic problems.
Such capabilities are critical for making high-performance optimization software adaptable
to the continual evolution of parallel and distributed architectures and the research com-
munity’s discovery of new algorithms that exploit their features.

1

Linear SolversMatricesVectors Index Sets

TAO Optimization Solvers
(Unconstrained, Bound, Least Squares, Complementarity)

Application Driver

Application

Initialization

Post-

Processing
Function and Derivative Evaluation

TAO codeUser code Interface to external

linear algebra tools

Figure 1.1: TAO Design

2

Chapter 2

Getting Started

TAO can be used on a personal computer with a single processor or within a parallel
environment. Its basic usage involves only a few commands, but fully understanding its
usage requires time. Application programmers can easily begin to use TAO by working
with the examples provided and then gradually learn more details according to their needs.
The current version of TAO and the most recent help concerning installation and usage can
be found at https://www.mcs.anl.gov/research/projects/tao/.

See the PETSc users manual and https://www.mcs.anl.gov/petsc for how to install
and start using PETSc/TAO.

2.1 Writing Application Codes with TAO

Examples throughout the library demonstrate the software usage and can serve as templates
for developing custom applications. We suggest that new TAO users examine programs in

${PETSC_DIR}/src/tao/<unconstrained,bound,..>/examples/tutorials.

The HTML version of the manual pages located at

${PETSC_DIR}/docs/manpages/index.html

and

https://www.mcs.anl.gov/petsc/documentation/index.html

provides indices (organized by both routine names and concepts) to the tutorial examples.
We suggest the following procedure for writing a new application program using TAO:

1. Install PETSc/TAO according to the instructions in https://www.mcs.anl.gov/

petsc/documentation/installation.html.

2. Copy an example and makefile from the directories

${PETSC_DIR}/src/tao/<unconstrained,bound,..>/examples/tutorials.

compile the example, and run the program.

3. Select the example program matching the application most closely, and use it as a
starting point for developing a customized code.

3

https://www.mcs.anl.gov/research/projects/tao/
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc/documentation/installation.html
https://www.mcs.anl.gov/petsc/documentation/installation.html

2.2 A Simple TAO Example

To help the user start using TAO immediately, we introduce here a simple uniprocessor
example. Please read Section 3 for a more in-depth discussion on using the TAO solvers.
The code presented in Figure 2.2 minimizes the extended Rosenbrock function f : Rn → R
defined by

f(x) =
m−1∑
i=0

(
α(x2i+1 − x22i)2 + (1− x2i)2

)
,

where n = 2m is the number of variables. Note that while we use the C language to
introduce the TAO software, the package is fully usable from C++ and Fortran77/90.
Section ?? discusses additional issues concerning Fortran usage.

The code in Figure 2.2 contains many of the components needed to write most TAO
programs and thus is illustrative of the features present in complex optimization problems.
Note that for display purposes we have omitted some nonessential lines of code as well as
the (essential) code required for the routine FormFunctionGradient, which evaluates the
function and gradient, and the code for FormHessian, which evaluates the Hessian matrix for
Rosenbrock’s function. The complete code is available in $TAO_DIR/src/unconstrained/

examples/tutorials/rosenbrock1.c. The following sections annotates the lines of code
in Figure 2.2.

2.3 Include Files

The include file for TAO should be used via the statement

#include <petsctao.h>

The required lower-level include files are automatically included within this high-level file.

2.4 TAO Solvers

Many TAO applications will follow an ordered set of procedures for solving an optimization
problem: The user creates a Tao context and selects a default algorithm. Call-back routines
as well as vector (Vec) and matrix (Mat) data structures are then set. These call-back
routines will be used for evaluating the objective function, gradient, and perhaps the Hessian
matrix. The user then invokes TAO to solve the optimization problem and finally destroys
the Tao context. A list of the necessary functions for performing these steps using TAO are
shown in Figure 2.1. Details of these commands are presented in Chapter 3.

4

$TAO_DIR/src/unconstrained/examples/tutorials/rosenbrock1.c
$TAO_DIR/src/unconstrained/examples/tutorials/rosenbrock1.c

#include "petsctao.h"

typedef struct {

PetscInt n; /* dimension */

PetscReal alpha; /* condition parameter */

} AppCtx;

/* -------------- User-defined routines ---------- */

PetscErrorCode FormFunctionGradient(Tao,Vec,PetscReal*,Vec,void*);

PetscErrorCode FormHessian(Tao,Vec,Mat,Mat,void*);

int main(int argc,char **argv)

{

PetscErrorCode ierr; /* used to check for functions returning nonzeros */

Vec x; /* solution vector */

Mat H; /* Hessian matrix */

Tao tao; /* Tao context */

AppCtx user; /* user-defined application context */

ierr = PetscInitialize(&argc,&argv,(char*)0,0);if (ierr) return ierr;

/* Initialize problem parameters */

user.n = 2; user.alpha = 99.0;

/* Allocate vectors for the solution and gradient */

ierr = VecCreateSeq(PETSC_COMM_SELF,user.n,&x); CHKERRQ(ierr);

ierr = MatCreateSeqBAIJ(PETSC_COMM_SELF,2,user.n,user.n,1,NULL,&H);

/* Create TAO solver with desired solution method */

ierr = TaoCreate(PETSC_COMM_SELF,&tao); CHKERRQ(ierr);

ierr = TaoSetType(tao,TAOLMVM); CHKERRQ(ierr);

/* Set solution vec and an initial guess */

ierr = VecSet(x, 0); CHKERRQ(ierr);

ierr = TaoSetInitialVector(tao,x); CHKERRQ(ierr);

/* Set routines for function, gradient, hessian evaluation */

ierr = TaoSetObjectiveAndGradientRoutine(tao,FormFunctionGradient,&user);

ierr = TaoSetHessianRoutine(tao,H,H,FormHessian,&user); CHKERRQ(ierr);

/* Check for TAO command line options */

ierr = TaoSetFromOptions(tao); CHKERRQ(ierr);

/* Solve the application */

ierr = TaoSolve(tao); CHKERRQ(ierr);

/* Free data structures */

ierr = TaoDestroy(&tao); CHKERRQ(ierr);

ierr = VecDestroy(&x); CHKERRQ(ierr);

ierr = MatDestroy(&H); CHKERRQ(ierr);

ierr = PetscFinalize();

return ierr;

}

Figure 2.2: Example of Uniprocessor TAO Code

5

TaoCreate(MPI_Comm comm, Tao *tao);

TaoSetType(Tao tao, TaoType type);

TaoSetInitialVector(Tao tao, Vec x);

TaoSetObjectiveAndGradientRoutine(Tao tao,

PetscErrorCode (*FormFGradient)(Tao,Vec,PetscReal*,Vec,void*),

void *user);

TaoSetHessianRoutine(Tao tao, Mat H, Mat Hpre,

PetscErrorCode (*FormHessian)(Tao,Vec,Mat,Mat,

void*), void *user);

TaoSolve(Tao tao);

TaoDestroy(Tao tao);

Figure 2.1: Commands for Solving an Unconstrained Optimization Problem

Note that the solver algorithm selected through the function TaoSetType() can be over-
ridden at runtime by using an options database. Through this database, the user not only
can select a minimization method (e.g., limited-memory variable metric, conjugate gradient,
Newton with line search or trust region) but also can prescribe the convergence tolerance,
set various monitoring routines, set iterative methods and preconditions for solving the
linear systems, and so forth. See Chapter 3 for more information on the solver methods
available in TAO.

2.5 Function Evaluations

Users of TAO are required to provide routines that perform function evaluations. Depending
on the solver chosen, they may also have to write routines that evaluate the gradient vector
and Hessian matrix.

2.6 Programming with PETSc

TAO relies heavily on PETSc not only for its vectors, matrices, and linear solvers but also
for its programming utilities such as command line option handling, error handling, and
compiling system. We provide here a quick overview of some of these PETSc features.
Please refer to the PETSc manual [5] for a more in-depth discussion of PETSc.

Vectors

In the example in Figure 2.2, the vector data structure (Vec) is used to store the solution
and gradient for the TAO unconstrained minimization solvers. A new parallel or sequential
vector x of global dimension M is created with the command

info = VecCreate(MPI_Comm comm,int m,int M,Vec *x);

where comm denotes the MPI communicator. The type of storage for the vector may be set
with calls either to VecSetType() or to VecSetFromOptions(). Additional vectors of the
same type can be formed with

6

info = VecDuplicate(Vec old,Vec *new);

The commands

info = VecSet(Vec X,PetscScalar value);

info = VecSetValues(Vec x,int n,int *indices,

Scalar *values,INSERT_VALUES);

respectively set all the components of a vector to a particular scalar value and assign
a different value to each component. More detailed information about PETSc vectors,
including their basic operations, scattering/gathering, index sets, and distributed arrays,
may be found in the PETSc users manual [5].

Matrices

Usage of matrices and vectors is similar. The user can create a new parallel or sequential
matrix H with M global rows and N global columns, with the routines

ierr = MatCreate(MPI_Comm comm,Mat *H);

ierr = MatSetSizes(H,PETSC_DECIDE,PETSC_DECIDE,M,N);

where the matrix format can be specified at runtime. The user could alternatively specify
each processes’s number of local rows and columns using m and n instead of PETSC DECIDE. H
can then be used to store the Hessian matrix, as indicated by the call to TaoSetHessianMat().
Matrix entries can be set with the command

ierr = MatSetValues(Mat H,PetscInt m,PetscInt *im, PetscInt n,

PetscInt *in, PetscScalar *values,INSERT_VALUES);

After all elements have been inserted into the matrix, it must be processed with the pair of
commands

ierr = MatAssemblyBegin(Mat H,MAT_FINAL_ASSEMBLY);

ierr = MatAssemblyEnd(Mat H,MAT_FINAL_ASSEMBLY);

The PETSc users manual [5] discusses various matrix formats as well as the details of some
basic matrix manipulation routines.

The Options Database

A TAO application can access the command line options presented at runtime through
the PETSc options database. This database gives the application author the ability to
set and change application parameters without the need to recompile the application. For
example, an application may have a grid discretization parameter nx that can be set with
the command line option -nx <integer>. The application can read this option with the
following line of code:

PetscOptionsGetInt(NULL,NULL, "-nx", &nx, &flg);

If the command line option is present, the variable nx is set accordingly; otherwise, nx

remains unchanged. A complete description of the options database may be found in the
PETSc users manual [5].

7

Error Checking

All TAO commands begin with the Tao prefix and return an integer indicating whether an
error has occurred during the call. The error code equals zero after the successful completion
of the routine and is set to a nonzero value if an error has been detected. The macro
CHKERRQ(ierr) checks the value of ierr and calls an error handler upon error detection.
CHKERRQ() should be used after all subroutines to enable a complete error traceback.

In Figure 2.3 we indicate a traceback generated by error detection within a sample pro-
gram. The error occurred on line 2110 of the file ${PETSC DIR}/src/mat/interface/mat-
rix.c in the routine MatMult() and was caused by failure to assemble the matrix in the
Hessian evaluation routine. The MatMult() routine was called from the TaoSolve NLS()

routine, which was in turn called on line 154 of TaoSolve() from the main() routine in the
program rosenbrock1.c. The PETSc users manual [5] provides further details regarding
error checking, including information about error handling in Fortran.

> rosenbrock1 -tao_type nls

[0]PETSC ERROR: --------------------- Error Message ------------------------------------

[0]PETSC ERROR: Object is in wrong state!

[0]PETSC ERROR: Not for unassembled matrix!

[0]PETSC ERROR: --

[0]PETSC ERROR: Petsc Development HG revision: b95ffff514b66a703d96e6ae8e78ea266ad2ca19

[0]PETSC ERROR: See docs/changes/index.html for recent updates.

[0]PETSC ERROR: See docs/faq.html for hints about trouble shooting.

[0]PETSC ERROR: See docs/index.html for manual pages.

[0]PETSC ERROR: --

[0]PETSC ERROR: Libraries linked from petsc/arch-linux2-c-debug/lib

[0]PETSC ERROR: Configure run at Tue Jul 19 14:13:14 2011

[0]PETSC ERROR: Configure options --with-shared-libraries --with-dynamic-loading

[0]PETSC ERROR: --

[0]PETSC ERROR: MatMult() line 2110 in petsc/src/mat/interface/matrix.c

[0]PETSC ERROR: TaoSolve_NLS() line 291 in src/unconstrained/impls/nls/nls.c

[0]PETSC ERROR: TaoSolve() line 154 in src/interface/tao.c

[0]PETSC ERROR: main() line 94 in src/unconstrained/examples/tutorials/rosenbrock1.c

application called MPI_Abort(MPI_COMM_WORLD, 73) - process 0

Figure 2.3: Example of Error Traceback

When running the debugging version of the TAO software (PETSc configured with the
(default) --with-debugging option), checking is performed for memory corruption (writing
outside of array bounds, etc). The macros CHKMEMQ and CHKMEMA can be called anywhere in
the code and, when used together with the command line option -malloc debug, check the
current status of the memory for corruption. By putting several (or many) of these macros
into an application code, one can usually track down the code segment where corruption
has occurred.

Parallel Programming

Since TAO uses the message-passing model for parallel programming and employs MPI
for all interprocessor communication, the user is free to employ MPI routines as needed

8

throughout an application code. By default, however, the user is shielded from many of the
details of message passing within TAO, since these are hidden within parallel objects, such
as vectors, matrices, and solvers. In addition, TAO users can interface to external tools,
such as the generalized vector scatters/gathers and distributed arrays within PETSc, for
assistance in managing parallel data.

The user must specify a communicator upon creation of any PETSc or TAO object
(such as a vector, matrix, or solver) to indicate the processors over which the object is to
be distributed. For example, some commands for matrix, vector, and solver creation are as
follows.

ierr = MatCreate(MPI_Comm comm,Mat *H);

ierr = VecCreate(MPI_Comm comm,Vec *x);

ierr = TaoCreate(MPI_Comm comm,Tao *tao);

In most cases, the value for comm will be either PETSC COMM SELF for single-process objects
or PETSC COMM WORLD for objects distributed over all processors. The creation routines are
collective over all processors in the communicator; thus, all processors in the communicator
must call the creation routine. In addition, if a sequence of collective routines is being used,
the routines must be called in the same order on each processor.

9

10

Chapter 3

Using TAO Solvers

TAO contains unconstrained minimization, bound-constrained minimization, nonlinear com-
plementarity, nonlinear least squares solvers, and solvers for optimization problems with
partial differential equation constraints. The structure of these problems can differ signifi-
cantly, but TAO has a similar interface to all its solvers. Routines that most solvers have in
common are discussed in this chapter. A complete list of options can be found by consulting
the manual pages. Many of the options can also be set at the command line. These options
can also be found by running a program with the -help option.

3.1 Header File

TAO applications written in C/C++ should have the statement

#include <petsctao.h>

in each file that uses a routine in the TAO libraries.

3.2 Creation and Destruction

A TAO solver can be created by calling the

TaoCreate(MPI_Comm comm,Tao *newsolver);

routine. Much like creating PETSc vector and matrix objects, the first argument is an MPI
communicator. An MPI [15] communicator indicates a collection of processors that will be
used to evaluate the objective function, compute constraints, and provide derivative infor-
mation. When only one processor is being used, the communicator PETSC COMM SELF can
be used with no understanding of MPI. Even parallel users need to be familiar with only the
basic concepts of message passing and distributed-memory computing. Most applications
running TAO in parallel environments can employ the communicator PETSC COMM WORLD to
indicate all processes known to PETSc in a given run.

The routine

TaoSetType(Tao tao,TaoType type);

11

can be used to set the algorithm TAO uses to solve the application. The various types of
TAO solvers and the flags that identify them will be discussed in the following chapters. The
solution method should be carefully chosen depending on the problem being solved. Some
solvers, for instance, are meant for problems with no constraints, whereas other solvers ac-
knowledge constraints in the problem and handle them accordingly. The user must also be
aware of the derivative information that is available. Some solvers require second-order in-
formation, while other solvers require only gradient or function information. The command
line option -tao method (or equivalently -tao type) followed by a TAO method will over-
ride any method specified by the second argument. The command line option -tao method

tao lmvm, for instance, will specify the limited-memory, variable metric method for uncon-
strained optimization. Note that the TaoType variable is a string that requires quotation
marks in an application program, but quotation marks are not required at the command
line.

Each TAO solver that has been created should also be destroyed by using the

TaoDestroy(Tao tao);

command. This routine frees the internal data structures used by the solver.

3.3 TAO Applications

The solvers in TAO address applications that have a set of variables, an objective function,
and possibly constraints on the variables. Many solvers also require derivatives of the
objective and constraint functions. To use the TAO solvers, the application developer
must define a set of variables, implement routines that evaluate the objective function and
constraint functions, and pass this information to a TAO application object.

TAO uses vector and matrix objects to pass this information from the application to
the solver. The set of variables, for instance, is represented in a vector. The gradient of
an objective function f : Rn → R, evaluated at a point, is also represented as a vector.
Matrices, on the other hand, can be used to represent the Hessian of f or the Jacobian of a
constraint function c : Rn → Rm. The TAO solvers use these objects to compute a solution
to the application.

3.3.1 Defining Variables

In all the optimization solvers, the application must provide a Vec object of appropriate
dimension to represent the variables. This vector will be cloned by the solvers to create
additional work space within the solver. If this vector is distributed over multiple processors,
it should have a parallel distribution that allows for efficient scaling, inner products, and
function evaluations. This vector can be passed to the application object by using the

TaoSetInitialVector(Tao,Vec);

routine. When using this routine, the application should initialize the vector with an
approximate solution of the optimization problem before calling the TAO solver. This
vector will be used by the TAO solver to store the solution. Elsewhere in the application,
this solution vector can be retrieved from the application object by using the

12

TaoGetSolutionVector(Tao,Vec *);

routine. This routine takes the address of a Vec in the second argument and sets it to the
solution vector used in the application.

3.3.2 Application Context

Writing a TAO application may require use of an application context. An application
context is a structure or object defined by an application developer, passed into a routine
also written by the application developer, and used within the routine to perform its stated
task.

For example, a routine that evaluates an objective function may need parameters, work
vectors, and other information. This information, which may be specific to an application
and necessary to evaluate the objective, can be collected in a single structure and used
as one of the arguments in the routine. The address of this structure will be cast as type
(void*) and passed to the routine in the final argument. Many examples of these structures
are included in the TAO distribution.

This technique offers several advantages. In particular, it allows for a uniform interface
between TAO and the applications. The fundamental information needed by TAO appears
in the arguments of the routine, while data specific to an application and its implementation
is confined to an opaque pointer. The routines can access information created outside the
local scope without the use of global variables. The TAO solvers and application objects
will never access this structure, so the application developer has complete freedom to define
it. If no such structure or needed by the application then a NULL pointer can be used.

3.3.3 Objective Function and Gradient Routines

TAO solvers that minimize an objective function require the application to evaluate the
objective function. Some solvers may also require the application to evaluate derivatives of
the objective function. Routines that perform these computations must be identified to the
application object and must follow a strict calling sequence.

Routines should follow the form

PetscErrorCode EvaluateObjective(Tao,Vec,PetscReal*,void*);

in order to evaluate an objective function f : Rn → R. The first argument is the TAO
Solver object, the second argument is the n-dimensional vector that identifies where the
objective should be evaluated, and the fourth argument is an application context. This
routine should use the third argument to return the objective value evaluated at the point
specified by the vector in the second argument.

This routine, and the application context, should be passed to the application object by
using the

TaoSetObjectiveRoutine(Tao,

PetscErrorCode(*)(Tao,Vec,PetscReal*,void*),

void*);

13

routine. The first argument in this routine is the TAO solver object, the second argument
is a function pointer to the routine that evaluates the objective, and the third argument is
the pointer to an appropriate application context. Although the final argument may point
to anything, it must be cast as a (void*) type. This pointer will be passed back to the
developer in the fourth argument of the routine that evaluates the objective. In this routine,
the pointer can be cast back to the appropriate type. Examples of these structures and
their usage are provided in the distribution.

Many TAO solvers also require gradient information from the application . The gradient
of the objective function is specified in a similar manner. Routines that evaluate the gradient
should have the calling sequence

PetscErrorCode EvaluateGradient(Tao,Vec,Vec,void*);

where the first argument is the TAO solver object, the second argument is the variable
vector, the third argument is the gradient vector, and the fourth argument is the user-
defined application context. Only the third argument in this routine is different from
the arguments in the routine for evaluating the objective function. The numbers in the
gradient vector have no meaning when passed into this routine, but they should represent
the gradient of the objective at the specified point at the end of the routine. This routine,
and the user-defined pointer, can be passed to the application object by using the

TaoSetGradientRoutine(Tao,

PetscErrorCode (*)(Tao,Vec,Vec,void*),

void *);

routine. In this routine, the first argument is the Tao object, the second argument is the
function pointer, and the third object is the application context, cast to (void*).

Instead of evaluating the objective and its gradient in separate routines, TAO also allows
the user to evaluate the function and the gradient in the same routine. In fact, some solvers
are more efficient when both function and gradient information can be computed in the
same routine. These routines should follow the form

PetscErrorCode EvaluateFunctionAndGradient(Tao,Vec,

PetscReal*,Vec,void*);

where the first argument is the TAO solver and the second argument points to the input
vector for use in evaluating the function and gradient. The third argument should return
the function value, while the fourth argument should return the gradient vector. The fifth
argument is a pointer to a user-defined context. This context and the name of the routine
should be set with the call

TaoSetObjectiveAndGradientRoutine(Tao,

PetscErrorCode (*)(Tao,Vec,PetscReal*,Vec,void*),

void *);

where the arguments are the TAO application, a function name, and a pointer to a user-
defined context.

The TAO example problems demonstrate the use of these application contexts as well as
specific instances of function, gradient, and Hessian evaluation routines. All these routines
should return the integer 0 after successful completion and a nonzero integer if the function
is undefined at that point or an error occurred.

14

3.3.4 Hessian Evaluation

Some optimization routines also require a Hessian matrix from the user. The routine that
evaluates the Hessian should have the form

PetscErrorCode EvaluateHessian(Tao,Vec,Mat,Mat,void*);

where the first argument of this routine is a TAO solver object. The second argument is the
point at which the Hessian should be evaluated. The third argument is the Hessian matrix,
and the sixth argument is a user-defined context. Since the Hessian matrix is usually used
in solving a system of linear equations, a preconditioner for the matrix is often needed. The
fourth argument is the matrix that will be used for preconditioning the linear system; in
most cases, this matrix will be the same as the Hessian matrix. The fifth argument is the
flag used to set the Hessian matrix and linear solver in the routine KSPSetOperators().

One can set the Hessian evaluation routine by calling the

TaoSetHessianRoutine(Tao,Mat H, Mat Hpre,

PetscErrorCode (*)(Tao,Vec,Mat,Mat,

void*), void *);

routine. The first argument is the TAO Solver object. The second and third arguments
are, respectively, the Mat object where the Hessian will be stored and the Mat object that
will be used for the preconditioning (they may be the same). The fourth argument is the
function that evaluates the Hessian, and the fifth argument is a pointer to a user-defined
context, cast to (void*).

Finite Differences

Finite-difference approximations can be used to compute the gradient and the Hessian
of an objective function. These approximations will slow the solve considerably and are
recommended primarily for checking the accuracy of hand-coded gradients and Hessians.
These routines are

TaoDefaultComputeGradient(Tao, Vec, Vec, void*);

and

TaoDefaultComputeHessian(Tao, Vec, Mat*, Mat*,void*);

respectively. They can be set by using TaoSetGradientRoutine() and TaoSetHessianRoutine()

or through the options database with the options -tao fdgrad and -tao fd, respectively.
The efficiency of the finite-difference Hessian can be improved if the coloring of the

matrix is known. If the application programmer creates a PETSc MatFDColoring object,
it can be applied to the finite-difference approximation by setting the Hessian evaluation
routine to

TaoDefaultComputeHessianColor(Tao, Vec, Mat*, Mat*,void*);

and using the MatFDColoring object as the last (void *) argument to TaoSetHessianRoutine().
One also can use finite-difference approximations to directly check the correctness of

the gradient and/or Hessian evaluation routines. This process can be initiated from the
command line by using the special TAO solver tao fd test together with the option
-tao test gradient or -tao test hessian.

15

Matrix-Free Methods

TAO fully supports matrix-free methods. The matrices specified in the Hessian evaluation
routine need not be conventional matrices; instead, they can point to the data required to
implement a particular matrix-free method. The matrix-free variant is allowed only when
the linear systems are solved by an iterative method in combination with no precondition-
ing (PCNONE or -pc type none), a user-provided preconditioner matrix, or a user-provided
preconditioner shell (PCSHELL). In other words, matrix-free methods cannot be used if a
direct solver is to be employed. Details about using matrix-free methods are provided in
the PETSc users manual [5].

3.3.5 Bounds on Variables

Some optimization problems also impose constraints on the variables. The constraints may
impose simple bounds on the variables or require that the variables satisfy a set of linear
or nonlinear equations.

The simplest type of constraint on an optimization problem puts lower or upper bounds
on the variables. Vectors that represent lower and upper bounds for each variable can be
set with the

TaoSetVariableBounds(Tao,Vec,Vec);

command. The first vector and second vector should contain the lower and upper bounds,
respectively. When no upper or lower bound exists for a variable, the bound may be set to
TAO INFINITY or TAO NINFINITY. After the two bound vectors have been set, they may be
accessed with the command TaoGetVariableBounds().

Alternatively, it may be more convenient for the user to designate a routine for com-
puting these bounds that the solver will call before starting its algorithm. This routine will
have the form

PetscErrorCode EvaluateBounds(Tao,Vec,Vec,void*);

where the two vectors, representing the lower and upper bounds respectfully, will be com-
puted.

This routine can be set with the

TaoSetVariableBoundsRoutine(Tao

PetscErrorCode (*)(Tao,Vec,Vec,void*),void*);

command.
Since not all solvers recognize the presence of bound constraints on variables, the user

must be careful to select a solver that acknowledges these bounds.

3.4 Solving

Once the application and solver have been set up, the solver can be called by using the

TaoSolve(Tao);

routine. We discuss several universal options below.

16

3.4.1 Convergence

Although TAO and its solvers set default parameters that are useful for many problems, the
user may need to modify these parameters in order to change the behavior and convergence
of various algorithms.

One convergence criterion for most algorithms concerns the number of digits of accuracy
needed in the solution. In particular, the convergence test employed by TAO attempts to
stop when the error in the constraints is less than εcrtol and either

||g(X)|| ≤ εgatol,
||g(X)||/|f(X)| ≤ εgrtol, or
||g(X)||/|g(X0)| ≤ εgttol,

where X is the current approximation to the true solution X∗ and X0 is the initial guess.
X∗ is unknown, so TAO estimates f(X) − f(X∗) with either the square of the norm of
the gradient or the duality gap. A relative tolerance of εfrtol = 0.01 indicates that two
significant digits are desired in the objective function. Each solver sets its own convergence
tolerances, but they can be changed by using the routine TaoSetTolerances(). Another
set of convergence tolerances terminates the solver when the norm of the gradient function
(or Lagrangian function for bound-constrained problems) is sufficiently close to zero.

Other stopping criteria include a minimum trust-region radius or a maximum number of
iterations. These parameters can be set with the routines TaoSetTrustRegionTolerance()
and TaoSetMaximumIterations(). Similarly, a maximum number of function evaluations
can be set with the command TaoSetMaximumFunctionEvaluations(). -tao max it, and
-tao max funcs.

3.4.2 Viewing Status

To see parameters and performance statistics for the solver, the routine

TaoView(Tao tao)

can be used. This routine will display to standard output the number of function evaluations
need by the solver and other information specific to the solver. This same output can be
produced by using the command line option -tao view.

The progress of the optimization solver can be monitored with the runtime option
-tao monitor. Although monitoring routines can be customized, the default monitoring
routine will print out several relevant statistics to the screen.

The user also has access to information about the current solution. The current iteration
number, objective function value, gradient norm, infeasibility norm, and step length can be
retrieved with the follwing command.

TaoGetSolutionStatus(Tao tao, PetscInt *iterate, PetscReal *f,

PetscReal *gnorm, PetscReal *cnorm, PetscReal *xdiff,

TaoConvergedReason *reason)

The last argument returns a code that indicates the reason that the solver terminated.
Positive numbers indicate that a solution has been found, while negative numbers indicate
a failure. A list of reasons can be found in the manual page for TaoGetConvergedReason().

17

3.4.3 Obtaining a Solution

After exiting the TaoSolve() function, the solution, gradient, and dual variables (if avail-
able) can be recovered with the following routines.

TaoGetSolutionVector(Tao, Vec *X);

TaoGetGradientVector(Tao, Vec *G);

TaoComputeDualVariables(Tao, Vec X, Vec Duals);

Note that the Vec returned by TaoGetSolutionVector will be the same vector passed
to TaoSetInitialVector. This information can be obtained during user-defined routines
such as a function evaluation and customized monitoring routine or after the solver has
terminated.

3.4.4 Additional Options

Additional options for the TAO solver can be be set from the command line by using the

TaoSetFromOptions(Tao)

routine. This command also provides information about runtime options when the user
includes the -help option on the command line.

3.5 Special Problem Structures

Below we discuss how to exploit the special structures for three classes of problems that
TAO solves.

3.5.1 PDE-Constrained Optimization

TAO can solve PDE-constrained optimization applications of the form

min
u,v

f(u, v)

subject to g(u, v) = 0,

where the state variable u is the solution to the discretized partial differential equation
defined by g and parametrized by the design variable v, and f is an objective function.
In this case, the user needs to set routines for computing the objective function and its
gradient, the constraints, and the Jacobian of the constraints with respect to the state and
design variables. TAO also needs to know which variables in the solution vector correspond
to state variables and which to design variables.

The objective and gradient routines are set as for other TAO applications, with TaoSet-

ObjectiveRoutine() and TaoSetGradientRoutine(). The user can also provide a fused
objective function and gradient evaluation with TaoSetObjectiveAndGradientRoutine().
The input and output vectors include the combined state and design variables. Index sets
for the state and design variables must be passed to TAO by using the function

TaoSetStateDesignIS(Tao, IS, IS);

18

where the first IS is a PETSc IndexSet containing the indices of the state variables and the
second IS the design variables.

Nonlinear equation constraints have the general form c(x) = 0, where c : Rn → Rm.
These constraints should be specified in a routine, written by the user, that evaluates c(x).
The routine that evaluates the constraint equations should have the form

PetscErrorCode EvaluateConstraints(Tao,Vec,Vec,void*);

The first argument of this routine is a TAO solver object. The second argument is the
variable vector at which the constraint function should be evaluated. The third argument
is the vector of function values c(x), and the fourth argument is a pointer to a user-defined
context. This routine and the user-defined context should be set in the TAO solver with
the

TaoSetConstraintsRoutine(Tao,Vec,

PetscErrorCode (*)(Tao,Vec,Vec,void*),

void*);

command. In this function, the first argument is the TAO solver object, the second ar-
gument a vector in which to store the constraints, the third argument is a function point
to the routine for evaluating the constraints, and the fourth argument is a pointer to a
user-defined context.

The Jacobian of c(x) is the matrix in Rm×n such that each column contains the partial
derivatives of c(x) with respect to one variable. The evaluation of the Jacobian of c should
be performed by calling the

PetscErrorCode JacobianState(Tao,Vec,Mat,Mat,Mat,void*);

PetscErrorCode JacobianDesign(Tao,Vec,Mat*,void*);

routines. In these functions, The first arguemnt is the TAO solver object. The second
argument is the variable vector at which to evaluate the Jacobian matrix, the third argument
is the Jacobian matrix, and the last argument is a pointer to a user-defined context. The
fourth and fifth arguments of the Jacobian evaluation with respect to the state variables
are for providing PETSc matrix objects for the preconditioner and for applying the inverse
of the state Jacobian, respectively. This inverse matrix may be PETSC NULL, in which case
TAO will use a PETSc Krylov subspace solver to solve the state system. These evaluation
routines should be registered with TAO by using the

TaoSetJacobianStateRoutine(Tao,Mat,Mat,Mat,

PetscErrorCode (*)(Tao,Vec,Mat,Mat,

void*), void*);

TaoSetJacobianDesignRoutine(Tao,Mat,

PetscErrorCode (*)(Tao,Vec,Mat*,void*),

void*);

routines. The first argument is the TAO solver object, and the second argument is the
matrix in which the Jacobian information can be stored. For the state Jacobian, the third
argument is the matrix that will be used for preconditioning, and the fourth argument is

19

an optional matrix for the inverse of the state Jacobian. One can use PETSC NULL for this
inverse argument and let PETSc apply the inverse using a KSP method, but faster results
may be obtained by manipulating the structure of the Jacobian and providing an inverse.
The fifth argument is the function pointer, and the sixth argument is an optional user-
defined context. Since no solve is performed with the design Jacobian, there is no need to
provide preconditioner or inverse matrices.

3.5.2 Nonlinear Least Squares

For nonlinear least squares applications, we are solving the optimization problem

min
x

1

2
||r(x)||22.

For these problems, the objective function value should be computed as a vector of residuals,
r(x), computed with a function of the form

PetscErrorCode EvaluateResidual(Tao,Vec,Vec,void*);

and set with the

TaoSetResidualRoutine(Tao, PetscErrorCode (*)(Tao,Vec,Vec,void*),

void *);

routine. If required by the algorithm, the Jacobian of the residual, J = ∂r(x)/∂x, should
be computed with a function of the form

PetscErrorCode EvaluateJacobian(Tao,Vec,Mat,void*);

and set with the

TaoSetJacobianResidualRoutine(Tao, PetscErrorCode (*)(Tao,Vec,Mat,void*),

void *);

routine.

3.5.3 Complementarity

Complementarity applications have equality constraints in the form of nonlinear equations
C(X) = 0, where C : Rn → Rm. These constraints should be specified in a routine written
by the user with the form

PetscErrorCode EqualityConstraints(Tao,Vec,Vec,void*);

that evaluates C(X). The first argument of this routine is a TAO Solver object. The second
argument is the variable vector X at which the constraint function should be evaluated.
The third argument is the output vector of function values C(X), and the fourth argument
is a pointer to a user-defined context.

This routine and the user-defined context must be registered with TAO by using the

20

TaoSetConstraintRoutine(Tao, Vec,

PetscErrorCode (*)(Tao,Vec,Vec,void*),

void*);

command. In this command, the first argument is TAO Solver object, the second argument
is vector in which to store the function values, the third argument is the user-defined routine
that evaluates C(X), and the fourth argument is a pointer to a user-defined context that
will be passed back to the user.

The Jacobian of the function is the matrix in Rm×n such that each column contains the
partial derivatives of f with respect to one variable. The evaluation of the Jacobian of C
should be performed in a routine of the form

PetscErrorCode EvaluateJacobian(Tao,Vec,Mat,Mat,void*);

In this function, the first argument is the TAO Solver object and the second argument
is the variable vector at which to evaluate the Jacobian matrix. The third argument is
the Jacobian matrix, and the sixth argument is a pointer to a user-defined context. Since
the Jacobian matrix may be used in solving a system of linear equations, a preconditioner
for the matrix may be needed. The fourth argument is the matrix that will be used for
preconditioning the linear system; in most cases, this matrix will be the same as the Hessian
matrix. The fifth argument is the flag used to set the Jacobian matrix and linear solver in
the routine KSPSetOperators().

This routine should be specified to TAO by using the

TaoSetJacobianRoutine(Tao,Mat J, Mat Jpre,

PetscErrorCode (*)(Tao,Vec,Mat,Mat,

void*), void*);

command. The first argument is the TAO Solver object; the second and third arguments
are the Mat objects in which the Jacobian will be stored and the Mat object that will be
used for the preconditioning (they may be the same), respectively. The fourth argument
is the function pointer; and the fifth argument is an optional user-defined context. The
Jacobian matrix should be created in a way such that the product of it and the variable
vector can be stored in the constraint vector.

21

22

Chapter 4

TAO Solvers

TAO includes a variety of optimization algorithms for several classes of problems (uncon-
strained, bound-constrained, and PDE-constrained minimization, nonlinear least-squares,
and complementarity). The TAO algorithms for solving these problems are detailed in this
section, a particular algorithm can chosen by using the TaoSetType() function or using
the command line arguments -tao type <name>. For those interested in extending these
algorithms or using new ones, please see Chapter 6 for more information.

4.1 Unconstrained Minimization

Unconstrained minimization is used to minimize a function of many variables without any
constraints on the variables, such as bounds. The methods available in TAO for solving
these problems can be classified according to the amount of derivative information required:

1. Function evaluation only – Nelder-Mead method (tao nm)

2. Function and gradient evaluations – limited-memory, variable-metric method (tao lmvm)
and nonlinear conjugate gradient method (tao cg)

3. Function, gradient, and Hessian evaluations – Newton line search method (tao nls)
and Newton trust-region method (tao ntr)

The best method to use depends on the particular problem being solved and the accuracy
required in the solution. If a Hessian evaluation routine is available, then the Newton
line search and Newton trust-region methods will likely perform best. When a Hessian
evaluation routine is not available, then the limited-memory, variable-metric method is
likely to perform best. The Nelder-Mead method should be used only as a last resort when
no gradient information is available.

Each solver has a set of options associated with it that can be set with command line
arguments. These algorithms and the associated options are briefly discussed in this chapter.

4.1.1 Nelder-Mead Method

The Nelder-Mead algorithm [26] is a direct search method for finding a local minimum of
a function f(x). This algorithm does not require any gradient or Hessian information of

23

f and therefore has some expected advantages and disadvantages compared to the other
TAO solvers. The obvious advantage is that it is easier to write an application when no
derivatives need to be calculated. The downside is that this algorithm can be slow to
converge or can even stagnate, and it performs poorly for large numbers of variables.

This solver keeps a set of N + 1 sorted vectors x1, x2, . . . , xN+1 and their corresponding
objective function values f1 ≤ f2 ≤ . . . ≤ fN+1. At each iteration, xN+1 is removed from
the set and replaced with

x(µ) = (1 + µ)
1

N

N∑
i=1

xi − µxN+1,

where µ can be one of µ0, 2µ0,
1
2µ0,−

1
2µ0 depending on the values of each possible f(x(µ)).

The algorithm terminates when the residual fN+1 − f1 becomes sufficiently small. Be-
cause of the way new vectors can be added to the sorted set, the minimum function value
and/or the residual may not be impacted at each iteration.

Two options can be set specifically for the Nelder-Mead algorithm:

-tao nm lamda <value> sets the initial set of vectors (x0 plus value in each coordinate
direction); the default value is 1.

-tao nm mu <value> sets the value of µ0; the default is µ0 = 1.

4.1.2 Limited-Memory, Variable-Metric Method

The limited-memory, variable-metric method computes a positive definite approximation to
the Hessian matrix from a limited number of previous iterates and gradient evaluations. A
direction is then obtained by solving the system of equations

Hkdk = −∇f(xk),

where Hk is the Hessian approximation obtained by using the BFGS update formula. The
inverse of Hk can readily be applied to obtain the direction dk. Having obtained the direc-
tion, a Moré-Thuente line search is applied to compute a step length, τk, that approximately
solves the one-dimensional optimization problem

min
τ
f(xk + τdk).

The current iterate and Hessian approximation are updated, and the process is repeated
until the method converges. This algorithm is the default unconstrained minimization solver
and can be selected by using the TAO solver tao lmvm. For best efficiency, function and
gradient evaluations should be performed simultaneously when using this algorithm.

The primary factors determining the behavior of this algorithm are the type of Hes-
sian approximation used, the number of vectors stored for the approximation and the
initialization/scaling of the approximation. These options can be configured using the
-tao lmvm mat lmvm prefix. For further detail, we refer the reader to the MATLMVM matrix
type definitions in the PETSc Manual.

24

The LMVM algorithm also allows the user to define a custom initial Hessian matrix H0,k

through the interface function TaoLMVMSetH0(). This user-provided initialization overrides
any other scalar or diagonal initialization inherent to the LMVM approximation. The pro-
vided H0,k must be a PETSc Mat type object that represents a positive-definite matrix. The
approximation prefers MatSolve() if the provided matrix has MATOP SOLVE implemented.
Otherwise, MatMult() is used in a KSP solve to perform the inversion of the user-provided
initial Hessian.

In applications where TaoSolve() on the LMVM algorithm is repeatedly called to solve
similar or related problems, -tao lmvm recycle flag can be used to prevent resetting the
LMVM approximation between subsequent solutions. This recycling also avoids one extra
function and gradient evalution, instead re-using the values already computed at the end
of the previous solution.

This algorithm will be deprecated in the next version and replaced by the bounded
quasi-Newton Line Search (BQNLS) algorithm that can solve both bound constrained and
unconstrained problems.

4.1.3 Nonlinear Conjugate Gradient Method

The nonlinear conjugate gradient method can be viewed as an extension of the conjugate
gradient method for solving symmetric, positive-definite linear systems of equations. This
algorithm requires only function and gradient evaluations as well as a line search. The TAO
implementation uses a Moré-Thuente line search to obtain the step length. The nonlinear
conjugate gradient method can be selected by using the TAO solver tao cg. For the best
efficiency, function and gradient evaluations should be performed simultaneously when using
this algorithm.

Five variations are currently supported by the TAO implementation: the Fletcher-
Reeves method, the Polak-Ribiére method, the Polak-Ribiére-Plus method [27], the Hestenes-
Stiefel method, and the Dai-Yuan method. These conjugate gradient methods can be speci-
fied by using the command line argument -tao cg type <fr,pr,prp,hs,dy>, respectively.
The default value is prp.

The conjugate gradient method incorporates automatic restarts when successive gradi-
ents are not sufficiently orthogonal. TAO measures the orthogonality by dividing the inner
product of the gradient at the current point and the gradient at the previous point by the
square of the Euclidean norm of the gradient at the current point. When the absolute value
of this ratio is greater than η, the algorithm restarts using the gradient direction. The
parameter η can be set by using the command line argument -tao cg eta <real>; 0.1 is
the default value.

4.1.4 Newton Line Search Method

The Newton line search method solves the symmetric system of equations

Hkdk = −gk

to obtain a step dk, where Hk is the Hessian of the objective function at xk and gk is
the gradient of the objective function at xk. For problems where the Hessian matrix is

25

indefinite, the perturbed system of equations

(Hk + ρkI)dk = −gk

is solved to obtain the direction, where ρk is a positive constant. If the direction computed
is not a descent direction, the (scaled) steepest descent direction is used instead. Having
obtained the direction, a Moré-Thuente line search is applied to obtain a step length, τk,
that approximately solves the one-dimensional optimization problem

min
τ
f(xk + τdk).

The Newton line search method can be selected by using the TAO solver tao nls. The
options available for this solver are listed in Table 4.1. For the best efficiency, function and
gradient evaluations should be performed simultaneously when using this algorithm.

The system of equations is approximately solved by applying the conjugate gradient
method, Nash conjugate gradient method, Steihaug-Toint conjugate gradient method, gen-
eralized Lanczos method, or an alternative Krylov subspace method supplied by PETSc.
The method used to solve the systems of equations is specified with the command line
argument -tao nls ksp type <cg,nash,stcg,gltr,gmres,...>; stcg is the default. See
the PETSc manual for further information on changing the behavior of the linear system
solvers.

A good preconditioner reduces the number of iterations required to solve the linear
system of equations. For the conjugate gradient methods and generalized Lanczos method,
this preconditioner must be symmetric and positive definite. The available options are to
use no preconditioner, the absolute value of the diagonal of the Hessian matrix, a limited-
memory BFGS approximation to the Hessian matrix, or one of the other preconditioners
provided by the PETSc package. These preconditioners are specified by the command line
arguments -tao nls pc type <none,jacobi,icc,ilu,lmvm>, respectively. The default is
the lmvm preconditioner, which uses a BFGS approximation of the inverse Hessian. See the
PETSc manual for further information on changing the behavior of the preconditioners.

The perturbation ρk is added when the direction returned by the Krylov subspace
method is not a descent direction, the Krylov method diverged due to an indefinite precondi-
tioner or matrix, or a direction of negative curvature was found. In the last two cases, if the
step returned is a descent direction, it is used during the line search. Otherwise, a steepest
descent direction is used during the line search. The perturbation is decreased as long as the
Krylov subspace method reports success and increased if further problems are encountered.
There are three cases: initializing, increasing, and decreasing the perturbation. These cases
are described below.

1. If ρk is zero and a problem was detected with either the direction or the Krylov
subspace method, the perturbation is initialized to

ρk+1 = median {imin, imfac ∗ ‖g(xk)‖, imax} ,

where g(xk) is the gradient of the objective function and imin is set with the com-
mand line argument -tao nls imin <real> with a default value of 10−4, imfac by

26

Table 4.1: Summary of nls options

Name Value Default Description

-tao nls ksp type cg, nash, stcg, gltr,
gmres, ...

stcg Type of Krylov subspace
method to use when solving
linear system

-tao nls pc type none, jacobi, icc, ilu,
lmvm

lmvm Type of preconditioner to use
when solving linear system

-tao nls sval real 0 Initial perturbation value
-tao nls imin real 10−4 Minimum initial perturbation

value
-tao nls imax real 100 Maximum initial perturbation

value
-tao nls imfac real 0.1 Factor applied to norm of gra-

dient when initializing pertur-
bation

-tao nls pmax real 100 Maximum perturbation when
increasing value

-tao nls pgfac real 10 Growth factor applied to
perturbation when increasing
value

-tao nls pmgfac real 0.1 Factor applied to norm of gra-
dient when increasing pertur-
bation

-tao nls pmin real 10−12 Minimum perturbation when
decreasing value; smaller val-
ues set to zero

-tao nls psfac real 0.4 Shrink factor applied to per-
turbation when decreasing
value

-tao nls pmsfac real 0.1 Factor applied to norm of gra-
dient when decreasing pertur-
bation

-tao nls init type constant, direction, in-
terpolation

interpolation Method used to initialize
trust-region radius when using
nash, stcg, or gltr

27

Table 4.2: Summary of nls options (continued)

Name Value Default Description

-tao nls mu1 i real 0.35 µ1 in interpolation init
-tao nls mu2 i real 0.50 µ2 in interpolation init
-tao nls gamma1 i real 0.0625 γ1 in interpolation init
-tao nls gamma2 i real 0.50 γ2 in interpolation init
-tao nls gamma3 i real 2.00 γ3 in interpolation init
-tao nls gamma4 i real 5.00 γ4 in interpolation init
-tao nls theta i real 0.25 θ in interpolation init
-tao nls update type step, reduction, inter-

polation
step Method used to update trust-

region radius when using nash,
stcg, or gltr

-tao nls nu1 real 0.25 ν1 in step update
-tao nls nu2 real 0.50 ν2 in step update
-tao nls nu3 real 1.00 ν3 in step update
-tao nls nu4 real 1.25 ν4 in step update
-tao nls omega1 real 0.25 ω1 in step update
-tao nls omega2 real 0.50 ω2 in step update
-tao nls omega3 real 1.00 ω3 in step update
-tao nls omega4 real 2.00 ω4 in step update
-tao nls omega5 real 4.00 ω5 in step update
-tao nls eta1 real 10−4 η1 in reduction update
-tao nls eta2 real 0.25 η2 in reduction update
-tao nls eta3 real 0.50 η3 in reduction update
-tao nls eta4 real 0.90 η4 in reduction update
-tao nls alpha1 real 0.25 α1 in reduction update
-tao nls alpha2 real 0.50 α2 in reduction update
-tao nls alpha3 real 1.00 α3 in reduction update
-tao nls alpha4 real 2.00 α4 in reduction update
-tao nls alpha5 real 4.00 α5 in reduction update
-tao nls mu1 real 0.10 µ1 in interpolation update
-tao nls mu2 real 0.50 µ2 in interpolation update
-tao nls gamma1 real 0.25 γ1 in interpolation update
-tao nls gamma2 real 0.50 γ2 in interpolation update
-tao nls gamma3 real 2.00 γ3 in interpolation update
-tao nls gamma4 real 4.00 γ4 in interpolation update
-tao nls theta real 0.05 θ in interpolation update

28

-tao nls imfac with a default value of 0.1, and imax by -tao nls imax with a de-
fault value of 100. When using the gltr method to solve the system of equations, an
estimate of the minimum eigenvalue λ1 of the Hessian matrix is available. This value
is used to initialize the perturbation to ρk+1 = max {ρk+1,−λ1} in this case.

2. If ρk is nonzero and a problem was detected with either the direction or Krylov
subspace method, the perturbation is increased to

ρk+1 = min {pmax,max {pgfac ∗ ρk, pmgfac ∗ ‖g(xk)‖}} ,

where g(xk) is the gradient of the objective function and pgfac is set with the com-
mand line argument -tao nls pgfac with a default value of 10, pmgfac by -tao nls pmgfac

with a default value of 0.1, and pmax by -tao nls pmax with a default value of 100.

3. If ρk is nonzero and no problems were detected with either the direction or Krylov
subspace method, the perturbation is decreased to

ρk+1 = min {psfac ∗ ρk,pmsfac ∗ ‖g(xk)‖} ,

where g(xk) is the gradient of the objective function, psfac is set with the command
line argument -tao nls psfac with a default value of 0.4, and pmsfac is set by
-tao nls pmsfac with a default value of 0.1. Moreover, if ρk+1 < pmin, then ρk+1 =
0, where pmin is set with the command line argument -tao nls pmin and has a default
value of 10−12.

Near a local minimizer to the unconstrained optimization problem, the Hessian matrix will
be positive-semidefinite; the perturbation will shrink toward zero, and one would eventually
observe a superlinear convergence rate.

When using nash, stcg, or gltr to solve the linear systems of equation, a trust-region
radius needs to be initialized and updated. This trust-region radius simultaneously limits
the size of the step computed and reduces the number of iterations of the conjugate gradient
method. The method for initializing the trust-region radius is set with the command line
argument -tao nls init type <constant,direction,interpolation>; interpolation,
which chooses an initial value based on the interpolation scheme found in [7], is the default.
This scheme performs a number of function and gradient evaluations to determine a radius
such that the reduction predicted by the quadratic model along the gradient direction
coincides with the actual reduction in the nonlinear function. The iterate obtaining the best
objective function value is used as the starting point for the main line search algorithm.
The constant method initializes the trust-region radius by using the value specified with
the -tao trust0 <real> command line argument, where the default value is 100. The
direction technique solves the first quadratic optimization problem by using a standard
conjugate gradient method and initializes the trust region to ‖s0‖.

The method for updating the trust-region radius is set with the command line argument
-tao nls update type <step,reduction,interpolation>; step is the default. The step

29

method updates the trust-region radius based on the value of τk. In particular,

∆k+1 =

ω1min(∆k, ‖dk‖) if τk ∈ [0, ν1)
ω2min(∆k, ‖dk‖) if τk ∈ [ν1, ν2)
ω3∆k if τk ∈ [ν2, ν3)
max(∆k, ω4‖dk‖) if τk ∈ [ν3, ν4)
max(∆k, ω5‖dk‖) if τk ∈ [ν4,∞),

where 0 < ω1 < ω2 < ω3 = 1 < ω4 < ω5 and 0 < ν1 < ν2 < ν3 < ν4 are constants. The
reduction method computes the ratio of the actual reduction in the objective function to
the reduction predicted by the quadratic model for the full step, κk = f(xk)−f(xk+dk)

q(xk)−q(xk+dk) , where
qk is the quadratic model. The radius is then updated as

∆k+1 =

α1min(∆k, ‖dk‖) if κk ∈ (−∞, η1)
α2min(∆k, ‖dk‖) if κk ∈ [η1, η2)
α3∆k if κk ∈ [η2, η3)
max(∆k, α4‖dk‖) if κk ∈ [η3, η4)
max(∆k, α5‖dk‖) if κk ∈ [η4,∞),

where 0 < α1 < α2 < α3 = 1 < α4 < α5 and 0 < η1 < η2 < η3 < η4 are constants. The
interpolation method uses the same interpolation mechanism as in the initialization to
compute a new value for the trust-region radius.

This algorithm will be deprecated in the next version and replaced by the bounded
Newton Line Search (BNLS) algorithm that can solve both bound constrained and uncon-
strained problems.

4.1.5 Newton Trust-Region Method

The Newton trust-region method solves the constrained quadratic programming problem

mind
1
2d

THkd+ gTk d
subject to ‖d‖ ≤ ∆k

to obtain a direction dk, where Hk is the Hessian of the objective function at xk, gk is
the gradient of the objective function at xk, and ∆k is the trust-region radius. If xk + dk
sufficiently reduces the nonlinear objective function, then the step is accepted, and the trust-
region radius is updated. However, if xk + dk does not sufficiently reduce the nonlinear
objective function, then the step is rejected, the trust-region radius is reduced, and the
quadratic program is re-solved by using the updated trust-region radius. The Newton
trust-region method can be set by using the TAO solver tao ntr. The options available for
this solver are listed in Table 4.3. For the best efficiency, function and gradient evaluations
should be performed separately when using this algorithm.

The quadratic optimization problem is approximately solved by applying the Nash or
Steihaug-Toint conjugate gradient methods or the generalized Lanczos method to the sym-
metric system of equations Hkd = −gk. The method used to solve the system of equations
is specified with the command line argument -tao ntr ksp type <nash,stcg,gltr>; stcg
is the default. See the PETSc manual for further information on changing the behavior of
these linear system solvers.

30

Table 4.3: Summary of ntr options

Name Value Default Description

-tao ntr ksp type nash, stcg, gltr stcg Type of Krylov subspace
method to use when solving
linear system

-tao ntr pc type none, jacobi, icc, ilu,
lmvm

lmvm Type of preconditioner to use
when solving linear system

-tao ntr init type constant, direction, in-
terpolation

interpolation Method used to initialize
trust-region radius

-tao ntr mu1 i real 0.35 µ1 in interpolation init
-tao ntr mu2 i real 0.50 µ2 in interpolation init
-tao ntr gamma1 i real 0.0625 γ1 in interpolation init
-tao ntr gamma2 i real 0.50 γ2 in interpolation init
-tao ntr gamma3 i real 2.00 γ3 in interpolation init
-tao ntr gamma4 i real 5.00 γ4 in interpolation init
-tao ntr theta i real 0.25 θ in interpolation init
-tao ntr update type reduction, interpola-

tion
reduction Method used to update trust-

region radius
-tao ntr eta1 real 10−4 η1 in reduction update
-tao ntr eta2 real 0.25 η2 in reduction update
-tao ntr eta3 real 0.50 η3 in reduction update
-tao ntr eta4 real 0.90 η4 in reduction update
-tao ntr alpha1 real 0.25 α1 in reduction update
-tao ntr alpha2 real 0.50 α2 in reduction update
-tao ntr alpha3 real 1.00 α3 in reduction update
-tao ntr alpha4 real 2.00 α4 in reduction update
-tao ntr alpha5 real 4.00 α5 in reduction update
-tao ntr mu1 real 0.10 µ1 in interpolation update
-tao ntr mu2 real 0.50 µ2 in interpolation update
-tao ntr gamma1 real 0.25 γ1 in interpolation update
-tao ntr gamma2 real 0.50 γ2 in interpolation update
-tao ntr gamma3 real 2.00 γ3 in interpolation update
-tao ntr gamma4 real 4.00 γ4 in interpolation update
-tao ntr theta real 0.05 θ in interpolation update

31

A good preconditioner reduces the number of iterations required to compute the direc-
tion. For the Nash and Steihaug-Toint conjugate gradient methods and generalized Lanczos
method, this preconditioner must be symmetric and positive definite. The available options
are to use no preconditioner, the absolute value of the diagonal of the Hessian matrix,
a limited-memory BFGS approximation to the Hessian matrix, or one of the other pre-
conditioners provided by the PETSc package. These preconditioners are specified by the
command line argument -tao ntr pc type <none,jacobi,icc,ilu,lmvm>, respectively.
The default is the lmvm preconditioner. See the PETSc manual for further information on
changing the behavior of the preconditioners.

The method for computing an initial trust-region radius is set with the command line ar-
guments -tao ntr init type <constant,direction,interpolation>; interpolation,
which chooses an initial value based on the interpolation scheme found in [7], is the de-
fault. This scheme performs a number of function and gradient evaluations to determine a
radius such that the reduction predicted by the quadratic model along the gradient direction
coincides with the actual reduction in the nonlinear function. The iterate obtaining the best
objective function value is used as the starting point for the main trust-region algorithm.
The constant method initializes the trust-region radius by using the value specified with
the -tao trust0 <real> command line argument, where the default value is 100. The
direction technique solves the first quadratic optimization problem by using a standard
conjugate gradient method and initializes the trust region to ‖s0‖.

The method for updating the trust-region radius is set with the command line ar-
guments -tao ntr update type <reduction,interpolation>; reduction is the default.
The reduction method computes the ratio of the actual reduction in the objective function
to the reduction predicted by the quadratic model for the full step, κk = f(xk)−f(xk+dk)

q(xk)−q(xk+dk) ,
where qk is the quadratic model. The radius is then updated as

∆k+1 =

α1min(∆k, ‖dk‖) if κk ∈ (−∞, η1)
α2min(∆k, ‖dk‖) if κk ∈ [η1, η2)
α3∆k if κk ∈ [η2, η3)
max(∆k, α4‖dk‖) if κk ∈ [η3, η4)
max(∆k, α5‖dk‖) if κk ∈ [η4,∞),

where 0 < α1 < α2 < α3 = 1 < α4 < α5 and 0 < η1 < η2 < η3 < η4 are constants. The
interpolation method uses the same interpolation mechanism as in the initialization to
compute a new value for the trust-region radius.

This algorithm will be deprecated in the next version and replaced by the bounded
Newton Trust Region (BNTR) algorithm that can solve both bound constrained and un-
constrained problems.

4.1.6 BMRM

The Bundle Method for Regularized Risk Minimization (BMRM)[?] is a numerical approach
to optimizing an unconstrained objective in the form of f(x) + 0.5 ∗ λ‖x‖2. Here f is a
convex function that is finite on the whole space. λ is a positive weight parameter, and
‖x‖ is the Euclidean norm of x. The algorithm only requires a routine which, given an x,
returns the value of f(x) and the gradient of f at x.

32

4.1.7 OWL-QN

The Orthant-Wise Limited-memory Quasi-Newton algorithm (OWL-QN)[1] is a numerical
approach to optimizing an unconstrained objective in the form of f(x) + λ‖x‖1. Here f is
a convex and differentiable function, λ is a positive weight parameter, and ‖x‖1 is the L1
norm of x:

∑
i |xi|. The algorithm only requires evaluating the value of f and its gradient.

4.2 Bound-Constrained Optimization

Bound-constrained optimization algorithms solve optimization problems of the form

min
x

f(x)

subject to l ≤ x ≤ u.

These solvers use the bounds on the variables as well as objective function, gradient, and
possibly Hessian information.

For any unbounded variables, the bound value for the associated index can be set to
PETSC INFINITY for the upper bound and PETSC NINFINITY for the lower bound. If all
bounds are set to infinity, then the bounded algorithms are equivalent to their unconstrained
counterparts.

Before introducing specific methods, we will first define two projection operations used
by all bound constrained algorithms.

• Gradient projection:

P(g) =

{
0 if (x ≤ li ∧ gi > 0) ∨ (x ≥ ui ∧ gi < 0)
gi otherwise

• Bound projection:

B(x) =

li if xi < li
ui if xi > ui
xi otherwise

4.2.1 Bounded Newton-Krylov Methods

TAO features three bounded Newton-Krylov (BNK) class of algorithms, separated by their
globalization methods: projected line search (BNLS), trust region (BNTR), and trust region
with a projected line search fall-back (BNTL). They are available via the TAO solvers
TAOBNLS, TAOBNTR and TAOBNTL, respectively, or the -tao type bnls/bntr/bntl flag.

The BNK class of methods use an active-set approach to solve the symmetric system of
equations,

Hkpk = −gk,

only for inactive variables in the interior of the bounds. The active-set estimation is based

33

on Bertsekas [6] with the following variable index categories:

lower bounded : L(x) = {i : xi ≤ li + ε ∧ g(x)i > 0},
upper bounded : U(x) = {i : xi ≥ ui + ε ∧ g(x)i < 0},

fixed : F(x) = {i : li = ui},
active-set : A(x) = {L(x)

⋃
U(x)

⋃
F(x)},

inactive-set : I(x) = {1, 2, . . . , n} \ A(x).

At each iteration, the bound tolerance is estimated as εk+1 = min(εk, ||wk||2) with wk =
xk−B(xk−βDkgk), where the diagonal matrixDk is an approximation of the Hessian inverse
H−1
k . The initial bound tolerance ε0 and the step length β have default values of 0.001 and

can be adjusted using -tao bnk as tol and -tao bnk as step flags, respectively. The
active-set estimation can be disabled using the option -tao bnk as type none, in which
case the algorithm simply uses the current iterate with no bound tolerances to determine
which variables are actively bounded and which are free.

BNK algorithms invert the reduced Hessian using a Krylov iterative method. Trust-
region conjugate gradient methods (KSPNASH, KSPSTCG, and KSPGLTR) are required for the
BNTR and BNTL algorithms, and recommended for the BNLS algorithm. The precondi-
tioner type can be changed using the -tao bnk pc type none/ilu/icc/jacobi/lmvm. The
lmvm option, which is also the default, preconditions the Krylov solution with a MATLMVM

matrix. The remaining supported preconditioner types are default PETSc types. If Jacobi
is selected, the diagonal values are safeguarded to be positive. icc and ilu options produce
good results for problems with dense Hessians. The LMVM and Jacobi preconditioners
are also used as the approximate inverse-Hessian in the active-set estimation. If neither
are available, or if the Hessian matrix does not have MATOP GET DIAGONAL defined, then
the active-set estimation falls back onto using an identity matrix in place of Dk (this is
equivalent to estimating the active-set using a gradient descent step).

A special option is available to “accelerate” the convergence of the BNK algorithms by
taking a finite number of BNCG iterations at each Newton iteration. By default, the number
of BNCG iterations is set to zero and the algorithms do not take any BNCG steps. This can
be changed using the option flag -tao bnk max cg its <i>. While this reduces the number
of Newton iterations, in practice it simply trades off the Hessian evaluations in the BNK
solver for more function and gradient evaluations in the BNCG solver. However, it may
be useful for certain types of problems where the Hessian evaluation is disproportionately
more expensive than the objective function or its gradient.

Bounded Newton Line Search (BNLS)

BNLS safeguards the Newton step by falling back onto a BFGS, scaled gradient, or gradient
steps based on descent direction verifications. For problems with indefinite Hessian matrices,
the step direction is calculated using a perturbed system of equations,

(Hk + ρkI)pk = −gk,

where ρk is a dynamically adjusted positive constant. The step is globalized using a pro-
jected More-Thuente line search. If a trust-region conjugate gradient method is used for
the Hessian inversion, the trust radius is modified based on the line search step length.

34

Bounded Newton Trust Region (BNTR)

BNTR globalizes the Newton step using a trust region method based on the predicted versus
actual reduction in the cost function. The trust radius is increased only if the accepted step
is at the trust region boundary. The reduction check features a safeguard for numerical
values below machine epsilon, scaled by the latest function value, where the full Newton
step is accepted without modification.

Bounded Newton Trust Region with Line Search Fall-back (BNTL)

BNTL safeguards the trust-region globalization such that a line search is used in the event
that the step is initially rejected by the predicted versus actual decrease comparison. If the
line search fails to find a viable step length for the Newton step, it falls back onto a scaled
gradient or a gradient descent step. The trust radius is then modified based on the line
search step length.

4.2.2 Bounded Nonlinear Conjugate Gradient

BNCG extends the unconstrained nonlinear conjugate gradient algorithm to bound con-
straints via gradient projections and a bounded More-Thuente line search.

Like its unconstrained counterpart, BNCG offers gradient descent and a variety of CG
updates: Fletcher-Reeves, Polak-Ribiére, Polak-Ribiére-Plus, Hestenes-Stiefel, Dai-Yuan,
Hager-Zhang, Dai-Kou, Kou-Dai, and the Self-Scaling Memoryless (SSML) BFGS, DFP,
and Broyden methods. These methods can be specified by using the command line argument
-tao bncg type <gd,fr,pr,prp,hs,dy,hz,dk,kd,ssml bfgs,ssml dfp,ssml brdn>, re-
spectively. The default value is ssml bfgs. We have scalar preconditioning for these meth-
ods, and it is controlled by the flag tao bncg alpha. To disable rescaling, use α = −1.0,
otherwise α ∈ [0, 1]. BNCG is available via the TAO solver TAOBNCG or the -tao type bncg

flag.

Some individual methods also contain their own parameters. The Hager-Zhang and Dou-
Kai methods have a parameter that determines the minimum amount of contribution the
previous search direction gives to the next search direction. The flags are -tao bncg hz eta

and -tao bncg dk eta, and by default are set to 0.4 and 0.5 respectively. The Kou-Dai
method has multiple parameters. -tao bncg zeta serves the same purpose as the previous
two; set to 0.1 by default. There is also a parameter to scale the contribution of yk ≡
∇f(xk) −∇f(xk−1) in the search direction update. It is controlled by -tao bncg xi, and
is equal to 1.0 by default. There are also times where we want to maximize the descent as
measured by ∇f(xk)

Tdk, and that may be done by using a negative value of ξ; this achieves
better performance when not using the diagonal preconditioner described next. This is
enabled by default, and is controlled by -tao bncg neg xi. Finally, the Broyden method
has its convex combination parameter, set with -tao bncg theta. We have this as 1.0 by
default, i.e. it is by default the BFGS method. One can also individually tweak the BFGS
and DFP contributions using the multiplicative constants -tao bncg <bfgs,dfp> scale;
both are set to 1 by default.

All methods can be scaled using the parameter -tao bncg alpha, which continuously
varies in [0, 1]. The default value is set depending on the method from initial testing.

35

BNCG also offers a special type of method scaling. It employs Broyden diagonal scaling
as an option for its CG methods, turned on with the flag -tao bncg diag scaling. Formu-
lations for both the forward (regular) and inverse Broyden methods are developed, controlled
by the flag -tao bncg mat lmvm forward. It is set to True by default. Whether one uses the
forward or inverse formulations depends on the method being used. For example, in our pre-
liminary computations, the forward formulation works better for the SSML BFGS method,
but the inverse formulation works better for the Hestenes-Stiefel method. The convex com-
bination parameter for the Broyden scaling is controlled by -tao bncg mat lmvm theta,
and is 0 by default. We also employ rescaling of the Broyden diagonal, which aids the line-
search immensely. The rescaling parameter is controlled by -tao bncg mat lmvm alpha,
and should be ∈ [0, 1]. One can disable rescaling of the Broyden diagonal entirely by
setting -tao bncg mat lmvm sigma hist 0.

One can also supply their own preconditioner, serving as a Hessian initialization to the
above diagonal scaling. The appropriate user function in the code is TaoBNCGSetH0(tao,

H0) where H0 is the user-defined Mat object that serves as a preconditioner. For an example
of similar usage, see tao/examples/tutorials/ex3.c.

The active set estimation uses the Bertsekas-based method described in Section 4.2.1,
which can be deactivated using -tao bncg as type none, in which case the algorithm will
use the current iterate to determine the bounded variables with no tolerancing and no look-
ahead step. As in the BNK algorithm, the initial bound tolerance and estimator step length
used in the Bertsekas method can be set via -tao bncg as tol and -tao bncg as step,
respectively.

In addition to automatic scaled gradient descent restarts under certain local curva-
ture conditions, we also employ restarts based on a check on descent direction such that
∇f(xk)

Tdk ∈ [−1011,−1−9]. Furthermore, we allow for a variety of alternative restart
strategies, all disabled by default. The -tao bncg unscaled restart flag allows one to
disable rescaling of the gradient for gradient descent steps. The -tao bncg spaced restart

flag tells the solver to restart every Mn iterations, where n is the problem dimension and
M is a constant determined by -tao bncg min restart num and is 6 by default. We also
have dynamic restart strategies based on checking if a function is locally quadratic; if so,
go do a gradient descent step. The flag is -tao bncg dynamic restart, disabled by default
since the CG solver usually does better in those cases anyway. The minimum number of
quadratic-like steps before a restart is set using -tao bncg min quad and is 6 by default.

4.2.3 Trust-Region Newton Method

The TRON [20] algorithm is an active-set method that uses a combination of gradient pro-
jections and a preconditioned conjugate gradient method to minimize an objective function.
Each iteration of the TRON algorithm requires function, gradient, and Hessian evaluations.
In each iteration, the algorithm first applies several conjugate gradient iterations. After
these iterates, the TRON solver momentarily ignores the variables that equal one of its
bounds and applies a preconditioned conjugate gradient method to a quadratic model of
the remaining set of “free” variables.

The TRON algorithm solves a reduced linear system defined by the rows and columns
corresponding to the variables that lie between the upper and lower bounds. The TRON

36

algorithm applies a trust region to the conjugate gradients to ensure convergence. The
initial trust-region radius can be set by using the command TaoSetInitialTrustRegion-

Radius(), and the current trust region size can be found by using the command TaoGet-

CurrentTrustRegionRadius(). The initial trust region can significantly alter the rate of
convergence for the algorithm and should be tuned and adjusted for optimal performance.

4.2.4 Bound-constrained Limited-Memory Variable-Metric Method

BLMVM is a limited-memory, variable-metric method and is the bound-constrained vari-
ant of the LMVM method for unconstrained optimization. It uses projected gradients to
approximate the Hessian, eliminating the need for Hessian evaluations. The method can be
set by using the TAO solver tao blmvm. For more details, please see the LMVM section in
the unconstrained algorithms as well as the LMVM matrix documentation in the PETSc
manual.

This algorithm will be deprecated in the next version in favor of the bounded quasi-
Newton line search (BQNLS) algorithm.

4.2.5 Bounded Quasi-Newton-Krylov

BQNK algorithms use the BNK infrastructure, but replace the exact Hessian with a quasi-
Newton approximation. The matrix-free forward product operation based on quasi-Newton
update formulas are used in conjunction with Krylov solvers to compute step directions.
The quasi-Newton inverse application is used to precondition the Krylov solution, and
typically helps converge to a step direction in O(10) iterations. This approach is most useful
with quasi-Newton update types such as Symmetric Rank-1 that cannot strictly guarantee
positive-definiteness. The BNLS framework with Hessian shifting, or the BNTR framework
with trust region safeguards, can successfully compensate for the Hessian approximation
becoming indefinite.

Similar to the full Newton-Krylov counterpart, BQNK algorithms come in three forms
separated by the globalization technique: line search (BQNKLS), trust region (BQNKTR)
and trust region w/ line search fall-back (BQNKTL). These algorithms are available via
tao type <bqnkls, bqnktr, bqnktl>.

4.2.6 Bounded Quasi-Newton Line Search (BQNLS)

BQNLS algorithm uses the BNLS infrastructure, but replaces the step calculation with a
direct inverse application of the approximate Hessian based on quasi-Newton update formu-
las. No Krylov solver is used in the solution, and therefore the quasi-Newton method chosen
must guarantee a positive-definite Hessian approximation. This algorithm is available via
tao type bqnls.

37

4.3 PDE-Constrained Optimization

TAO solves PDE-constrained optimization problems of the form

min
u,v

f(u, v)

subject to g(u, v) = 0,

where the state variable u is the solution to the discretized partial differential equation
defined by g and parametrized by the design variable v, and f is an objective function. The
Lagrange multipliers on the constraint are denoted by y. This method is set by using the
linearly constrained augmented Lagrangian TAO solver tao lcl.

We make two main assumptions when solving these problems: the objective function
and PDE constraints have been discretized so that we can treat the optimization problem
as finite dimensional and ∇ug(u, v) is invertible for all u and v.

4.3.1 Linearly-Constrained Augmented Lagrangian Method

Given the current iterate (uk, vk, yk), the linearly constrained augmented Lagrangian method
approximately solves the optimization problem

min
u,v

f̃k(u, v)

subject to Ak(u− uk) +Bk(v − vk) + gk = 0,

where Ak = ∇ug(uk, vk), Bk = ∇vg(uk, vk), and gk = g(uk, vk) and

f̃k(u, v) = f(u, v)− g(u, v)T yk +
ρk
2
‖g(u, v)‖2

is the augmented Lagrangian function. This optimization problem is solved in two stages.
The first computes the Newton direction and finds a feasible point for the linear constraints.
The second computes a reduced-space direction that maintains feasibility with respect to
the linearized constraints and improves the augmented Lagrangian merit function.

Newton Step

The Newton direction is obtained by fixing the design variables at their current value and
solving the linearized constraint for the state variables. In particular, we solve the system
of equations

Akdu = −gk

to obtain a direction du. We need a direction that provides sufficient descent for the merit
function

1

2
‖g(u, v)‖2.

That is, we require gTk Akdu < 0.

If the Newton direction is a descent direction, then we choose a penalty parameter ρk so
that du is also a sufficient descent direction for the augmented Lagrangian merit function.

38

We then find α to approximately minimize the augmented Lagrangian merit function along
the Newton direction.

min
α≥0

f̃k(uk + αdu, vk).

We can enforce either the sufficient decrease condition or the Wolfe conditions during the
search procedure. The new point,

uk+ 1
2

= uk + αkdu

vk+ 1
2

= vk,

satisfies the linear constraint

Ak(uk+ 1
2
− uk) +Bk(vk+ 1

2
− vk) + αkgk = 0.

If the Newton direction computed does not provide descent for the merit function, then we
can use the steepest descent direction du = −ATk gk during the search procedure. However,
the implication that the intermediate point approximately satisfies the linear constraint is
no longer true.

Modified Reduced-Space Step

We are now ready to compute a reduced-space step for the modified optimization problem:

min
u,v

f̃k(u, v)

subject to Ak(u− uk) +Bk(v − vk) + αkgk = 0.

We begin with the change of variables

min
du,dv

f̃k(uk + du, vk + dv)

subject to Akdu+Bkdv + αkgk = 0

and make the substitution

du = −A−1
k (Bkdv + αkgk).

Hence, the unconstrained optimization problem we need to solve is

min
dv

f̃k(uk −A−1
k (Bkdv + αkgk), vk + dv),

which is equivalent to

min
dv

f̃k(uk+ 1
2
−A−1

k Bkdv, vk+ 1
2

+ dv).

We apply one step of a limited-memory quasi-Newton method to this problem. The direction
is obtain by solving the quadratic problem

min
dv

1
2dv

T H̃kdv + g̃T
k+ 1

2

dv,

39

where H̃k is the limited-memory quasi-Newton approximation to the reduced Hessian ma-
trix, a positive-definite matrix, and g̃k+ 1

2
is the reduced gradient.

g̃k+ 1
2

= ∇vf̃k(uk+ 1
2
, vk+ 1

2
)−∇uf̃k(uk+ 1

2
, vk+ 1

2
)A−1

k Bk

= dk+ 1
2

+ ck+ 1
2
A−1
k Bk

The reduced gradient is obtained from one linearized adjoint solve

yk+ 1
2

= A−T
k ck+ 1

2

and some linear algebra
g̃k+ 1

2
= dk+ 1

2
+ yT

k+ 1
2

Bk.

Because the Hessian approximation is positive definite and we know its inverse, we obtain
the direction

dv = −H−1
k g̃k+ 1

2

and recover the full-space direction from one linearized forward solve,

du = −A−1
k Bkdv.

Having the full-space direction, which satisfies the linear constraint, we now approximately
minimize the augmented Lagrangian merit function along the direction.

min
β≥0

f̃k(uk+ 1
2

+ βdu, vk+ 1
2

+ βdv)

We enforce the Wolfe conditions during the search procedure. The new point is

uk+1 = uk+ 1
2

+ βkdu

vk+1 = vk+ 1
2

+ βkdv.

The reduced gradient at the new point is computed from

yk+1 = A−T
k ck+1

g̃k+1 = dk+1 − yTk+1Bk,

where ck+1 = ∇uf̃k(uk+1, vk+1) and dk+1 = ∇vf̃k(uk+1, vk+1). The multipliers yk+1 become
the multipliers used in the next iteration of the code. The quantities vk+ 1

2
, vk+1, g̃k+ 1

2
, and

g̃k+1 are used to update Hk to obtain the limited-memory quasi-Newton approximation to
the reduced Hessian matrix used in the next iteration of the code. The update is skipped
if it cannot be performed.

4.4 Nonlinear Least-Squares

Given a function F : Rn → Rm, the nonlinear least-squares problem minimizes

f(x) = ‖F (x)‖22 =

m∑
i=1

Fi(x)2. (4.1)

The nonlinear equations F should be specified with the function TaoSetResidual().

40

4.4.1 POUNDerS

One algorithm for solving the least squares problem (4.1) when the Jacobian of the resid-
ual vector F is unavailable is the model-based POUNDerS (Practical Optimization Using
No Derivatives for sums of Squares) algorithm (tao pounders). POUNDerS employs a
derivative-free trust-region framework as described in [8] in order to converge to local min-
imizers. An example of this version of POUNDerS applied to a practical least-squares
problem can be found in [18].

Derivative-Free Trust-Region Algorithm

In each iteration k, the algorithm maintains a model mk(x), described below, of the non-
linear least squares function f centered about the current iterate xk.

If one assumes that the maximum number of function evaluations has not been reached
and that ‖∇mk(xk)‖2 >gtol, the next point x+ to be evaluated is obtained by solving the
trust-region subproblem

min {mk(x) : ‖x− xk‖p ≤ ∆k, } , (4.2)

where ∆k is the current trust-region radius. By default we use a trust-region norm with
p = ∞ and solve (4.2) with the BLMVM method described in Section 4.2.4. While the
subproblem is a bound-constrained quadratic program, it may not be convex and the BQPIP
and GPCG methods may not solve the subproblem. Therefore, either BLMVM (the default)
or TRON should be used. Note: TRON uses its own internal trust region that may interfere
with the infinity-norm trust region used in the model problem (4.2).

The residual vector is then evaluated to obtain F (x+) and hence f(x+). The ratio of
actual decrease to predicted decrease,

ρk =
f(xk)− f(x+)

mk(xk)−mk(x+)
,

as well as an indicator, valid, on the model’s quality of approximation on the trust region
is then used to update the iterate,

xk+1 =

x+ if ρk ≥ η1
x+ if 0 < ρk < η1 and valid=true

xk else,

and trust-region radius,

∆k+1 =

min(γ1∆k,∆max) if ρk ≥ η1 and ‖x+ − xk‖p ≥ ω1∆k

γ0∆k if ρk < η1 and valid=true

∆k else,

where 0 < η1 < 1, 0 < γ0 < 1 < γ1, 0 < ω1 < 1, and ∆max are constants.
If ρk ≤ 0 and valid is false, the iterate and trust-region radius remain unchanged

after the above updates, and the algorithm tests whether the direction x+ − xk improves
the model. If not, the algorithm performs an additional evaluation to obtain F (xk + dk),
where dk is a model-improving direction.

The iteration counter is then updated, and the next model mk is obtained as described
next.

41

Forming the Trust-Region Model

In each iteration, POUNDerS uses a subset of the available evaluated residual vectors
{F (y1), F (y2), · · · } to form an interpolatory quadratic model of each residual component.
The m quadratic models

q
(i)
k (x) = Fi(xk) + (x− xk)T g

(i)
k +

1

2
(x− xk)TH

(i)
k (x− xk), i = 1, . . . ,m (4.3)

thus satisfy the interpolation conditions

q
(i)
k (yj) = Fi(yj), i = 1, . . . ,m; j = 1, . . . , lk

on a common interpolation set {y1, · · · , ylk} of size lk ∈ [n+ 1,npmax].
The gradients and Hessians of the models in (4.3) are then used to construct the master

model,

mk(x) = f(xk)+2(x−xk)T
m∑
i=1

Fi(xk)g
(i)
k +(x−xk)T

m∑
i=1

(
g
(i)
k

(
g
(i)
k

)T
+ Fi(xk)H

(i)
k

)
(x−xk).

(4.4)
The process of forming these models also computes the indicator valid of the model’s local
quality.

Parameters

POUNDerS supports the following parameters that can be set from the command line or
PETSc options file:

-tao pounders delta <delta> The initial trust-region radius (> 0, real). This is used to
determine the size of the initial neighborhood within which the algorithm should look.

-tao pounders npmax <npmax> The maximum number of interpolation points used (n +
2 ≤ npmax ≤ 0.5(n+ 1)(n+ 2)). This input is made available to advanced users. We
recommend the default value (npmax= 2n+ 1) be used by others.

-tao pounders gqt Use the gqt algorithm to solve the subproblem (4.2) (uses p = 2)
instead of BQPIP.

-pounders subsolver If the default BQPIP algorithm is used to solve the subproblem (4.2),
the parameters of the subproblem solver can be accessed using the command line op-
tions prefix -pounders subsolver . For example,

-pounders_subsolver_tao_gatol 1.0e-5

sets the gradient tolerance of the subproblem solver to 10−5.

Additionally, the user provides an initial solution vector, a vector for storing the sep-
arable objective function, and a routine for evaluating the residual vector F . These are
described in detail in Sections 3.3.3 and 3.5.2. Here we remark that because gradient infor-
mation is not available for scaling purposes, it can be useful to ensure that the problem is
reasonably well scaled. A simple way to do so is to rescale the decision variables x so that
their typical values are expected to lie within the unit hypercube [0, 1]n.

42

Convergence Notes

Because the gradient function is not provided to POUNDerS, the norm of the gradient of
the objective function is not available. Therefore, for convergence criteria, this norm is
approximated by the norm of the model gradient and used only when the model gradient
is deemed to be a reasonable approximation of the gradient of the objective. In practice,
the typical grounds for termination for expensive derivative-free problems is the maximum
number of function evaluations allowed.

4.4.2 Bound-constrained Regularized Gauss-Newton

The Gauss-Newton method is used to iteratively solve nonlinear least squares problem with
the iterations

xk+1 = xk − αk(JTk Jk)−1JTk r(xk) (4.5)

where r(x) is the least-squares residual vector, Jk = ∂r(xk)/∂x is the Jacobian of the
residual, and αk is the step length parameter. In other words, the Gauss-Newton method
approximates the Hessian of the objective as Hk ≈ (JTk Jk) and the gradient of the objec-
tive as gk ≈ −Jkr(xk). The least-squares Jacobian, J , should be provided to Tao using
TaoSetJacobianResidual() routine.

The BRGN implementation adds a regularization term β(x) such that

min
x

1

2
||R(x)||22 + λβ(x), (4.6)

where λ is the scalar weight of the regularizer. BRGN provides two default implementations
for β(x):

• L2-norm - β(x) = 1
2 ||xk||

2
2

• L2-norm Proximal Point - β(x) = 1
2 ||xk − xk−1||22

• L1-norm with Dictionary - β(x) = ||Dx||1 ≈
∑

i

√
y2i + ε2 − ε where y = Dx and

ε is the smooth approximation parameter.

The regularizer weight can be controlled with either TaoBRGNSetRegularizerWeight() or
-tao brgn regularizer weight command line option, while the smooth approximation pa-
rameter can be set with either TaoBRGNSetL1SmoothEpsilon() or -tao brgn l1 smooth epsilon.
For the L1-norm term, the user can supply a dictionary matrix with TaoBRGNSetDictionaryMatrix().
If no dictionary is provided, the dictionary is assumed to be an identity matrix and the reg-
ularizer reduces to a sparse solution term.

The regularization selection can be made using the command line option -tao brgn regularization type

<l2pure, l2prox, l1dict, user> where the “user” option allows the user to define a
custom C2-continuous regularization term. This custom term can be defined by using the
interface functions:

• TaoBRGNSetRegularizerObjectiveAndGradientRoutine() - Provide user-call back
for evaluating the function value and gradient evaluaton for the regularization term.

• TaoBRGNSetRegularizerHessianRoutine() - Provide user call-back for evaluating
the Hessian of the regularization term.

43

4.5 Complementarity

Mixed complementarity problems, or box-constrained variational inequalities, are related to
nonlinear systems of equations. They are defined by a continuously differentiable function,
F : Rn → Rn, and bounds, ` ∈ {R ∪ {−∞}}n and u ∈ {R ∪ {∞}}n, on the variables such
that ` ≤ u. Given this information, x∗ ∈ [`, u] is a solution to MCP(F , `, u) if for each
i ∈ {1, . . . , n} we have at least one of the following:

Fi(x
∗) ≥ 0 if x∗i = `i

Fi(x
∗) = 0 if `i < x∗i < ui

Fi(x
∗) ≤ 0 if x∗i = ui.

Note that when ` = {−∞}n and u = {∞}n, we have a nonlinear system of equations, and
` = {0}n and u = {∞}n correspond to the nonlinear complementarity problem [9].

Simple complementarity conditions arise from the first-order optimality conditions from
optimization [17, 19]. In the simple bound-constrained optimization case, these conditions
correspond to MCP(∇f , `, u), where f : Rn → R is the objective function. In a one-
dimensional setting these conditions are intuitive. If the solution is at the lower bound,
then the function must be increasing and ∇f ≥ 0. If the solution is at the upper bound,
then the function must be decreasing and ∇f ≤ 0. If the solution is strictly between the
bounds, we must be at a stationary point and ∇f = 0. Other complementarity problems
arise in economics and engineering [12], game theory [25], and finance [16].

Evaluation routines for F and its Jacobian must be supplied prior to solving the appli-
cation. The bounds, [`, u], on the variables must also be provided. If no starting point is
supplied, a default starting point of all zeros is used.

4.5.1 Semismooth Methods

TAO has two implementations of semismooth algorithms [24, 10, 11] for solving mixed com-
plementarity problems. Both are based on a reformulation of the mixed complementarity
problem as a nonsmooth system of equations using the Fischer-Burmeister function [13]. A
nonsmooth Newton method is applied to the reformulated system to calculate a solution.
The theoretical properties of such methods are detailed in the aforementioned references.

The Fischer-Burmeister function, φ : R2 → R, is defined as

φ(a, b) :=
√
a2 + b2 − a− b.

This function has the following key property,

φ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0,

used when reformulating the mixed complementarity problem as the system of equations
Φ(x) = 0, where Φ : Rn → Rn. The reformulation is defined componentwise as

Φi(x) :=

φ(xi − li, Fi(x)) if −∞ < li < ui =∞,
−φ(ui − xi,−Fi(x)) if −∞ = li < ui <∞,
φ(xi − li, φ(ui − xi,−Fi(x))) if −∞ < li < ui <∞,
−Fi(x) if −∞ = li < ui =∞,
li − xi if −∞ < li = ui <∞.

44

We note that Φ is not differentiable everywhere but satisfies a semismoothness property
[21, 28, 29]. Furthermore, the natural merit function, Ψ(x) := 1

2‖Φ(x)‖22, is continuously
differentiable.

The two semismooth TAO solvers both solve the system Φ(x) = 0 by applying a non-
smooth Newton method with a line search. We calculate a direction, dk, by solving the
system Hkdk = −Φ(xk), where Hk is an element of the B-subdifferential [29] of Φ at xk. If
the direction calculated does not satisfy a suitable descent condition, then we use the neg-
ative gradient of the merit function, −∇Ψ(xk), as the search direction. A standard Armijo
search [2] is used to find the new iteration. Nonmonotone searches [14] are also available
by setting appropriate runtime options. See Section 5.4 for further details.

The first semismooth algorithm available in TAO is not guaranteed to remain feasible
with respect to the bounds, [`, u], and is termed an infeasible semismooth method. This
method can be specified by using the tao ssils solver. In this case, the descent test used
is that

∇Ψ(xk)Tdk ≤ −δ‖dk‖ρ.

Both δ > 0 and ρ > 2 can be modified by using the runtime options -tao ssils delta

<delta> and -tao ssils rho <rho>, respectively. By default, δ = 10−10 and ρ = 2.1.
An alternative is to remain feasible with respect to the bounds by using a projected

Armijo line search. This method can be specified by using the tao ssfls solver. The
descent test used is the same as above where the direction in this case corresponds to the
first part of the piecewise linear arc searched by the projected line search. Both δ > 0
and ρ > 2 can be modified by using the runtime options -tao ssfls delta <delta> and
-tao ssfls rho <rho> respectively. By default, δ = 10−10 and ρ = 2.1.

The recommended algorithm is the infeasible semismooth method, tao ssils, because
of its strong global and local convergence properties. However, if it is known that F is
not defined outside of the box, [`, u], perhaps because of the presence of log functions, the
feasibility-enforcing version of the algorithm, tao ssfls, is a reasonable alternative.

4.6 Quadratic Solvers

Quadratic solvers solve optimization problems of the form

min
x

1
2x

TQx+ cTx

subject to l ≥ x ≥ u

where the gradient and the Hessian of the objective are both constant.

4.6.1 Gradient Projection Conjugate Gradient Method

The GPCG [23] algorithm is much like the TRON algorithm, discussed in Section 4.2.3,
except that it assumes that the objective function is quadratic and convex. Therefore, it
evaluates the function, gradient, and Hessian only once. Since the objective function is
quadratic, the algorithm does not use a trust region. All the options that apply to TRON
except for trust-region options also apply to GPCG. It can be set by using the TAO solver
tao gpcg or via the optio flag -tao type gpcg.

45

4.6.2 Interior-Point Newton’s Method

The BQPIP algorithm is an interior-point method for bound constrained quadratic op-
timization. It can be set by using the TAO solver of tao bqpip or via the option flag
-tao type bgpip. Since it assumes the objective function is quadratic, it evaluates the
function, gradient, and Hessian only once. This method also requires the solution of sys-
tems of linear equations, whose solver can be accessed and modified with the command
TaoGetKSP().

46

Chapter 5

Advanced Options

This section discusses options and routines that apply to most TAO solvers and problem
classes. In particular, we focus on linear solvers, convergence tests, and line searches.

5.1 Linear Solvers

One of the most computationally intensive phases of many optimization algorithms involves
the solution of linear systems of equations. The performance of the linear solver may be
critical to an efficient computation of the solution. Since linear equation solvers often have
a wide variety of options associated with them, TAO allows the user to access the linear
solver with the

TaoGetKSP(Tao, KSP *);

command. With access to the KSP object, users can customize it for their application to
achieve improved performance. Additional details on the KSP options in PETSc can be
found in the PETSc users manual [5].

5.2 Monitors

By default the TAO solvers run silently without displaying information about the iterations.
The user can initiate monitoring with the command

TaoSetMonitor(Tao,

PetscErrorCode (*mon)(Tao,void*),

void*);

The routine mon indicates a user-defined monitoring routine, and void* denotes an optional
user-defined context for private data for the monitor routine.

The routine set by TaoSetMonitor() is called once during each iteration of the op-
timization solver. Hence, the user can employ this routine for any application-specific
computations that should be done after the solution update.

47

5.3 Convergence Tests

Convergence of a solver can be defined in many ways. The methods TAO uses by default
are mentioned in Section 3.4.1. These methods include absolute and relative convergence
tolerances as well as a maximum number of iterations of function evaluations. If these
choices are not sufficient, the user can specify a customized test.

Users can set their own customized convergence tests of the form

PetscErrorCode conv(Tao, void*);

The second argument is a pointer to a structure defined by the user. Within this routine, the
solver can be queried for the solution vector, gradient vector, or other statistic at the current
iteration through routines such as TaoGetSolutionStatus() and TaoGetTolerances().

To use this convergence test within a TAO solver, one uses the command

TaoSetConvergenceTest(Tao,

PetscErrorCode (*conv)(Tao,void*),

void*);

The second argument of this command is the convergence routine, and the final argument
of the convergence test routine denotes an optional user-defined context for private data.
The convergence routine receives the TAO solver and this private data structure. The
termination flag can be set by using the routine

TaoSetConvergedReason(Tao, TaoConvergedReason);

5.4 Line Searches

By using the command line option -tao ls type. Available line searches include Moré-
Thuente [22], Armijo, gpcg, and unit.

The line search routines involve several parameters, which are set to defaults that are
reasonable for many applications. The user can override the defaults by using the following
options

• -tao ls maxfev <max>

• -tao ls stepmin <min>

• -tao ls stepmax <max>

• -tao ls ftol <ftol>

• -tao ls gtol <gtol>

• -tao ls rtol <rtol>

One should run a TAO program with the option -help for details. Users may write their
own customized line search codes by modeling them after one of the defaults provided.

48

Chapter 6

Adding a Solver

One of the strengths of both TAO and PETSc is the ability to allow users to extend the
built-in solvers with new user-defined algorithms. It is certainly possible to develop new
optimization algorithms outside of TAO framework, but Using TAO to implement a solver
has many advantages,

1. TAO includes other optimization solvers with an identical interface, so application
problems may conveniently switch solvers to compare their effectiveness.

2. TAO provides support for function evaluations and derivative information. It allows
for the direct evaluation of this information by the application developer, contains
limited support for finite difference approximations, and allows the uses of matrix-free
methods. The solvers can obtain this function and derivative information through a
simple interface while the details of its computation are handled within the toolkit.

3. TAO provides line searches, convergence tests, monitoring routines, and other tools
that are helpful in an optimization algorithm. The availability of these tools means
that the developers of the optimization solver do not have to write these utilities.

4. PETSc offers vectors, matrices, index sets, and linear solvers that can be used by
the solver. These objects are standard mathematical constructions that have many
different implementations. The objects may be distributed over multiple processors,
restricted to a single processor, have a dense representation, use a sparse data struc-
ture, or vary in many other ways. TAO solvers do not need to know how these objects
are represented or how the operations defined on them have been implemented. In-
stead, the solvers apply these operations through an abstract interface that leaves
the details to PETSc and external libraries. This abstraction allows solvers to work
seamlessly with a variety of data structures while allowing application developers to
select data structures tailored for their purposes.

5. PETSc provides the user a convenient method for setting options at runtime, perfor-
mance profiling, and debugging.

49

6.1 Header File

TAO solver implementation files must include the TAO implementation file taoimpl.h:

#include "petsc/private/taoimpl.h"

This file contains data elements that are generally kept hidden from application program-
mers, but may be necessary for solver implementations to access.

6.2 TAO Interface with Solvers

TAO solvers must be written in C or C++ and include several routines with a particu-
lar calling sequence. Two of these routines are mandatory: one that initializes the TAO
structure with the appropriate information and one that applies the algorithm to a problem
instance. Additional routines may be written to set options within the solver, view the
solver, setup appropriate data structures, and destroy these data structures. In order to
implement the conjugate gradient algorithm, for example, the following structure is useful.

typedef struct{

PetscReal beta;

PetscReal eta;

PetscInt ngradtseps;

PetscInt nresetsteps;

Vec X_old;

Vec G_old;

} TAO_CG;

This structure contains two parameters, two counters, and two work vectors. Vectors for
the solution and gradient are not needed here because the TAO structure has pointers to
them.

6.2.1 Solver Routine

All TAO solvers have a routine that accepts a TAO structure and computes a solution.
TAO will call this routine when the application program uses the routine TaoSolve() and
will pass to the solver information about the objective function and constraints, pointers
to the variable vector and gradient vector, and support for line searches, linear solvers,
and convergence monitoring. As an example, consider the following code that solves an
unconstrained minimization problem using the conjugate gradient method.

PetscErrorCode TaoSolve_CG(Tao tao){

TAO_CG *cg = (TAO_CG *) tao->data;

Vec x = tao->solution;

Vec g = tao->gradient;

50

Vec s = tao->stepdirection;

PetscInt iter=0;

PetscReal gnormPrev,gdx,f,gnorm,steplength=0;

TaoLineSearchConvergedReason lsflag=TAO_LINESEARCH_CONTINUE_ITERATING;

TaoConvergedReason reason=TAO_CONTINUE_ITERATING;

PetscErrorCode ierr;

PetscFunctionBegin;

ierr = TaoComputeObjectiveAndGradient(tao,x,&f,g);CHKERRQ(ierr);

ierr = VecNorm(g,NORM_2,&gnorm); CHKERRQ(ierr);

ierr = VecSet(s,0); CHKERRQ(ierr);

cg->beta=0;

gnormPrev = gnorm;

/* Enter loop */

while (1){

/* Test for convergence */

ierr = TaoMonitor(tao,iter,f,gnorm,0.0,step,&reason);CHKERRQ(ierr);

if (reason!=TAO_CONTINUE_ITERATING) break;

cg->beta=(gnorm*gnorm)/(gnormPrev*gnormPrev);

ierr = VecScale(s,cg->beta); CHKERRQ(ierr);

ierr = VecAXPY(s,-1.0,g); CHKERRQ(ierr);

ierr = VecDot(s,g,&gdx); CHKERRQ(ierr);

if (gdx>=0){ /* If not a descent direction, use gradient */

ierr = VecCopy(g,s); CHKERRQ(ierr);

ierr = VecScale(s,-1.0); CHKERRQ(ierr);

gdx=-gnorm*gnorm;

}

/* Line Search */

gnormPrev = gnorm; step=1.0;

ierr = TaoLineSearchSetInitialStepLength(tao->linesearch,1.0);

ierr = TaoLineSearchApply(tao->linesearch,x,&f,g,s,&steplength,&lsflag);

ierr = TaoAddLineSearchCounts(tao); CHKERRQ(ierr);

ierr = VecNorm(g,NORM_2,&gnorm);CHKERRQ(ierr);

iter++;

}

PetscFunctionReturn(0);

51

}

The first line of this routine casts the second argument to a pointer to a TAO CG data
structure. This structure contains pointers to three vectors and a scalar that will be needed
in the algorithm.

After declaring an initializing several variables, the solver lets TAO evaluate the func-
tion and gradient at the current point in the using the routine TaoComputeObjective-

AndGradient(). Other routines may be used to evaluate the Hessian matrix or evaluate
constraints. TAO may obtain this information using direct evaluation or other means, but
these details do not affect our implementation of the algorithm.

The norm of the gradient is a standard measure used by unconstrained minimization
solvers to define convergence. This quantity is always nonnegative and equals zero at the
solution. The solver will pass this quantity, the current function value, the current iteration
number, and a measure of infeasibility to TAO with the routine

PetscErrorCode TaoMonitor(Tao tao, PetscInt iter, PetscReal f,

PetscReal res, PetscReal cnorm, PetscReal steplength,

TaoConvergedReason *reason);

Most optimization algorithms are iterative, and solvers should include this command some-
where in each iteration. This routine records this information, and applies any monitoring
routines and convergence tests set by default or the user. In this routine, the second argu-
ment is the current iteration number, and the third argument is the current function value.
The fourth argument is a nonnegative error measure associated with the distance between
the current solution and the optimal solution. Examples of this measure are the norm of
the gradient or the square root of a duality gap. The fifth argument is a nonnegative error
that usually represents a measure of the infeasibility such as the norm of the constraints
or violation of bounds. This number should be zero for unconstrained solvers. The sixth
argument is a nonnegative steplength, or the multiple of the step direction added to the
previous iterate. The results of the convergence test are returned in the last argument. If
the termination reason is TAO CONTINUE ITERATING, the algorithm should continue.

After this monitoring routine, the solver computes a step direction using the conjugate
gradient algorithm and computations using Vec objects. These methods include adding
vectors together and computing an inner product. A full list of these methods can be found
in the manual pages.

Nonlinear conjugate gradient algorithms also require a line search. TAO provides several
line searches and support for using them. The routine

TaoLineSearchApply(TaoLineSearch ls, Vec x, PetscReal *f, Vec g,

TaoVec *s, PetscReal *steplength,

TaoLineSearchConvergedReason *lsflag)

passes the current solution, gradient, and objective value to the line search and returns a
new solution, gradient, and objective value. More details on line searches can be found in
Section 5.4. The details of the line search applied are specified elsewhere, when the line
search is created.

52

TAO also includes support for linear solvers using PETSc KSP objects. Although this
algorithm does not require one, linear solvers are an important part of many algorithms.
Details on the use of these solvers can be found in the PETSc users manual.

6.2.2 Creation Routine

The TAO solver is initialized for a particular algorithm in a separate routine. This routine
sets default convergence tolerances, creates a line search or linear solver if needed, and
creates structures needed by this solver. For example, the routine that creates the nonlinear
conjugate gradient algorithm shown above can be implemented as follows.

PETSC_EXTERN PetscErrorCode TaoCreate_CG(Tao tao)

{

TAO_CG *cg = (TAO_CG*)tao->data;

const char *morethuente_type = TAOLINESEARCH_MT;

PetscErrorCode ierr;

PetscFunctionBegin;

ierr = PetscNewLog(tao,&cg); CHKERRQ(ierr);

tao->data = (void*)cg;

cg->eta = 0.1;

cg->delta_min = 1e-7;

cg->delta_max = 100;

cg->cg_type = CG_PolakRibierePlus;

tao->max_it = 2000;

tao->max_funcs = 4000;

tao->ops->setup = TaoSetUp_CG;

tao->ops->solve = TaoSolve_CG;

tao->ops->view = TaoView_CG;

tao->ops->setfromoptions = TaoSetFromOptions_CG;

tao->ops->destroy = TaoDestroy_CG;

ierr = TaoLineSearchCreate(((PetscObject)tao)->comm, &tao->linesearch);

CHKERRQ(ierr);

ierr = TaoLineSearchSetType(tao->linesearch, morethuente_type); CHKERRQ(ierr);

ierr = TaoLineSearchUseTaoRoutines(tao->linesearch, tao); CHKERRQ(ierr);

PetscFunctionReturn(0);

}

EXTERN_C_END

This routine declares some variables and then allocates memory for the TAO CG data struc-
ture. Notice that the Tao object now has a pointer to this data structure (tao->data) so

53

it can be accessed by the other functions written for this solver implementation.
This routine also sets some default parameters particular to the conjugate gradient

algorithm, sets default convergence tolerances, and creates a particular line search. These
defaults could be specified in the routine that solves the problem, but specifying them here
gives the user the opportunity to modify these parameters either by using direct calls setting
parameters or by using options.

Finally, this solver passes to TAO the names of all the other routines used by the solver.
Note that the lines EXTERN C BEGIN and EXTERN C END surround this routine. These

macros are required to preserve the name of this function without any name-mangling from
the C++ compiler (if used).

6.2.3 Destroy Routine

Another routine needed by most solvers destroys the data structures created by earlier rou-
tines. For the nonlinear conjugate gradient method discussed earlier, the following routine
destroys the two work vectors and the TAO CG structure.

PetscErrorCode TaoDestroy_CG(TAO_SOLVER tao)

{

TAO_CG *cg = (TAO_CG *) tao->data;

PetscErrorCode ierr;

PetscFunctionBegin;

ierr = VecDestroy(&cg->X_old); CHKERRQ(ierr);

ierr = VecDestroy(&cg->G_old);CHKERRQ(ierr);

PetscFree(tao->data);

tao->data = NULL;

PetscFunctionReturn(0);

}

This routine is called from within the TaoDestroy() routine. Only algorithm-specific data
objects are destroyed in this routine; any objects indexed by TAO (tao->linesearch,
tao->ksp, tao->gradient, etc.) will be destroyed by TAO immediately after the algorithm-
specific destroy routine completes.

6.2.4 SetUp Routine

If the SetUp routine has been set by the initialization routine, TAO will call it during the
execution of TaoSolve(). While this routine is optional, it is often provided to allocate the
gradient vector, work vectors, and other data structures required by the solver. It should
have the following form.

PetscErrorCode TaoSetUp_CG(Tao tao)

{

54

PetscErrorCode ierr;

TAO_CG *cg = (TAO_CG*)tao->data;

PetscFunctionBegin;

ierr = VecDuplicate(tao->solution,&tao->gradient); CHKERRQ(ierr);

ierr = VecDuplicate(tao->solution,&tao->stepdirection); CHKERRQ(ierr);

ierr = VecDuplicate(tao->solution,&cg->X_old); CHKERRQ(ierr);

ierr = VecDuplicate(tao->solution,&cg->G_old); CHKERRQ(ierr);

PetscFunctionReturn(0);

}

6.2.5 SetFromOptions Routine

The SetFromOptions routine should be used to check for any algorithm-specific options set
by the user and will be called when the application makes a call to TaoSetFromOptions().
It should have the following form.

PetscErrorCode TaoSetFromOptions_CG(Tao tao, void *solver);

{

PetscErrorCode ierr;

TAO_CG *cg = (TAO_CG*)solver;

PetscFunctionBegin;

ierr = PetscOptionsReal("-tao_cg_eta","restart tolerance","",cg->eta,

&cg->eta,0); CHKERRQ(ierr);

ierr = PetscOptionsReal("-tao_cg_delta_min","minimum delta value","",

cg->delta_min,&cg->delta_min,0); CHKERRQ(ierr);

ierr = PetscOptionsReal("-tao_cg_delta_max","maximum delta value","",

cg->delta_max,&cg->delta_max,0); CHKERRQ(ierr);

PetscFunctionReturn(0);

}

6.2.6 View Routine

The View routine should be used to output any algorithm-specific information or statistics
at the end of a solve. This routine will be called when the application makes a call to
TaoView() or when the command line option -tao view is used. It should have the following
form.

PetscErrorCode TaoView_CG(Tao tao, PetscViewer viewer)

{

TAO_CG *cg = (TAO_CG*)tao->data;

PetscErrorCode ierr;

PetscFunctionBegin;

ierr = PetscViewerASCIIPushTab(viewer);

ierr = PetscViewerASCIIPrintf(viewer,"Grad. steps: %d\n",cg->ngradsteps);

55

ierr = PetscViewerASCIIPrintf(viewer,"Reset steps: %d\n",cg->nresetsteps);

ierr = PetscViewerASCIIPopTab(viewer);

PetscFunctionReturn(0);

}

6.2.7 Registering the Solver

Once a new solver is implemented, TAO needs to know the name of the solver and what
function to use to create the solver. To this end, one can use the routine

TaoRegister(const char *name,

const char *path,

const char *cname,

PetscErrorCode (*create) (Tao));

where name is the name of the solver (i.e., tao blmvm), path is the path to the library
containing the solver, cname is the name of the routine that creates the solver (in our case,
TaoCreate CG), and create is a pointer to that creation routine. If one is using dynamic
loading, then the fourth argument will be ignored.

Once the solver has been registered, the new solver can be selected either by using the
TaoSetType() function or by using the -tao type command line option.

56

Index

application, 12
application context, 13

BMRM, 32
bounds, 16, 33

convergence tests, 17, 48

finite differences, 15

gradients, 14, 24, 25

Hessian, 15

line search, 24, 25, 48

matrix, 7
matrix-free options, 16

Newton method, 30
Newtons method, 25

options, 18
OWLQN, 33

projected Newton’s method, 33

TaoAppSetInitialSolutionVec(), 12
TaoAppSetJacobianRoutine(), 21
TaoCreate(), 4, 11
TaoDefaultComputeGradient(), 15
TaoDefaultComputeHessian(), 15
TaoDestroy(), 4, 12
TaoGetKSP(), 47
TaoGetSolution(), 18
TaoGetSolutionStatus(), 17
TaoGetSolutionVector(), 12
TaoSetConstraintsRoutine(), 19, 20
TaoSetConvergenceTest(), 48
TaoSetGradientRoutine(), 14

TaoSetHessianRoutine(), 15
TaoSetInitialVector(), 4
TaoSetMaximumFunctionEvaluations(), 17
TaoSetMaximumIterations(), 17
TaoSetMonitor(), 47
TaoSetObjectiveAndGradientRoutine(), 4, 14
TaoSetObjectiveRoutine(), 13
TaoSetOptions(), 18
TaoSetRoutine(), 4
TaoSetTolerances(), 17
TaoSetTrustRegionTolerance, 17
TaoSetType(), 11
TaoSetVariableBounds, 16
TaoSolve(), 4, 16
trust region, 17, 30, 33, 36

57

58

Bibliography

[1] Galen Andrew and Jianfeng Gao. Scalable training of l1-regularized log-linear models.
In Proceedings of the 24th international conference on Machine learning (ICML), pages
33–40, 2007.

[2] L. Armijo. Minimization of functions having Lipschitz-continuous first partial deriva-
tives. Pacific Journal of Mathematics, 16:1–3, 1966.

[3] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. PETSc
Web page. See http://www.mcs.anl.gov/petsc.

[4] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Efficient
management of parallelism in object oriented numerical software libraries. In E. Arge,
A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools in Scientific
Computing, pages 163–202. Birkhauser Press, 1997.

[5] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. PETSc
2.0 users manual. Technical Report ANL-95/11 - Revision 2.1.0, Argonne National
Laboratory, Apr 2001.

[6] Dimitri P. Bertsekas. Projected Newton methods for optimization problems with simple
constraints. SIAM Journal on Control and Optimization, 20:221–246, 1982.

[7] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. SIAM, Philadel-
phia, Pennsylvania, 2000.

[8] Andrew R. Conn, Katya Scheinberg, and Lúıs N. Vicente. Introduction to Derivative-
Free Optimization. MPS/SIAM Series on Optimization. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2009.

[9] R. W. Cottle. Nonlinear programs with positively bounded Jacobians. PhD thesis,
Department of Mathematics, University of California, Berkeley, California, 1964.

[10] T. De Luca, F. Facchinei, and C. Kanzow. A semismooth equation approach to the
solution of nonlinear complementarity problems. Mathematical Programming, 75:407–
439, 1996.

[11] F. Facchinei, A. Fischer, and C. Kanzow. A semismooth Newton method for variational
inequalities: The case of box constraints. In M. C. Ferris and J. S. Pang, editors, Com-
plementarity and Variational Problems: State of the Art, pages 76–90, Philadelphia,
Pennsylvania, 1997. SIAM Publications.

59

http://www.mcs.anl.gov/petsc

[12] M. C. Ferris and J. S. Pang. Engineering and economic applications of complementarity
problems. SIAM Review, 39:669–713, 1997.

[13] A. Fischer. A special Newton–type optimization method. Optimization, 24:269–284,
1992.

[14] L. Grippo, F. Lampariello, and S. Lucidi. A nonmonotone line search technique for
Newton’s method. SIAM Journal on Numerical Analysis, 23:707–716, 1986.

[15] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel
Programming with the Message Passing Interface. MIT Press, 1994.

[16] J. Huang and J. S. Pang. Option pricing and linear complementarity. Journal of
Computational Finance, 2:31–60, 1998.

[17] W. Karush. Minima of functions of several variables with inequalities as side conditions.
Master’s thesis, Department of Mathematics, University of Chicago, 1939.

[18] M. Kortelainen, T. Lesinski, J. Moré, W. Nazarewicz, J. Sarich, N. Schunck, M. V.
Stoitsov, and S. M. Wild. Nuclear energy density optimization. Physical Review C,
82(2):024313, 2010.

[19] H. W. Kuhn and A. W. Tucker. Nonlinear programming. In J. Neyman, editor, Pro-
ceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability,
pages 481–492. University of California Press, Berkeley and Los Angeles, 1951.

[20] C.-J. Lin and J. J. Moré. Newton’s method for large bound-constrained optimization
problems. SIOPT, 9(4):1100–1127, 1999.

[21] R. Mifflin. Semismooth and semiconvex functions in constrained optimization. SIAM
Journal on Control and Optimization, 15:957–972, 1977.

[22] Jorge J. Moré and David Thuente. Line search algorithms with guaranteed sufficient
decrease. Technical Report MCS-P330-1092, Mathematics and Computer Science Di-
vision, Argonne National Laboratory, 1992.

[23] Jorge J. Moré and G. Toraldo. On the solution of large quadratic programming prob-
lems with bound constraints. SIOPT, 1:93–113, 1991.

[24] T. S. Munson, F. Facchinei, M. C. Ferris, A. Fischer, and C. Kanzow. The semismooth
algorithm for large scale complementarity problems. INFORMS Journal on Computing,
forthcoming, 2001.

[25] J. F. Nash. Equilibrium points in N–person games. Proceedings of the National
Academy of Sciences, 36:48–49, 1950.

[26] J. A. Nelder and R. Mead. A simplex method for function minimization. Computer
Journal, 7:308–313, 1965.

[27] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer-Verlag, New
York, 1999.

60

[28] L. Qi. Convergence analysis of some algorithms for solving nonsmooth equations.
Mathematics of Operations Research, 18:227–244, 1993.

[29] L. Qi and J. Sun. A nonsmooth version of Newton’s method. Mathematical Program-
ming, 58:353–368, 1993.

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

Mathematics and Computer Science Division
Argonne National Laboratory
9700 South Cass Avenue, Bldg. 240
Argonne, IL 60439

www.anl.gov

	Preface
	Changes for Version 3.5
	Changes for Version 2.0
	Acknowledgments
	License
	Introduction
	Getting Started
	Writing Application Codes with TAO
	A Simple TAO Example
	Include Files
	TAO Solvers
	Function Evaluations
	Programming with PETSc

	Using TAO Solvers
	Header File
	Creation and Destruction
	TAO Applications
	Defining Variables
	Application Context
	Objective Function and Gradient Routines
	Hessian Evaluation
	Bounds on Variables

	Solving
	Convergence
	Viewing Status
	Obtaining a Solution
	Additional Options

	Special Problem Structures
	PDE-Constrained Optimization
	Nonlinear Least Squares
	Complementarity

	TAO Solvers
	Unconstrained Minimization
	Nelder-Mead Method
	Limited-Memory, Variable-Metric Method
	Nonlinear Conjugate Gradient Method
	Newton Line Search Method
	Newton Trust-Region Method
	BMRM
	OWL-QN

	Bound-Constrained Optimization
	Bounded Newton-Krylov Methods
	Bounded Nonlinear Conjugate Gradient
	Trust-Region Newton Method
	Bound-constrained Limited-Memory Variable-Metric Method
	Bounded Quasi-Newton-Krylov
	Bounded Quasi-Newton Line Search (BQNLS)

	PDE-Constrained Optimization
	Linearly-Constrained Augmented Lagrangian Method

	Nonlinear Least-Squares
	POUNDerS
	Bound-constrained Regularized Gauss-Newton

	Complementarity
	Semismooth Methods

	Quadratic Solvers
	Gradient Projection Conjugate Gradient Method
	Interior-Point Newton's Method

	Advanced Options
	Linear Solvers
	Monitors
	Convergence Tests
	Line Searches

	Adding a Solver
	Header File
	TAO Interface with Solvers
	Solver Routine
	Creation Routine
	Destroy Routine
	SetUp Routine
	SetFromOptions Routine
	View Routine
	Registering the Solver

