Actual source code: ts.c
petsc-3.11.4 2019-09-28
1: #include <petsc/private/tsimpl.h>
2: #include <petscdmshell.h>
3: #include <petscdmda.h>
4: #include <petscviewer.h>
5: #include <petscdraw.h>
7: /* Logging support */
8: PetscClassId TS_CLASSID, DMTS_CLASSID;
9: PetscLogEvent TS_Step, TS_PseudoComputeTimeStep, TS_FunctionEval, TS_JacobianEval;
11: const char *const TSExactFinalTimeOptions[] = {"UNSPECIFIED","STEPOVER","INTERPOLATE","MATCHSTEP","TSExactFinalTimeOption","TS_EXACTFINALTIME_",0};
13: /*@C
14: TSMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type indicated by the user
16: Collective on TS
18: Input Parameters:
19: + ts - TS object you wish to monitor
20: . name - the monitor type one is seeking
21: . help - message indicating what monitoring is done
22: . manual - manual page for the monitor
23: . monitor - the monitor function
24: - monitorsetup - a function that is called once ONLY if the user selected this monitor that may set additional features of the TS or PetscViewer objects
26: Level: developer
28: .seealso: PetscOptionsGetViewer(), PetscOptionsGetReal(), PetscOptionsHasName(), PetscOptionsGetString(),
29: PetscOptionsGetIntArray(), PetscOptionsGetRealArray(), PetscOptionsBool()
30: PetscOptionsInt(), PetscOptionsString(), PetscOptionsReal(), PetscOptionsBool(),
31: PetscOptionsName(), PetscOptionsBegin(), PetscOptionsEnd(), PetscOptionsHead(),
32: PetscOptionsStringArray(),PetscOptionsRealArray(), PetscOptionsScalar(),
33: PetscOptionsBoolGroupBegin(), PetscOptionsBoolGroup(), PetscOptionsBoolGroupEnd(),
34: PetscOptionsFList(), PetscOptionsEList()
35: @*/
36: PetscErrorCode TSMonitorSetFromOptions(TS ts,const char name[],const char help[], const char manual[],PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,PetscViewerAndFormat*),PetscErrorCode (*monitorsetup)(TS,PetscViewerAndFormat*))
37: {
38: PetscErrorCode ierr;
39: PetscViewer viewer;
40: PetscViewerFormat format;
41: PetscBool flg;
44: PetscOptionsGetViewer(PetscObjectComm((PetscObject)ts),((PetscObject) ts)->options,((PetscObject)ts)->prefix,name,&viewer,&format,&flg);
45: if (flg) {
46: PetscViewerAndFormat *vf;
47: PetscViewerAndFormatCreate(viewer,format,&vf);
48: PetscObjectDereference((PetscObject)viewer);
49: if (monitorsetup) {
50: (*monitorsetup)(ts,vf);
51: }
52: TSMonitorSet(ts,(PetscErrorCode (*)(TS,PetscInt,PetscReal,Vec,void*))monitor,vf,(PetscErrorCode (*)(void**))PetscViewerAndFormatDestroy);
53: }
54: return(0);
55: }
57: static PetscErrorCode TSAdaptSetDefaultType(TSAdapt adapt,TSAdaptType default_type)
58: {
64: if (!((PetscObject)adapt)->type_name) {
65: TSAdaptSetType(adapt,default_type);
66: }
67: return(0);
68: }
70: /*@
71: TSSetFromOptions - Sets various TS parameters from user options.
73: Collective on TS
75: Input Parameter:
76: . ts - the TS context obtained from TSCreate()
78: Options Database Keys:
79: + -ts_type <type> - TSEULER, TSBEULER, TSSUNDIALS, TSPSEUDO, TSCN, TSRK, TSTHETA, TSALPHA, TSGLLE, TSSSP, TSGLEE, TSBSYMP
80: . -ts_save_trajectory - checkpoint the solution at each time-step
81: . -ts_max_time <time> - maximum time to compute to
82: . -ts_max_steps <steps> - maximum number of time-steps to take
83: . -ts_init_time <time> - initial time to start computation
84: . -ts_final_time <time> - final time to compute to (deprecated: use -ts_max_time)
85: . -ts_dt <dt> - initial time step
86: . -ts_exact_final_time <stepover,interpolate,matchstep> whether to stop at the exact given final time and how to compute the solution at that ti,e
87: . -ts_max_snes_failures <maxfailures> - Maximum number of nonlinear solve failures allowed
88: . -ts_max_reject <maxrejects> - Maximum number of step rejections before step fails
89: . -ts_error_if_step_fails <true,false> - Error if no step succeeds
90: . -ts_rtol <rtol> - relative tolerance for local truncation error
91: . -ts_atol <atol> Absolute tolerance for local truncation error
92: . -ts_rhs_jacobian_test_mult -mat_shell_test_mult_view - test the Jacobian at each iteration against finite difference with RHS function
93: . -ts_rhs_jacobian_test_mult_transpose -mat_shell_test_mult_transpose_view - test the Jacobian at each iteration against finite difference with RHS function
94: . -ts_adjoint_solve <yes,no> After solving the ODE/DAE solve the adjoint problem (requires -ts_save_trajectory)
95: . -ts_fd_color - Use finite differences with coloring to compute IJacobian
96: . -ts_monitor - print information at each timestep
97: . -ts_monitor_lg_solution - Monitor solution graphically
98: . -ts_monitor_lg_error - Monitor error graphically
99: . -ts_monitor_error - Monitors norm of error
100: . -ts_monitor_lg_timestep - Monitor timestep size graphically
101: . -ts_monitor_lg_timestep_log - Monitor log timestep size graphically
102: . -ts_monitor_lg_snes_iterations - Monitor number nonlinear iterations for each timestep graphically
103: . -ts_monitor_lg_ksp_iterations - Monitor number nonlinear iterations for each timestep graphically
104: . -ts_monitor_sp_eig - Monitor eigenvalues of linearized operator graphically
105: . -ts_monitor_draw_solution - Monitor solution graphically
106: . -ts_monitor_draw_solution_phase <xleft,yleft,xright,yright> - Monitor solution graphically with phase diagram, requires problem with exactly 2 degrees of freedom
107: . -ts_monitor_draw_error - Monitor error graphically, requires use to have provided TSSetSolutionFunction()
108: . -ts_monitor_solution [ascii binary draw][:filename][:viewerformat] - monitors the solution at each timestep
109: . -ts_monitor_solution_vtk <filename.vts,filename.vtu> - Save each time step to a binary file, use filename-%%03D.vts (filename-%%03D.vtu)
110: . -ts_monitor_envelope - determine maximum and minimum value of each component of the solution over the solution time
112: Developer Note: We should unify all the -ts_monitor options in the way that -xxx_view has been unified
114: Level: beginner
116: .keywords: TS, timestep, set, options, database
118: .seealso: TSGetType()
119: @*/
120: PetscErrorCode TSSetFromOptions(TS ts)
121: {
122: PetscBool opt,flg,tflg;
123: PetscErrorCode ierr;
124: char monfilename[PETSC_MAX_PATH_LEN];
125: PetscReal time_step;
126: TSExactFinalTimeOption eftopt;
127: char dir[16];
128: TSIFunction ifun;
129: const char *defaultType;
130: char typeName[256];
135: TSRegisterAll();
136: TSGetIFunction(ts,NULL,&ifun,NULL);
138: PetscObjectOptionsBegin((PetscObject)ts);
139: if (((PetscObject)ts)->type_name) defaultType = ((PetscObject)ts)->type_name;
140: else defaultType = ifun ? TSBEULER : TSEULER;
141: PetscOptionsFList("-ts_type","TS method","TSSetType",TSList,defaultType,typeName,256,&opt);
142: if (opt) {
143: TSSetType(ts,typeName);
144: } else {
145: TSSetType(ts,defaultType);
146: }
148: /* Handle generic TS options */
149: PetscOptionsDeprecated("-ts_final_time","-ts_max_time","3.10",NULL);
150: PetscOptionsReal("-ts_max_time","Maximum time to run to","TSSetMaxTime",ts->max_time,&ts->max_time,NULL);
151: PetscOptionsInt("-ts_max_steps","Maximum number of time steps","TSSetMaxSteps",ts->max_steps,&ts->max_steps,NULL);
152: PetscOptionsReal("-ts_init_time","Initial time","TSSetTime",ts->ptime,&ts->ptime,NULL);
153: PetscOptionsReal("-ts_dt","Initial time step","TSSetTimeStep",ts->time_step,&time_step,&flg);
154: if (flg) {TSSetTimeStep(ts,time_step);}
155: PetscOptionsEnum("-ts_exact_final_time","Option for handling of final time step","TSSetExactFinalTime",TSExactFinalTimeOptions,(PetscEnum)ts->exact_final_time,(PetscEnum*)&eftopt,&flg);
156: if (flg) {TSSetExactFinalTime(ts,eftopt);}
157: PetscOptionsInt("-ts_max_snes_failures","Maximum number of nonlinear solve failures","TSSetMaxSNESFailures",ts->max_snes_failures,&ts->max_snes_failures,NULL);
158: PetscOptionsInt("-ts_max_reject","Maximum number of step rejections before step fails","TSSetMaxStepRejections",ts->max_reject,&ts->max_reject,NULL);
159: PetscOptionsBool("-ts_error_if_step_fails","Error if no step succeeds","TSSetErrorIfStepFails",ts->errorifstepfailed,&ts->errorifstepfailed,NULL);
160: PetscOptionsReal("-ts_rtol","Relative tolerance for local truncation error","TSSetTolerances",ts->rtol,&ts->rtol,NULL);
161: PetscOptionsReal("-ts_atol","Absolute tolerance for local truncation error","TSSetTolerances",ts->atol,&ts->atol,NULL);
163: PetscOptionsBool("-ts_rhs_jacobian_test_mult","Test the RHS Jacobian for consistency with RHS at each solve ","None",ts->testjacobian,&ts->testjacobian,NULL);
164: PetscOptionsBool("-ts_rhs_jacobian_test_mult_transpose","Test the RHS Jacobian transpose for consistency with RHS at each solve ","None",ts->testjacobiantranspose,&ts->testjacobiantranspose,NULL);
165: #if defined(PETSC_HAVE_SAWS)
166: {
167: PetscBool set;
168: flg = PETSC_FALSE;
169: PetscOptionsBool("-ts_saws_block","Block for SAWs memory snooper at end of TSSolve","PetscObjectSAWsBlock",((PetscObject)ts)->amspublishblock,&flg,&set);
170: if (set) {
171: PetscObjectSAWsSetBlock((PetscObject)ts,flg);
172: }
173: }
174: #endif
176: /* Monitor options */
177: TSMonitorSetFromOptions(ts,"-ts_monitor","Monitor time and timestep size","TSMonitorDefault",TSMonitorDefault,NULL);
178: TSMonitorSetFromOptions(ts,"-ts_monitor_extreme","Monitor extreme values of the solution","TSMonitorExtreme",TSMonitorExtreme,NULL);
179: TSMonitorSetFromOptions(ts,"-ts_monitor_solution","View the solution at each timestep","TSMonitorSolution",TSMonitorSolution,NULL);
181: PetscOptionsString("-ts_monitor_python","Use Python function","TSMonitorSet",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
182: if (flg) {PetscPythonMonitorSet((PetscObject)ts,monfilename);}
184: PetscOptionsName("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",&opt);
185: if (opt) {
186: TSMonitorLGCtx ctx;
187: PetscInt howoften = 1;
189: PetscOptionsInt("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",howoften,&howoften,NULL);
190: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
191: TSMonitorSet(ts,TSMonitorLGSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
192: }
194: PetscOptionsName("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",&opt);
195: if (opt) {
196: TSMonitorLGCtx ctx;
197: PetscInt howoften = 1;
199: PetscOptionsInt("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",howoften,&howoften,NULL);
200: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
201: TSMonitorSet(ts,TSMonitorLGError,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
202: }
203: TSMonitorSetFromOptions(ts,"-ts_monitor_error","View the error at each timestep","TSMonitorError",TSMonitorError,NULL);
205: PetscOptionsName("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",&opt);
206: if (opt) {
207: TSMonitorLGCtx ctx;
208: PetscInt howoften = 1;
210: PetscOptionsInt("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
211: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
212: TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
213: }
214: PetscOptionsName("-ts_monitor_lg_timestep_log","Monitor log timestep size graphically","TSMonitorLGTimeStep",&opt);
215: if (opt) {
216: TSMonitorLGCtx ctx;
217: PetscInt howoften = 1;
219: PetscOptionsInt("-ts_monitor_lg_timestep_log","Monitor log timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
220: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
221: TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
222: ctx->semilogy = PETSC_TRUE;
223: }
225: PetscOptionsName("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",&opt);
226: if (opt) {
227: TSMonitorLGCtx ctx;
228: PetscInt howoften = 1;
230: PetscOptionsInt("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",howoften,&howoften,NULL);
231: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
232: TSMonitorSet(ts,TSMonitorLGSNESIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
233: }
234: PetscOptionsName("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",&opt);
235: if (opt) {
236: TSMonitorLGCtx ctx;
237: PetscInt howoften = 1;
239: PetscOptionsInt("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",howoften,&howoften,NULL);
240: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
241: TSMonitorSet(ts,TSMonitorLGKSPIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
242: }
243: PetscOptionsName("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",&opt);
244: if (opt) {
245: TSMonitorSPEigCtx ctx;
246: PetscInt howoften = 1;
248: PetscOptionsInt("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",howoften,&howoften,NULL);
249: TSMonitorSPEigCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
250: TSMonitorSet(ts,TSMonitorSPEig,ctx,(PetscErrorCode (*)(void**))TSMonitorSPEigCtxDestroy);
251: }
252: PetscOptionsName("-ts_monitor_sp_swarm","Display particle phase from the DMSwarm","TSMonitorSPSwarm",&opt);
253: if (opt) {
254: TSMonitorSPCtx ctx;
255: PetscInt howoften = 1;
256: PetscOptionsInt("-ts_monitor_sp_swarm","Display particles phase from the DMSwarm","TSMonitorSPSwarm",howoften,&howoften,NULL);
257: TSMonitorSPCtxCreate(PETSC_COMM_SELF, NULL, NULL, PETSC_DECIDE, PETSC_DECIDE, 300, 300, howoften, &ctx);
258: TSMonitorSet(ts, TSMonitorSPSwarmSolution, ctx, (PetscErrorCode (*)(void**))TSMonitorSPCtxDestroy);
259: }
260: opt = PETSC_FALSE;
261: PetscOptionsName("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",&opt);
262: if (opt) {
263: TSMonitorDrawCtx ctx;
264: PetscInt howoften = 1;
266: PetscOptionsInt("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",howoften,&howoften,NULL);
267: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,"Computed Solution",PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
268: TSMonitorSet(ts,TSMonitorDrawSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
269: }
270: opt = PETSC_FALSE;
271: PetscOptionsName("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",&opt);
272: if (opt) {
273: TSMonitorDrawCtx ctx;
274: PetscReal bounds[4];
275: PetscInt n = 4;
276: PetscDraw draw;
277: PetscDrawAxis axis;
279: PetscOptionsRealArray("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",bounds,&n,NULL);
280: if (n != 4) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Must provide bounding box of phase field");
281: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,1,&ctx);
282: PetscViewerDrawGetDraw(ctx->viewer,0,&draw);
283: PetscViewerDrawGetDrawAxis(ctx->viewer,0,&axis);
284: PetscDrawAxisSetLimits(axis,bounds[0],bounds[2],bounds[1],bounds[3]);
285: PetscDrawAxisSetLabels(axis,"Phase Diagram","Variable 1","Variable 2");
286: TSMonitorSet(ts,TSMonitorDrawSolutionPhase,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
287: }
288: opt = PETSC_FALSE;
289: PetscOptionsName("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",&opt);
290: if (opt) {
291: TSMonitorDrawCtx ctx;
292: PetscInt howoften = 1;
294: PetscOptionsInt("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",howoften,&howoften,NULL);
295: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,"Error",PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
296: TSMonitorSet(ts,TSMonitorDrawError,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
297: }
298: opt = PETSC_FALSE;
299: PetscOptionsName("-ts_monitor_draw_solution_function","Monitor solution provided by TSMonitorSetSolutionFunction() graphically","TSMonitorDrawSolutionFunction",&opt);
300: if (opt) {
301: TSMonitorDrawCtx ctx;
302: PetscInt howoften = 1;
304: PetscOptionsInt("-ts_monitor_draw_solution_function","Monitor solution provided by TSMonitorSetSolutionFunction() graphically","TSMonitorDrawSolutionFunction",howoften,&howoften,NULL);
305: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,"Solution provided by user function",PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
306: TSMonitorSet(ts,TSMonitorDrawSolutionFunction,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
307: }
309: opt = PETSC_FALSE;
310: PetscOptionsString("-ts_monitor_solution_vtk","Save each time step to a binary file, use filename-%%03D.vts","TSMonitorSolutionVTK",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
311: if (flg) {
312: const char *ptr,*ptr2;
313: char *filetemplate;
314: if (!monfilename[0]) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
315: /* Do some cursory validation of the input. */
316: PetscStrstr(monfilename,"%",(char**)&ptr);
317: if (!ptr) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
318: for (ptr++; ptr && *ptr; ptr++) {
319: PetscStrchr("DdiouxX",*ptr,(char**)&ptr2);
320: if (!ptr2 && (*ptr < '0' || '9' < *ptr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Invalid file template argument to -ts_monitor_solution_vtk, should look like filename-%%03D.vts");
321: if (ptr2) break;
322: }
323: PetscStrallocpy(monfilename,&filetemplate);
324: TSMonitorSet(ts,TSMonitorSolutionVTK,filetemplate,(PetscErrorCode (*)(void**))TSMonitorSolutionVTKDestroy);
325: }
327: PetscOptionsString("-ts_monitor_dmda_ray","Display a ray of the solution","None","y=0",dir,16,&flg);
328: if (flg) {
329: TSMonitorDMDARayCtx *rayctx;
330: int ray = 0;
331: DMDADirection ddir;
332: DM da;
333: PetscMPIInt rank;
335: if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
336: if (dir[0] == 'x') ddir = DMDA_X;
337: else if (dir[0] == 'y') ddir = DMDA_Y;
338: else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
339: sscanf(dir+2,"%d",&ray);
341: PetscInfo2(((PetscObject)ts),"Displaying DMDA ray %c = %D\n",dir[0],ray);
342: PetscNew(&rayctx);
343: TSGetDM(ts,&da);
344: DMDAGetRay(da,ddir,ray,&rayctx->ray,&rayctx->scatter);
345: MPI_Comm_rank(PetscObjectComm((PetscObject)ts),&rank);
346: if (!rank) {
347: PetscViewerDrawOpen(PETSC_COMM_SELF,0,0,0,0,600,300,&rayctx->viewer);
348: }
349: rayctx->lgctx = NULL;
350: TSMonitorSet(ts,TSMonitorDMDARay,rayctx,TSMonitorDMDARayDestroy);
351: }
352: PetscOptionsString("-ts_monitor_lg_dmda_ray","Display a ray of the solution","None","x=0",dir,16,&flg);
353: if (flg) {
354: TSMonitorDMDARayCtx *rayctx;
355: int ray = 0;
356: DMDADirection ddir;
357: DM da;
358: PetscInt howoften = 1;
360: if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Malformed ray %s", dir);
361: if (dir[0] == 'x') ddir = DMDA_X;
362: else if (dir[0] == 'y') ddir = DMDA_Y;
363: else SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Unknown ray direction %s", dir);
364: sscanf(dir+2, "%d", &ray);
366: PetscInfo2(((PetscObject) ts),"Displaying LG DMDA ray %c = %D\n", dir[0], ray);
367: PetscNew(&rayctx);
368: TSGetDM(ts, &da);
369: DMDAGetRay(da, ddir, ray, &rayctx->ray, &rayctx->scatter);
370: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&rayctx->lgctx);
371: TSMonitorSet(ts, TSMonitorLGDMDARay, rayctx, TSMonitorDMDARayDestroy);
372: }
374: PetscOptionsName("-ts_monitor_envelope","Monitor maximum and minimum value of each component of the solution","TSMonitorEnvelope",&opt);
375: if (opt) {
376: TSMonitorEnvelopeCtx ctx;
378: TSMonitorEnvelopeCtxCreate(ts,&ctx);
379: TSMonitorSet(ts,TSMonitorEnvelope,ctx,(PetscErrorCode (*)(void**))TSMonitorEnvelopeCtxDestroy);
380: }
382: flg = PETSC_FALSE;
383: PetscOptionsBool("-ts_fd_color", "Use finite differences with coloring to compute IJacobian", "TSComputeJacobianDefaultColor", flg, &flg, NULL);
384: if (flg) {
385: DM dm;
386: DMTS tdm;
388: TSGetDM(ts, &dm);
389: DMGetDMTS(dm, &tdm);
390: tdm->ijacobianctx = NULL;
391: TSSetIJacobian(ts, NULL, NULL, TSComputeIJacobianDefaultColor, 0);
392: PetscInfo(ts, "Setting default finite difference coloring Jacobian matrix\n");
393: }
395: /* Handle specific TS options */
396: if (ts->ops->setfromoptions) {
397: (*ts->ops->setfromoptions)(PetscOptionsObject,ts);
398: }
400: /* Handle TSAdapt options */
401: TSGetAdapt(ts,&ts->adapt);
402: TSAdaptSetDefaultType(ts->adapt,ts->default_adapt_type);
403: TSAdaptSetFromOptions(PetscOptionsObject,ts->adapt);
405: /* TS trajectory must be set after TS, since it may use some TS options above */
406: tflg = ts->trajectory ? PETSC_TRUE : PETSC_FALSE;
407: PetscOptionsBool("-ts_save_trajectory","Save the solution at each timestep","TSSetSaveTrajectory",tflg,&tflg,NULL);
408: if (tflg) {
409: TSSetSaveTrajectory(ts);
410: }
412: TSAdjointSetFromOptions(PetscOptionsObject,ts);
414: /* process any options handlers added with PetscObjectAddOptionsHandler() */
415: PetscObjectProcessOptionsHandlers(PetscOptionsObject,(PetscObject)ts);
416: PetscOptionsEnd();
418: if (ts->trajectory) {
419: TSTrajectorySetFromOptions(ts->trajectory,ts);
420: }
422: /* why do we have to do this here and not during TSSetUp? */
423: TSGetSNES(ts,&ts->snes);
424: if (ts->problem_type == TS_LINEAR) {
425: PetscObjectTypeCompareAny((PetscObject)ts->snes,&flg,SNESKSPONLY,SNESKSPTRANSPOSEONLY,"");
426: if (!flg) { SNESSetType(ts->snes,SNESKSPONLY); }
427: }
428: SNESSetFromOptions(ts->snes);
429: return(0);
430: }
432: /*@
433: TSGetTrajectory - Gets the trajectory from a TS if it exists
435: Collective on TS
437: Input Parameters:
438: . ts - the TS context obtained from TSCreate()
440: Output Parameters;
441: . tr - the TSTrajectory object, if it exists
443: Note: This routine should be called after all TS options have been set
445: Level: advanced
447: .seealso: TSGetTrajectory(), TSAdjointSolve(), TSTrajectory, TSTrajectoryCreate()
449: .keywords: TS, set, checkpoint,
450: @*/
451: PetscErrorCode TSGetTrajectory(TS ts,TSTrajectory *tr)
452: {
455: *tr = ts->trajectory;
456: return(0);
457: }
459: /*@
460: TSSetSaveTrajectory - Causes the TS to save its solutions as it iterates forward in time in a TSTrajectory object
462: Collective on TS
464: Input Parameters:
465: . ts - the TS context obtained from TSCreate()
467: Options Database:
468: + -ts_save_trajectory - saves the trajectory to a file
469: - -ts_trajectory_type type
471: Note: This routine should be called after all TS options have been set
473: The TSTRAJECTORYVISUALIZATION files can be loaded into Python with $PETSC_DIR/lib/petsc/bin/PetscBinaryIOTrajectory.py and
474: MATLAB with $PETSC_DIR/share/petsc/matlab/PetscReadBinaryTrajectory.m
476: Level: intermediate
478: .seealso: TSGetTrajectory(), TSAdjointSolve()
480: .keywords: TS, set, checkpoint,
481: @*/
482: PetscErrorCode TSSetSaveTrajectory(TS ts)
483: {
488: if (!ts->trajectory) {
489: TSTrajectoryCreate(PetscObjectComm((PetscObject)ts),&ts->trajectory);
490: }
491: return(0);
492: }
494: /*@
495: TSResetTrajectory - Destroys and recreates the internal TSTrajectory object
497: Collective on TS
499: Input Parameters:
500: . ts - the TS context obtained from TSCreate()
502: Level: intermediate
504: .seealso: TSGetTrajectory(), TSAdjointSolve()
506: .keywords: TS, set, checkpoint,
507: @*/
508: PetscErrorCode TSResetTrajectory(TS ts)
509: {
514: if (ts->trajectory) {
515: TSTrajectoryDestroy(&ts->trajectory);
516: TSTrajectoryCreate(PetscObjectComm((PetscObject)ts),&ts->trajectory);
517: }
518: return(0);
519: }
521: /*@
522: TSComputeRHSJacobian - Computes the Jacobian matrix that has been
523: set with TSSetRHSJacobian().
525: Collective on TS and Vec
527: Input Parameters:
528: + ts - the TS context
529: . t - current timestep
530: - U - input vector
532: Output Parameters:
533: + A - Jacobian matrix
534: . B - optional preconditioning matrix
535: - flag - flag indicating matrix structure
537: Notes:
538: Most users should not need to explicitly call this routine, as it
539: is used internally within the nonlinear solvers.
541: See KSPSetOperators() for important information about setting the
542: flag parameter.
544: Level: developer
546: .keywords: SNES, compute, Jacobian, matrix
548: .seealso: TSSetRHSJacobian(), KSPSetOperators()
549: @*/
550: PetscErrorCode TSComputeRHSJacobian(TS ts,PetscReal t,Vec U,Mat A,Mat B)
551: {
552: PetscErrorCode ierr;
553: PetscObjectState Ustate;
554: PetscObjectId Uid;
555: DM dm;
556: DMTS tsdm;
557: TSRHSJacobian rhsjacobianfunc;
558: void *ctx;
559: TSIJacobian ijacobianfunc;
560: TSRHSFunction rhsfunction;
566: TSGetDM(ts,&dm);
567: DMGetDMTS(dm,&tsdm);
568: DMTSGetRHSJacobian(dm,&rhsjacobianfunc,&ctx);
569: DMTSGetIJacobian(dm,&ijacobianfunc,NULL);
570: DMTSGetRHSFunction(dm,&rhsfunction,&ctx);
571: PetscObjectStateGet((PetscObject)U,&Ustate);
572: PetscObjectGetId((PetscObject)U,&Uid);
574: if (ts->rhsjacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->rhsjacobian.Xid == Uid && ts->rhsjacobian.Xstate == Ustate)) && (rhsfunction != TSComputeRHSFunctionLinear)) {
575: /* restore back RHS Jacobian matrices if they have been shifted/scaled */
576: if (A == ts->Arhs) {
577: if (ts->rhsjacobian.shift != 0) {
578: MatShift(A,-ts->rhsjacobian.shift);
579: }
580: if (ts->rhsjacobian.scale != 1.) {
581: MatScale(A,1./ts->rhsjacobian.scale);
582: }
583: }
584: if (B && B == ts->Brhs && A != B) {
585: if (ts->rhsjacobian.shift != 0) {
586: MatShift(B,-ts->rhsjacobian.shift);
587: }
588: if (ts->rhsjacobian.scale != 1.) {
589: MatScale(B,1./ts->rhsjacobian.scale);
590: }
591: }
592: ts->rhsjacobian.shift = 0;
593: ts->rhsjacobian.scale = 1.;
594: return(0);
595: }
597: if (!rhsjacobianfunc && !ijacobianfunc) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");
599: if (ts->rhsjacobian.reuse) {
600: if (A == ts->Arhs) {
601: /* MatScale has a short path for this case.
602: However, this code path is taken the first time TSComputeRHSJacobian is called
603: and the matrices have not assembled yet */
604: if (ts->rhsjacobian.shift != 0) {
605: MatShift(A,-ts->rhsjacobian.shift);
606: }
607: if (ts->rhsjacobian.scale != 1.) {
608: MatScale(A,1./ts->rhsjacobian.scale);
609: }
610: }
611: if (B && B == ts->Brhs && A != B) {
612: if (ts->rhsjacobian.shift != 0) {
613: MatShift(B,-ts->rhsjacobian.shift);
614: }
615: if (ts->rhsjacobian.scale != 1.) {
616: MatScale(B,1./ts->rhsjacobian.scale);
617: }
618: }
619: }
621: if (rhsjacobianfunc) {
622: PetscBool missing;
623: PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
624: PetscStackPush("TS user Jacobian function");
625: (*rhsjacobianfunc)(ts,t,U,A,B,ctx);
626: PetscStackPop;
627: PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
628: if (A) {
629: MatMissingDiagonal(A,&missing,NULL);
630: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Amat passed to TSSetRHSJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
631: }
632: if (B && B != A) {
633: MatMissingDiagonal(B,&missing,NULL);
634: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Bmat passed to TSSetRHSJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
635: }
636: } else {
637: MatZeroEntries(A);
638: if (B && A != B) {MatZeroEntries(B);}
639: }
640: ts->rhsjacobian.time = t;
641: ts->rhsjacobian.shift = 0;
642: ts->rhsjacobian.scale = 1.;
643: PetscObjectGetId((PetscObject)U,&ts->rhsjacobian.Xid);
644: PetscObjectStateGet((PetscObject)U,&ts->rhsjacobian.Xstate);
645: return(0);
646: }
648: /*@
649: TSComputeRHSFunction - Evaluates the right-hand-side function.
651: Collective on TS and Vec
653: Input Parameters:
654: + ts - the TS context
655: . t - current time
656: - U - state vector
658: Output Parameter:
659: . y - right hand side
661: Note:
662: Most users should not need to explicitly call this routine, as it
663: is used internally within the nonlinear solvers.
665: Level: developer
667: .keywords: TS, compute
669: .seealso: TSSetRHSFunction(), TSComputeIFunction()
670: @*/
671: PetscErrorCode TSComputeRHSFunction(TS ts,PetscReal t,Vec U,Vec y)
672: {
674: TSRHSFunction rhsfunction;
675: TSIFunction ifunction;
676: void *ctx;
677: DM dm;
683: TSGetDM(ts,&dm);
684: DMTSGetRHSFunction(dm,&rhsfunction,&ctx);
685: DMTSGetIFunction(dm,&ifunction,NULL);
687: if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");
689: PetscLogEventBegin(TS_FunctionEval,ts,U,y,0);
690: if (rhsfunction) {
691: PetscStackPush("TS user right-hand-side function");
692: (*rhsfunction)(ts,t,U,y,ctx);
693: PetscStackPop;
694: } else {
695: VecZeroEntries(y);
696: }
698: PetscLogEventEnd(TS_FunctionEval,ts,U,y,0);
699: return(0);
700: }
702: /*@
703: TSComputeSolutionFunction - Evaluates the solution function.
705: Collective on TS and Vec
707: Input Parameters:
708: + ts - the TS context
709: - t - current time
711: Output Parameter:
712: . U - the solution
714: Note:
715: Most users should not need to explicitly call this routine, as it
716: is used internally within the nonlinear solvers.
718: Level: developer
720: .keywords: TS, compute
722: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
723: @*/
724: PetscErrorCode TSComputeSolutionFunction(TS ts,PetscReal t,Vec U)
725: {
726: PetscErrorCode ierr;
727: TSSolutionFunction solutionfunction;
728: void *ctx;
729: DM dm;
734: TSGetDM(ts,&dm);
735: DMTSGetSolutionFunction(dm,&solutionfunction,&ctx);
737: if (solutionfunction) {
738: PetscStackPush("TS user solution function");
739: (*solutionfunction)(ts,t,U,ctx);
740: PetscStackPop;
741: }
742: return(0);
743: }
744: /*@
745: TSComputeForcingFunction - Evaluates the forcing function.
747: Collective on TS and Vec
749: Input Parameters:
750: + ts - the TS context
751: - t - current time
753: Output Parameter:
754: . U - the function value
756: Note:
757: Most users should not need to explicitly call this routine, as it
758: is used internally within the nonlinear solvers.
760: Level: developer
762: .keywords: TS, compute
764: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
765: @*/
766: PetscErrorCode TSComputeForcingFunction(TS ts,PetscReal t,Vec U)
767: {
768: PetscErrorCode ierr, (*forcing)(TS,PetscReal,Vec,void*);
769: void *ctx;
770: DM dm;
775: TSGetDM(ts,&dm);
776: DMTSGetForcingFunction(dm,&forcing,&ctx);
778: if (forcing) {
779: PetscStackPush("TS user forcing function");
780: (*forcing)(ts,t,U,ctx);
781: PetscStackPop;
782: }
783: return(0);
784: }
786: static PetscErrorCode TSGetRHSVec_Private(TS ts,Vec *Frhs)
787: {
788: Vec F;
792: *Frhs = NULL;
793: TSGetIFunction(ts,&F,NULL,NULL);
794: if (!ts->Frhs) {
795: VecDuplicate(F,&ts->Frhs);
796: }
797: *Frhs = ts->Frhs;
798: return(0);
799: }
801: PetscErrorCode TSGetRHSMats_Private(TS ts,Mat *Arhs,Mat *Brhs)
802: {
803: Mat A,B;
805: TSIJacobian ijacobian;
808: if (Arhs) *Arhs = NULL;
809: if (Brhs) *Brhs = NULL;
810: TSGetIJacobian(ts,&A,&B,&ijacobian,NULL);
811: if (Arhs) {
812: if (!ts->Arhs) {
813: if (ijacobian) {
814: MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&ts->Arhs);
815: } else {
816: ts->Arhs = A;
817: PetscObjectReference((PetscObject)A);
818: }
819: } else {
820: PetscBool flg;
821: SNESGetUseMatrixFree(ts->snes,NULL,&flg);
822: /* Handle case where user provided only RHSJacobian and used -snes_mf_operator */
823: if (flg && !ijacobian && ts->Arhs == ts->Brhs){
824: PetscObjectDereference((PetscObject)ts->Arhs);
825: ts->Arhs = A;
826: PetscObjectReference((PetscObject)A);
827: }
828: }
829: *Arhs = ts->Arhs;
830: }
831: if (Brhs) {
832: if (!ts->Brhs) {
833: if (A != B) {
834: if (ijacobian) {
835: MatDuplicate(B,MAT_DO_NOT_COPY_VALUES,&ts->Brhs);
836: } else {
837: ts->Brhs = B;
838: PetscObjectReference((PetscObject)B);
839: }
840: } else {
841: PetscObjectReference((PetscObject)ts->Arhs);
842: ts->Brhs = ts->Arhs;
843: }
844: }
845: *Brhs = ts->Brhs;
846: }
847: return(0);
848: }
850: /*@
851: TSComputeIFunction - Evaluates the DAE residual written in implicit form F(t,U,Udot)=0
853: Collective on TS and Vec
855: Input Parameters:
856: + ts - the TS context
857: . t - current time
858: . U - state vector
859: . Udot - time derivative of state vector
860: - imex - flag indicates if the method is IMEX so that the RHSFunction should be kept separate
862: Output Parameter:
863: . Y - right hand side
865: Note:
866: Most users should not need to explicitly call this routine, as it
867: is used internally within the nonlinear solvers.
869: If the user did did not write their equations in implicit form, this
870: function recasts them in implicit form.
872: Level: developer
874: .keywords: TS, compute
876: .seealso: TSSetIFunction(), TSComputeRHSFunction()
877: @*/
878: PetscErrorCode TSComputeIFunction(TS ts,PetscReal t,Vec U,Vec Udot,Vec Y,PetscBool imex)
879: {
881: TSIFunction ifunction;
882: TSRHSFunction rhsfunction;
883: void *ctx;
884: DM dm;
892: TSGetDM(ts,&dm);
893: DMTSGetIFunction(dm,&ifunction,&ctx);
894: DMTSGetRHSFunction(dm,&rhsfunction,NULL);
896: if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");
898: PetscLogEventBegin(TS_FunctionEval,ts,U,Udot,Y);
899: if (ifunction) {
900: PetscStackPush("TS user implicit function");
901: (*ifunction)(ts,t,U,Udot,Y,ctx);
902: PetscStackPop;
903: }
904: if (imex) {
905: if (!ifunction) {
906: VecCopy(Udot,Y);
907: }
908: } else if (rhsfunction) {
909: if (ifunction) {
910: Vec Frhs;
911: TSGetRHSVec_Private(ts,&Frhs);
912: TSComputeRHSFunction(ts,t,U,Frhs);
913: VecAXPY(Y,-1,Frhs);
914: } else {
915: TSComputeRHSFunction(ts,t,U,Y);
916: VecAYPX(Y,-1,Udot);
917: }
918: }
919: PetscLogEventEnd(TS_FunctionEval,ts,U,Udot,Y);
920: return(0);
921: }
923: /*@
924: TSComputeIJacobian - Evaluates the Jacobian of the DAE
926: Collective on TS and Vec
928: Input
929: Input Parameters:
930: + ts - the TS context
931: . t - current timestep
932: . U - state vector
933: . Udot - time derivative of state vector
934: . shift - shift to apply, see note below
935: - imex - flag indicates if the method is IMEX so that the RHSJacobian should be kept separate
937: Output Parameters:
938: + A - Jacobian matrix
939: - B - matrix from which the preconditioner is constructed; often the same as A
941: Notes:
942: If F(t,U,Udot)=0 is the DAE, the required Jacobian is
944: dF/dU + shift*dF/dUdot
946: Most users should not need to explicitly call this routine, as it
947: is used internally within the nonlinear solvers.
949: Level: developer
951: .keywords: TS, compute, Jacobian, matrix
953: .seealso: TSSetIJacobian()
954: @*/
955: PetscErrorCode TSComputeIJacobian(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat A,Mat B,PetscBool imex)
956: {
958: TSIJacobian ijacobian;
959: TSRHSJacobian rhsjacobian;
960: DM dm;
961: void *ctx;
972: TSGetDM(ts,&dm);
973: DMTSGetIJacobian(dm,&ijacobian,&ctx);
974: DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);
976: if (!rhsjacobian && !ijacobian) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");
978: PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
979: if (ijacobian) {
980: PetscBool missing;
981: PetscStackPush("TS user implicit Jacobian");
982: (*ijacobian)(ts,t,U,Udot,shift,A,B,ctx);
983: PetscStackPop;
984: MatMissingDiagonal(A,&missing,NULL);
985: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Amat passed to TSSetIJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
986: if (B != A) {
987: MatMissingDiagonal(B,&missing,NULL);
988: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Bmat passed to TSSetIJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
989: }
990: }
991: if (imex) {
992: if (!ijacobian) { /* system was written as Udot = G(t,U) */
993: PetscBool assembled;
994: if (rhsjacobian) {
995: Mat Arhs = NULL;
996: TSGetRHSMats_Private(ts,&Arhs,NULL);
997: if (A == Arhs) {
998: if (rhsjacobian == TSComputeRHSJacobianConstant) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Unsupported operation! cannot use TSComputeRHSJacobianConstant");
999: ts->rhsjacobian.time = PETSC_MIN_REAL;
1000: }
1001: }
1002: MatZeroEntries(A);
1003: MatAssembled(A,&assembled);
1004: if (!assembled) {
1005: MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
1006: MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
1007: }
1008: MatShift(A,shift);
1009: if (A != B) {
1010: MatZeroEntries(B);
1011: MatAssembled(B,&assembled);
1012: if (!assembled) {
1013: MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
1014: MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
1015: }
1016: MatShift(B,shift);
1017: }
1018: }
1019: } else {
1020: Mat Arhs = NULL,Brhs = NULL;
1021: if (rhsjacobian) {
1022: TSGetRHSMats_Private(ts,&Arhs,&Brhs);
1023: TSComputeRHSJacobian(ts,t,U,Arhs,Brhs);
1024: }
1025: if (Arhs == A) { /* No IJacobian, so we only have the RHS matrix */
1026: PetscBool flg;
1027: ts->rhsjacobian.scale = -1;
1028: ts->rhsjacobian.shift = shift;
1029: SNESGetUseMatrixFree(ts->snes,NULL,&flg);
1030: /* since -snes_mf_operator uses the full SNES function it does not need to be shifted or scaled here */
1031: if (!flg) {
1032: MatScale(A,-1);
1033: MatShift(A,shift);
1034: }
1035: if (A != B) {
1036: MatScale(B,-1);
1037: MatShift(B,shift);
1038: }
1039: } else if (Arhs) { /* Both IJacobian and RHSJacobian */
1040: MatStructure axpy = DIFFERENT_NONZERO_PATTERN;
1041: if (!ijacobian) { /* No IJacobian provided, but we have a separate RHS matrix */
1042: MatZeroEntries(A);
1043: MatShift(A,shift);
1044: if (A != B) {
1045: MatZeroEntries(B);
1046: MatShift(B,shift);
1047: }
1048: }
1049: MatAXPY(A,-1,Arhs,axpy);
1050: if (A != B) {
1051: MatAXPY(B,-1,Brhs,axpy);
1052: }
1053: }
1054: }
1055: PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
1056: return(0);
1057: }
1059: /*@C
1060: TSSetRHSFunction - Sets the routine for evaluating the function,
1061: where U_t = G(t,u).
1063: Logically Collective on TS
1065: Input Parameters:
1066: + ts - the TS context obtained from TSCreate()
1067: . r - vector to put the computed right hand side (or NULL to have it created)
1068: . f - routine for evaluating the right-hand-side function
1069: - ctx - [optional] user-defined context for private data for the
1070: function evaluation routine (may be NULL)
1072: Calling sequence of func:
1073: $ func (TS ts,PetscReal t,Vec u,Vec F,void *ctx);
1075: + t - current timestep
1076: . u - input vector
1077: . F - function vector
1078: - ctx - [optional] user-defined function context
1080: Level: beginner
1082: Notes:
1083: You must call this function or TSSetIFunction() to define your ODE. You cannot use this function when solving a DAE.
1085: .keywords: TS, timestep, set, right-hand-side, function
1087: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSSetIFunction()
1088: @*/
1089: PetscErrorCode TSSetRHSFunction(TS ts,Vec r,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,void*),void *ctx)
1090: {
1092: SNES snes;
1093: Vec ralloc = NULL;
1094: DM dm;
1100: TSGetDM(ts,&dm);
1101: DMTSSetRHSFunction(dm,f,ctx);
1102: TSGetSNES(ts,&snes);
1103: if (!r && !ts->dm && ts->vec_sol) {
1104: VecDuplicate(ts->vec_sol,&ralloc);
1105: r = ralloc;
1106: }
1107: SNESSetFunction(snes,r,SNESTSFormFunction,ts);
1108: VecDestroy(&ralloc);
1109: return(0);
1110: }
1112: /*@C
1113: TSSetSolutionFunction - Provide a function that computes the solution of the ODE or DAE
1115: Logically Collective on TS
1117: Input Parameters:
1118: + ts - the TS context obtained from TSCreate()
1119: . f - routine for evaluating the solution
1120: - ctx - [optional] user-defined context for private data for the
1121: function evaluation routine (may be NULL)
1123: Calling sequence of func:
1124: $ func (TS ts,PetscReal t,Vec u,void *ctx);
1126: + t - current timestep
1127: . u - output vector
1128: - ctx - [optional] user-defined function context
1130: Options Database:
1131: + -ts_monitor_lg_error - create a graphical monitor of error history, requires user to have provided TSSetSolutionFunction()
1132: - -ts_monitor_draw_error - Monitor error graphically, requires user to have provided TSSetSolutionFunction()
1134: Notes:
1135: This routine is used for testing accuracy of time integration schemes when you already know the solution.
1136: If analytic solutions are not known for your system, consider using the Method of Manufactured Solutions to
1137: create closed-form solutions with non-physical forcing terms.
1139: For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.
1141: Level: beginner
1143: .keywords: TS, timestep, set, right-hand-side, function
1145: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetForcingFunction(), TSSetSolution(), TSGetSolution(), TSMonitorLGError(), TSMonitorDrawError()
1146: @*/
1147: PetscErrorCode TSSetSolutionFunction(TS ts,PetscErrorCode (*f)(TS,PetscReal,Vec,void*),void *ctx)
1148: {
1150: DM dm;
1154: TSGetDM(ts,&dm);
1155: DMTSSetSolutionFunction(dm,f,ctx);
1156: return(0);
1157: }
1159: /*@C
1160: TSSetForcingFunction - Provide a function that computes a forcing term for a ODE or PDE
1162: Logically Collective on TS
1164: Input Parameters:
1165: + ts - the TS context obtained from TSCreate()
1166: . func - routine for evaluating the forcing function
1167: - ctx - [optional] user-defined context for private data for the
1168: function evaluation routine (may be NULL)
1170: Calling sequence of func:
1171: $ func (TS ts,PetscReal t,Vec f,void *ctx);
1173: + t - current timestep
1174: . f - output vector
1175: - ctx - [optional] user-defined function context
1177: Notes:
1178: This routine is useful for testing accuracy of time integration schemes when using the Method of Manufactured Solutions to
1179: create closed-form solutions with a non-physical forcing term. It allows you to use the Method of Manufactored Solution without directly editing the
1180: definition of the problem you are solving and hence possibly introducing bugs.
1182: This replaces the ODE F(u,u_t,t) = 0 the TS is solving with F(u,u_t,t) - func(t) = 0
1184: This forcing function does not depend on the solution to the equations, it can only depend on spatial location, time, and possibly parameters, the
1185: parameters can be passed in the ctx variable.
1187: For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.
1189: Level: beginner
1191: .keywords: TS, timestep, set, right-hand-side, function
1193: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetSolutionFunction()
1194: @*/
1195: PetscErrorCode TSSetForcingFunction(TS ts,TSForcingFunction func,void *ctx)
1196: {
1198: DM dm;
1202: TSGetDM(ts,&dm);
1203: DMTSSetForcingFunction(dm,func,ctx);
1204: return(0);
1205: }
1207: /*@C
1208: TSSetRHSJacobian - Sets the function to compute the Jacobian of G,
1209: where U_t = G(U,t), as well as the location to store the matrix.
1211: Logically Collective on TS
1213: Input Parameters:
1214: + ts - the TS context obtained from TSCreate()
1215: . Amat - (approximate) Jacobian matrix
1216: . Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1217: . f - the Jacobian evaluation routine
1218: - ctx - [optional] user-defined context for private data for the
1219: Jacobian evaluation routine (may be NULL)
1221: Calling sequence of f:
1222: $ func (TS ts,PetscReal t,Vec u,Mat A,Mat B,void *ctx);
1224: + t - current timestep
1225: . u - input vector
1226: . Amat - (approximate) Jacobian matrix
1227: . Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1228: - ctx - [optional] user-defined context for matrix evaluation routine
1230: Notes:
1231: You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value
1233: The TS solver may modify the nonzero structure and the entries of the matrices Amat and Pmat between the calls to f()
1234: You should not assume the values are the same in the next call to f() as you set them in the previous call.
1236: Level: beginner
1238: .keywords: TS, timestep, set, right-hand-side, Jacobian
1240: .seealso: SNESComputeJacobianDefaultColor(), TSSetRHSFunction(), TSRHSJacobianSetReuse(), TSSetIJacobian()
1242: @*/
1243: PetscErrorCode TSSetRHSJacobian(TS ts,Mat Amat,Mat Pmat,TSRHSJacobian f,void *ctx)
1244: {
1246: SNES snes;
1247: DM dm;
1248: TSIJacobian ijacobian;
1257: TSGetDM(ts,&dm);
1258: DMTSSetRHSJacobian(dm,f,ctx);
1259: if (f == TSComputeRHSJacobianConstant) {
1260: /* Handle this case automatically for the user; otherwise user should call themselves. */
1261: TSRHSJacobianSetReuse(ts,PETSC_TRUE);
1262: }
1263: DMTSGetIJacobian(dm,&ijacobian,NULL);
1264: TSGetSNES(ts,&snes);
1265: if (!ijacobian) {
1266: SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1267: }
1268: if (Amat) {
1269: PetscObjectReference((PetscObject)Amat);
1270: MatDestroy(&ts->Arhs);
1271: ts->Arhs = Amat;
1272: }
1273: if (Pmat) {
1274: PetscObjectReference((PetscObject)Pmat);
1275: MatDestroy(&ts->Brhs);
1276: ts->Brhs = Pmat;
1277: }
1278: return(0);
1279: }
1281: /*@C
1282: TSSetIFunction - Set the function to compute F(t,U,U_t) where F() = 0 is the DAE to be solved.
1284: Logically Collective on TS
1286: Input Parameters:
1287: + ts - the TS context obtained from TSCreate()
1288: . r - vector to hold the residual (or NULL to have it created internally)
1289: . f - the function evaluation routine
1290: - ctx - user-defined context for private data for the function evaluation routine (may be NULL)
1292: Calling sequence of f:
1293: $ f(TS ts,PetscReal t,Vec u,Vec u_t,Vec F,ctx);
1295: + t - time at step/stage being solved
1296: . u - state vector
1297: . u_t - time derivative of state vector
1298: . F - function vector
1299: - ctx - [optional] user-defined context for matrix evaluation routine
1301: Important:
1302: The user MUST call either this routine or TSSetRHSFunction() to define the ODE. When solving DAEs you must use this function.
1304: Level: beginner
1306: .keywords: TS, timestep, set, DAE, Jacobian
1308: .seealso: TSSetRHSJacobian(), TSSetRHSFunction(), TSSetIJacobian()
1309: @*/
1310: PetscErrorCode TSSetIFunction(TS ts,Vec r,TSIFunction f,void *ctx)
1311: {
1313: SNES snes;
1314: Vec ralloc = NULL;
1315: DM dm;
1321: TSGetDM(ts,&dm);
1322: DMTSSetIFunction(dm,f,ctx);
1324: TSGetSNES(ts,&snes);
1325: if (!r && !ts->dm && ts->vec_sol) {
1326: VecDuplicate(ts->vec_sol,&ralloc);
1327: r = ralloc;
1328: }
1329: SNESSetFunction(snes,r,SNESTSFormFunction,ts);
1330: VecDestroy(&ralloc);
1331: return(0);
1332: }
1334: /*@C
1335: TSGetIFunction - Returns the vector where the implicit residual is stored and the function/contex to compute it.
1337: Not Collective
1339: Input Parameter:
1340: . ts - the TS context
1342: Output Parameter:
1343: + r - vector to hold residual (or NULL)
1344: . func - the function to compute residual (or NULL)
1345: - ctx - the function context (or NULL)
1347: Level: advanced
1349: .keywords: TS, nonlinear, get, function
1351: .seealso: TSSetIFunction(), SNESGetFunction()
1352: @*/
1353: PetscErrorCode TSGetIFunction(TS ts,Vec *r,TSIFunction *func,void **ctx)
1354: {
1356: SNES snes;
1357: DM dm;
1361: TSGetSNES(ts,&snes);
1362: SNESGetFunction(snes,r,NULL,NULL);
1363: TSGetDM(ts,&dm);
1364: DMTSGetIFunction(dm,func,ctx);
1365: return(0);
1366: }
1368: /*@C
1369: TSGetRHSFunction - Returns the vector where the right hand side is stored and the function/context to compute it.
1371: Not Collective
1373: Input Parameter:
1374: . ts - the TS context
1376: Output Parameter:
1377: + r - vector to hold computed right hand side (or NULL)
1378: . func - the function to compute right hand side (or NULL)
1379: - ctx - the function context (or NULL)
1381: Level: advanced
1383: .keywords: TS, nonlinear, get, function
1385: .seealso: TSSetRHSFunction(), SNESGetFunction()
1386: @*/
1387: PetscErrorCode TSGetRHSFunction(TS ts,Vec *r,TSRHSFunction *func,void **ctx)
1388: {
1390: SNES snes;
1391: DM dm;
1395: TSGetSNES(ts,&snes);
1396: SNESGetFunction(snes,r,NULL,NULL);
1397: TSGetDM(ts,&dm);
1398: DMTSGetRHSFunction(dm,func,ctx);
1399: return(0);
1400: }
1402: /*@C
1403: TSSetIJacobian - Set the function to compute the matrix dF/dU + a*dF/dU_t where F(t,U,U_t) is the function
1404: provided with TSSetIFunction().
1406: Logically Collective on TS
1408: Input Parameters:
1409: + ts - the TS context obtained from TSCreate()
1410: . Amat - (approximate) Jacobian matrix
1411: . Pmat - matrix used to compute preconditioner (usually the same as Amat)
1412: . f - the Jacobian evaluation routine
1413: - ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)
1415: Calling sequence of f:
1416: $ f(TS ts,PetscReal t,Vec U,Vec U_t,PetscReal a,Mat Amat,Mat Pmat,void *ctx);
1418: + t - time at step/stage being solved
1419: . U - state vector
1420: . U_t - time derivative of state vector
1421: . a - shift
1422: . Amat - (approximate) Jacobian of F(t,U,W+a*U), equivalent to dF/dU + a*dF/dU_t
1423: . Pmat - matrix used for constructing preconditioner, usually the same as Amat
1424: - ctx - [optional] user-defined context for matrix evaluation routine
1426: Notes:
1427: The matrices Amat and Pmat are exactly the matrices that are used by SNES for the nonlinear solve.
1429: If you know the operator Amat has a null space you can use MatSetNullSpace() and MatSetTransposeNullSpace() to supply the null
1430: space to Amat and the KSP solvers will automatically use that null space as needed during the solution process.
1432: The matrix dF/dU + a*dF/dU_t you provide turns out to be
1433: the Jacobian of F(t,U,W+a*U) where F(t,U,U_t) = 0 is the DAE to be solved.
1434: The time integrator internally approximates U_t by W+a*U where the positive "shift"
1435: a and vector W depend on the integration method, step size, and past states. For example with
1436: the backward Euler method a = 1/dt and W = -a*U(previous timestep) so
1437: W + a*U = a*(U - U(previous timestep)) = (U - U(previous timestep))/dt
1439: You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value
1441: The TS solver may modify the nonzero structure and the entries of the matrices Amat and Pmat between the calls to f()
1442: You should not assume the values are the same in the next call to f() as you set them in the previous call.
1444: Level: beginner
1446: .keywords: TS, timestep, DAE, Jacobian
1448: .seealso: TSSetIFunction(), TSSetRHSJacobian(), SNESComputeJacobianDefaultColor(), SNESComputeJacobianDefault(), TSSetRHSFunction()
1450: @*/
1451: PetscErrorCode TSSetIJacobian(TS ts,Mat Amat,Mat Pmat,TSIJacobian f,void *ctx)
1452: {
1454: SNES snes;
1455: DM dm;
1464: TSGetDM(ts,&dm);
1465: DMTSSetIJacobian(dm,f,ctx);
1467: TSGetSNES(ts,&snes);
1468: SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1469: return(0);
1470: }
1472: /*@
1473: TSRHSJacobianSetReuse - restore RHS Jacobian before re-evaluating. Without this flag, TS will change the sign and
1474: shift the RHS Jacobian for a finite-time-step implicit solve, in which case the user function will need to recompute
1475: the entire Jacobian. The reuse flag must be set if the evaluation function will assume that the matrix entries have
1476: not been changed by the TS.
1478: Logically Collective
1480: Input Arguments:
1481: + ts - TS context obtained from TSCreate()
1482: - reuse - PETSC_TRUE if the RHS Jacobian
1484: Level: intermediate
1486: .seealso: TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
1487: @*/
1488: PetscErrorCode TSRHSJacobianSetReuse(TS ts,PetscBool reuse)
1489: {
1491: ts->rhsjacobian.reuse = reuse;
1492: return(0);
1493: }
1495: /*@C
1496: TSSetI2Function - Set the function to compute F(t,U,U_t,U_tt) where F = 0 is the DAE to be solved.
1498: Logically Collective on TS
1500: Input Parameters:
1501: + ts - the TS context obtained from TSCreate()
1502: . F - vector to hold the residual (or NULL to have it created internally)
1503: . fun - the function evaluation routine
1504: - ctx - user-defined context for private data for the function evaluation routine (may be NULL)
1506: Calling sequence of fun:
1507: $ fun(TS ts,PetscReal t,Vec U,Vec U_t,Vec U_tt,Vec F,ctx);
1509: + t - time at step/stage being solved
1510: . U - state vector
1511: . U_t - time derivative of state vector
1512: . U_tt - second time derivative of state vector
1513: . F - function vector
1514: - ctx - [optional] user-defined context for matrix evaluation routine (may be NULL)
1516: Level: beginner
1518: .keywords: TS, timestep, set, ODE, DAE, Function
1520: .seealso: TSSetI2Jacobian()
1521: @*/
1522: PetscErrorCode TSSetI2Function(TS ts,Vec F,TSI2Function fun,void *ctx)
1523: {
1524: DM dm;
1530: TSSetIFunction(ts,F,NULL,NULL);
1531: TSGetDM(ts,&dm);
1532: DMTSSetI2Function(dm,fun,ctx);
1533: return(0);
1534: }
1536: /*@C
1537: TSGetI2Function - Returns the vector where the implicit residual is stored and the function/contex to compute it.
1539: Not Collective
1541: Input Parameter:
1542: . ts - the TS context
1544: Output Parameter:
1545: + r - vector to hold residual (or NULL)
1546: . fun - the function to compute residual (or NULL)
1547: - ctx - the function context (or NULL)
1549: Level: advanced
1551: .keywords: TS, nonlinear, get, function
1553: .seealso: TSSetI2Function(), SNESGetFunction()
1554: @*/
1555: PetscErrorCode TSGetI2Function(TS ts,Vec *r,TSI2Function *fun,void **ctx)
1556: {
1558: SNES snes;
1559: DM dm;
1563: TSGetSNES(ts,&snes);
1564: SNESGetFunction(snes,r,NULL,NULL);
1565: TSGetDM(ts,&dm);
1566: DMTSGetI2Function(dm,fun,ctx);
1567: return(0);
1568: }
1570: /*@C
1571: TSSetI2Jacobian - Set the function to compute the matrix dF/dU + v*dF/dU_t + a*dF/dU_tt
1572: where F(t,U,U_t,U_tt) is the function you provided with TSSetI2Function().
1574: Logically Collective on TS
1576: Input Parameters:
1577: + ts - the TS context obtained from TSCreate()
1578: . J - Jacobian matrix
1579: . P - preconditioning matrix for J (may be same as J)
1580: . jac - the Jacobian evaluation routine
1581: - ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)
1583: Calling sequence of jac:
1584: $ jac(TS ts,PetscReal t,Vec U,Vec U_t,Vec U_tt,PetscReal v,PetscReal a,Mat J,Mat P,void *ctx);
1586: + t - time at step/stage being solved
1587: . U - state vector
1588: . U_t - time derivative of state vector
1589: . U_tt - second time derivative of state vector
1590: . v - shift for U_t
1591: . a - shift for U_tt
1592: . J - Jacobian of G(U) = F(t,U,W+v*U,W'+a*U), equivalent to dF/dU + v*dF/dU_t + a*dF/dU_tt
1593: . P - preconditioning matrix for J, may be same as J
1594: - ctx - [optional] user-defined context for matrix evaluation routine
1596: Notes:
1597: The matrices J and P are exactly the matrices that are used by SNES for the nonlinear solve.
1599: The matrix dF/dU + v*dF/dU_t + a*dF/dU_tt you provide turns out to be
1600: the Jacobian of G(U) = F(t,U,W+v*U,W'+a*U) where F(t,U,U_t,U_tt) = 0 is the DAE to be solved.
1601: The time integrator internally approximates U_t by W+v*U and U_tt by W'+a*U where the positive "shift"
1602: parameters 'v' and 'a' and vectors W, W' depend on the integration method, step size, and past states.
1604: Level: beginner
1606: .keywords: TS, timestep, set, ODE, DAE, Jacobian
1608: .seealso: TSSetI2Function()
1609: @*/
1610: PetscErrorCode TSSetI2Jacobian(TS ts,Mat J,Mat P,TSI2Jacobian jac,void *ctx)
1611: {
1612: DM dm;
1619: TSSetIJacobian(ts,J,P,NULL,NULL);
1620: TSGetDM(ts,&dm);
1621: DMTSSetI2Jacobian(dm,jac,ctx);
1622: return(0);
1623: }
1625: /*@C
1626: TSGetI2Jacobian - Returns the implicit Jacobian at the present timestep.
1628: Not Collective, but parallel objects are returned if TS is parallel
1630: Input Parameter:
1631: . ts - The TS context obtained from TSCreate()
1633: Output Parameters:
1634: + J - The (approximate) Jacobian of F(t,U,U_t,U_tt)
1635: . P - The matrix from which the preconditioner is constructed, often the same as J
1636: . jac - The function to compute the Jacobian matrices
1637: - ctx - User-defined context for Jacobian evaluation routine
1639: Notes:
1640: You can pass in NULL for any return argument you do not need.
1642: Level: advanced
1644: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetStepNumber()
1646: .keywords: TS, timestep, get, matrix, Jacobian
1647: @*/
1648: PetscErrorCode TSGetI2Jacobian(TS ts,Mat *J,Mat *P,TSI2Jacobian *jac,void **ctx)
1649: {
1651: SNES snes;
1652: DM dm;
1655: TSGetSNES(ts,&snes);
1656: SNESSetUpMatrices(snes);
1657: SNESGetJacobian(snes,J,P,NULL,NULL);
1658: TSGetDM(ts,&dm);
1659: DMTSGetI2Jacobian(dm,jac,ctx);
1660: return(0);
1661: }
1663: /*@
1664: TSComputeI2Function - Evaluates the DAE residual written in implicit form F(t,U,U_t,U_tt) = 0
1666: Collective on TS and Vec
1668: Input Parameters:
1669: + ts - the TS context
1670: . t - current time
1671: . U - state vector
1672: . V - time derivative of state vector (U_t)
1673: - A - second time derivative of state vector (U_tt)
1675: Output Parameter:
1676: . F - the residual vector
1678: Note:
1679: Most users should not need to explicitly call this routine, as it
1680: is used internally within the nonlinear solvers.
1682: Level: developer
1684: .keywords: TS, compute, function, vector
1686: .seealso: TSSetI2Function()
1687: @*/
1688: PetscErrorCode TSComputeI2Function(TS ts,PetscReal t,Vec U,Vec V,Vec A,Vec F)
1689: {
1690: DM dm;
1691: TSI2Function I2Function;
1692: void *ctx;
1693: TSRHSFunction rhsfunction;
1703: TSGetDM(ts,&dm);
1704: DMTSGetI2Function(dm,&I2Function,&ctx);
1705: DMTSGetRHSFunction(dm,&rhsfunction,NULL);
1707: if (!I2Function) {
1708: TSComputeIFunction(ts,t,U,A,F,PETSC_FALSE);
1709: return(0);
1710: }
1712: PetscLogEventBegin(TS_FunctionEval,ts,U,V,F);
1714: PetscStackPush("TS user implicit function");
1715: I2Function(ts,t,U,V,A,F,ctx);
1716: PetscStackPop;
1718: if (rhsfunction) {
1719: Vec Frhs;
1720: TSGetRHSVec_Private(ts,&Frhs);
1721: TSComputeRHSFunction(ts,t,U,Frhs);
1722: VecAXPY(F,-1,Frhs);
1723: }
1725: PetscLogEventEnd(TS_FunctionEval,ts,U,V,F);
1726: return(0);
1727: }
1729: /*@
1730: TSComputeI2Jacobian - Evaluates the Jacobian of the DAE
1732: Collective on TS and Vec
1734: Input Parameters:
1735: + ts - the TS context
1736: . t - current timestep
1737: . U - state vector
1738: . V - time derivative of state vector
1739: . A - second time derivative of state vector
1740: . shiftV - shift to apply, see note below
1741: - shiftA - shift to apply, see note below
1743: Output Parameters:
1744: + J - Jacobian matrix
1745: - P - optional preconditioning matrix
1747: Notes:
1748: If F(t,U,V,A)=0 is the DAE, the required Jacobian is
1750: dF/dU + shiftV*dF/dV + shiftA*dF/dA
1752: Most users should not need to explicitly call this routine, as it
1753: is used internally within the nonlinear solvers.
1755: Level: developer
1757: .keywords: TS, compute, Jacobian, matrix
1759: .seealso: TSSetI2Jacobian()
1760: @*/
1761: PetscErrorCode TSComputeI2Jacobian(TS ts,PetscReal t,Vec U,Vec V,Vec A,PetscReal shiftV,PetscReal shiftA,Mat J,Mat P)
1762: {
1763: DM dm;
1764: TSI2Jacobian I2Jacobian;
1765: void *ctx;
1766: TSRHSJacobian rhsjacobian;
1777: TSGetDM(ts,&dm);
1778: DMTSGetI2Jacobian(dm,&I2Jacobian,&ctx);
1779: DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);
1781: if (!I2Jacobian) {
1782: TSComputeIJacobian(ts,t,U,A,shiftA,J,P,PETSC_FALSE);
1783: return(0);
1784: }
1786: PetscLogEventBegin(TS_JacobianEval,ts,U,J,P);
1788: PetscStackPush("TS user implicit Jacobian");
1789: I2Jacobian(ts,t,U,V,A,shiftV,shiftA,J,P,ctx);
1790: PetscStackPop;
1792: if (rhsjacobian) {
1793: Mat Jrhs,Prhs; MatStructure axpy = DIFFERENT_NONZERO_PATTERN;
1794: TSGetRHSMats_Private(ts,&Jrhs,&Prhs);
1795: TSComputeRHSJacobian(ts,t,U,Jrhs,Prhs);
1796: MatAXPY(J,-1,Jrhs,axpy);
1797: if (P != J) {MatAXPY(P,-1,Prhs,axpy);}
1798: }
1800: PetscLogEventEnd(TS_JacobianEval,ts,U,J,P);
1801: return(0);
1802: }
1804: /*@
1805: TS2SetSolution - Sets the initial solution and time derivative vectors
1806: for use by the TS routines handling second order equations.
1808: Logically Collective on TS and Vec
1810: Input Parameters:
1811: + ts - the TS context obtained from TSCreate()
1812: . u - the solution vector
1813: - v - the time derivative vector
1815: Level: beginner
1817: .keywords: TS, timestep, set, solution, initial conditions
1818: @*/
1819: PetscErrorCode TS2SetSolution(TS ts,Vec u,Vec v)
1820: {
1827: TSSetSolution(ts,u);
1828: PetscObjectReference((PetscObject)v);
1829: VecDestroy(&ts->vec_dot);
1830: ts->vec_dot = v;
1831: return(0);
1832: }
1834: /*@
1835: TS2GetSolution - Returns the solution and time derivative at the present timestep
1836: for second order equations. It is valid to call this routine inside the function
1837: that you are evaluating in order to move to the new timestep. This vector not
1838: changed until the solution at the next timestep has been calculated.
1840: Not Collective, but Vec returned is parallel if TS is parallel
1842: Input Parameter:
1843: . ts - the TS context obtained from TSCreate()
1845: Output Parameter:
1846: + u - the vector containing the solution
1847: - v - the vector containing the time derivative
1849: Level: intermediate
1851: .seealso: TS2SetSolution(), TSGetTimeStep(), TSGetTime()
1853: .keywords: TS, timestep, get, solution
1854: @*/
1855: PetscErrorCode TS2GetSolution(TS ts,Vec *u,Vec *v)
1856: {
1861: if (u) *u = ts->vec_sol;
1862: if (v) *v = ts->vec_dot;
1863: return(0);
1864: }
1866: /*@C
1867: TSLoad - Loads a KSP that has been stored in binary with KSPView().
1869: Collective on PetscViewer
1871: Input Parameters:
1872: + newdm - the newly loaded TS, this needs to have been created with TSCreate() or
1873: some related function before a call to TSLoad().
1874: - viewer - binary file viewer, obtained from PetscViewerBinaryOpen()
1876: Level: intermediate
1878: Notes:
1879: The type is determined by the data in the file, any type set into the TS before this call is ignored.
1881: Notes for advanced users:
1882: Most users should not need to know the details of the binary storage
1883: format, since TSLoad() and TSView() completely hide these details.
1884: But for anyone who's interested, the standard binary matrix storage
1885: format is
1886: .vb
1887: has not yet been determined
1888: .ve
1890: .seealso: PetscViewerBinaryOpen(), TSView(), MatLoad(), VecLoad()
1891: @*/
1892: PetscErrorCode TSLoad(TS ts, PetscViewer viewer)
1893: {
1895: PetscBool isbinary;
1896: PetscInt classid;
1897: char type[256];
1898: DMTS sdm;
1899: DM dm;
1904: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1905: if (!isbinary) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Invalid viewer; open viewer with PetscViewerBinaryOpen()");
1907: PetscViewerBinaryRead(viewer,&classid,1,NULL,PETSC_INT);
1908: if (classid != TS_FILE_CLASSID) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Not TS next in file");
1909: PetscViewerBinaryRead(viewer,type,256,NULL,PETSC_CHAR);
1910: TSSetType(ts, type);
1911: if (ts->ops->load) {
1912: (*ts->ops->load)(ts,viewer);
1913: }
1914: DMCreate(PetscObjectComm((PetscObject)ts),&dm);
1915: DMLoad(dm,viewer);
1916: TSSetDM(ts,dm);
1917: DMCreateGlobalVector(ts->dm,&ts->vec_sol);
1918: VecLoad(ts->vec_sol,viewer);
1919: DMGetDMTS(ts->dm,&sdm);
1920: DMTSLoad(sdm,viewer);
1921: return(0);
1922: }
1924: #include <petscdraw.h>
1925: #if defined(PETSC_HAVE_SAWS)
1926: #include <petscviewersaws.h>
1927: #endif
1928: /*@C
1929: TSView - Prints the TS data structure.
1931: Collective on TS
1933: Input Parameters:
1934: + ts - the TS context obtained from TSCreate()
1935: - viewer - visualization context
1937: Options Database Key:
1938: . -ts_view - calls TSView() at end of TSStep()
1940: Notes:
1941: The available visualization contexts include
1942: + PETSC_VIEWER_STDOUT_SELF - standard output (default)
1943: - PETSC_VIEWER_STDOUT_WORLD - synchronized standard
1944: output where only the first processor opens
1945: the file. All other processors send their
1946: data to the first processor to print.
1948: The user can open an alternative visualization context with
1949: PetscViewerASCIIOpen() - output to a specified file.
1951: Level: beginner
1953: .keywords: TS, timestep, view
1955: .seealso: PetscViewerASCIIOpen()
1956: @*/
1957: PetscErrorCode TSView(TS ts,PetscViewer viewer)
1958: {
1960: TSType type;
1961: PetscBool iascii,isstring,isundials,isbinary,isdraw;
1962: DMTS sdm;
1963: #if defined(PETSC_HAVE_SAWS)
1964: PetscBool issaws;
1965: #endif
1969: if (!viewer) {
1970: PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)ts),&viewer);
1971: }
1975: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
1976: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSTRING,&isstring);
1977: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1978: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
1979: #if defined(PETSC_HAVE_SAWS)
1980: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSAWS,&issaws);
1981: #endif
1982: if (iascii) {
1983: PetscObjectPrintClassNamePrefixType((PetscObject)ts,viewer);
1984: if (ts->ops->view) {
1985: PetscViewerASCIIPushTab(viewer);
1986: (*ts->ops->view)(ts,viewer);
1987: PetscViewerASCIIPopTab(viewer);
1988: }
1989: if (ts->max_steps < PETSC_MAX_INT) {
1990: PetscViewerASCIIPrintf(viewer," maximum steps=%D\n",ts->max_steps);
1991: }
1992: if (ts->max_time < PETSC_MAX_REAL) {
1993: PetscViewerASCIIPrintf(viewer," maximum time=%g\n",(double)ts->max_time);
1994: }
1995: if (ts->usessnes) {
1996: PetscBool lin;
1997: if (ts->problem_type == TS_NONLINEAR) {
1998: PetscViewerASCIIPrintf(viewer," total number of nonlinear solver iterations=%D\n",ts->snes_its);
1999: }
2000: PetscViewerASCIIPrintf(viewer," total number of linear solver iterations=%D\n",ts->ksp_its);
2001: PetscObjectTypeCompareAny((PetscObject)ts->snes,&lin,SNESKSPONLY,SNESKSPTRANSPOSEONLY,"");
2002: PetscViewerASCIIPrintf(viewer," total number of %slinear solve failures=%D\n",lin ? "" : "non",ts->num_snes_failures);
2003: }
2004: PetscViewerASCIIPrintf(viewer," total number of rejected steps=%D\n",ts->reject);
2005: if (ts->vrtol) {
2006: PetscViewerASCIIPrintf(viewer," using vector of relative error tolerances, ");
2007: } else {
2008: PetscViewerASCIIPrintf(viewer," using relative error tolerance of %g, ",(double)ts->rtol);
2009: }
2010: if (ts->vatol) {
2011: PetscViewerASCIIPrintf(viewer," using vector of absolute error tolerances\n");
2012: } else {
2013: PetscViewerASCIIPrintf(viewer," using absolute error tolerance of %g\n",(double)ts->atol);
2014: }
2015: PetscViewerASCIIPushTab(viewer);
2016: TSAdaptView(ts->adapt,viewer);
2017: PetscViewerASCIIPopTab(viewer);
2018: if (ts->snes && ts->usessnes) {
2019: PetscViewerASCIIPushTab(viewer);
2020: SNESView(ts->snes,viewer);
2021: PetscViewerASCIIPopTab(viewer);
2022: }
2023: DMGetDMTS(ts->dm,&sdm);
2024: DMTSView(sdm,viewer);
2025: } else if (isstring) {
2026: TSGetType(ts,&type);
2027: PetscViewerStringSPrintf(viewer," %-7.7s",type);
2028: } else if (isbinary) {
2029: PetscInt classid = TS_FILE_CLASSID;
2030: MPI_Comm comm;
2031: PetscMPIInt rank;
2032: char type[256];
2034: PetscObjectGetComm((PetscObject)ts,&comm);
2035: MPI_Comm_rank(comm,&rank);
2036: if (!rank) {
2037: PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT,PETSC_FALSE);
2038: PetscStrncpy(type,((PetscObject)ts)->type_name,256);
2039: PetscViewerBinaryWrite(viewer,type,256,PETSC_CHAR,PETSC_FALSE);
2040: }
2041: if (ts->ops->view) {
2042: (*ts->ops->view)(ts,viewer);
2043: }
2044: if (ts->adapt) {TSAdaptView(ts->adapt,viewer);}
2045: DMView(ts->dm,viewer);
2046: VecView(ts->vec_sol,viewer);
2047: DMGetDMTS(ts->dm,&sdm);
2048: DMTSView(sdm,viewer);
2049: } else if (isdraw) {
2050: PetscDraw draw;
2051: char str[36];
2052: PetscReal x,y,bottom,h;
2054: PetscViewerDrawGetDraw(viewer,0,&draw);
2055: PetscDrawGetCurrentPoint(draw,&x,&y);
2056: PetscStrcpy(str,"TS: ");
2057: PetscStrcat(str,((PetscObject)ts)->type_name);
2058: PetscDrawStringBoxed(draw,x,y,PETSC_DRAW_BLACK,PETSC_DRAW_BLACK,str,NULL,&h);
2059: bottom = y - h;
2060: PetscDrawPushCurrentPoint(draw,x,bottom);
2061: if (ts->ops->view) {
2062: (*ts->ops->view)(ts,viewer);
2063: }
2064: if (ts->adapt) {TSAdaptView(ts->adapt,viewer);}
2065: if (ts->snes) {SNESView(ts->snes,viewer);}
2066: PetscDrawPopCurrentPoint(draw);
2067: #if defined(PETSC_HAVE_SAWS)
2068: } else if (issaws) {
2069: PetscMPIInt rank;
2070: const char *name;
2072: PetscObjectGetName((PetscObject)ts,&name);
2073: MPI_Comm_rank(PETSC_COMM_WORLD,&rank);
2074: if (!((PetscObject)ts)->amsmem && !rank) {
2075: char dir[1024];
2077: PetscObjectViewSAWs((PetscObject)ts,viewer);
2078: PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time_step",name);
2079: PetscStackCallSAWs(SAWs_Register,(dir,&ts->steps,1,SAWs_READ,SAWs_INT));
2080: PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time",name);
2081: PetscStackCallSAWs(SAWs_Register,(dir,&ts->ptime,1,SAWs_READ,SAWs_DOUBLE));
2082: }
2083: if (ts->ops->view) {
2084: (*ts->ops->view)(ts,viewer);
2085: }
2086: #endif
2087: }
2089: PetscViewerASCIIPushTab(viewer);
2090: PetscObjectTypeCompare((PetscObject)ts,TSSUNDIALS,&isundials);
2091: PetscViewerASCIIPopTab(viewer);
2092: return(0);
2093: }
2095: /*@
2096: TSSetApplicationContext - Sets an optional user-defined context for
2097: the timesteppers.
2099: Logically Collective on TS
2101: Input Parameters:
2102: + ts - the TS context obtained from TSCreate()
2103: - usrP - optional user context
2105: Fortran Notes:
2106: To use this from Fortran you must write a Fortran interface definition for this
2107: function that tells Fortran the Fortran derived data type that you are passing in as the ctx argument.
2109: Level: intermediate
2111: .keywords: TS, timestep, set, application, context
2113: .seealso: TSGetApplicationContext()
2114: @*/
2115: PetscErrorCode TSSetApplicationContext(TS ts,void *usrP)
2116: {
2119: ts->user = usrP;
2120: return(0);
2121: }
2123: /*@
2124: TSGetApplicationContext - Gets the user-defined context for the
2125: timestepper.
2127: Not Collective
2129: Input Parameter:
2130: . ts - the TS context obtained from TSCreate()
2132: Output Parameter:
2133: . usrP - user context
2135: Fortran Notes:
2136: To use this from Fortran you must write a Fortran interface definition for this
2137: function that tells Fortran the Fortran derived data type that you are passing in as the ctx argument.
2139: Level: intermediate
2141: .keywords: TS, timestep, get, application, context
2143: .seealso: TSSetApplicationContext()
2144: @*/
2145: PetscErrorCode TSGetApplicationContext(TS ts,void *usrP)
2146: {
2149: *(void**)usrP = ts->user;
2150: return(0);
2151: }
2153: /*@
2154: TSGetStepNumber - Gets the number of steps completed.
2156: Not Collective
2158: Input Parameter:
2159: . ts - the TS context obtained from TSCreate()
2161: Output Parameter:
2162: . steps - number of steps completed so far
2164: Level: intermediate
2166: .keywords: TS, timestep, get, iteration, number
2167: .seealso: TSGetTime(), TSGetTimeStep(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSSetPostStep()
2168: @*/
2169: PetscErrorCode TSGetStepNumber(TS ts,PetscInt *steps)
2170: {
2174: *steps = ts->steps;
2175: return(0);
2176: }
2178: /*@
2179: TSSetStepNumber - Sets the number of steps completed.
2181: Logically Collective on TS
2183: Input Parameters:
2184: + ts - the TS context
2185: - steps - number of steps completed so far
2187: Notes:
2188: For most uses of the TS solvers the user need not explicitly call
2189: TSSetStepNumber(), as the step counter is appropriately updated in
2190: TSSolve()/TSStep()/TSRollBack(). Power users may call this routine to
2191: reinitialize timestepping by setting the step counter to zero (and time
2192: to the initial time) to solve a similar problem with different initial
2193: conditions or parameters. Other possible use case is to continue
2194: timestepping from a previously interrupted run in such a way that TS
2195: monitors will be called with a initial nonzero step counter.
2197: Level: advanced
2199: .keywords: TS, timestep, set, iteration, number
2200: .seealso: TSGetStepNumber(), TSSetTime(), TSSetTimeStep(), TSSetSolution()
2201: @*/
2202: PetscErrorCode TSSetStepNumber(TS ts,PetscInt steps)
2203: {
2207: if (steps < 0) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Step number must be non-negative");
2208: ts->steps = steps;
2209: return(0);
2210: }
2212: /*@
2213: TSSetTimeStep - Allows one to reset the timestep at any time,
2214: useful for simple pseudo-timestepping codes.
2216: Logically Collective on TS
2218: Input Parameters:
2219: + ts - the TS context obtained from TSCreate()
2220: - time_step - the size of the timestep
2222: Level: intermediate
2224: .seealso: TSGetTimeStep(), TSSetTime()
2226: .keywords: TS, set, timestep
2227: @*/
2228: PetscErrorCode TSSetTimeStep(TS ts,PetscReal time_step)
2229: {
2233: ts->time_step = time_step;
2234: return(0);
2235: }
2237: /*@
2238: TSSetExactFinalTime - Determines whether to adapt the final time step to
2239: match the exact final time, interpolate solution to the exact final time,
2240: or just return at the final time TS computed.
2242: Logically Collective on TS
2244: Input Parameter:
2245: + ts - the time-step context
2246: - eftopt - exact final time option
2248: $ TS_EXACTFINALTIME_STEPOVER - Don't do anything if final time is exceeded
2249: $ TS_EXACTFINALTIME_INTERPOLATE - Interpolate back to final time
2250: $ TS_EXACTFINALTIME_MATCHSTEP - Adapt final time step to match the final time
2252: Options Database:
2253: . -ts_exact_final_time <stepover,interpolate,matchstep> - select the final step at runtime
2255: Warning: If you use the option TS_EXACTFINALTIME_STEPOVER the solution may be at a very different time
2256: then the final time you selected.
2258: Level: beginner
2260: .seealso: TSExactFinalTimeOption, TSGetExactFinalTime()
2261: @*/
2262: PetscErrorCode TSSetExactFinalTime(TS ts,TSExactFinalTimeOption eftopt)
2263: {
2267: ts->exact_final_time = eftopt;
2268: return(0);
2269: }
2271: /*@
2272: TSGetExactFinalTime - Gets the exact final time option.
2274: Not Collective
2276: Input Parameter:
2277: . ts - the TS context
2279: Output Parameter:
2280: . eftopt - exact final time option
2282: Level: beginner
2284: .seealso: TSExactFinalTimeOption, TSSetExactFinalTime()
2285: @*/
2286: PetscErrorCode TSGetExactFinalTime(TS ts,TSExactFinalTimeOption *eftopt)
2287: {
2291: *eftopt = ts->exact_final_time;
2292: return(0);
2293: }
2295: /*@
2296: TSGetTimeStep - Gets the current timestep size.
2298: Not Collective
2300: Input Parameter:
2301: . ts - the TS context obtained from TSCreate()
2303: Output Parameter:
2304: . dt - the current timestep size
2306: Level: intermediate
2308: .seealso: TSSetTimeStep(), TSGetTime()
2310: .keywords: TS, get, timestep
2311: @*/
2312: PetscErrorCode TSGetTimeStep(TS ts,PetscReal *dt)
2313: {
2317: *dt = ts->time_step;
2318: return(0);
2319: }
2321: /*@
2322: TSGetSolution - Returns the solution at the present timestep. It
2323: is valid to call this routine inside the function that you are evaluating
2324: in order to move to the new timestep. This vector not changed until
2325: the solution at the next timestep has been calculated.
2327: Not Collective, but Vec returned is parallel if TS is parallel
2329: Input Parameter:
2330: . ts - the TS context obtained from TSCreate()
2332: Output Parameter:
2333: . v - the vector containing the solution
2335: Note: If you used TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP); this does not return the solution at the requested
2336: final time. It returns the solution at the next timestep.
2338: Level: intermediate
2340: .seealso: TSGetTimeStep(), TSGetTime(), TSGetSolveTime(), TSGetSolutionComponents(), TSSetSolutionFunction()
2342: .keywords: TS, timestep, get, solution
2343: @*/
2344: PetscErrorCode TSGetSolution(TS ts,Vec *v)
2345: {
2349: *v = ts->vec_sol;
2350: return(0);
2351: }
2353: /*@
2354: TSGetSolutionComponents - Returns any solution components at the present
2355: timestep, if available for the time integration method being used.
2356: Solution components are quantities that share the same size and
2357: structure as the solution vector.
2359: Not Collective, but Vec returned is parallel if TS is parallel
2361: Parameters :
2362: . ts - the TS context obtained from TSCreate() (input parameter).
2363: . n - If v is PETSC_NULL, then the number of solution components is
2364: returned through n, else the n-th solution component is
2365: returned in v.
2366: . v - the vector containing the n-th solution component
2367: (may be PETSC_NULL to use this function to find out
2368: the number of solutions components).
2370: Level: advanced
2372: .seealso: TSGetSolution()
2374: .keywords: TS, timestep, get, solution
2375: @*/
2376: PetscErrorCode TSGetSolutionComponents(TS ts,PetscInt *n,Vec *v)
2377: {
2382: if (!ts->ops->getsolutioncomponents) *n = 0;
2383: else {
2384: (*ts->ops->getsolutioncomponents)(ts,n,v);
2385: }
2386: return(0);
2387: }
2389: /*@
2390: TSGetAuxSolution - Returns an auxiliary solution at the present
2391: timestep, if available for the time integration method being used.
2393: Not Collective, but Vec returned is parallel if TS is parallel
2395: Parameters :
2396: . ts - the TS context obtained from TSCreate() (input parameter).
2397: . v - the vector containing the auxiliary solution
2399: Level: intermediate
2401: .seealso: TSGetSolution()
2403: .keywords: TS, timestep, get, solution
2404: @*/
2405: PetscErrorCode TSGetAuxSolution(TS ts,Vec *v)
2406: {
2411: if (ts->ops->getauxsolution) {
2412: (*ts->ops->getauxsolution)(ts,v);
2413: } else {
2414: VecZeroEntries(*v);
2415: }
2416: return(0);
2417: }
2419: /*@
2420: TSGetTimeError - Returns the estimated error vector, if the chosen
2421: TSType has an error estimation functionality.
2423: Not Collective, but Vec returned is parallel if TS is parallel
2425: Note: MUST call after TSSetUp()
2427: Parameters :
2428: . ts - the TS context obtained from TSCreate() (input parameter).
2429: . n - current estimate (n=0) or previous one (n=-1)
2430: . v - the vector containing the error (same size as the solution).
2432: Level: intermediate
2434: .seealso: TSGetSolution(), TSSetTimeError()
2436: .keywords: TS, timestep, get, error
2437: @*/
2438: PetscErrorCode TSGetTimeError(TS ts,PetscInt n,Vec *v)
2439: {
2444: if (ts->ops->gettimeerror) {
2445: (*ts->ops->gettimeerror)(ts,n,v);
2446: } else {
2447: VecZeroEntries(*v);
2448: }
2449: return(0);
2450: }
2452: /*@
2453: TSSetTimeError - Sets the estimated error vector, if the chosen
2454: TSType has an error estimation functionality. This can be used
2455: to restart such a time integrator with a given error vector.
2457: Not Collective, but Vec returned is parallel if TS is parallel
2459: Parameters :
2460: . ts - the TS context obtained from TSCreate() (input parameter).
2461: . v - the vector containing the error (same size as the solution).
2463: Level: intermediate
2465: .seealso: TSSetSolution(), TSGetTimeError)
2467: .keywords: TS, timestep, get, error
2468: @*/
2469: PetscErrorCode TSSetTimeError(TS ts,Vec v)
2470: {
2475: if (!ts->setupcalled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetUp() first");
2476: if (ts->ops->settimeerror) {
2477: (*ts->ops->settimeerror)(ts,v);
2478: }
2479: return(0);
2480: }
2482: /* ----- Routines to initialize and destroy a timestepper ---- */
2483: /*@
2484: TSSetProblemType - Sets the type of problem to be solved.
2486: Not collective
2488: Input Parameters:
2489: + ts - The TS
2490: - type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
2491: .vb
2492: U_t - A U = 0 (linear)
2493: U_t - A(t) U = 0 (linear)
2494: F(t,U,U_t) = 0 (nonlinear)
2495: .ve
2497: Level: beginner
2499: .keywords: TS, problem type
2500: .seealso: TSSetUp(), TSProblemType, TS
2501: @*/
2502: PetscErrorCode TSSetProblemType(TS ts, TSProblemType type)
2503: {
2508: ts->problem_type = type;
2509: if (type == TS_LINEAR) {
2510: SNES snes;
2511: TSGetSNES(ts,&snes);
2512: SNESSetType(snes,SNESKSPONLY);
2513: }
2514: return(0);
2515: }
2517: /*@C
2518: TSGetProblemType - Gets the type of problem to be solved.
2520: Not collective
2522: Input Parameter:
2523: . ts - The TS
2525: Output Parameter:
2526: . type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
2527: .vb
2528: M U_t = A U
2529: M(t) U_t = A(t) U
2530: F(t,U,U_t)
2531: .ve
2533: Level: beginner
2535: .keywords: TS, problem type
2536: .seealso: TSSetUp(), TSProblemType, TS
2537: @*/
2538: PetscErrorCode TSGetProblemType(TS ts, TSProblemType *type)
2539: {
2543: *type = ts->problem_type;
2544: return(0);
2545: }
2547: /*@
2548: TSSetUp - Sets up the internal data structures for the later use
2549: of a timestepper.
2551: Collective on TS
2553: Input Parameter:
2554: . ts - the TS context obtained from TSCreate()
2556: Notes:
2557: For basic use of the TS solvers the user need not explicitly call
2558: TSSetUp(), since these actions will automatically occur during
2559: the call to TSStep() or TSSolve(). However, if one wishes to control this
2560: phase separately, TSSetUp() should be called after TSCreate()
2561: and optional routines of the form TSSetXXX(), but before TSStep() and TSSolve().
2563: Level: advanced
2565: .keywords: TS, timestep, setup
2567: .seealso: TSCreate(), TSStep(), TSDestroy(), TSSolve()
2568: @*/
2569: PetscErrorCode TSSetUp(TS ts)
2570: {
2572: DM dm;
2573: PetscErrorCode (*func)(SNES,Vec,Vec,void*);
2574: PetscErrorCode (*jac)(SNES,Vec,Mat,Mat,void*);
2575: TSIFunction ifun;
2576: TSIJacobian ijac;
2577: TSI2Jacobian i2jac;
2578: TSRHSJacobian rhsjac;
2579: PetscBool isnone;
2583: if (ts->setupcalled) return(0);
2585: if (!((PetscObject)ts)->type_name) {
2586: TSGetIFunction(ts,NULL,&ifun,NULL);
2587: TSSetType(ts,ifun ? TSBEULER : TSEULER);
2588: }
2590: if (!ts->vec_sol) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetSolution() first");
2592: TSGetRHSJacobian(ts,NULL,NULL,&rhsjac,NULL);
2593: if (ts->rhsjacobian.reuse && rhsjac == TSComputeRHSJacobianConstant) {
2594: Mat Amat,Pmat;
2595: SNES snes;
2596: TSGetSNES(ts,&snes);
2597: SNESGetJacobian(snes,&Amat,&Pmat,NULL,NULL);
2598: /* Matching matrices implies that an IJacobian is NOT set, because if it had been set, the IJacobian's matrix would
2599: * have displaced the RHS matrix */
2600: if (Amat && Amat == ts->Arhs) {
2601: /* we need to copy the values of the matrix because for the constant Jacobian case the user will never set the numerical values in this new location */
2602: MatDuplicate(ts->Arhs,MAT_COPY_VALUES,&Amat);
2603: SNESSetJacobian(snes,Amat,NULL,NULL,NULL);
2604: MatDestroy(&Amat);
2605: }
2606: if (Pmat && Pmat == ts->Brhs) {
2607: MatDuplicate(ts->Brhs,MAT_COPY_VALUES,&Pmat);
2608: SNESSetJacobian(snes,NULL,Pmat,NULL,NULL);
2609: MatDestroy(&Pmat);
2610: }
2611: }
2613: TSGetAdapt(ts,&ts->adapt);
2614: TSAdaptSetDefaultType(ts->adapt,ts->default_adapt_type);
2616: if (ts->ops->setup) {
2617: (*ts->ops->setup)(ts);
2618: }
2620: /* Attempt to check/preset a default value for the exact final time option */
2621: PetscObjectTypeCompare((PetscObject)ts->adapt,TSADAPTNONE,&isnone);
2622: if (!isnone && ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED)
2623: ts->exact_final_time = TS_EXACTFINALTIME_MATCHSTEP;
2625: /* In the case where we've set a DMTSFunction or what have you, we need the default SNESFunction
2626: to be set right but can't do it elsewhere due to the overreliance on ctx=ts.
2627: */
2628: TSGetDM(ts,&dm);
2629: DMSNESGetFunction(dm,&func,NULL);
2630: if (!func) {
2631: DMSNESSetFunction(dm,SNESTSFormFunction,ts);
2632: }
2633: /* If the SNES doesn't have a jacobian set and the TS has an ijacobian or rhsjacobian set, set the SNES to use it.
2634: Otherwise, the SNES will use coloring internally to form the Jacobian.
2635: */
2636: DMSNESGetJacobian(dm,&jac,NULL);
2637: DMTSGetIJacobian(dm,&ijac,NULL);
2638: DMTSGetI2Jacobian(dm,&i2jac,NULL);
2639: DMTSGetRHSJacobian(dm,&rhsjac,NULL);
2640: if (!jac && (ijac || i2jac || rhsjac)) {
2641: DMSNESSetJacobian(dm,SNESTSFormJacobian,ts);
2642: }
2644: /* if time integration scheme has a starting method, call it */
2645: if (ts->ops->startingmethod) {
2646: (*ts->ops->startingmethod)(ts);
2647: }
2649: ts->setupcalled = PETSC_TRUE;
2650: return(0);
2651: }
2653: /*@
2654: TSReset - Resets a TS context and removes any allocated Vecs and Mats.
2656: Collective on TS
2658: Input Parameter:
2659: . ts - the TS context obtained from TSCreate()
2661: Level: beginner
2663: .keywords: TS, timestep, reset
2665: .seealso: TSCreate(), TSSetup(), TSDestroy()
2666: @*/
2667: PetscErrorCode TSReset(TS ts)
2668: {
2669: TS_RHSSplitLink ilink = ts->tsrhssplit,next;
2670: PetscErrorCode ierr;
2675: if (ts->ops->reset) {
2676: (*ts->ops->reset)(ts);
2677: }
2678: if (ts->snes) {SNESReset(ts->snes);}
2679: if (ts->adapt) {TSAdaptReset(ts->adapt);}
2681: MatDestroy(&ts->Arhs);
2682: MatDestroy(&ts->Brhs);
2683: VecDestroy(&ts->Frhs);
2684: VecDestroy(&ts->vec_sol);
2685: VecDestroy(&ts->vec_dot);
2686: VecDestroy(&ts->vatol);
2687: VecDestroy(&ts->vrtol);
2688: VecDestroyVecs(ts->nwork,&ts->work);
2690: VecDestroyVecs(ts->numcost,&ts->vecs_drdy);
2691: VecDestroyVecs(ts->numcost,&ts->vecs_drdp);
2693: MatDestroy(&ts->Jacp);
2694: VecDestroy(&ts->vec_costintegral);
2695: VecDestroy(&ts->vec_costintegrand);
2696: MatDestroy(&ts->mat_sensip);
2698: while (ilink) {
2699: next = ilink->next;
2700: TSDestroy(&ilink->ts);
2701: PetscFree(ilink->splitname);
2702: ISDestroy(&ilink->is);
2703: PetscFree(ilink);
2704: ilink = next;
2705: }
2706: ts->num_rhs_splits = 0;
2707: ts->setupcalled = PETSC_FALSE;
2708: return(0);
2709: }
2711: /*@
2712: TSDestroy - Destroys the timestepper context that was created
2713: with TSCreate().
2715: Collective on TS
2717: Input Parameter:
2718: . ts - the TS context obtained from TSCreate()
2720: Level: beginner
2722: .keywords: TS, timestepper, destroy
2724: .seealso: TSCreate(), TSSetUp(), TSSolve()
2725: @*/
2726: PetscErrorCode TSDestroy(TS *ts)
2727: {
2731: if (!*ts) return(0);
2733: if (--((PetscObject)(*ts))->refct > 0) {*ts = 0; return(0);}
2735: TSReset((*ts));
2737: /* if memory was published with SAWs then destroy it */
2738: PetscObjectSAWsViewOff((PetscObject)*ts);
2739: if ((*ts)->ops->destroy) {(*(*ts)->ops->destroy)((*ts));}
2741: TSTrajectoryDestroy(&(*ts)->trajectory);
2743: TSAdaptDestroy(&(*ts)->adapt);
2744: TSEventDestroy(&(*ts)->event);
2746: SNESDestroy(&(*ts)->snes);
2747: DMDestroy(&(*ts)->dm);
2748: TSMonitorCancel((*ts));
2749: TSAdjointMonitorCancel((*ts));
2751: PetscHeaderDestroy(ts);
2752: return(0);
2753: }
2755: /*@
2756: TSGetSNES - Returns the SNES (nonlinear solver) associated with
2757: a TS (timestepper) context. Valid only for nonlinear problems.
2759: Not Collective, but SNES is parallel if TS is parallel
2761: Input Parameter:
2762: . ts - the TS context obtained from TSCreate()
2764: Output Parameter:
2765: . snes - the nonlinear solver context
2767: Notes:
2768: The user can then directly manipulate the SNES context to set various
2769: options, etc. Likewise, the user can then extract and manipulate the
2770: KSP, KSP, and PC contexts as well.
2772: TSGetSNES() does not work for integrators that do not use SNES; in
2773: this case TSGetSNES() returns NULL in snes.
2775: Level: beginner
2777: .keywords: timestep, get, SNES
2778: @*/
2779: PetscErrorCode TSGetSNES(TS ts,SNES *snes)
2780: {
2786: if (!ts->snes) {
2787: SNESCreate(PetscObjectComm((PetscObject)ts),&ts->snes);
2788: PetscObjectSetOptions((PetscObject)ts->snes,((PetscObject)ts)->options);
2789: SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2790: PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->snes);
2791: PetscObjectIncrementTabLevel((PetscObject)ts->snes,(PetscObject)ts,1);
2792: if (ts->dm) {SNESSetDM(ts->snes,ts->dm);}
2793: if (ts->problem_type == TS_LINEAR) {
2794: SNESSetType(ts->snes,SNESKSPONLY);
2795: }
2796: }
2797: *snes = ts->snes;
2798: return(0);
2799: }
2801: /*@
2802: TSSetSNES - Set the SNES (nonlinear solver) to be used by the timestepping context
2804: Collective
2806: Input Parameter:
2807: + ts - the TS context obtained from TSCreate()
2808: - snes - the nonlinear solver context
2810: Notes:
2811: Most users should have the TS created by calling TSGetSNES()
2813: Level: developer
2815: .keywords: timestep, set, SNES
2816: @*/
2817: PetscErrorCode TSSetSNES(TS ts,SNES snes)
2818: {
2820: PetscErrorCode (*func)(SNES,Vec,Mat,Mat,void*);
2825: PetscObjectReference((PetscObject)snes);
2826: SNESDestroy(&ts->snes);
2828: ts->snes = snes;
2830: SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2831: SNESGetJacobian(ts->snes,NULL,NULL,&func,NULL);
2832: if (func == SNESTSFormJacobian) {
2833: SNESSetJacobian(ts->snes,NULL,NULL,SNESTSFormJacobian,ts);
2834: }
2835: return(0);
2836: }
2838: /*@
2839: TSGetKSP - Returns the KSP (linear solver) associated with
2840: a TS (timestepper) context.
2842: Not Collective, but KSP is parallel if TS is parallel
2844: Input Parameter:
2845: . ts - the TS context obtained from TSCreate()
2847: Output Parameter:
2848: . ksp - the nonlinear solver context
2850: Notes:
2851: The user can then directly manipulate the KSP context to set various
2852: options, etc. Likewise, the user can then extract and manipulate the
2853: KSP and PC contexts as well.
2855: TSGetKSP() does not work for integrators that do not use KSP;
2856: in this case TSGetKSP() returns NULL in ksp.
2858: Level: beginner
2860: .keywords: timestep, get, KSP
2861: @*/
2862: PetscErrorCode TSGetKSP(TS ts,KSP *ksp)
2863: {
2865: SNES snes;
2870: if (!((PetscObject)ts)->type_name) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NULL,"KSP is not created yet. Call TSSetType() first");
2871: if (ts->problem_type != TS_LINEAR) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Linear only; use TSGetSNES()");
2872: TSGetSNES(ts,&snes);
2873: SNESGetKSP(snes,ksp);
2874: return(0);
2875: }
2877: /* ----------- Routines to set solver parameters ---------- */
2879: /*@
2880: TSSetMaxSteps - Sets the maximum number of steps to use.
2882: Logically Collective on TS
2884: Input Parameters:
2885: + ts - the TS context obtained from TSCreate()
2886: - maxsteps - maximum number of steps to use
2888: Options Database Keys:
2889: . -ts_max_steps <maxsteps> - Sets maxsteps
2891: Notes:
2892: The default maximum number of steps is 5000
2894: Level: intermediate
2896: .keywords: TS, timestep, set, maximum, steps
2898: .seealso: TSGetMaxSteps(), TSSetMaxTime(), TSSetExactFinalTime()
2899: @*/
2900: PetscErrorCode TSSetMaxSteps(TS ts,PetscInt maxsteps)
2901: {
2905: if (maxsteps < 0 ) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Maximum number of steps must be non-negative");
2906: ts->max_steps = maxsteps;
2907: return(0);
2908: }
2910: /*@
2911: TSGetMaxSteps - Gets the maximum number of steps to use.
2913: Not Collective
2915: Input Parameters:
2916: . ts - the TS context obtained from TSCreate()
2918: Output Parameter:
2919: . maxsteps - maximum number of steps to use
2921: Level: advanced
2923: .keywords: TS, timestep, get, maximum, steps
2925: .seealso: TSSetMaxSteps(), TSGetMaxTime(), TSSetMaxTime()
2926: @*/
2927: PetscErrorCode TSGetMaxSteps(TS ts,PetscInt *maxsteps)
2928: {
2932: *maxsteps = ts->max_steps;
2933: return(0);
2934: }
2936: /*@
2937: TSSetMaxTime - Sets the maximum (or final) time for timestepping.
2939: Logically Collective on TS
2941: Input Parameters:
2942: + ts - the TS context obtained from TSCreate()
2943: - maxtime - final time to step to
2945: Options Database Keys:
2946: . -ts_max_time <maxtime> - Sets maxtime
2948: Notes:
2949: The default maximum time is 5.0
2951: Level: intermediate
2953: .keywords: TS, timestep, set, maximum, time
2955: .seealso: TSGetMaxTime(), TSSetMaxSteps(), TSSetExactFinalTime()
2956: @*/
2957: PetscErrorCode TSSetMaxTime(TS ts,PetscReal maxtime)
2958: {
2962: ts->max_time = maxtime;
2963: return(0);
2964: }
2966: /*@
2967: TSGetMaxTime - Gets the maximum (or final) time for timestepping.
2969: Not Collective
2971: Input Parameters:
2972: . ts - the TS context obtained from TSCreate()
2974: Output Parameter:
2975: . maxtime - final time to step to
2977: Level: advanced
2979: .keywords: TS, timestep, get, maximum, time
2981: .seealso: TSSetMaxTime(), TSGetMaxSteps(), TSSetMaxSteps()
2982: @*/
2983: PetscErrorCode TSGetMaxTime(TS ts,PetscReal *maxtime)
2984: {
2988: *maxtime = ts->max_time;
2989: return(0);
2990: }
2992: /*@
2993: TSSetInitialTimeStep - Deprecated, use TSSetTime() and TSSetTimeStep().
2995: Level: deprecated
2997: @*/
2998: PetscErrorCode TSSetInitialTimeStep(TS ts,PetscReal initial_time,PetscReal time_step)
2999: {
3003: TSSetTime(ts,initial_time);
3004: TSSetTimeStep(ts,time_step);
3005: return(0);
3006: }
3008: /*@
3009: TSGetDuration - Deprecated, use TSGetMaxSteps() and TSGetMaxTime().
3011: Level: deprecated
3013: @*/
3014: PetscErrorCode TSGetDuration(TS ts, PetscInt *maxsteps, PetscReal *maxtime)
3015: {
3018: if (maxsteps) {
3020: *maxsteps = ts->max_steps;
3021: }
3022: if (maxtime) {
3024: *maxtime = ts->max_time;
3025: }
3026: return(0);
3027: }
3029: /*@
3030: TSSetDuration - Deprecated, use TSSetMaxSteps() and TSSetMaxTime().
3032: Level: deprecated
3034: @*/
3035: PetscErrorCode TSSetDuration(TS ts,PetscInt maxsteps,PetscReal maxtime)
3036: {
3041: if (maxsteps >= 0) ts->max_steps = maxsteps;
3042: if (maxtime != PETSC_DEFAULT) ts->max_time = maxtime;
3043: return(0);
3044: }
3046: /*@
3047: TSGetTimeStepNumber - Deprecated, use TSGetStepNumber().
3049: Level: deprecated
3051: @*/
3052: PetscErrorCode TSGetTimeStepNumber(TS ts,PetscInt *steps) { return TSGetStepNumber(ts,steps); }
3054: /*@
3055: TSGetTotalSteps - Deprecated, use TSGetStepNumber().
3057: Level: deprecated
3059: @*/
3060: PetscErrorCode TSGetTotalSteps(TS ts,PetscInt *steps) { return TSGetStepNumber(ts,steps); }
3062: /*@
3063: TSSetSolution - Sets the initial solution vector
3064: for use by the TS routines.
3066: Logically Collective on TS and Vec
3068: Input Parameters:
3069: + ts - the TS context obtained from TSCreate()
3070: - u - the solution vector
3072: Level: beginner
3074: .keywords: TS, timestep, set, solution, initial values
3076: .seealso: TSSetSolutionFunction(), TSGetSolution(), TSCreate()
3077: @*/
3078: PetscErrorCode TSSetSolution(TS ts,Vec u)
3079: {
3081: DM dm;
3086: PetscObjectReference((PetscObject)u);
3087: VecDestroy(&ts->vec_sol);
3088: ts->vec_sol = u;
3090: TSGetDM(ts,&dm);
3091: DMShellSetGlobalVector(dm,u);
3092: return(0);
3093: }
3095: /*@C
3096: TSSetPreStep - Sets the general-purpose function
3097: called once at the beginning of each time step.
3099: Logically Collective on TS
3101: Input Parameters:
3102: + ts - The TS context obtained from TSCreate()
3103: - func - The function
3105: Calling sequence of func:
3106: . func (TS ts);
3108: Level: intermediate
3110: .keywords: TS, timestep
3111: .seealso: TSSetPreStage(), TSSetPostStage(), TSSetPostStep(), TSStep(), TSRestartStep()
3112: @*/
3113: PetscErrorCode TSSetPreStep(TS ts, PetscErrorCode (*func)(TS))
3114: {
3117: ts->prestep = func;
3118: return(0);
3119: }
3121: /*@
3122: TSPreStep - Runs the user-defined pre-step function.
3124: Collective on TS
3126: Input Parameters:
3127: . ts - The TS context obtained from TSCreate()
3129: Notes:
3130: TSPreStep() is typically used within time stepping implementations,
3131: so most users would not generally call this routine themselves.
3133: Level: developer
3135: .keywords: TS, timestep
3136: .seealso: TSSetPreStep(), TSPreStage(), TSPostStage(), TSPostStep()
3137: @*/
3138: PetscErrorCode TSPreStep(TS ts)
3139: {
3144: if (ts->prestep) {
3145: Vec U;
3146: PetscObjectState sprev,spost;
3148: TSGetSolution(ts,&U);
3149: PetscObjectStateGet((PetscObject)U,&sprev);
3150: PetscStackCallStandard((*ts->prestep),(ts));
3151: PetscObjectStateGet((PetscObject)U,&spost);
3152: if (sprev != spost) {TSRestartStep(ts);}
3153: }
3154: return(0);
3155: }
3157: /*@C
3158: TSSetPreStage - Sets the general-purpose function
3159: called once at the beginning of each stage.
3161: Logically Collective on TS
3163: Input Parameters:
3164: + ts - The TS context obtained from TSCreate()
3165: - func - The function
3167: Calling sequence of func:
3168: . PetscErrorCode func(TS ts, PetscReal stagetime);
3170: Level: intermediate
3172: Note:
3173: There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
3174: The time step number being computed can be queried using TSGetStepNumber() and the total size of the step being
3175: attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().
3177: .keywords: TS, timestep
3178: .seealso: TSSetPostStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3179: @*/
3180: PetscErrorCode TSSetPreStage(TS ts, PetscErrorCode (*func)(TS,PetscReal))
3181: {
3184: ts->prestage = func;
3185: return(0);
3186: }
3188: /*@C
3189: TSSetPostStage - Sets the general-purpose function
3190: called once at the end of each stage.
3192: Logically Collective on TS
3194: Input Parameters:
3195: + ts - The TS context obtained from TSCreate()
3196: - func - The function
3198: Calling sequence of func:
3199: . PetscErrorCode func(TS ts, PetscReal stagetime, PetscInt stageindex, Vec* Y);
3201: Level: intermediate
3203: Note:
3204: There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
3205: The time step number being computed can be queried using TSGetStepNumber() and the total size of the step being
3206: attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().
3208: .keywords: TS, timestep
3209: .seealso: TSSetPreStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3210: @*/
3211: PetscErrorCode TSSetPostStage(TS ts, PetscErrorCode (*func)(TS,PetscReal,PetscInt,Vec*))
3212: {
3215: ts->poststage = func;
3216: return(0);
3217: }
3219: /*@C
3220: TSSetPostEvaluate - Sets the general-purpose function
3221: called once at the end of each step evaluation.
3223: Logically Collective on TS
3225: Input Parameters:
3226: + ts - The TS context obtained from TSCreate()
3227: - func - The function
3229: Calling sequence of func:
3230: . PetscErrorCode func(TS ts);
3232: Level: intermediate
3234: Note:
3235: Semantically, TSSetPostEvaluate() differs from TSSetPostStep() since the function it sets is called before event-handling
3236: thus guaranteeing the same solution (computed by the time-stepper) will be passed to it. On the other hand, TSPostStep()
3237: may be passed a different solution, possibly changed by the event handler. TSPostEvaluate() is called after the next step
3238: solution is evaluated allowing to modify it, if need be. The solution can be obtained with TSGetSolution(), the time step
3239: with TSGetTimeStep(), and the time at the start of the step is available via TSGetTime()
3241: .keywords: TS, timestep
3242: .seealso: TSSetPreStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3243: @*/
3244: PetscErrorCode TSSetPostEvaluate(TS ts, PetscErrorCode (*func)(TS))
3245: {
3248: ts->postevaluate = func;
3249: return(0);
3250: }
3252: /*@
3253: TSPreStage - Runs the user-defined pre-stage function set using TSSetPreStage()
3255: Collective on TS
3257: Input Parameters:
3258: . ts - The TS context obtained from TSCreate()
3259: stagetime - The absolute time of the current stage
3261: Notes:
3262: TSPreStage() is typically used within time stepping implementations,
3263: most users would not generally call this routine themselves.
3265: Level: developer
3267: .keywords: TS, timestep
3268: .seealso: TSPostStage(), TSSetPreStep(), TSPreStep(), TSPostStep()
3269: @*/
3270: PetscErrorCode TSPreStage(TS ts, PetscReal stagetime)
3271: {
3274: if (ts->prestage) {
3275: PetscStackCallStandard((*ts->prestage),(ts,stagetime));
3276: }
3277: return(0);
3278: }
3280: /*@
3281: TSPostStage - Runs the user-defined post-stage function set using TSSetPostStage()
3283: Collective on TS
3285: Input Parameters:
3286: . ts - The TS context obtained from TSCreate()
3287: stagetime - The absolute time of the current stage
3288: stageindex - Stage number
3289: Y - Array of vectors (of size = total number
3290: of stages) with the stage solutions
3292: Notes:
3293: TSPostStage() is typically used within time stepping implementations,
3294: most users would not generally call this routine themselves.
3296: Level: developer
3298: .keywords: TS, timestep
3299: .seealso: TSPreStage(), TSSetPreStep(), TSPreStep(), TSPostStep()
3300: @*/
3301: PetscErrorCode TSPostStage(TS ts, PetscReal stagetime, PetscInt stageindex, Vec *Y)
3302: {
3305: if (ts->poststage) {
3306: PetscStackCallStandard((*ts->poststage),(ts,stagetime,stageindex,Y));
3307: }
3308: return(0);
3309: }
3311: /*@
3312: TSPostEvaluate - Runs the user-defined post-evaluate function set using TSSetPostEvaluate()
3314: Collective on TS
3316: Input Parameters:
3317: . ts - The TS context obtained from TSCreate()
3319: Notes:
3320: TSPostEvaluate() is typically used within time stepping implementations,
3321: most users would not generally call this routine themselves.
3323: Level: developer
3325: .keywords: TS, timestep
3326: .seealso: TSSetPostEvaluate(), TSSetPreStep(), TSPreStep(), TSPostStep()
3327: @*/
3328: PetscErrorCode TSPostEvaluate(TS ts)
3329: {
3334: if (ts->postevaluate) {
3335: Vec U;
3336: PetscObjectState sprev,spost;
3338: TSGetSolution(ts,&U);
3339: PetscObjectStateGet((PetscObject)U,&sprev);
3340: PetscStackCallStandard((*ts->postevaluate),(ts));
3341: PetscObjectStateGet((PetscObject)U,&spost);
3342: if (sprev != spost) {TSRestartStep(ts);}
3343: }
3344: return(0);
3345: }
3347: /*@C
3348: TSSetPostStep - Sets the general-purpose function
3349: called once at the end of each time step.
3351: Logically Collective on TS
3353: Input Parameters:
3354: + ts - The TS context obtained from TSCreate()
3355: - func - The function
3357: Calling sequence of func:
3358: $ func (TS ts);
3360: Notes:
3361: The function set by TSSetPostStep() is called after each successful step. The solution vector X
3362: obtained by TSGetSolution() may be different than that computed at the step end if the event handler
3363: locates an event and TSPostEvent() modifies it. Use TSSetPostEvaluate() if an unmodified solution is needed instead.
3365: Level: intermediate
3367: .keywords: TS, timestep
3368: .seealso: TSSetPreStep(), TSSetPreStage(), TSSetPostEvaluate(), TSGetTimeStep(), TSGetStepNumber(), TSGetTime(), TSRestartStep()
3369: @*/
3370: PetscErrorCode TSSetPostStep(TS ts, PetscErrorCode (*func)(TS))
3371: {
3374: ts->poststep = func;
3375: return(0);
3376: }
3378: /*@
3379: TSPostStep - Runs the user-defined post-step function.
3381: Collective on TS
3383: Input Parameters:
3384: . ts - The TS context obtained from TSCreate()
3386: Notes:
3387: TSPostStep() is typically used within time stepping implementations,
3388: so most users would not generally call this routine themselves.
3390: Level: developer
3392: .keywords: TS, timestep
3393: @*/
3394: PetscErrorCode TSPostStep(TS ts)
3395: {
3400: if (ts->poststep) {
3401: Vec U;
3402: PetscObjectState sprev,spost;
3404: TSGetSolution(ts,&U);
3405: PetscObjectStateGet((PetscObject)U,&sprev);
3406: PetscStackCallStandard((*ts->poststep),(ts));
3407: PetscObjectStateGet((PetscObject)U,&spost);
3408: if (sprev != spost) {TSRestartStep(ts);}
3409: }
3410: return(0);
3411: }
3413: /* ------------ Routines to set performance monitoring options ----------- */
3415: /*@C
3416: TSMonitorSet - Sets an ADDITIONAL function that is to be used at every
3417: timestep to display the iteration's progress.
3419: Logically Collective on TS
3421: Input Parameters:
3422: + ts - the TS context obtained from TSCreate()
3423: . monitor - monitoring routine
3424: . mctx - [optional] user-defined context for private data for the
3425: monitor routine (use NULL if no context is desired)
3426: - monitordestroy - [optional] routine that frees monitor context
3427: (may be NULL)
3429: Calling sequence of monitor:
3430: $ PetscErrorCode monitor(TS ts,PetscInt steps,PetscReal time,Vec u,void *mctx)
3432: + ts - the TS context
3433: . steps - iteration number (after the final time step the monitor routine may be called with a step of -1, this indicates the solution has been interpolated to this time)
3434: . time - current time
3435: . u - current iterate
3436: - mctx - [optional] monitoring context
3438: Notes:
3439: This routine adds an additional monitor to the list of monitors that
3440: already has been loaded.
3442: Fortran Notes:
3443: Only a single monitor function can be set for each TS object
3445: Level: intermediate
3447: .keywords: TS, timestep, set, monitor
3449: .seealso: TSMonitorDefault(), TSMonitorCancel()
3450: @*/
3451: PetscErrorCode TSMonitorSet(TS ts,PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,void*),void *mctx,PetscErrorCode (*mdestroy)(void**))
3452: {
3454: PetscInt i;
3455: PetscBool identical;
3459: for (i=0; i<ts->numbermonitors;i++) {
3460: PetscMonitorCompare((PetscErrorCode (*)(void))monitor,mctx,mdestroy,(PetscErrorCode (*)(void))ts->monitor[i],ts->monitorcontext[i],ts->monitordestroy[i],&identical);
3461: if (identical) return(0);
3462: }
3463: if (ts->numbermonitors >= MAXTSMONITORS) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many monitors set");
3464: ts->monitor[ts->numbermonitors] = monitor;
3465: ts->monitordestroy[ts->numbermonitors] = mdestroy;
3466: ts->monitorcontext[ts->numbermonitors++] = (void*)mctx;
3467: return(0);
3468: }
3470: /*@C
3471: TSMonitorCancel - Clears all the monitors that have been set on a time-step object.
3473: Logically Collective on TS
3475: Input Parameters:
3476: . ts - the TS context obtained from TSCreate()
3478: Notes:
3479: There is no way to remove a single, specific monitor.
3481: Level: intermediate
3483: .keywords: TS, timestep, set, monitor
3485: .seealso: TSMonitorDefault(), TSMonitorSet()
3486: @*/
3487: PetscErrorCode TSMonitorCancel(TS ts)
3488: {
3490: PetscInt i;
3494: for (i=0; i<ts->numbermonitors; i++) {
3495: if (ts->monitordestroy[i]) {
3496: (*ts->monitordestroy[i])(&ts->monitorcontext[i]);
3497: }
3498: }
3499: ts->numbermonitors = 0;
3500: return(0);
3501: }
3503: /*@C
3504: TSMonitorDefault - The Default monitor, prints the timestep and time for each step
3506: Level: intermediate
3508: .keywords: TS, set, monitor
3510: .seealso: TSMonitorSet()
3511: @*/
3512: PetscErrorCode TSMonitorDefault(TS ts,PetscInt step,PetscReal ptime,Vec v,PetscViewerAndFormat *vf)
3513: {
3515: PetscViewer viewer = vf->viewer;
3516: PetscBool iascii,ibinary;
3520: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
3521: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&ibinary);
3522: PetscViewerPushFormat(viewer,vf->format);
3523: if (iascii) {
3524: PetscViewerASCIIAddTab(viewer,((PetscObject)ts)->tablevel);
3525: if (step == -1){ /* this indicates it is an interpolated solution */
3526: PetscViewerASCIIPrintf(viewer,"Interpolated solution at time %g between steps %D and %D\n",(double)ptime,ts->steps-1,ts->steps);
3527: } else {
3528: PetscViewerASCIIPrintf(viewer,"%D TS dt %g time %g%s",step,(double)ts->time_step,(double)ptime,ts->steprollback ? " (r)\n" : "\n");
3529: }
3530: PetscViewerASCIISubtractTab(viewer,((PetscObject)ts)->tablevel);
3531: } else if (ibinary) {
3532: PetscMPIInt rank;
3533: MPI_Comm_rank(PetscObjectComm((PetscObject)viewer),&rank);
3534: if (!rank) {
3535: PetscBool skipHeader;
3536: PetscInt classid = REAL_FILE_CLASSID;
3538: PetscViewerBinaryGetSkipHeader(viewer,&skipHeader);
3539: if (!skipHeader) {
3540: PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT,PETSC_FALSE);
3541: }
3542: PetscRealView(1,&ptime,viewer);
3543: } else {
3544: PetscRealView(0,&ptime,viewer);
3545: }
3546: }
3547: PetscViewerPopFormat(viewer);
3548: return(0);
3549: }
3551: /*@C
3552: TSMonitorExtreme - Prints the extreme values of the solution at each timestep
3554: Level: intermediate
3556: .keywords: TS, set, monitor
3558: .seealso: TSMonitorSet()
3559: @*/
3560: PetscErrorCode TSMonitorExtreme(TS ts,PetscInt step,PetscReal ptime,Vec v,PetscViewerAndFormat *vf)
3561: {
3563: PetscViewer viewer = vf->viewer;
3564: PetscBool iascii;
3565: PetscReal max,min;
3567:
3570: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
3571: PetscViewerPushFormat(viewer,vf->format);
3572: if (iascii) {
3573: VecMax(v,NULL,&max);
3574: VecMin(v,NULL,&min);
3575: PetscViewerASCIIAddTab(viewer,((PetscObject)ts)->tablevel);
3576: PetscViewerASCIIPrintf(viewer,"%D TS dt %g time %g%s max %g min %g\n",step,(double)ts->time_step,(double)ptime,ts->steprollback ? " (r)" : "",(double)max,(double)min);
3577: PetscViewerASCIISubtractTab(viewer,((PetscObject)ts)->tablevel);
3578: }
3579: PetscViewerPopFormat(viewer);
3580: return(0);
3581: }
3583: /*@
3584: TSInterpolate - Interpolate the solution computed during the previous step to an arbitrary location in the interval
3586: Collective on TS
3588: Input Argument:
3589: + ts - time stepping context
3590: - t - time to interpolate to
3592: Output Argument:
3593: . U - state at given time
3595: Level: intermediate
3597: Developer Notes:
3598: TSInterpolate() and the storing of previous steps/stages should be generalized to support delay differential equations and continuous adjoints.
3600: .keywords: TS, set
3602: .seealso: TSSetExactFinalTime(), TSSolve()
3603: @*/
3604: PetscErrorCode TSInterpolate(TS ts,PetscReal t,Vec U)
3605: {
3611: if (t < ts->ptime_prev || t > ts->ptime) SETERRQ3(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Requested time %g not in last time steps [%g,%g]",t,(double)ts->ptime_prev,(double)ts->ptime);
3612: if (!ts->ops->interpolate) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"%s does not provide interpolation",((PetscObject)ts)->type_name);
3613: (*ts->ops->interpolate)(ts,t,U);
3614: return(0);
3615: }
3617: /*@
3618: TSStep - Steps one time step
3620: Collective on TS
3622: Input Parameter:
3623: . ts - the TS context obtained from TSCreate()
3625: Level: developer
3627: Notes:
3628: The public interface for the ODE/DAE solvers is TSSolve(), you should almost for sure be using that routine and not this routine.
3630: The hook set using TSSetPreStep() is called before each attempt to take the step. In general, the time step size may
3631: be changed due to adaptive error controller or solve failures. Note that steps may contain multiple stages.
3633: This may over-step the final time provided in TSSetMaxTime() depending on the time-step used. TSSolve() interpolates to exactly the
3634: time provided in TSSetMaxTime(). One can use TSInterpolate() to determine an interpolated solution within the final timestep.
3636: .keywords: TS, timestep, solve
3638: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSInterpolate()
3639: @*/
3640: PetscErrorCode TSStep(TS ts)
3641: {
3642: PetscErrorCode ierr;
3643: static PetscBool cite = PETSC_FALSE;
3644: PetscReal ptime;
3648: PetscCitationsRegister("@techreport{tspaper,\n"
3649: " title = {{PETSc/TS}: A Modern Scalable {DAE/ODE} Solver Library},\n"
3650: " author = {Shrirang Abhyankar and Jed Brown and Emil Constantinescu and Debojyoti Ghosh and Barry F. Smith},\n"
3651: " type = {Preprint},\n"
3652: " number = {ANL/MCS-P5061-0114},\n"
3653: " institution = {Argonne National Laboratory},\n"
3654: " year = {2014}\n}\n",&cite);
3656: TSSetUp(ts);
3657: TSTrajectorySetUp(ts->trajectory,ts);
3659: if (ts->max_time >= PETSC_MAX_REAL && ts->max_steps == PETSC_MAX_INT) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetMaxTime() or TSSetMaxSteps(), or use -ts_max_time <time> or -ts_max_steps <steps>");
3660: if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetExactFinalTime() or use -ts_exact_final_time <stepover,interpolate,matchstep> before calling TSStep()");
3661: if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP && !ts->adapt) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Since TS is not adaptive you cannot use TS_EXACTFINALTIME_MATCHSTEP, suggest TS_EXACTFINALTIME_INTERPOLATE");
3663: if (!ts->steps) ts->ptime_prev = ts->ptime;
3664: ptime = ts->ptime; ts->ptime_prev_rollback = ts->ptime_prev;
3665: ts->reason = TS_CONVERGED_ITERATING;
3666: if (!ts->ops->step) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSStep not implemented for type '%s'",((PetscObject)ts)->type_name);
3667: PetscLogEventBegin(TS_Step,ts,0,0,0);
3668: (*ts->ops->step)(ts);
3669: PetscLogEventEnd(TS_Step,ts,0,0,0);
3670: ts->ptime_prev = ptime;
3671: ts->steps++;
3672: ts->steprollback = PETSC_FALSE;
3673: ts->steprestart = PETSC_FALSE;
3675: if (ts->reason < 0) {
3676: if (ts->errorifstepfailed) {
3677: if (ts->reason == TS_DIVERGED_NONLINEAR_SOLVE) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s, increase -ts_max_snes_failures or make negative to attempt recovery",TSConvergedReasons[ts->reason]);
3678: else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s",TSConvergedReasons[ts->reason]);
3679: }
3680: } else if (!ts->reason) {
3681: if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
3682: else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
3683: }
3684: return(0);
3685: }
3687: /*@
3688: TSEvaluateWLTE - Evaluate the weighted local truncation error norm
3689: at the end of a time step with a given order of accuracy.
3691: Collective on TS
3693: Input Arguments:
3694: + ts - time stepping context
3695: . wnormtype - norm type, either NORM_2 or NORM_INFINITY
3696: - order - optional, desired order for the error evaluation or PETSC_DECIDE
3698: Output Arguments:
3699: + order - optional, the actual order of the error evaluation
3700: - wlte - the weighted local truncation error norm
3702: Level: advanced
3704: Notes:
3705: If the timestepper cannot evaluate the error in a particular step
3706: (eg. in the first step or restart steps after event handling),
3707: this routine returns wlte=-1.0 .
3709: .seealso: TSStep(), TSAdapt, TSErrorWeightedNorm()
3710: @*/
3711: PetscErrorCode TSEvaluateWLTE(TS ts,NormType wnormtype,PetscInt *order,PetscReal *wlte)
3712: {
3722: if (wnormtype != NORM_2 && wnormtype != NORM_INFINITY) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
3723: if (!ts->ops->evaluatewlte) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSEvaluateWLTE not implemented for type '%s'",((PetscObject)ts)->type_name);
3724: (*ts->ops->evaluatewlte)(ts,wnormtype,order,wlte);
3725: return(0);
3726: }
3728: /*@
3729: TSEvaluateStep - Evaluate the solution at the end of a time step with a given order of accuracy.
3731: Collective on TS
3733: Input Arguments:
3734: + ts - time stepping context
3735: . order - desired order of accuracy
3736: - done - whether the step was evaluated at this order (pass NULL to generate an error if not available)
3738: Output Arguments:
3739: . U - state at the end of the current step
3741: Level: advanced
3743: Notes:
3744: This function cannot be called until all stages have been evaluated.
3745: It is normally called by adaptive controllers before a step has been accepted and may also be called by the user after TSStep() has returned.
3747: .seealso: TSStep(), TSAdapt
3748: @*/
3749: PetscErrorCode TSEvaluateStep(TS ts,PetscInt order,Vec U,PetscBool *done)
3750: {
3757: if (!ts->ops->evaluatestep) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSEvaluateStep not implemented for type '%s'",((PetscObject)ts)->type_name);
3758: (*ts->ops->evaluatestep)(ts,order,U,done);
3759: return(0);
3760: }
3762: /*@
3763: TSSolve - Steps the requested number of timesteps.
3765: Collective on TS
3767: Input Parameter:
3768: + ts - the TS context obtained from TSCreate()
3769: - u - the solution vector (can be null if TSSetSolution() was used and TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP) was not used,
3770: otherwise must contain the initial conditions and will contain the solution at the final requested time
3772: Level: beginner
3774: Notes:
3775: The final time returned by this function may be different from the time of the internally
3776: held state accessible by TSGetSolution() and TSGetTime() because the method may have
3777: stepped over the final time.
3779: .keywords: TS, timestep, solve
3781: .seealso: TSCreate(), TSSetSolution(), TSStep(), TSGetTime(), TSGetSolveTime()
3782: @*/
3783: PetscErrorCode TSSolve(TS ts,Vec u)
3784: {
3785: Vec solution;
3786: PetscErrorCode ierr;
3792: if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && u) { /* Need ts->vec_sol to be distinct so it is not overwritten when we interpolate at the end */
3793: if (!ts->vec_sol || u == ts->vec_sol) {
3794: VecDuplicate(u,&solution);
3795: TSSetSolution(ts,solution);
3796: VecDestroy(&solution); /* grant ownership */
3797: }
3798: VecCopy(u,ts->vec_sol);
3799: if (ts->forward_solve) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Sensitivity analysis does not support the mode TS_EXACTFINALTIME_INTERPOLATE");
3800: } else if (u) {
3801: TSSetSolution(ts,u);
3802: }
3803: TSSetUp(ts);
3804: TSTrajectorySetUp(ts->trajectory,ts);
3806: if (ts->max_time >= PETSC_MAX_REAL && ts->max_steps == PETSC_MAX_INT) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetMaxTime() or TSSetMaxSteps(), or use -ts_max_time <time> or -ts_max_steps <steps>");
3807: if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetExactFinalTime() or use -ts_exact_final_time <stepover,interpolate,matchstep> before calling TSSolve()");
3808: if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP && !ts->adapt) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Since TS is not adaptive you cannot use TS_EXACTFINALTIME_MATCHSTEP, suggest TS_EXACTFINALTIME_INTERPOLATE");
3810: if (ts->forward_solve) {
3811: TSForwardSetUp(ts);
3812: }
3814: /* reset number of steps only when the step is not restarted. ARKIMEX
3815: restarts the step after an event. Resetting these counters in such case causes
3816: TSTrajectory to incorrectly save the output files
3817: */
3818: /* reset time step and iteration counters */
3819: if (!ts->steps) {
3820: ts->ksp_its = 0;
3821: ts->snes_its = 0;
3822: ts->num_snes_failures = 0;
3823: ts->reject = 0;
3824: ts->steprestart = PETSC_TRUE;
3825: ts->steprollback = PETSC_FALSE;
3826: }
3827: if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP && ts->ptime + ts->time_step > ts->max_time) ts->time_step = ts->max_time - ts->ptime;
3828: ts->reason = TS_CONVERGED_ITERATING;
3830: TSViewFromOptions(ts,NULL,"-ts_view_pre");
3832: if (ts->ops->solve) { /* This private interface is transitional and should be removed when all implementations are updated. */
3833: (*ts->ops->solve)(ts);
3834: if (u) {VecCopy(ts->vec_sol,u);}
3835: ts->solvetime = ts->ptime;
3836: solution = ts->vec_sol;
3837: } else { /* Step the requested number of timesteps. */
3838: if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
3839: else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
3841: if (!ts->steps) {
3842: TSTrajectorySet(ts->trajectory,ts,ts->steps,ts->ptime,ts->vec_sol);
3843: TSEventInitialize(ts->event,ts,ts->ptime,ts->vec_sol);
3844: }
3846: while (!ts->reason) {
3847: TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);
3848: if (!ts->steprollback) {
3849: TSPreStep(ts);
3850: }
3851: TSStep(ts);
3852: if (ts->testjacobian) {
3853: TSRHSJacobianTest(ts,NULL);
3854: }
3855: if (ts->testjacobiantranspose) {
3856: TSRHSJacobianTestTranspose(ts,NULL);
3857: }
3858: if (ts->vec_costintegral && ts->costintegralfwd) { /* Must evaluate the cost integral before event is handled. The cost integral value can also be rolled back. */
3859: TSForwardCostIntegral(ts);
3860: }
3861: if (ts->forward_solve) { /* compute forward sensitivities before event handling because postevent() may change RHS and jump conditions may have to be applied */
3862: TSForwardStep(ts);
3863: }
3864: TSPostEvaluate(ts);
3865: TSEventHandler(ts); /* The right-hand side may be changed due to event. Be careful with Any computation using the RHS information after this point. */
3866: if (ts->steprollback) {
3867: TSPostEvaluate(ts);
3868: }
3869: if (!ts->steprollback) {
3870: TSTrajectorySet(ts->trajectory,ts,ts->steps,ts->ptime,ts->vec_sol);
3871: TSPostStep(ts);
3872: }
3873: }
3874: TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);
3876: if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && ts->ptime > ts->max_time) {
3877: TSInterpolate(ts,ts->max_time,u);
3878: ts->solvetime = ts->max_time;
3879: solution = u;
3880: TSMonitor(ts,-1,ts->solvetime,solution);
3881: } else {
3882: if (u) {VecCopy(ts->vec_sol,u);}
3883: ts->solvetime = ts->ptime;
3884: solution = ts->vec_sol;
3885: }
3886: }
3888: TSViewFromOptions(ts,NULL,"-ts_view");
3889: VecViewFromOptions(solution,NULL,"-ts_view_solution");
3890: PetscObjectSAWsBlock((PetscObject)ts);
3891: if (ts->adjoint_solve) {
3892: TSAdjointSolve(ts);
3893: }
3894: return(0);
3895: }
3897: /*@C
3898: TSMonitor - Runs all user-provided monitor routines set using TSMonitorSet()
3900: Collective on TS
3902: Input Parameters:
3903: + ts - time stepping context obtained from TSCreate()
3904: . step - step number that has just completed
3905: . ptime - model time of the state
3906: - u - state at the current model time
3908: Notes:
3909: TSMonitor() is typically used automatically within the time stepping implementations.
3910: Users would almost never call this routine directly.
3912: A step of -1 indicates that the monitor is being called on a solution obtained by interpolating from computed solutions
3914: Level: developer
3916: .keywords: TS, timestep
3917: @*/
3918: PetscErrorCode TSMonitor(TS ts,PetscInt step,PetscReal ptime,Vec u)
3919: {
3920: DM dm;
3921: PetscInt i,n = ts->numbermonitors;
3928: TSGetDM(ts,&dm);
3929: DMSetOutputSequenceNumber(dm,step,ptime);
3931: VecLockReadPush(u);
3932: for (i=0; i<n; i++) {
3933: (*ts->monitor[i])(ts,step,ptime,u,ts->monitorcontext[i]);
3934: }
3935: VecLockReadPop(u);
3936: return(0);
3937: }
3939: /* ------------------------------------------------------------------------*/
3940: /*@C
3941: TSMonitorLGCtxCreate - Creates a TSMonitorLGCtx context for use with
3942: TS to monitor the solution process graphically in various ways
3944: Collective on TS
3946: Input Parameters:
3947: + host - the X display to open, or null for the local machine
3948: . label - the title to put in the title bar
3949: . x, y - the screen coordinates of the upper left coordinate of the window
3950: . m, n - the screen width and height in pixels
3951: - howoften - if positive then determines the frequency of the plotting, if -1 then only at the final time
3953: Output Parameter:
3954: . ctx - the context
3956: Options Database Key:
3957: + -ts_monitor_lg_timestep - automatically sets line graph monitor
3958: + -ts_monitor_lg_timestep_log - automatically sets line graph monitor
3959: . -ts_monitor_lg_solution - monitor the solution (or certain values of the solution by calling TSMonitorLGSetDisplayVariables() or TSMonitorLGCtxSetDisplayVariables())
3960: . -ts_monitor_lg_error - monitor the error
3961: . -ts_monitor_lg_ksp_iterations - monitor the number of KSP iterations needed for each timestep
3962: . -ts_monitor_lg_snes_iterations - monitor the number of SNES iterations needed for each timestep
3963: - -lg_use_markers <true,false> - mark the data points (at each time step) on the plot; default is true
3965: Notes:
3966: Use TSMonitorLGCtxDestroy() to destroy.
3968: One can provide a function that transforms the solution before plotting it with TSMonitorLGCtxSetTransform() or TSMonitorLGSetTransform()
3970: Many of the functions that control the monitoring have two forms: TSMonitorLGSet/GetXXXX() and TSMonitorLGCtxSet/GetXXXX() the first take a TS object as the
3971: first argument (if that TS object does not have a TSMonitorLGCtx associated with it the function call is ignored) and the second takes a TSMonitorLGCtx object
3972: as the first argument.
3974: One can control the names displayed for each solution or error variable with TSMonitorLGCtxSetVariableNames() or TSMonitorLGSetVariableNames()
3976: Level: intermediate
3978: .keywords: TS, monitor, line graph, residual
3980: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError(), TSMonitorDefault(), VecView(),
3981: TSMonitorLGCtxCreate(), TSMonitorLGCtxSetVariableNames(), TSMonitorLGCtxGetVariableNames(),
3982: TSMonitorLGSetVariableNames(), TSMonitorLGGetVariableNames(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetDisplayVariables(),
3983: TSMonitorLGCtxSetTransform(), TSMonitorLGSetTransform(), TSMonitorLGError(), TSMonitorLGSNESIterations(), TSMonitorLGKSPIterations(),
3984: TSMonitorEnvelopeCtxCreate(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxDestroy(), TSMonitorEnvelop()
3986: @*/
3987: PetscErrorCode TSMonitorLGCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorLGCtx *ctx)
3988: {
3989: PetscDraw draw;
3993: PetscNew(ctx);
3994: PetscDrawCreate(comm,host,label,x,y,m,n,&draw);
3995: PetscDrawSetFromOptions(draw);
3996: PetscDrawLGCreate(draw,1,&(*ctx)->lg);
3997: PetscDrawLGSetFromOptions((*ctx)->lg);
3998: PetscDrawDestroy(&draw);
3999: (*ctx)->howoften = howoften;
4000: return(0);
4001: }
4003: PetscErrorCode TSMonitorLGTimeStep(TS ts,PetscInt step,PetscReal ptime,Vec v,void *monctx)
4004: {
4005: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
4006: PetscReal x = ptime,y;
4010: if (step < 0) return(0); /* -1 indicates an interpolated solution */
4011: if (!step) {
4012: PetscDrawAxis axis;
4013: const char *ylabel = ctx->semilogy ? "Log Time Step" : "Time Step";
4014: PetscDrawLGGetAxis(ctx->lg,&axis);
4015: PetscDrawAxisSetLabels(axis,"Timestep as function of time","Time",ylabel);
4016: PetscDrawLGReset(ctx->lg);
4017: }
4018: TSGetTimeStep(ts,&y);
4019: if (ctx->semilogy) y = PetscLog10Real(y);
4020: PetscDrawLGAddPoint(ctx->lg,&x,&y);
4021: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
4022: PetscDrawLGDraw(ctx->lg);
4023: PetscDrawLGSave(ctx->lg);
4024: }
4025: return(0);
4026: }
4028: /*@C
4029: TSMonitorLGCtxDestroy - Destroys a line graph context that was created
4030: with TSMonitorLGCtxCreate().
4032: Collective on TSMonitorLGCtx
4034: Input Parameter:
4035: . ctx - the monitor context
4037: Level: intermediate
4039: .keywords: TS, monitor, line graph, destroy
4041: .seealso: TSMonitorLGCtxCreate(), TSMonitorSet(), TSMonitorLGTimeStep();
4042: @*/
4043: PetscErrorCode TSMonitorLGCtxDestroy(TSMonitorLGCtx *ctx)
4044: {
4048: if ((*ctx)->transformdestroy) {
4049: ((*ctx)->transformdestroy)((*ctx)->transformctx);
4050: }
4051: PetscDrawLGDestroy(&(*ctx)->lg);
4052: PetscStrArrayDestroy(&(*ctx)->names);
4053: PetscStrArrayDestroy(&(*ctx)->displaynames);
4054: PetscFree((*ctx)->displayvariables);
4055: PetscFree((*ctx)->displayvalues);
4056: PetscFree(*ctx);
4057: return(0);
4058: }
4060: /*
4061:
4062: Creates a TS Monitor SPCtx for use with DM Swarm particle visualizations
4064: */
4065: PetscErrorCode TSMonitorSPCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorSPCtx *ctx)
4066: {
4067: PetscDraw draw;
4071: PetscNew(ctx);
4072: PetscDrawCreate(comm,host,label,x,y,m,n,&draw);
4073: PetscDrawSetFromOptions(draw);
4074: PetscDrawSPCreate(draw,1,&(*ctx)->sp);
4075: PetscDrawDestroy(&draw);
4076: (*ctx)->howoften = howoften;
4077: return(0);
4079: }
4081: /*
4082: Destroys a TSMonitorSPCtx that was created with TSMonitorSPCtxCreate
4083: */
4084: PetscErrorCode TSMonitorSPCtxDestroy(TSMonitorSPCtx *ctx)
4085: {
4089:
4090: PetscDrawSPDestroy(&(*ctx)->sp);
4091: PetscFree(*ctx);
4092:
4093: return(0);
4095: }
4097: /*@
4098: TSGetTime - Gets the time of the most recently completed step.
4100: Not Collective
4102: Input Parameter:
4103: . ts - the TS context obtained from TSCreate()
4105: Output Parameter:
4106: . t - the current time. This time may not corresponds to the final time set with TSSetMaxTime(), use TSGetSolveTime().
4108: Level: beginner
4110: Note:
4111: When called during time step evaluation (e.g. during residual evaluation or via hooks set using TSSetPreStep(),
4112: TSSetPreStage(), TSSetPostStage(), or TSSetPostStep()), the time is the time at the start of the step being evaluated.
4114: .seealso: TSGetSolveTime(), TSSetTime(), TSGetTimeStep()
4116: .keywords: TS, get, time
4117: @*/
4118: PetscErrorCode TSGetTime(TS ts,PetscReal *t)
4119: {
4123: *t = ts->ptime;
4124: return(0);
4125: }
4127: /*@
4128: TSGetPrevTime - Gets the starting time of the previously completed step.
4130: Not Collective
4132: Input Parameter:
4133: . ts - the TS context obtained from TSCreate()
4135: Output Parameter:
4136: . t - the previous time
4138: Level: beginner
4140: .seealso: TSGetTime(), TSGetSolveTime(), TSGetTimeStep()
4142: .keywords: TS, get, time
4143: @*/
4144: PetscErrorCode TSGetPrevTime(TS ts,PetscReal *t)
4145: {
4149: *t = ts->ptime_prev;
4150: return(0);
4151: }
4153: /*@
4154: TSSetTime - Allows one to reset the time.
4156: Logically Collective on TS
4158: Input Parameters:
4159: + ts - the TS context obtained from TSCreate()
4160: - time - the time
4162: Level: intermediate
4164: .seealso: TSGetTime(), TSSetMaxSteps()
4166: .keywords: TS, set, time
4167: @*/
4168: PetscErrorCode TSSetTime(TS ts, PetscReal t)
4169: {
4173: ts->ptime = t;
4174: return(0);
4175: }
4177: /*@C
4178: TSSetOptionsPrefix - Sets the prefix used for searching for all
4179: TS options in the database.
4181: Logically Collective on TS
4183: Input Parameter:
4184: + ts - The TS context
4185: - prefix - The prefix to prepend to all option names
4187: Notes:
4188: A hyphen (-) must NOT be given at the beginning of the prefix name.
4189: The first character of all runtime options is AUTOMATICALLY the
4190: hyphen.
4192: Level: advanced
4194: .keywords: TS, set, options, prefix, database
4196: .seealso: TSSetFromOptions()
4198: @*/
4199: PetscErrorCode TSSetOptionsPrefix(TS ts,const char prefix[])
4200: {
4202: SNES snes;
4206: PetscObjectSetOptionsPrefix((PetscObject)ts,prefix);
4207: TSGetSNES(ts,&snes);
4208: SNESSetOptionsPrefix(snes,prefix);
4209: return(0);
4210: }
4212: /*@C
4213: TSAppendOptionsPrefix - Appends to the prefix used for searching for all
4214: TS options in the database.
4216: Logically Collective on TS
4218: Input Parameter:
4219: + ts - The TS context
4220: - prefix - The prefix to prepend to all option names
4222: Notes:
4223: A hyphen (-) must NOT be given at the beginning of the prefix name.
4224: The first character of all runtime options is AUTOMATICALLY the
4225: hyphen.
4227: Level: advanced
4229: .keywords: TS, append, options, prefix, database
4231: .seealso: TSGetOptionsPrefix()
4233: @*/
4234: PetscErrorCode TSAppendOptionsPrefix(TS ts,const char prefix[])
4235: {
4237: SNES snes;
4241: PetscObjectAppendOptionsPrefix((PetscObject)ts,prefix);
4242: TSGetSNES(ts,&snes);
4243: SNESAppendOptionsPrefix(snes,prefix);
4244: return(0);
4245: }
4247: /*@C
4248: TSGetOptionsPrefix - Sets the prefix used for searching for all
4249: TS options in the database.
4251: Not Collective
4253: Input Parameter:
4254: . ts - The TS context
4256: Output Parameter:
4257: . prefix - A pointer to the prefix string used
4259: Notes:
4260: On the fortran side, the user should pass in a string 'prifix' of
4261: sufficient length to hold the prefix.
4263: Level: intermediate
4265: .keywords: TS, get, options, prefix, database
4267: .seealso: TSAppendOptionsPrefix()
4268: @*/
4269: PetscErrorCode TSGetOptionsPrefix(TS ts,const char *prefix[])
4270: {
4276: PetscObjectGetOptionsPrefix((PetscObject)ts,prefix);
4277: return(0);
4278: }
4280: /*@C
4281: TSGetRHSJacobian - Returns the Jacobian J at the present timestep.
4283: Not Collective, but parallel objects are returned if TS is parallel
4285: Input Parameter:
4286: . ts - The TS context obtained from TSCreate()
4288: Output Parameters:
4289: + Amat - The (approximate) Jacobian J of G, where U_t = G(U,t) (or NULL)
4290: . Pmat - The matrix from which the preconditioner is constructed, usually the same as Amat (or NULL)
4291: . func - Function to compute the Jacobian of the RHS (or NULL)
4292: - ctx - User-defined context for Jacobian evaluation routine (or NULL)
4294: Notes:
4295: You can pass in NULL for any return argument you do not need.
4297: Level: intermediate
4299: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetStepNumber()
4301: .keywords: TS, timestep, get, matrix, Jacobian
4302: @*/
4303: PetscErrorCode TSGetRHSJacobian(TS ts,Mat *Amat,Mat *Pmat,TSRHSJacobian *func,void **ctx)
4304: {
4306: DM dm;
4309: if (Amat || Pmat) {
4310: SNES snes;
4311: TSGetSNES(ts,&snes);
4312: SNESSetUpMatrices(snes);
4313: SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
4314: }
4315: TSGetDM(ts,&dm);
4316: DMTSGetRHSJacobian(dm,func,ctx);
4317: return(0);
4318: }
4320: /*@C
4321: TSGetIJacobian - Returns the implicit Jacobian at the present timestep.
4323: Not Collective, but parallel objects are returned if TS is parallel
4325: Input Parameter:
4326: . ts - The TS context obtained from TSCreate()
4328: Output Parameters:
4329: + Amat - The (approximate) Jacobian of F(t,U,U_t)
4330: . Pmat - The matrix from which the preconditioner is constructed, often the same as Amat
4331: . f - The function to compute the matrices
4332: - ctx - User-defined context for Jacobian evaluation routine
4334: Notes:
4335: You can pass in NULL for any return argument you do not need.
4337: Level: advanced
4339: .seealso: TSGetTimeStep(), TSGetRHSJacobian(), TSGetMatrices(), TSGetTime(), TSGetStepNumber()
4341: .keywords: TS, timestep, get, matrix, Jacobian
4342: @*/
4343: PetscErrorCode TSGetIJacobian(TS ts,Mat *Amat,Mat *Pmat,TSIJacobian *f,void **ctx)
4344: {
4346: DM dm;
4349: if (Amat || Pmat) {
4350: SNES snes;
4351: TSGetSNES(ts,&snes);
4352: SNESSetUpMatrices(snes);
4353: SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
4354: }
4355: TSGetDM(ts,&dm);
4356: DMTSGetIJacobian(dm,f,ctx);
4357: return(0);
4358: }
4360: /*@C
4361: TSMonitorDrawSolution - Monitors progress of the TS solvers by calling
4362: VecView() for the solution at each timestep
4364: Collective on TS
4366: Input Parameters:
4367: + ts - the TS context
4368: . step - current time-step
4369: . ptime - current time
4370: - dummy - either a viewer or NULL
4372: Options Database:
4373: . -ts_monitor_draw_solution_initial - show initial solution as well as current solution
4375: Notes:
4376: the initial solution and current solution are not display with a common axis scaling so generally the option -ts_monitor_draw_solution_initial
4377: will look bad
4379: Level: intermediate
4381: .keywords: TS, vector, monitor, view
4383: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4384: @*/
4385: PetscErrorCode TSMonitorDrawSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4386: {
4387: PetscErrorCode ierr;
4388: TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
4389: PetscDraw draw;
4392: if (!step && ictx->showinitial) {
4393: if (!ictx->initialsolution) {
4394: VecDuplicate(u,&ictx->initialsolution);
4395: }
4396: VecCopy(u,ictx->initialsolution);
4397: }
4398: if (!(((ictx->howoften > 0) && (!(step % ictx->howoften))) || ((ictx->howoften == -1) && ts->reason))) return(0);
4400: if (ictx->showinitial) {
4401: PetscReal pause;
4402: PetscViewerDrawGetPause(ictx->viewer,&pause);
4403: PetscViewerDrawSetPause(ictx->viewer,0.0);
4404: VecView(ictx->initialsolution,ictx->viewer);
4405: PetscViewerDrawSetPause(ictx->viewer,pause);
4406: PetscViewerDrawSetHold(ictx->viewer,PETSC_TRUE);
4407: }
4408: VecView(u,ictx->viewer);
4409: if (ictx->showtimestepandtime) {
4410: PetscReal xl,yl,xr,yr,h;
4411: char time[32];
4413: PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
4414: PetscSNPrintf(time,32,"Timestep %d Time %g",(int)step,(double)ptime);
4415: PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
4416: h = yl + .95*(yr - yl);
4417: PetscDrawStringCentered(draw,.5*(xl+xr),h,PETSC_DRAW_BLACK,time);
4418: PetscDrawFlush(draw);
4419: }
4421: if (ictx->showinitial) {
4422: PetscViewerDrawSetHold(ictx->viewer,PETSC_FALSE);
4423: }
4424: return(0);
4425: }
4427: /*@C
4428: TSMonitorDrawSolutionPhase - Monitors progress of the TS solvers by plotting the solution as a phase diagram
4430: Collective on TS
4432: Input Parameters:
4433: + ts - the TS context
4434: . step - current time-step
4435: . ptime - current time
4436: - dummy - either a viewer or NULL
4438: Level: intermediate
4440: .keywords: TS, vector, monitor, view
4442: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4443: @*/
4444: PetscErrorCode TSMonitorDrawSolutionPhase(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4445: {
4446: PetscErrorCode ierr;
4447: TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
4448: PetscDraw draw;
4449: PetscDrawAxis axis;
4450: PetscInt n;
4451: PetscMPIInt size;
4452: PetscReal U0,U1,xl,yl,xr,yr,h;
4453: char time[32];
4454: const PetscScalar *U;
4457: MPI_Comm_size(PetscObjectComm((PetscObject)ts),&size);
4458: if (size != 1) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Only allowed for sequential runs");
4459: VecGetSize(u,&n);
4460: if (n != 2) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Only for ODEs with two unknowns");
4462: PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
4463: PetscViewerDrawGetDrawAxis(ictx->viewer,0,&axis);
4464: PetscDrawAxisGetLimits(axis,&xl,&xr,&yl,&yr);
4465: if (!step) {
4466: PetscDrawClear(draw);
4467: PetscDrawAxisDraw(axis);
4468: }
4470: VecGetArrayRead(u,&U);
4471: U0 = PetscRealPart(U[0]);
4472: U1 = PetscRealPart(U[1]);
4473: VecRestoreArrayRead(u,&U);
4474: if ((U0 < xl) || (U1 < yl) || (U0 > xr) || (U1 > yr)) return(0);
4476: PetscDrawCollectiveBegin(draw);
4477: PetscDrawPoint(draw,U0,U1,PETSC_DRAW_BLACK);
4478: if (ictx->showtimestepandtime) {
4479: PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
4480: PetscSNPrintf(time,32,"Timestep %d Time %g",(int)step,(double)ptime);
4481: h = yl + .95*(yr - yl);
4482: PetscDrawStringCentered(draw,.5*(xl+xr),h,PETSC_DRAW_BLACK,time);
4483: }
4484: PetscDrawCollectiveEnd(draw);
4485: PetscDrawFlush(draw);
4486: PetscDrawPause(draw);
4487: PetscDrawSave(draw);
4488: return(0);
4489: }
4491: /*@C
4492: TSMonitorDrawCtxDestroy - Destroys the monitor context for TSMonitorDrawSolution()
4494: Collective on TS
4496: Input Parameters:
4497: . ctx - the monitor context
4499: Level: intermediate
4501: .keywords: TS, vector, monitor, view
4503: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawSolution(), TSMonitorDrawError()
4504: @*/
4505: PetscErrorCode TSMonitorDrawCtxDestroy(TSMonitorDrawCtx *ictx)
4506: {
4510: PetscViewerDestroy(&(*ictx)->viewer);
4511: VecDestroy(&(*ictx)->initialsolution);
4512: PetscFree(*ictx);
4513: return(0);
4514: }
4516: /*@C
4517: TSMonitorDrawCtxCreate - Creates the monitor context for TSMonitorDrawCtx
4519: Collective on TS
4521: Input Parameter:
4522: . ts - time-step context
4524: Output Patameter:
4525: . ctx - the monitor context
4527: Options Database:
4528: . -ts_monitor_draw_solution_initial - show initial solution as well as current solution
4530: Level: intermediate
4532: .keywords: TS, vector, monitor, view
4534: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawCtx()
4535: @*/
4536: PetscErrorCode TSMonitorDrawCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorDrawCtx *ctx)
4537: {
4538: PetscErrorCode ierr;
4541: PetscNew(ctx);
4542: PetscViewerDrawOpen(comm,host,label,x,y,m,n,&(*ctx)->viewer);
4543: PetscViewerSetFromOptions((*ctx)->viewer);
4545: (*ctx)->howoften = howoften;
4546: (*ctx)->showinitial = PETSC_FALSE;
4547: PetscOptionsGetBool(NULL,NULL,"-ts_monitor_draw_solution_initial",&(*ctx)->showinitial,NULL);
4549: (*ctx)->showtimestepandtime = PETSC_FALSE;
4550: PetscOptionsGetBool(NULL,NULL,"-ts_monitor_draw_solution_show_time",&(*ctx)->showtimestepandtime,NULL);
4551: return(0);
4552: }
4554: /*@C
4555: TSMonitorDrawSolutionFunction - Monitors progress of the TS solvers by calling
4556: VecView() for the solution provided by TSSetSolutionFunction() at each timestep
4558: Collective on TS
4560: Input Parameters:
4561: + ts - the TS context
4562: . step - current time-step
4563: . ptime - current time
4564: - dummy - either a viewer or NULL
4566: Options Database:
4567: . -ts_monitor_draw_solution_function - Monitor error graphically, requires user to have provided TSSetSolutionFunction()
4569: Level: intermediate
4571: .keywords: TS, vector, monitor, view
4573: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
4574: @*/
4575: PetscErrorCode TSMonitorDrawSolutionFunction(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4576: {
4577: PetscErrorCode ierr;
4578: TSMonitorDrawCtx ctx = (TSMonitorDrawCtx)dummy;
4579: PetscViewer viewer = ctx->viewer;
4580: Vec work;
4583: if (!(((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason))) return(0);
4584: VecDuplicate(u,&work);
4585: TSComputeSolutionFunction(ts,ptime,work);
4586: VecView(work,viewer);
4587: VecDestroy(&work);
4588: return(0);
4589: }
4591: /*@C
4592: TSMonitorDrawError - Monitors progress of the TS solvers by calling
4593: VecView() for the error at each timestep
4595: Collective on TS
4597: Input Parameters:
4598: + ts - the TS context
4599: . step - current time-step
4600: . ptime - current time
4601: - dummy - either a viewer or NULL
4603: Options Database:
4604: . -ts_monitor_draw_error - Monitor error graphically, requires user to have provided TSSetSolutionFunction()
4606: Level: intermediate
4608: .keywords: TS, vector, monitor, view
4610: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
4611: @*/
4612: PetscErrorCode TSMonitorDrawError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4613: {
4614: PetscErrorCode ierr;
4615: TSMonitorDrawCtx ctx = (TSMonitorDrawCtx)dummy;
4616: PetscViewer viewer = ctx->viewer;
4617: Vec work;
4620: if (!(((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason))) return(0);
4621: VecDuplicate(u,&work);
4622: TSComputeSolutionFunction(ts,ptime,work);
4623: VecAXPY(work,-1.0,u);
4624: VecView(work,viewer);
4625: VecDestroy(&work);
4626: return(0);
4627: }
4629: #include <petsc/private/dmimpl.h>
4630: /*@
4631: TSSetDM - Sets the DM that may be used by some nonlinear solvers or preconditioners under the TS
4633: Logically Collective on TS and DM
4635: Input Parameters:
4636: + ts - the ODE integrator object
4637: - dm - the dm, cannot be NULL
4639: Notes:
4640: A DM can only be used for solving one problem at a time because information about the problem is stored on the DM,
4641: even when not using interfaces like DMTSSetIFunction(). Use DMClone() to get a distinct DM when solving
4642: different problems using the same function space.
4644: Level: intermediate
4646: .seealso: TSGetDM(), SNESSetDM(), SNESGetDM()
4647: @*/
4648: PetscErrorCode TSSetDM(TS ts,DM dm)
4649: {
4651: SNES snes;
4652: DMTS tsdm;
4657: PetscObjectReference((PetscObject)dm);
4658: if (ts->dm) { /* Move the DMTS context over to the new DM unless the new DM already has one */
4659: if (ts->dm->dmts && !dm->dmts) {
4660: DMCopyDMTS(ts->dm,dm);
4661: DMGetDMTS(ts->dm,&tsdm);
4662: if (tsdm->originaldm == ts->dm) { /* Grant write privileges to the replacement DM */
4663: tsdm->originaldm = dm;
4664: }
4665: }
4666: DMDestroy(&ts->dm);
4667: }
4668: ts->dm = dm;
4670: TSGetSNES(ts,&snes);
4671: SNESSetDM(snes,dm);
4672: return(0);
4673: }
4675: /*@
4676: TSGetDM - Gets the DM that may be used by some preconditioners
4678: Not Collective
4680: Input Parameter:
4681: . ts - the preconditioner context
4683: Output Parameter:
4684: . dm - the dm
4686: Level: intermediate
4688: .seealso: TSSetDM(), SNESSetDM(), SNESGetDM()
4689: @*/
4690: PetscErrorCode TSGetDM(TS ts,DM *dm)
4691: {
4696: if (!ts->dm) {
4697: DMShellCreate(PetscObjectComm((PetscObject)ts),&ts->dm);
4698: if (ts->snes) {SNESSetDM(ts->snes,ts->dm);}
4699: }
4700: *dm = ts->dm;
4701: return(0);
4702: }
4704: /*@
4705: SNESTSFormFunction - Function to evaluate nonlinear residual
4707: Logically Collective on SNES
4709: Input Parameter:
4710: + snes - nonlinear solver
4711: . U - the current state at which to evaluate the residual
4712: - ctx - user context, must be a TS
4714: Output Parameter:
4715: . F - the nonlinear residual
4717: Notes:
4718: This function is not normally called by users and is automatically registered with the SNES used by TS.
4719: It is most frequently passed to MatFDColoringSetFunction().
4721: Level: advanced
4723: .seealso: SNESSetFunction(), MatFDColoringSetFunction()
4724: @*/
4725: PetscErrorCode SNESTSFormFunction(SNES snes,Vec U,Vec F,void *ctx)
4726: {
4727: TS ts = (TS)ctx;
4735: (ts->ops->snesfunction)(snes,U,F,ts);
4736: return(0);
4737: }
4739: /*@
4740: SNESTSFormJacobian - Function to evaluate the Jacobian
4742: Collective on SNES
4744: Input Parameter:
4745: + snes - nonlinear solver
4746: . U - the current state at which to evaluate the residual
4747: - ctx - user context, must be a TS
4749: Output Parameter:
4750: + A - the Jacobian
4751: . B - the preconditioning matrix (may be the same as A)
4752: - flag - indicates any structure change in the matrix
4754: Notes:
4755: This function is not normally called by users and is automatically registered with the SNES used by TS.
4757: Level: developer
4759: .seealso: SNESSetJacobian()
4760: @*/
4761: PetscErrorCode SNESTSFormJacobian(SNES snes,Vec U,Mat A,Mat B,void *ctx)
4762: {
4763: TS ts = (TS)ctx;
4774: (ts->ops->snesjacobian)(snes,U,A,B,ts);
4775: return(0);
4776: }
4778: /*@C
4779: TSComputeRHSFunctionLinear - Evaluate the right hand side via the user-provided Jacobian, for linear problems Udot = A U only
4781: Collective on TS
4783: Input Arguments:
4784: + ts - time stepping context
4785: . t - time at which to evaluate
4786: . U - state at which to evaluate
4787: - ctx - context
4789: Output Arguments:
4790: . F - right hand side
4792: Level: intermediate
4794: Notes:
4795: This function is intended to be passed to TSSetRHSFunction() to evaluate the right hand side for linear problems.
4796: The matrix (and optionally the evaluation context) should be passed to TSSetRHSJacobian().
4798: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
4799: @*/
4800: PetscErrorCode TSComputeRHSFunctionLinear(TS ts,PetscReal t,Vec U,Vec F,void *ctx)
4801: {
4803: Mat Arhs,Brhs;
4806: TSGetRHSMats_Private(ts,&Arhs,&Brhs);
4807: TSComputeRHSJacobian(ts,t,U,Arhs,Brhs);
4808: MatMult(Arhs,U,F);
4809: return(0);
4810: }
4812: /*@C
4813: TSComputeRHSJacobianConstant - Reuses a Jacobian that is time-independent.
4815: Collective on TS
4817: Input Arguments:
4818: + ts - time stepping context
4819: . t - time at which to evaluate
4820: . U - state at which to evaluate
4821: - ctx - context
4823: Output Arguments:
4824: + A - pointer to operator
4825: . B - pointer to preconditioning matrix
4826: - flg - matrix structure flag
4828: Level: intermediate
4830: Notes:
4831: This function is intended to be passed to TSSetRHSJacobian() to evaluate the Jacobian for linear time-independent problems.
4833: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSFunctionLinear()
4834: @*/
4835: PetscErrorCode TSComputeRHSJacobianConstant(TS ts,PetscReal t,Vec U,Mat A,Mat B,void *ctx)
4836: {
4838: return(0);
4839: }
4841: /*@C
4842: TSComputeIFunctionLinear - Evaluate the left hand side via the user-provided Jacobian, for linear problems only
4844: Collective on TS
4846: Input Arguments:
4847: + ts - time stepping context
4848: . t - time at which to evaluate
4849: . U - state at which to evaluate
4850: . Udot - time derivative of state vector
4851: - ctx - context
4853: Output Arguments:
4854: . F - left hand side
4856: Level: intermediate
4858: Notes:
4859: The assumption here is that the left hand side is of the form A*Udot (and not A*Udot + B*U). For other cases, the
4860: user is required to write their own TSComputeIFunction.
4861: This function is intended to be passed to TSSetIFunction() to evaluate the left hand side for linear problems.
4862: The matrix (and optionally the evaluation context) should be passed to TSSetIJacobian().
4864: Note that using this function is NOT equivalent to using TSComputeRHSFunctionLinear() since that solves Udot = A U
4866: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIJacobianConstant(), TSComputeRHSFunctionLinear()
4867: @*/
4868: PetscErrorCode TSComputeIFunctionLinear(TS ts,PetscReal t,Vec U,Vec Udot,Vec F,void *ctx)
4869: {
4871: Mat A,B;
4874: TSGetIJacobian(ts,&A,&B,NULL,NULL);
4875: TSComputeIJacobian(ts,t,U,Udot,1.0,A,B,PETSC_TRUE);
4876: MatMult(A,Udot,F);
4877: return(0);
4878: }
4880: /*@C
4881: TSComputeIJacobianConstant - Reuses a time-independent for a semi-implicit DAE or ODE
4883: Collective on TS
4885: Input Arguments:
4886: + ts - time stepping context
4887: . t - time at which to evaluate
4888: . U - state at which to evaluate
4889: . Udot - time derivative of state vector
4890: . shift - shift to apply
4891: - ctx - context
4893: Output Arguments:
4894: + A - pointer to operator
4895: . B - pointer to preconditioning matrix
4896: - flg - matrix structure flag
4898: Level: advanced
4900: Notes:
4901: This function is intended to be passed to TSSetIJacobian() to evaluate the Jacobian for linear time-independent problems.
4903: It is only appropriate for problems of the form
4905: $ M Udot = F(U,t)
4907: where M is constant and F is non-stiff. The user must pass M to TSSetIJacobian(). The current implementation only
4908: works with IMEX time integration methods such as TSROSW and TSARKIMEX, since there is no support for de-constructing
4909: an implicit operator of the form
4911: $ shift*M + J
4913: where J is the Jacobian of -F(U). Support may be added in a future version of PETSc, but for now, the user must store
4914: a copy of M or reassemble it when requested.
4916: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIFunctionLinear()
4917: @*/
4918: PetscErrorCode TSComputeIJacobianConstant(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat A,Mat B,void *ctx)
4919: {
4923: MatScale(A, shift / ts->ijacobian.shift);
4924: ts->ijacobian.shift = shift;
4925: return(0);
4926: }
4928: /*@
4929: TSGetEquationType - Gets the type of the equation that TS is solving.
4931: Not Collective
4933: Input Parameter:
4934: . ts - the TS context
4936: Output Parameter:
4937: . equation_type - see TSEquationType
4939: Level: beginner
4941: .keywords: TS, equation type
4943: .seealso: TSSetEquationType(), TSEquationType
4944: @*/
4945: PetscErrorCode TSGetEquationType(TS ts,TSEquationType *equation_type)
4946: {
4950: *equation_type = ts->equation_type;
4951: return(0);
4952: }
4954: /*@
4955: TSSetEquationType - Sets the type of the equation that TS is solving.
4957: Not Collective
4959: Input Parameter:
4960: + ts - the TS context
4961: - equation_type - see TSEquationType
4963: Level: advanced
4965: .keywords: TS, equation type
4967: .seealso: TSGetEquationType(), TSEquationType
4968: @*/
4969: PetscErrorCode TSSetEquationType(TS ts,TSEquationType equation_type)
4970: {
4973: ts->equation_type = equation_type;
4974: return(0);
4975: }
4977: /*@
4978: TSGetConvergedReason - Gets the reason the TS iteration was stopped.
4980: Not Collective
4982: Input Parameter:
4983: . ts - the TS context
4985: Output Parameter:
4986: . reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
4987: manual pages for the individual convergence tests for complete lists
4989: Level: beginner
4991: Notes:
4992: Can only be called after the call to TSSolve() is complete.
4994: .keywords: TS, nonlinear, set, convergence, test
4996: .seealso: TSSetConvergenceTest(), TSConvergedReason
4997: @*/
4998: PetscErrorCode TSGetConvergedReason(TS ts,TSConvergedReason *reason)
4999: {
5003: *reason = ts->reason;
5004: return(0);
5005: }
5007: /*@
5008: TSSetConvergedReason - Sets the reason for handling the convergence of TSSolve.
5010: Not Collective
5012: Input Parameter:
5013: + ts - the TS context
5014: . reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
5015: manual pages for the individual convergence tests for complete lists
5017: Level: advanced
5019: Notes:
5020: Can only be called during TSSolve() is active.
5022: .keywords: TS, nonlinear, set, convergence, test
5024: .seealso: TSConvergedReason
5025: @*/
5026: PetscErrorCode TSSetConvergedReason(TS ts,TSConvergedReason reason)
5027: {
5030: ts->reason = reason;
5031: return(0);
5032: }
5034: /*@
5035: TSGetSolveTime - Gets the time after a call to TSSolve()
5037: Not Collective
5039: Input Parameter:
5040: . ts - the TS context
5042: Output Parameter:
5043: . ftime - the final time. This time corresponds to the final time set with TSSetMaxTime()
5045: Level: beginner
5047: Notes:
5048: Can only be called after the call to TSSolve() is complete.
5050: .keywords: TS, nonlinear, set, convergence, test
5052: .seealso: TSSetConvergenceTest(), TSConvergedReason
5053: @*/
5054: PetscErrorCode TSGetSolveTime(TS ts,PetscReal *ftime)
5055: {
5059: *ftime = ts->solvetime;
5060: return(0);
5061: }
5063: /*@
5064: TSGetSNESIterations - Gets the total number of nonlinear iterations
5065: used by the time integrator.
5067: Not Collective
5069: Input Parameter:
5070: . ts - TS context
5072: Output Parameter:
5073: . nits - number of nonlinear iterations
5075: Notes:
5076: This counter is reset to zero for each successive call to TSSolve().
5078: Level: intermediate
5080: .keywords: TS, get, number, nonlinear, iterations
5082: .seealso: TSGetKSPIterations()
5083: @*/
5084: PetscErrorCode TSGetSNESIterations(TS ts,PetscInt *nits)
5085: {
5089: *nits = ts->snes_its;
5090: return(0);
5091: }
5093: /*@
5094: TSGetKSPIterations - Gets the total number of linear iterations
5095: used by the time integrator.
5097: Not Collective
5099: Input Parameter:
5100: . ts - TS context
5102: Output Parameter:
5103: . lits - number of linear iterations
5105: Notes:
5106: This counter is reset to zero for each successive call to TSSolve().
5108: Level: intermediate
5110: .keywords: TS, get, number, linear, iterations
5112: .seealso: TSGetSNESIterations(), SNESGetKSPIterations()
5113: @*/
5114: PetscErrorCode TSGetKSPIterations(TS ts,PetscInt *lits)
5115: {
5119: *lits = ts->ksp_its;
5120: return(0);
5121: }
5123: /*@
5124: TSGetStepRejections - Gets the total number of rejected steps.
5126: Not Collective
5128: Input Parameter:
5129: . ts - TS context
5131: Output Parameter:
5132: . rejects - number of steps rejected
5134: Notes:
5135: This counter is reset to zero for each successive call to TSSolve().
5137: Level: intermediate
5139: .keywords: TS, get, number
5141: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetSNESFailures(), TSSetMaxSNESFailures(), TSSetErrorIfStepFails()
5142: @*/
5143: PetscErrorCode TSGetStepRejections(TS ts,PetscInt *rejects)
5144: {
5148: *rejects = ts->reject;
5149: return(0);
5150: }
5152: /*@
5153: TSGetSNESFailures - Gets the total number of failed SNES solves
5155: Not Collective
5157: Input Parameter:
5158: . ts - TS context
5160: Output Parameter:
5161: . fails - number of failed nonlinear solves
5163: Notes:
5164: This counter is reset to zero for each successive call to TSSolve().
5166: Level: intermediate
5168: .keywords: TS, get, number
5170: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSSetMaxSNESFailures()
5171: @*/
5172: PetscErrorCode TSGetSNESFailures(TS ts,PetscInt *fails)
5173: {
5177: *fails = ts->num_snes_failures;
5178: return(0);
5179: }
5181: /*@
5182: TSSetMaxStepRejections - Sets the maximum number of step rejections before a step fails
5184: Not Collective
5186: Input Parameter:
5187: + ts - TS context
5188: - rejects - maximum number of rejected steps, pass -1 for unlimited
5190: Notes:
5191: The counter is reset to zero for each step
5193: Options Database Key:
5194: . -ts_max_reject - Maximum number of step rejections before a step fails
5196: Level: intermediate
5198: .keywords: TS, set, maximum, number
5200: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxSNESFailures(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
5201: @*/
5202: PetscErrorCode TSSetMaxStepRejections(TS ts,PetscInt rejects)
5203: {
5206: ts->max_reject = rejects;
5207: return(0);
5208: }
5210: /*@
5211: TSSetMaxSNESFailures - Sets the maximum number of failed SNES solves
5213: Not Collective
5215: Input Parameter:
5216: + ts - TS context
5217: - fails - maximum number of failed nonlinear solves, pass -1 for unlimited
5219: Notes:
5220: The counter is reset to zero for each successive call to TSSolve().
5222: Options Database Key:
5223: . -ts_max_snes_failures - Maximum number of nonlinear solve failures
5225: Level: intermediate
5227: .keywords: TS, set, maximum, number
5229: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), SNESGetConvergedReason(), TSGetConvergedReason()
5230: @*/
5231: PetscErrorCode TSSetMaxSNESFailures(TS ts,PetscInt fails)
5232: {
5235: ts->max_snes_failures = fails;
5236: return(0);
5237: }
5239: /*@
5240: TSSetErrorIfStepFails - Error if no step succeeds
5242: Not Collective
5244: Input Parameter:
5245: + ts - TS context
5246: - err - PETSC_TRUE to error if no step succeeds, PETSC_FALSE to return without failure
5248: Options Database Key:
5249: . -ts_error_if_step_fails - Error if no step succeeds
5251: Level: intermediate
5253: .keywords: TS, set, error
5255: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
5256: @*/
5257: PetscErrorCode TSSetErrorIfStepFails(TS ts,PetscBool err)
5258: {
5261: ts->errorifstepfailed = err;
5262: return(0);
5263: }
5265: /*@C
5266: TSMonitorSolution - Monitors progress of the TS solvers by VecView() for the solution at each timestep. Normally the viewer is a binary file or a PetscDraw object
5268: Collective on TS
5270: Input Parameters:
5271: + ts - the TS context
5272: . step - current time-step
5273: . ptime - current time
5274: . u - current state
5275: - vf - viewer and its format
5277: Level: intermediate
5279: .keywords: TS, vector, monitor, view
5281: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
5282: @*/
5283: PetscErrorCode TSMonitorSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,PetscViewerAndFormat *vf)
5284: {
5288: PetscViewerPushFormat(vf->viewer,vf->format);
5289: VecView(u,vf->viewer);
5290: PetscViewerPopFormat(vf->viewer);
5291: return(0);
5292: }
5294: /*@C
5295: TSMonitorSolutionVTK - Monitors progress of the TS solvers by VecView() for the solution at each timestep.
5297: Collective on TS
5299: Input Parameters:
5300: + ts - the TS context
5301: . step - current time-step
5302: . ptime - current time
5303: . u - current state
5304: - filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)
5306: Level: intermediate
5308: Notes:
5309: The VTK format does not allow writing multiple time steps in the same file, therefore a different file will be written for each time step.
5310: These are named according to the file name template.
5312: This function is normally passed as an argument to TSMonitorSet() along with TSMonitorSolutionVTKDestroy().
5314: .keywords: TS, vector, monitor, view
5316: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
5317: @*/
5318: PetscErrorCode TSMonitorSolutionVTK(TS ts,PetscInt step,PetscReal ptime,Vec u,void *filenametemplate)
5319: {
5321: char filename[PETSC_MAX_PATH_LEN];
5322: PetscViewer viewer;
5325: if (step < 0) return(0); /* -1 indicates interpolated solution */
5326: PetscSNPrintf(filename,sizeof(filename),(const char*)filenametemplate,step);
5327: PetscViewerVTKOpen(PetscObjectComm((PetscObject)ts),filename,FILE_MODE_WRITE,&viewer);
5328: VecView(u,viewer);
5329: PetscViewerDestroy(&viewer);
5330: return(0);
5331: }
5333: /*@C
5334: TSMonitorSolutionVTKDestroy - Destroy context for monitoring
5336: Collective on TS
5338: Input Parameters:
5339: . filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)
5341: Level: intermediate
5343: Note:
5344: This function is normally passed to TSMonitorSet() along with TSMonitorSolutionVTK().
5346: .keywords: TS, vector, monitor, view
5348: .seealso: TSMonitorSet(), TSMonitorSolutionVTK()
5349: @*/
5350: PetscErrorCode TSMonitorSolutionVTKDestroy(void *filenametemplate)
5351: {
5355: PetscFree(*(char**)filenametemplate);
5356: return(0);
5357: }
5359: /*@
5360: TSGetAdapt - Get the adaptive controller context for the current method
5362: Collective on TS if controller has not been created yet
5364: Input Arguments:
5365: . ts - time stepping context
5367: Output Arguments:
5368: . adapt - adaptive controller
5370: Level: intermediate
5372: .seealso: TSAdapt, TSAdaptSetType(), TSAdaptChoose()
5373: @*/
5374: PetscErrorCode TSGetAdapt(TS ts,TSAdapt *adapt)
5375: {
5381: if (!ts->adapt) {
5382: TSAdaptCreate(PetscObjectComm((PetscObject)ts),&ts->adapt);
5383: PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->adapt);
5384: PetscObjectIncrementTabLevel((PetscObject)ts->adapt,(PetscObject)ts,1);
5385: }
5386: *adapt = ts->adapt;
5387: return(0);
5388: }
5390: /*@
5391: TSSetTolerances - Set tolerances for local truncation error when using adaptive controller
5393: Logically Collective
5395: Input Arguments:
5396: + ts - time integration context
5397: . atol - scalar absolute tolerances, PETSC_DECIDE to leave current value
5398: . vatol - vector of absolute tolerances or NULL, used in preference to atol if present
5399: . rtol - scalar relative tolerances, PETSC_DECIDE to leave current value
5400: - vrtol - vector of relative tolerances or NULL, used in preference to atol if present
5402: Options Database keys:
5403: + -ts_rtol <rtol> - relative tolerance for local truncation error
5404: - -ts_atol <atol> Absolute tolerance for local truncation error
5406: Notes:
5407: With PETSc's implicit schemes for DAE problems, the calculation of the local truncation error
5408: (LTE) includes both the differential and the algebraic variables. If one wants the LTE to be
5409: computed only for the differential or the algebraic part then this can be done using the vector of
5410: tolerances vatol. For example, by setting the tolerance vector with the desired tolerance for the
5411: differential part and infinity for the algebraic part, the LTE calculation will include only the
5412: differential variables.
5414: Level: beginner
5416: .seealso: TS, TSAdapt, TSVecNormWRMS(), TSGetTolerances()
5417: @*/
5418: PetscErrorCode TSSetTolerances(TS ts,PetscReal atol,Vec vatol,PetscReal rtol,Vec vrtol)
5419: {
5423: if (atol != PETSC_DECIDE && atol != PETSC_DEFAULT) ts->atol = atol;
5424: if (vatol) {
5425: PetscObjectReference((PetscObject)vatol);
5426: VecDestroy(&ts->vatol);
5427: ts->vatol = vatol;
5428: }
5429: if (rtol != PETSC_DECIDE && rtol != PETSC_DEFAULT) ts->rtol = rtol;
5430: if (vrtol) {
5431: PetscObjectReference((PetscObject)vrtol);
5432: VecDestroy(&ts->vrtol);
5433: ts->vrtol = vrtol;
5434: }
5435: return(0);
5436: }
5438: /*@
5439: TSGetTolerances - Get tolerances for local truncation error when using adaptive controller
5441: Logically Collective
5443: Input Arguments:
5444: . ts - time integration context
5446: Output Arguments:
5447: + atol - scalar absolute tolerances, NULL to ignore
5448: . vatol - vector of absolute tolerances, NULL to ignore
5449: . rtol - scalar relative tolerances, NULL to ignore
5450: - vrtol - vector of relative tolerances, NULL to ignore
5452: Level: beginner
5454: .seealso: TS, TSAdapt, TSVecNormWRMS(), TSSetTolerances()
5455: @*/
5456: PetscErrorCode TSGetTolerances(TS ts,PetscReal *atol,Vec *vatol,PetscReal *rtol,Vec *vrtol)
5457: {
5459: if (atol) *atol = ts->atol;
5460: if (vatol) *vatol = ts->vatol;
5461: if (rtol) *rtol = ts->rtol;
5462: if (vrtol) *vrtol = ts->vrtol;
5463: return(0);
5464: }
5466: /*@
5467: TSErrorWeightedNorm2 - compute a weighted 2-norm of the difference between two state vectors
5469: Collective on TS
5471: Input Arguments:
5472: + ts - time stepping context
5473: . U - state vector, usually ts->vec_sol
5474: - Y - state vector to be compared to U
5476: Output Arguments:
5477: . norm - weighted norm, a value of 1.0 means that the error matches the tolerances
5478: . norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
5479: . normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances
5481: Level: developer
5483: .seealso: TSErrorWeightedNorm(), TSErrorWeightedNormInfinity()
5484: @*/
5485: PetscErrorCode TSErrorWeightedNorm2(TS ts,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5486: {
5487: PetscErrorCode ierr;
5488: PetscInt i,n,N,rstart;
5489: PetscInt n_loc,na_loc,nr_loc;
5490: PetscReal n_glb,na_glb,nr_glb;
5491: const PetscScalar *u,*y;
5492: PetscReal sum,suma,sumr,gsum,gsuma,gsumr,diff;
5493: PetscReal tol,tola,tolr;
5494: PetscReal err_loc[6],err_glb[6];
5506: if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"U and Y cannot be the same vector");
5508: VecGetSize(U,&N);
5509: VecGetLocalSize(U,&n);
5510: VecGetOwnershipRange(U,&rstart,NULL);
5511: VecGetArrayRead(U,&u);
5512: VecGetArrayRead(Y,&y);
5513: sum = 0.; n_loc = 0;
5514: suma = 0.; na_loc = 0;
5515: sumr = 0.; nr_loc = 0;
5516: if (ts->vatol && ts->vrtol) {
5517: const PetscScalar *atol,*rtol;
5518: VecGetArrayRead(ts->vatol,&atol);
5519: VecGetArrayRead(ts->vrtol,&rtol);
5520: for (i=0; i<n; i++) {
5521: diff = PetscAbsScalar(y[i] - u[i]);
5522: tola = PetscRealPart(atol[i]);
5523: if(tola>0.){
5524: suma += PetscSqr(diff/tola);
5525: na_loc++;
5526: }
5527: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5528: if(tolr>0.){
5529: sumr += PetscSqr(diff/tolr);
5530: nr_loc++;
5531: }
5532: tol=tola+tolr;
5533: if(tol>0.){
5534: sum += PetscSqr(diff/tol);
5535: n_loc++;
5536: }
5537: }
5538: VecRestoreArrayRead(ts->vatol,&atol);
5539: VecRestoreArrayRead(ts->vrtol,&rtol);
5540: } else if (ts->vatol) { /* vector atol, scalar rtol */
5541: const PetscScalar *atol;
5542: VecGetArrayRead(ts->vatol,&atol);
5543: for (i=0; i<n; i++) {
5544: diff = PetscAbsScalar(y[i] - u[i]);
5545: tola = PetscRealPart(atol[i]);
5546: if(tola>0.){
5547: suma += PetscSqr(diff/tola);
5548: na_loc++;
5549: }
5550: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5551: if(tolr>0.){
5552: sumr += PetscSqr(diff/tolr);
5553: nr_loc++;
5554: }
5555: tol=tola+tolr;
5556: if(tol>0.){
5557: sum += PetscSqr(diff/tol);
5558: n_loc++;
5559: }
5560: }
5561: VecRestoreArrayRead(ts->vatol,&atol);
5562: } else if (ts->vrtol) { /* scalar atol, vector rtol */
5563: const PetscScalar *rtol;
5564: VecGetArrayRead(ts->vrtol,&rtol);
5565: for (i=0; i<n; i++) {
5566: diff = PetscAbsScalar(y[i] - u[i]);
5567: tola = ts->atol;
5568: if(tola>0.){
5569: suma += PetscSqr(diff/tola);
5570: na_loc++;
5571: }
5572: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5573: if(tolr>0.){
5574: sumr += PetscSqr(diff/tolr);
5575: nr_loc++;
5576: }
5577: tol=tola+tolr;
5578: if(tol>0.){
5579: sum += PetscSqr(diff/tol);
5580: n_loc++;
5581: }
5582: }
5583: VecRestoreArrayRead(ts->vrtol,&rtol);
5584: } else { /* scalar atol, scalar rtol */
5585: for (i=0; i<n; i++) {
5586: diff = PetscAbsScalar(y[i] - u[i]);
5587: tola = ts->atol;
5588: if(tola>0.){
5589: suma += PetscSqr(diff/tola);
5590: na_loc++;
5591: }
5592: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5593: if(tolr>0.){
5594: sumr += PetscSqr(diff/tolr);
5595: nr_loc++;
5596: }
5597: tol=tola+tolr;
5598: if(tol>0.){
5599: sum += PetscSqr(diff/tol);
5600: n_loc++;
5601: }
5602: }
5603: }
5604: VecRestoreArrayRead(U,&u);
5605: VecRestoreArrayRead(Y,&y);
5607: err_loc[0] = sum;
5608: err_loc[1] = suma;
5609: err_loc[2] = sumr;
5610: err_loc[3] = (PetscReal)n_loc;
5611: err_loc[4] = (PetscReal)na_loc;
5612: err_loc[5] = (PetscReal)nr_loc;
5614: MPIU_Allreduce(err_loc,err_glb,6,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));
5616: gsum = err_glb[0];
5617: gsuma = err_glb[1];
5618: gsumr = err_glb[2];
5619: n_glb = err_glb[3];
5620: na_glb = err_glb[4];
5621: nr_glb = err_glb[5];
5623: *norm = 0.;
5624: if(n_glb>0. ){*norm = PetscSqrtReal(gsum / n_glb );}
5625: *norma = 0.;
5626: if(na_glb>0.){*norma = PetscSqrtReal(gsuma / na_glb);}
5627: *normr = 0.;
5628: if(nr_glb>0.){*normr = PetscSqrtReal(gsumr / nr_glb);}
5630: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
5631: if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
5632: if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
5633: return(0);
5634: }
5636: /*@
5637: TSErrorWeightedNormInfinity - compute a weighted infinity-norm of the difference between two state vectors
5639: Collective on TS
5641: Input Arguments:
5642: + ts - time stepping context
5643: . U - state vector, usually ts->vec_sol
5644: - Y - state vector to be compared to U
5646: Output Arguments:
5647: . norm - weighted norm, a value of 1.0 means that the error matches the tolerances
5648: . norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
5649: . normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances
5651: Level: developer
5653: .seealso: TSErrorWeightedNorm(), TSErrorWeightedNorm2()
5654: @*/
5655: PetscErrorCode TSErrorWeightedNormInfinity(TS ts,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5656: {
5657: PetscErrorCode ierr;
5658: PetscInt i,n,N,rstart;
5659: const PetscScalar *u,*y;
5660: PetscReal max,gmax,maxa,gmaxa,maxr,gmaxr;
5661: PetscReal tol,tola,tolr,diff;
5662: PetscReal err_loc[3],err_glb[3];
5674: if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"U and Y cannot be the same vector");
5676: VecGetSize(U,&N);
5677: VecGetLocalSize(U,&n);
5678: VecGetOwnershipRange(U,&rstart,NULL);
5679: VecGetArrayRead(U,&u);
5680: VecGetArrayRead(Y,&y);
5682: max=0.;
5683: maxa=0.;
5684: maxr=0.;
5686: if (ts->vatol && ts->vrtol) { /* vector atol, vector rtol */
5687: const PetscScalar *atol,*rtol;
5688: VecGetArrayRead(ts->vatol,&atol);
5689: VecGetArrayRead(ts->vrtol,&rtol);
5691: for (i=0; i<n; i++) {
5692: diff = PetscAbsScalar(y[i] - u[i]);
5693: tola = PetscRealPart(atol[i]);
5694: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5695: tol = tola+tolr;
5696: if(tola>0.){
5697: maxa = PetscMax(maxa,diff / tola);
5698: }
5699: if(tolr>0.){
5700: maxr = PetscMax(maxr,diff / tolr);
5701: }
5702: if(tol>0.){
5703: max = PetscMax(max,diff / tol);
5704: }
5705: }
5706: VecRestoreArrayRead(ts->vatol,&atol);
5707: VecRestoreArrayRead(ts->vrtol,&rtol);
5708: } else if (ts->vatol) { /* vector atol, scalar rtol */
5709: const PetscScalar *atol;
5710: VecGetArrayRead(ts->vatol,&atol);
5711: for (i=0; i<n; i++) {
5712: diff = PetscAbsScalar(y[i] - u[i]);
5713: tola = PetscRealPart(atol[i]);
5714: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5715: tol = tola+tolr;
5716: if(tola>0.){
5717: maxa = PetscMax(maxa,diff / tola);
5718: }
5719: if(tolr>0.){
5720: maxr = PetscMax(maxr,diff / tolr);
5721: }
5722: if(tol>0.){
5723: max = PetscMax(max,diff / tol);
5724: }
5725: }
5726: VecRestoreArrayRead(ts->vatol,&atol);
5727: } else if (ts->vrtol) { /* scalar atol, vector rtol */
5728: const PetscScalar *rtol;
5729: VecGetArrayRead(ts->vrtol,&rtol);
5731: for (i=0; i<n; i++) {
5732: diff = PetscAbsScalar(y[i] - u[i]);
5733: tola = ts->atol;
5734: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5735: tol = tola+tolr;
5736: if(tola>0.){
5737: maxa = PetscMax(maxa,diff / tola);
5738: }
5739: if(tolr>0.){
5740: maxr = PetscMax(maxr,diff / tolr);
5741: }
5742: if(tol>0.){
5743: max = PetscMax(max,diff / tol);
5744: }
5745: }
5746: VecRestoreArrayRead(ts->vrtol,&rtol);
5747: } else { /* scalar atol, scalar rtol */
5749: for (i=0; i<n; i++) {
5750: diff = PetscAbsScalar(y[i] - u[i]);
5751: tola = ts->atol;
5752: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5753: tol = tola+tolr;
5754: if(tola>0.){
5755: maxa = PetscMax(maxa,diff / tola);
5756: }
5757: if(tolr>0.){
5758: maxr = PetscMax(maxr,diff / tolr);
5759: }
5760: if(tol>0.){
5761: max = PetscMax(max,diff / tol);
5762: }
5763: }
5764: }
5765: VecRestoreArrayRead(U,&u);
5766: VecRestoreArrayRead(Y,&y);
5767: err_loc[0] = max;
5768: err_loc[1] = maxa;
5769: err_loc[2] = maxr;
5770: MPIU_Allreduce(err_loc,err_glb,3,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
5771: gmax = err_glb[0];
5772: gmaxa = err_glb[1];
5773: gmaxr = err_glb[2];
5775: *norm = gmax;
5776: *norma = gmaxa;
5777: *normr = gmaxr;
5778: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
5779: if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
5780: if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
5781: return(0);
5782: }
5784: /*@
5785: TSErrorWeightedNorm - compute a weighted norm of the difference between two state vectors based on supplied absolute and relative tolerances
5787: Collective on TS
5789: Input Arguments:
5790: + ts - time stepping context
5791: . U - state vector, usually ts->vec_sol
5792: . Y - state vector to be compared to U
5793: - wnormtype - norm type, either NORM_2 or NORM_INFINITY
5795: Output Arguments:
5796: . norm - weighted norm, a value of 1.0 achieves a balance between absolute and relative tolerances
5797: . norma - weighted norm, a value of 1.0 means that the error meets the absolute tolerance set by the user
5798: . normr - weighted norm, a value of 1.0 means that the error meets the relative tolerance set by the user
5800: Options Database Keys:
5801: . -ts_adapt_wnormtype <wnormtype> - 2, INFINITY
5803: Level: developer
5805: .seealso: TSErrorWeightedNormInfinity(), TSErrorWeightedNorm2(), TSErrorWeightedENorm
5806: @*/
5807: PetscErrorCode TSErrorWeightedNorm(TS ts,Vec U,Vec Y,NormType wnormtype,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5808: {
5812: if (wnormtype == NORM_2) {
5813: TSErrorWeightedNorm2(ts,U,Y,norm,norma,normr);
5814: } else if(wnormtype == NORM_INFINITY) {
5815: TSErrorWeightedNormInfinity(ts,U,Y,norm,norma,normr);
5816: } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
5817: return(0);
5818: }
5821: /*@
5822: TSErrorWeightedENorm2 - compute a weighted 2 error norm based on supplied absolute and relative tolerances
5824: Collective on TS
5826: Input Arguments:
5827: + ts - time stepping context
5828: . E - error vector
5829: . U - state vector, usually ts->vec_sol
5830: - Y - state vector, previous time step
5832: Output Arguments:
5833: . norm - weighted norm, a value of 1.0 means that the error matches the tolerances
5834: . norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
5835: . normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances
5837: Level: developer
5839: .seealso: TSErrorWeightedENorm(), TSErrorWeightedENormInfinity()
5840: @*/
5841: PetscErrorCode TSErrorWeightedENorm2(TS ts,Vec E,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5842: {
5843: PetscErrorCode ierr;
5844: PetscInt i,n,N,rstart;
5845: PetscInt n_loc,na_loc,nr_loc;
5846: PetscReal n_glb,na_glb,nr_glb;
5847: const PetscScalar *e,*u,*y;
5848: PetscReal err,sum,suma,sumr,gsum,gsuma,gsumr;
5849: PetscReal tol,tola,tolr;
5850: PetscReal err_loc[6],err_glb[6];
5866: VecGetSize(E,&N);
5867: VecGetLocalSize(E,&n);
5868: VecGetOwnershipRange(E,&rstart,NULL);
5869: VecGetArrayRead(E,&e);
5870: VecGetArrayRead(U,&u);
5871: VecGetArrayRead(Y,&y);
5872: sum = 0.; n_loc = 0;
5873: suma = 0.; na_loc = 0;
5874: sumr = 0.; nr_loc = 0;
5875: if (ts->vatol && ts->vrtol) {
5876: const PetscScalar *atol,*rtol;
5877: VecGetArrayRead(ts->vatol,&atol);
5878: VecGetArrayRead(ts->vrtol,&rtol);
5879: for (i=0; i<n; i++) {
5880: err = PetscAbsScalar(e[i]);
5881: tola = PetscRealPart(atol[i]);
5882: if(tola>0.){
5883: suma += PetscSqr(err/tola);
5884: na_loc++;
5885: }
5886: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5887: if(tolr>0.){
5888: sumr += PetscSqr(err/tolr);
5889: nr_loc++;
5890: }
5891: tol=tola+tolr;
5892: if(tol>0.){
5893: sum += PetscSqr(err/tol);
5894: n_loc++;
5895: }
5896: }
5897: VecRestoreArrayRead(ts->vatol,&atol);
5898: VecRestoreArrayRead(ts->vrtol,&rtol);
5899: } else if (ts->vatol) { /* vector atol, scalar rtol */
5900: const PetscScalar *atol;
5901: VecGetArrayRead(ts->vatol,&atol);
5902: for (i=0; i<n; i++) {
5903: err = PetscAbsScalar(e[i]);
5904: tola = PetscRealPart(atol[i]);
5905: if(tola>0.){
5906: suma += PetscSqr(err/tola);
5907: na_loc++;
5908: }
5909: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5910: if(tolr>0.){
5911: sumr += PetscSqr(err/tolr);
5912: nr_loc++;
5913: }
5914: tol=tola+tolr;
5915: if(tol>0.){
5916: sum += PetscSqr(err/tol);
5917: n_loc++;
5918: }
5919: }
5920: VecRestoreArrayRead(ts->vatol,&atol);
5921: } else if (ts->vrtol) { /* scalar atol, vector rtol */
5922: const PetscScalar *rtol;
5923: VecGetArrayRead(ts->vrtol,&rtol);
5924: for (i=0; i<n; i++) {
5925: err = PetscAbsScalar(e[i]);
5926: tola = ts->atol;
5927: if(tola>0.){
5928: suma += PetscSqr(err/tola);
5929: na_loc++;
5930: }
5931: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5932: if(tolr>0.){
5933: sumr += PetscSqr(err/tolr);
5934: nr_loc++;
5935: }
5936: tol=tola+tolr;
5937: if(tol>0.){
5938: sum += PetscSqr(err/tol);
5939: n_loc++;
5940: }
5941: }
5942: VecRestoreArrayRead(ts->vrtol,&rtol);
5943: } else { /* scalar atol, scalar rtol */
5944: for (i=0; i<n; i++) {
5945: err = PetscAbsScalar(e[i]);
5946: tola = ts->atol;
5947: if(tola>0.){
5948: suma += PetscSqr(err/tola);
5949: na_loc++;
5950: }
5951: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5952: if(tolr>0.){
5953: sumr += PetscSqr(err/tolr);
5954: nr_loc++;
5955: }
5956: tol=tola+tolr;
5957: if(tol>0.){
5958: sum += PetscSqr(err/tol);
5959: n_loc++;
5960: }
5961: }
5962: }
5963: VecRestoreArrayRead(E,&e);
5964: VecRestoreArrayRead(U,&u);
5965: VecRestoreArrayRead(Y,&y);
5967: err_loc[0] = sum;
5968: err_loc[1] = suma;
5969: err_loc[2] = sumr;
5970: err_loc[3] = (PetscReal)n_loc;
5971: err_loc[4] = (PetscReal)na_loc;
5972: err_loc[5] = (PetscReal)nr_loc;
5974: MPIU_Allreduce(err_loc,err_glb,6,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));
5976: gsum = err_glb[0];
5977: gsuma = err_glb[1];
5978: gsumr = err_glb[2];
5979: n_glb = err_glb[3];
5980: na_glb = err_glb[4];
5981: nr_glb = err_glb[5];
5983: *norm = 0.;
5984: if(n_glb>0. ){*norm = PetscSqrtReal(gsum / n_glb );}
5985: *norma = 0.;
5986: if(na_glb>0.){*norma = PetscSqrtReal(gsuma / na_glb);}
5987: *normr = 0.;
5988: if(nr_glb>0.){*normr = PetscSqrtReal(gsumr / nr_glb);}
5990: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
5991: if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
5992: if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
5993: return(0);
5994: }
5996: /*@
5997: TSErrorWeightedENormInfinity - compute a weighted infinity error norm based on supplied absolute and relative tolerances
5998: Collective on TS
6000: Input Arguments:
6001: + ts - time stepping context
6002: . E - error vector
6003: . U - state vector, usually ts->vec_sol
6004: - Y - state vector, previous time step
6006: Output Arguments:
6007: . norm - weighted norm, a value of 1.0 means that the error matches the tolerances
6008: . norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
6009: . normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances
6011: Level: developer
6013: .seealso: TSErrorWeightedENorm(), TSErrorWeightedENorm2()
6014: @*/
6015: PetscErrorCode TSErrorWeightedENormInfinity(TS ts,Vec E,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6016: {
6017: PetscErrorCode ierr;
6018: PetscInt i,n,N,rstart;
6019: const PetscScalar *e,*u,*y;
6020: PetscReal err,max,gmax,maxa,gmaxa,maxr,gmaxr;
6021: PetscReal tol,tola,tolr;
6022: PetscReal err_loc[3],err_glb[3];
6038: VecGetSize(E,&N);
6039: VecGetLocalSize(E,&n);
6040: VecGetOwnershipRange(E,&rstart,NULL);
6041: VecGetArrayRead(E,&e);
6042: VecGetArrayRead(U,&u);
6043: VecGetArrayRead(Y,&y);
6045: max=0.;
6046: maxa=0.;
6047: maxr=0.;
6049: if (ts->vatol && ts->vrtol) { /* vector atol, vector rtol */
6050: const PetscScalar *atol,*rtol;
6051: VecGetArrayRead(ts->vatol,&atol);
6052: VecGetArrayRead(ts->vrtol,&rtol);
6054: for (i=0; i<n; i++) {
6055: err = PetscAbsScalar(e[i]);
6056: tola = PetscRealPart(atol[i]);
6057: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6058: tol = tola+tolr;
6059: if(tola>0.){
6060: maxa = PetscMax(maxa,err / tola);
6061: }
6062: if(tolr>0.){
6063: maxr = PetscMax(maxr,err / tolr);
6064: }
6065: if(tol>0.){
6066: max = PetscMax(max,err / tol);
6067: }
6068: }
6069: VecRestoreArrayRead(ts->vatol,&atol);
6070: VecRestoreArrayRead(ts->vrtol,&rtol);
6071: } else if (ts->vatol) { /* vector atol, scalar rtol */
6072: const PetscScalar *atol;
6073: VecGetArrayRead(ts->vatol,&atol);
6074: for (i=0; i<n; i++) {
6075: err = PetscAbsScalar(e[i]);
6076: tola = PetscRealPart(atol[i]);
6077: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6078: tol = tola+tolr;
6079: if(tola>0.){
6080: maxa = PetscMax(maxa,err / tola);
6081: }
6082: if(tolr>0.){
6083: maxr = PetscMax(maxr,err / tolr);
6084: }
6085: if(tol>0.){
6086: max = PetscMax(max,err / tol);
6087: }
6088: }
6089: VecRestoreArrayRead(ts->vatol,&atol);
6090: } else if (ts->vrtol) { /* scalar atol, vector rtol */
6091: const PetscScalar *rtol;
6092: VecGetArrayRead(ts->vrtol,&rtol);
6094: for (i=0; i<n; i++) {
6095: err = PetscAbsScalar(e[i]);
6096: tola = ts->atol;
6097: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6098: tol = tola+tolr;
6099: if(tola>0.){
6100: maxa = PetscMax(maxa,err / tola);
6101: }
6102: if(tolr>0.){
6103: maxr = PetscMax(maxr,err / tolr);
6104: }
6105: if(tol>0.){
6106: max = PetscMax(max,err / tol);
6107: }
6108: }
6109: VecRestoreArrayRead(ts->vrtol,&rtol);
6110: } else { /* scalar atol, scalar rtol */
6112: for (i=0; i<n; i++) {
6113: err = PetscAbsScalar(e[i]);
6114: tola = ts->atol;
6115: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6116: tol = tola+tolr;
6117: if(tola>0.){
6118: maxa = PetscMax(maxa,err / tola);
6119: }
6120: if(tolr>0.){
6121: maxr = PetscMax(maxr,err / tolr);
6122: }
6123: if(tol>0.){
6124: max = PetscMax(max,err / tol);
6125: }
6126: }
6127: }
6128: VecRestoreArrayRead(E,&e);
6129: VecRestoreArrayRead(U,&u);
6130: VecRestoreArrayRead(Y,&y);
6131: err_loc[0] = max;
6132: err_loc[1] = maxa;
6133: err_loc[2] = maxr;
6134: MPIU_Allreduce(err_loc,err_glb,3,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
6135: gmax = err_glb[0];
6136: gmaxa = err_glb[1];
6137: gmaxr = err_glb[2];
6139: *norm = gmax;
6140: *norma = gmaxa;
6141: *normr = gmaxr;
6142: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
6143: if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
6144: if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
6145: return(0);
6146: }
6148: /*@
6149: TSErrorWeightedENorm - compute a weighted error norm based on supplied absolute and relative tolerances
6151: Collective on TS
6153: Input Arguments:
6154: + ts - time stepping context
6155: . E - error vector
6156: . U - state vector, usually ts->vec_sol
6157: . Y - state vector, previous time step
6158: - wnormtype - norm type, either NORM_2 or NORM_INFINITY
6160: Output Arguments:
6161: . norm - weighted norm, a value of 1.0 achieves a balance between absolute and relative tolerances
6162: . norma - weighted norm, a value of 1.0 means that the error meets the absolute tolerance set by the user
6163: . normr - weighted norm, a value of 1.0 means that the error meets the relative tolerance set by the user
6165: Options Database Keys:
6166: . -ts_adapt_wnormtype <wnormtype> - 2, INFINITY
6168: Level: developer
6170: .seealso: TSErrorWeightedENormInfinity(), TSErrorWeightedENorm2(), TSErrorWeightedNormInfinity(), TSErrorWeightedNorm2()
6171: @*/
6172: PetscErrorCode TSErrorWeightedENorm(TS ts,Vec E,Vec U,Vec Y,NormType wnormtype,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6173: {
6177: if (wnormtype == NORM_2) {
6178: TSErrorWeightedENorm2(ts,E,U,Y,norm,norma,normr);
6179: } else if(wnormtype == NORM_INFINITY) {
6180: TSErrorWeightedENormInfinity(ts,E,U,Y,norm,norma,normr);
6181: } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
6182: return(0);
6183: }
6186: /*@
6187: TSSetCFLTimeLocal - Set the local CFL constraint relative to forward Euler
6189: Logically Collective on TS
6191: Input Arguments:
6192: + ts - time stepping context
6193: - cfltime - maximum stable time step if using forward Euler (value can be different on each process)
6195: Note:
6196: After calling this function, the global CFL time can be obtained by calling TSGetCFLTime()
6198: Level: intermediate
6200: .seealso: TSGetCFLTime(), TSADAPTCFL
6201: @*/
6202: PetscErrorCode TSSetCFLTimeLocal(TS ts,PetscReal cfltime)
6203: {
6206: ts->cfltime_local = cfltime;
6207: ts->cfltime = -1.;
6208: return(0);
6209: }
6211: /*@
6212: TSGetCFLTime - Get the maximum stable time step according to CFL criteria applied to forward Euler
6214: Collective on TS
6216: Input Arguments:
6217: . ts - time stepping context
6219: Output Arguments:
6220: . cfltime - maximum stable time step for forward Euler
6222: Level: advanced
6224: .seealso: TSSetCFLTimeLocal()
6225: @*/
6226: PetscErrorCode TSGetCFLTime(TS ts,PetscReal *cfltime)
6227: {
6231: if (ts->cfltime < 0) {
6232: MPIU_Allreduce(&ts->cfltime_local,&ts->cfltime,1,MPIU_REAL,MPIU_MIN,PetscObjectComm((PetscObject)ts));
6233: }
6234: *cfltime = ts->cfltime;
6235: return(0);
6236: }
6238: /*@
6239: TSVISetVariableBounds - Sets the lower and upper bounds for the solution vector. xl <= x <= xu
6241: Input Parameters:
6242: . ts - the TS context.
6243: . xl - lower bound.
6244: . xu - upper bound.
6246: Notes:
6247: If this routine is not called then the lower and upper bounds are set to
6248: PETSC_NINFINITY and PETSC_INFINITY respectively during SNESSetUp().
6250: Level: advanced
6252: @*/
6253: PetscErrorCode TSVISetVariableBounds(TS ts, Vec xl, Vec xu)
6254: {
6256: SNES snes;
6259: TSGetSNES(ts,&snes);
6260: SNESVISetVariableBounds(snes,xl,xu);
6261: return(0);
6262: }
6264: #if defined(PETSC_HAVE_MATLAB_ENGINE)
6265: #include <mex.h>
6267: typedef struct {char *funcname; mxArray *ctx;} TSMatlabContext;
6269: /*
6270: TSComputeFunction_Matlab - Calls the function that has been set with
6271: TSSetFunctionMatlab().
6273: Collective on TS
6275: Input Parameters:
6276: + snes - the TS context
6277: - u - input vector
6279: Output Parameter:
6280: . y - function vector, as set by TSSetFunction()
6282: Notes:
6283: TSComputeFunction() is typically used within nonlinear solvers
6284: implementations, so most users would not generally call this routine
6285: themselves.
6287: Level: developer
6289: .keywords: TS, nonlinear, compute, function
6291: .seealso: TSSetFunction(), TSGetFunction()
6292: */
6293: PetscErrorCode TSComputeFunction_Matlab(TS snes,PetscReal time,Vec u,Vec udot,Vec y, void *ctx)
6294: {
6295: PetscErrorCode ierr;
6296: TSMatlabContext *sctx = (TSMatlabContext*)ctx;
6297: int nlhs = 1,nrhs = 7;
6298: mxArray *plhs[1],*prhs[7];
6299: long long int lx = 0,lxdot = 0,ly = 0,ls = 0;
6309: PetscMemcpy(&ls,&snes,sizeof(snes));
6310: PetscMemcpy(&lx,&u,sizeof(u));
6311: PetscMemcpy(&lxdot,&udot,sizeof(udot));
6312: PetscMemcpy(&ly,&y,sizeof(u));
6314: prhs[0] = mxCreateDoubleScalar((double)ls);
6315: prhs[1] = mxCreateDoubleScalar(time);
6316: prhs[2] = mxCreateDoubleScalar((double)lx);
6317: prhs[3] = mxCreateDoubleScalar((double)lxdot);
6318: prhs[4] = mxCreateDoubleScalar((double)ly);
6319: prhs[5] = mxCreateString(sctx->funcname);
6320: prhs[6] = sctx->ctx;
6321: mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSComputeFunctionInternal");
6322: mxGetScalar(plhs[0]);
6323: mxDestroyArray(prhs[0]);
6324: mxDestroyArray(prhs[1]);
6325: mxDestroyArray(prhs[2]);
6326: mxDestroyArray(prhs[3]);
6327: mxDestroyArray(prhs[4]);
6328: mxDestroyArray(prhs[5]);
6329: mxDestroyArray(plhs[0]);
6330: return(0);
6331: }
6333: /*
6334: TSSetFunctionMatlab - Sets the function evaluation routine and function
6335: vector for use by the TS routines in solving ODEs
6336: equations from MATLAB. Here the function is a string containing the name of a MATLAB function
6338: Logically Collective on TS
6340: Input Parameters:
6341: + ts - the TS context
6342: - func - function evaluation routine
6344: Calling sequence of func:
6345: $ func (TS ts,PetscReal time,Vec u,Vec udot,Vec f,void *ctx);
6347: Level: beginner
6349: .keywords: TS, nonlinear, set, function
6351: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
6352: */
6353: PetscErrorCode TSSetFunctionMatlab(TS ts,const char *func,mxArray *ctx)
6354: {
6355: PetscErrorCode ierr;
6356: TSMatlabContext *sctx;
6359: /* currently sctx is memory bleed */
6360: PetscNew(&sctx);
6361: PetscStrallocpy(func,&sctx->funcname);
6362: /*
6363: This should work, but it doesn't
6364: sctx->ctx = ctx;
6365: mexMakeArrayPersistent(sctx->ctx);
6366: */
6367: sctx->ctx = mxDuplicateArray(ctx);
6369: TSSetIFunction(ts,NULL,TSComputeFunction_Matlab,sctx);
6370: return(0);
6371: }
6373: /*
6374: TSComputeJacobian_Matlab - Calls the function that has been set with
6375: TSSetJacobianMatlab().
6377: Collective on TS
6379: Input Parameters:
6380: + ts - the TS context
6381: . u - input vector
6382: . A, B - the matrices
6383: - ctx - user context
6385: Level: developer
6387: .keywords: TS, nonlinear, compute, function
6389: .seealso: TSSetFunction(), TSGetFunction()
6390: @*/
6391: PetscErrorCode TSComputeJacobian_Matlab(TS ts,PetscReal time,Vec u,Vec udot,PetscReal shift,Mat A,Mat B,void *ctx)
6392: {
6393: PetscErrorCode ierr;
6394: TSMatlabContext *sctx = (TSMatlabContext*)ctx;
6395: int nlhs = 2,nrhs = 9;
6396: mxArray *plhs[2],*prhs[9];
6397: long long int lx = 0,lxdot = 0,lA = 0,ls = 0, lB = 0;
6403: /* call Matlab function in ctx with arguments u and y */
6405: PetscMemcpy(&ls,&ts,sizeof(ts));
6406: PetscMemcpy(&lx,&u,sizeof(u));
6407: PetscMemcpy(&lxdot,&udot,sizeof(u));
6408: PetscMemcpy(&lA,A,sizeof(u));
6409: PetscMemcpy(&lB,B,sizeof(u));
6411: prhs[0] = mxCreateDoubleScalar((double)ls);
6412: prhs[1] = mxCreateDoubleScalar((double)time);
6413: prhs[2] = mxCreateDoubleScalar((double)lx);
6414: prhs[3] = mxCreateDoubleScalar((double)lxdot);
6415: prhs[4] = mxCreateDoubleScalar((double)shift);
6416: prhs[5] = mxCreateDoubleScalar((double)lA);
6417: prhs[6] = mxCreateDoubleScalar((double)lB);
6418: prhs[7] = mxCreateString(sctx->funcname);
6419: prhs[8] = sctx->ctx;
6420: mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSComputeJacobianInternal");
6421: mxGetScalar(plhs[0]);
6422: mxDestroyArray(prhs[0]);
6423: mxDestroyArray(prhs[1]);
6424: mxDestroyArray(prhs[2]);
6425: mxDestroyArray(prhs[3]);
6426: mxDestroyArray(prhs[4]);
6427: mxDestroyArray(prhs[5]);
6428: mxDestroyArray(prhs[6]);
6429: mxDestroyArray(prhs[7]);
6430: mxDestroyArray(plhs[0]);
6431: mxDestroyArray(plhs[1]);
6432: return(0);
6433: }
6435: /*
6436: TSSetJacobianMatlab - Sets the Jacobian function evaluation routine and two empty Jacobian matrices
6437: vector for use by the TS routines in solving ODEs from MATLAB. Here the function is a string containing the name of a MATLAB function
6439: Logically Collective on TS
6441: Input Parameters:
6442: + ts - the TS context
6443: . A,B - Jacobian matrices
6444: . func - function evaluation routine
6445: - ctx - user context
6447: Calling sequence of func:
6448: $ flag = func (TS ts,PetscReal time,Vec u,Vec udot,Mat A,Mat B,void *ctx);
6450: Level: developer
6452: .keywords: TS, nonlinear, set, function
6454: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
6455: */
6456: PetscErrorCode TSSetJacobianMatlab(TS ts,Mat A,Mat B,const char *func,mxArray *ctx)
6457: {
6458: PetscErrorCode ierr;
6459: TSMatlabContext *sctx;
6462: /* currently sctx is memory bleed */
6463: PetscNew(&sctx);
6464: PetscStrallocpy(func,&sctx->funcname);
6465: /*
6466: This should work, but it doesn't
6467: sctx->ctx = ctx;
6468: mexMakeArrayPersistent(sctx->ctx);
6469: */
6470: sctx->ctx = mxDuplicateArray(ctx);
6472: TSSetIJacobian(ts,A,B,TSComputeJacobian_Matlab,sctx);
6473: return(0);
6474: }
6476: /*
6477: TSMonitor_Matlab - Calls the function that has been set with TSMonitorSetMatlab().
6479: Collective on TS
6481: .seealso: TSSetFunction(), TSGetFunction()
6482: @*/
6483: PetscErrorCode TSMonitor_Matlab(TS ts,PetscInt it, PetscReal time,Vec u, void *ctx)
6484: {
6485: PetscErrorCode ierr;
6486: TSMatlabContext *sctx = (TSMatlabContext*)ctx;
6487: int nlhs = 1,nrhs = 6;
6488: mxArray *plhs[1],*prhs[6];
6489: long long int lx = 0,ls = 0;
6495: PetscMemcpy(&ls,&ts,sizeof(ts));
6496: PetscMemcpy(&lx,&u,sizeof(u));
6498: prhs[0] = mxCreateDoubleScalar((double)ls);
6499: prhs[1] = mxCreateDoubleScalar((double)it);
6500: prhs[2] = mxCreateDoubleScalar((double)time);
6501: prhs[3] = mxCreateDoubleScalar((double)lx);
6502: prhs[4] = mxCreateString(sctx->funcname);
6503: prhs[5] = sctx->ctx;
6504: mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSMonitorInternal");
6505: mxGetScalar(plhs[0]);
6506: mxDestroyArray(prhs[0]);
6507: mxDestroyArray(prhs[1]);
6508: mxDestroyArray(prhs[2]);
6509: mxDestroyArray(prhs[3]);
6510: mxDestroyArray(prhs[4]);
6511: mxDestroyArray(plhs[0]);
6512: return(0);
6513: }
6515: /*
6516: TSMonitorSetMatlab - Sets the monitor function from Matlab
6518: Level: developer
6520: .keywords: TS, nonlinear, set, function
6522: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
6523: */
6524: PetscErrorCode TSMonitorSetMatlab(TS ts,const char *func,mxArray *ctx)
6525: {
6526: PetscErrorCode ierr;
6527: TSMatlabContext *sctx;
6530: /* currently sctx is memory bleed */
6531: PetscNew(&sctx);
6532: PetscStrallocpy(func,&sctx->funcname);
6533: /*
6534: This should work, but it doesn't
6535: sctx->ctx = ctx;
6536: mexMakeArrayPersistent(sctx->ctx);
6537: */
6538: sctx->ctx = mxDuplicateArray(ctx);
6540: TSMonitorSet(ts,TSMonitor_Matlab,sctx,NULL);
6541: return(0);
6542: }
6543: #endif
6545: /*@C
6546: TSMonitorLGSolution - Monitors progress of the TS solvers by plotting each component of the solution vector
6547: in a time based line graph
6549: Collective on TS
6551: Input Parameters:
6552: + ts - the TS context
6553: . step - current time-step
6554: . ptime - current time
6555: . u - current solution
6556: - dctx - the TSMonitorLGCtx object that contains all the options for the monitoring, this is created with TSMonitorLGCtxCreate()
6558: Options Database:
6559: . -ts_monitor_lg_solution_variables
6561: Level: intermediate
6563: Notes:
6564: Each process in a parallel run displays its component solutions in a separate window
6566: .keywords: TS, vector, monitor, view
6568: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGCtxCreate(), TSMonitorLGCtxSetVariableNames(), TSMonitorLGCtxGetVariableNames(),
6569: TSMonitorLGSetVariableNames(), TSMonitorLGGetVariableNames(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetDisplayVariables(),
6570: TSMonitorLGCtxSetTransform(), TSMonitorLGSetTransform(), TSMonitorLGError(), TSMonitorLGSNESIterations(), TSMonitorLGKSPIterations(),
6571: TSMonitorEnvelopeCtxCreate(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxDestroy(), TSMonitorEnvelop()
6572: @*/
6573: PetscErrorCode TSMonitorLGSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
6574: {
6575: PetscErrorCode ierr;
6576: TSMonitorLGCtx ctx = (TSMonitorLGCtx)dctx;
6577: const PetscScalar *yy;
6578: Vec v;
6581: if (step < 0) return(0); /* -1 indicates interpolated solution */
6582: if (!step) {
6583: PetscDrawAxis axis;
6584: PetscInt dim;
6585: PetscDrawLGGetAxis(ctx->lg,&axis);
6586: PetscDrawAxisSetLabels(axis,"Solution as function of time","Time","Solution");
6587: if (!ctx->names) {
6588: PetscBool flg;
6589: /* user provides names of variables to plot but no names has been set so assume names are integer values */
6590: PetscOptionsHasName(((PetscObject)ts)->options,((PetscObject)ts)->prefix,"-ts_monitor_lg_solution_variables",&flg);
6591: if (flg) {
6592: PetscInt i,n;
6593: char **names;
6594: VecGetSize(u,&n);
6595: PetscMalloc1(n+1,&names);
6596: for (i=0; i<n; i++) {
6597: PetscMalloc1(5,&names[i]);
6598: PetscSNPrintf(names[i],5,"%D",i);
6599: }
6600: names[n] = NULL;
6601: ctx->names = names;
6602: }
6603: }
6604: if (ctx->names && !ctx->displaynames) {
6605: char **displaynames;
6606: PetscBool flg;
6607: VecGetLocalSize(u,&dim);
6608: PetscMalloc1(dim+1,&displaynames);
6609: PetscMemzero(displaynames,(dim+1)*sizeof(char*));
6610: PetscOptionsGetStringArray(((PetscObject)ts)->options,((PetscObject)ts)->prefix,"-ts_monitor_lg_solution_variables",displaynames,&dim,&flg);
6611: if (flg) {
6612: TSMonitorLGCtxSetDisplayVariables(ctx,(const char *const *)displaynames);
6613: }
6614: PetscStrArrayDestroy(&displaynames);
6615: }
6616: if (ctx->displaynames) {
6617: PetscDrawLGSetDimension(ctx->lg,ctx->ndisplayvariables);
6618: PetscDrawLGSetLegend(ctx->lg,(const char *const *)ctx->displaynames);
6619: } else if (ctx->names) {
6620: VecGetLocalSize(u,&dim);
6621: PetscDrawLGSetDimension(ctx->lg,dim);
6622: PetscDrawLGSetLegend(ctx->lg,(const char *const *)ctx->names);
6623: } else {
6624: VecGetLocalSize(u,&dim);
6625: PetscDrawLGSetDimension(ctx->lg,dim);
6626: }
6627: PetscDrawLGReset(ctx->lg);
6628: }
6630: if (!ctx->transform) v = u;
6631: else {(*ctx->transform)(ctx->transformctx,u,&v);}
6632: VecGetArrayRead(v,&yy);
6633: if (ctx->displaynames) {
6634: PetscInt i;
6635: for (i=0; i<ctx->ndisplayvariables; i++)
6636: ctx->displayvalues[i] = PetscRealPart(yy[ctx->displayvariables[i]]);
6637: PetscDrawLGAddCommonPoint(ctx->lg,ptime,ctx->displayvalues);
6638: } else {
6639: #if defined(PETSC_USE_COMPLEX)
6640: PetscInt i,n;
6641: PetscReal *yreal;
6642: VecGetLocalSize(v,&n);
6643: PetscMalloc1(n,&yreal);
6644: for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
6645: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
6646: PetscFree(yreal);
6647: #else
6648: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
6649: #endif
6650: }
6651: VecRestoreArrayRead(v,&yy);
6652: if (ctx->transform) {VecDestroy(&v);}
6654: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
6655: PetscDrawLGDraw(ctx->lg);
6656: PetscDrawLGSave(ctx->lg);
6657: }
6658: return(0);
6659: }
6661: /*@C
6662: TSMonitorLGSetVariableNames - Sets the name of each component in the solution vector so that it may be displayed in the plot
6664: Collective on TS
6666: Input Parameters:
6667: + ts - the TS context
6668: - names - the names of the components, final string must be NULL
6670: Level: intermediate
6672: Notes:
6673: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6675: .keywords: TS, vector, monitor, view
6677: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetVariableNames()
6678: @*/
6679: PetscErrorCode TSMonitorLGSetVariableNames(TS ts,const char * const *names)
6680: {
6681: PetscErrorCode ierr;
6682: PetscInt i;
6685: for (i=0; i<ts->numbermonitors; i++) {
6686: if (ts->monitor[i] == TSMonitorLGSolution) {
6687: TSMonitorLGCtxSetVariableNames((TSMonitorLGCtx)ts->monitorcontext[i],names);
6688: break;
6689: }
6690: }
6691: return(0);
6692: }
6694: /*@C
6695: TSMonitorLGCtxSetVariableNames - Sets the name of each component in the solution vector so that it may be displayed in the plot
6697: Collective on TS
6699: Input Parameters:
6700: + ts - the TS context
6701: - names - the names of the components, final string must be NULL
6703: Level: intermediate
6705: .keywords: TS, vector, monitor, view
6707: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables(), TSMonitorLGSetVariableNames()
6708: @*/
6709: PetscErrorCode TSMonitorLGCtxSetVariableNames(TSMonitorLGCtx ctx,const char * const *names)
6710: {
6711: PetscErrorCode ierr;
6714: PetscStrArrayDestroy(&ctx->names);
6715: PetscStrArrayallocpy(names,&ctx->names);
6716: return(0);
6717: }
6719: /*@C
6720: TSMonitorLGGetVariableNames - Gets the name of each component in the solution vector so that it may be displayed in the plot
6722: Collective on TS
6724: Input Parameter:
6725: . ts - the TS context
6727: Output Parameter:
6728: . names - the names of the components, final string must be NULL
6730: Level: intermediate
6732: Notes:
6733: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6735: .keywords: TS, vector, monitor, view
6737: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables()
6738: @*/
6739: PetscErrorCode TSMonitorLGGetVariableNames(TS ts,const char *const **names)
6740: {
6741: PetscInt i;
6744: *names = NULL;
6745: for (i=0; i<ts->numbermonitors; i++) {
6746: if (ts->monitor[i] == TSMonitorLGSolution) {
6747: TSMonitorLGCtx ctx = (TSMonitorLGCtx) ts->monitorcontext[i];
6748: *names = (const char *const *)ctx->names;
6749: break;
6750: }
6751: }
6752: return(0);
6753: }
6755: /*@C
6756: TSMonitorLGCtxSetDisplayVariables - Sets the variables that are to be display in the monitor
6758: Collective on TS
6760: Input Parameters:
6761: + ctx - the TSMonitorLG context
6762: . displaynames - the names of the components, final string must be NULL
6764: Level: intermediate
6766: .keywords: TS, vector, monitor, view
6768: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames()
6769: @*/
6770: PetscErrorCode TSMonitorLGCtxSetDisplayVariables(TSMonitorLGCtx ctx,const char * const *displaynames)
6771: {
6772: PetscInt j = 0,k;
6773: PetscErrorCode ierr;
6776: if (!ctx->names) return(0);
6777: PetscStrArrayDestroy(&ctx->displaynames);
6778: PetscStrArrayallocpy(displaynames,&ctx->displaynames);
6779: while (displaynames[j]) j++;
6780: ctx->ndisplayvariables = j;
6781: PetscMalloc1(ctx->ndisplayvariables,&ctx->displayvariables);
6782: PetscMalloc1(ctx->ndisplayvariables,&ctx->displayvalues);
6783: j = 0;
6784: while (displaynames[j]) {
6785: k = 0;
6786: while (ctx->names[k]) {
6787: PetscBool flg;
6788: PetscStrcmp(displaynames[j],ctx->names[k],&flg);
6789: if (flg) {
6790: ctx->displayvariables[j] = k;
6791: break;
6792: }
6793: k++;
6794: }
6795: j++;
6796: }
6797: return(0);
6798: }
6800: /*@C
6801: TSMonitorLGSetDisplayVariables - Sets the variables that are to be display in the monitor
6803: Collective on TS
6805: Input Parameters:
6806: + ts - the TS context
6807: . displaynames - the names of the components, final string must be NULL
6809: Notes:
6810: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6812: Level: intermediate
6814: .keywords: TS, vector, monitor, view
6816: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames()
6817: @*/
6818: PetscErrorCode TSMonitorLGSetDisplayVariables(TS ts,const char * const *displaynames)
6819: {
6820: PetscInt i;
6821: PetscErrorCode ierr;
6824: for (i=0; i<ts->numbermonitors; i++) {
6825: if (ts->monitor[i] == TSMonitorLGSolution) {
6826: TSMonitorLGCtxSetDisplayVariables((TSMonitorLGCtx)ts->monitorcontext[i],displaynames);
6827: break;
6828: }
6829: }
6830: return(0);
6831: }
6833: /*@C
6834: TSMonitorLGSetTransform - Solution vector will be transformed by provided function before being displayed
6836: Collective on TS
6838: Input Parameters:
6839: + ts - the TS context
6840: . transform - the transform function
6841: . destroy - function to destroy the optional context
6842: - ctx - optional context used by transform function
6844: Notes:
6845: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6847: Level: intermediate
6849: .keywords: TS, vector, monitor, view
6851: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames(), TSMonitorLGCtxSetTransform()
6852: @*/
6853: PetscErrorCode TSMonitorLGSetTransform(TS ts,PetscErrorCode (*transform)(void*,Vec,Vec*),PetscErrorCode (*destroy)(void*),void *tctx)
6854: {
6855: PetscInt i;
6856: PetscErrorCode ierr;
6859: for (i=0; i<ts->numbermonitors; i++) {
6860: if (ts->monitor[i] == TSMonitorLGSolution) {
6861: TSMonitorLGCtxSetTransform((TSMonitorLGCtx)ts->monitorcontext[i],transform,destroy,tctx);
6862: }
6863: }
6864: return(0);
6865: }
6867: /*@C
6868: TSMonitorLGCtxSetTransform - Solution vector will be transformed by provided function before being displayed
6870: Collective on TSLGCtx
6872: Input Parameters:
6873: + ts - the TS context
6874: . transform - the transform function
6875: . destroy - function to destroy the optional context
6876: - ctx - optional context used by transform function
6878: Level: intermediate
6880: .keywords: TS, vector, monitor, view
6882: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames(), TSMonitorLGSetTransform()
6883: @*/
6884: PetscErrorCode TSMonitorLGCtxSetTransform(TSMonitorLGCtx ctx,PetscErrorCode (*transform)(void*,Vec,Vec*),PetscErrorCode (*destroy)(void*),void *tctx)
6885: {
6887: ctx->transform = transform;
6888: ctx->transformdestroy = destroy;
6889: ctx->transformctx = tctx;
6890: return(0);
6891: }
6893: /*@C
6894: TSMonitorLGError - Monitors progress of the TS solvers by plotting each component of the error
6895: in a time based line graph
6897: Collective on TS
6899: Input Parameters:
6900: + ts - the TS context
6901: . step - current time-step
6902: . ptime - current time
6903: . u - current solution
6904: - dctx - TSMonitorLGCtx object created with TSMonitorLGCtxCreate()
6906: Level: intermediate
6908: Notes:
6909: Each process in a parallel run displays its component errors in a separate window
6911: The user must provide the solution using TSSetSolutionFunction() to use this monitor.
6913: Options Database Keys:
6914: . -ts_monitor_lg_error - create a graphical monitor of error history
6916: .keywords: TS, vector, monitor, view
6918: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
6919: @*/
6920: PetscErrorCode TSMonitorLGError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
6921: {
6922: PetscErrorCode ierr;
6923: TSMonitorLGCtx ctx = (TSMonitorLGCtx)dummy;
6924: const PetscScalar *yy;
6925: Vec y;
6928: if (!step) {
6929: PetscDrawAxis axis;
6930: PetscInt dim;
6931: PetscDrawLGGetAxis(ctx->lg,&axis);
6932: PetscDrawAxisSetLabels(axis,"Error in solution as function of time","Time","Error");
6933: VecGetLocalSize(u,&dim);
6934: PetscDrawLGSetDimension(ctx->lg,dim);
6935: PetscDrawLGReset(ctx->lg);
6936: }
6937: VecDuplicate(u,&y);
6938: TSComputeSolutionFunction(ts,ptime,y);
6939: VecAXPY(y,-1.0,u);
6940: VecGetArrayRead(y,&yy);
6941: #if defined(PETSC_USE_COMPLEX)
6942: {
6943: PetscReal *yreal;
6944: PetscInt i,n;
6945: VecGetLocalSize(y,&n);
6946: PetscMalloc1(n,&yreal);
6947: for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
6948: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
6949: PetscFree(yreal);
6950: }
6951: #else
6952: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
6953: #endif
6954: VecRestoreArrayRead(y,&yy);
6955: VecDestroy(&y);
6956: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
6957: PetscDrawLGDraw(ctx->lg);
6958: PetscDrawLGSave(ctx->lg);
6959: }
6960: return(0);
6961: }
6963: /*@C
6964: TSMonitorSPSwarmSolution - Graphically displays phase plots of DMSwarm particles on a scatter plot
6966: Input Parameters:
6967: + ts - the TS context
6968: . step - current time-step
6969: . ptime - current time
6970: . u - current solution
6971: - dctx - the TSMonitorSPCtx object that contains all the options for the monitoring, this is created with TSMonitorSPCtxCreate()
6973: Options Database:
6974: . -ts_monitor_sp_swarm
6976: Level: intermediate
6978: .keywords: TS, vector, monitor, view, swarm
6979: @*/
6980: PetscErrorCode TSMonitorSPSwarmSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
6981: {
6982: PetscErrorCode ierr;
6983: TSMonitorSPCtx ctx = (TSMonitorSPCtx)dctx;
6984: const PetscScalar *yy;
6985: PetscReal *y,*x;
6986: PetscInt Np, p, dim=2;
6987: DM dm;
6990:
6991: if (step < 0) return(0); /* -1 indicates interpolated solution */
6992: if (!step) {
6993: PetscDrawAxis axis;
6994: PetscDrawSPGetAxis(ctx->sp,&axis);
6995: PetscDrawAxisSetLabels(axis,"Particles","X","Y");
6996: PetscDrawAxisSetLimits(axis, -5, 5, -5, 5);
6997: PetscDrawAxisSetHoldLimits(axis, PETSC_TRUE);
6998: TSGetDM(ts, &dm);
6999: DMGetDimension(dm, &dim);
7000: if(dim!=2) SETERRQ(PETSC_COMM_SELF, ierr, "Dimensions improper for monitor arguments! Current support: two dimensions.");
7001: VecGetLocalSize(u, &Np);
7002: Np /= 2*dim;
7003: PetscDrawSPSetDimension(ctx->sp, Np);
7004: PetscDrawSPReset(ctx->sp);
7005: }
7006:
7007: VecGetLocalSize(u, &Np);
7008: Np /= 2*dim;
7009: VecGetArrayRead(u,&yy);
7010: PetscMalloc2(Np, &x, Np, &y);
7011: /* get points from solution vector */
7012: for (p=0; p<Np; ++p){
7013: x[p] = PetscRealPart(yy[2*dim*p]);
7014: y[p] = PetscRealPart(yy[2*dim*p+1]);
7015: }
7016: VecRestoreArrayRead(u,&yy);
7017:
7018: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
7019: PetscDrawSPAddPoint(ctx->sp,x,y);
7020: PetscDrawSPDraw(ctx->sp,PETSC_FALSE);
7021: PetscDrawSPSave(ctx->sp);
7022: }
7024: PetscFree2(x, y);
7026: return(0);
7027: }
7031: /*@C
7032: TSMonitorError - Monitors progress of the TS solvers by printing the 2 norm of the error at each timestep
7034: Collective on TS
7036: Input Parameters:
7037: + ts - the TS context
7038: . step - current time-step
7039: . ptime - current time
7040: . u - current solution
7041: - dctx - unused context
7043: Level: intermediate
7045: The user must provide the solution using TSSetSolutionFunction() to use this monitor.
7047: Options Database Keys:
7048: . -ts_monitor_error - create a graphical monitor of error history
7050: .keywords: TS, vector, monitor, view
7052: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
7053: @*/
7054: PetscErrorCode TSMonitorError(TS ts,PetscInt step,PetscReal ptime,Vec u,PetscViewerAndFormat *vf)
7055: {
7056: PetscErrorCode ierr;
7057: Vec y;
7058: PetscReal nrm;
7059: PetscBool flg;
7062: VecDuplicate(u,&y);
7063: TSComputeSolutionFunction(ts,ptime,y);
7064: VecAXPY(y,-1.0,u);
7065: PetscObjectTypeCompare((PetscObject)vf->viewer,PETSCVIEWERASCII,&flg);
7066: if (flg) {
7067: VecNorm(y,NORM_2,&nrm);
7068: PetscViewerASCIIPrintf(vf->viewer,"2-norm of error %g\n",(double)nrm);
7069: }
7070: PetscObjectTypeCompare((PetscObject)vf->viewer,PETSCVIEWERDRAW,&flg);
7071: if (flg) {
7072: VecView(y,vf->viewer);
7073: }
7074: VecDestroy(&y);
7075: return(0);
7076: }
7078: PetscErrorCode TSMonitorLGSNESIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
7079: {
7080: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
7081: PetscReal x = ptime,y;
7083: PetscInt its;
7086: if (n < 0) return(0); /* -1 indicates interpolated solution */
7087: if (!n) {
7088: PetscDrawAxis axis;
7089: PetscDrawLGGetAxis(ctx->lg,&axis);
7090: PetscDrawAxisSetLabels(axis,"Nonlinear iterations as function of time","Time","SNES Iterations");
7091: PetscDrawLGReset(ctx->lg);
7092: ctx->snes_its = 0;
7093: }
7094: TSGetSNESIterations(ts,&its);
7095: y = its - ctx->snes_its;
7096: PetscDrawLGAddPoint(ctx->lg,&x,&y);
7097: if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
7098: PetscDrawLGDraw(ctx->lg);
7099: PetscDrawLGSave(ctx->lg);
7100: }
7101: ctx->snes_its = its;
7102: return(0);
7103: }
7105: PetscErrorCode TSMonitorLGKSPIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
7106: {
7107: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
7108: PetscReal x = ptime,y;
7110: PetscInt its;
7113: if (n < 0) return(0); /* -1 indicates interpolated solution */
7114: if (!n) {
7115: PetscDrawAxis axis;
7116: PetscDrawLGGetAxis(ctx->lg,&axis);
7117: PetscDrawAxisSetLabels(axis,"Linear iterations as function of time","Time","KSP Iterations");
7118: PetscDrawLGReset(ctx->lg);
7119: ctx->ksp_its = 0;
7120: }
7121: TSGetKSPIterations(ts,&its);
7122: y = its - ctx->ksp_its;
7123: PetscDrawLGAddPoint(ctx->lg,&x,&y);
7124: if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
7125: PetscDrawLGDraw(ctx->lg);
7126: PetscDrawLGSave(ctx->lg);
7127: }
7128: ctx->ksp_its = its;
7129: return(0);
7130: }
7132: /*@
7133: TSComputeLinearStability - computes the linear stability function at a point
7135: Collective on TS and Vec
7137: Input Parameters:
7138: + ts - the TS context
7139: - xr,xi - real and imaginary part of input arguments
7141: Output Parameters:
7142: . yr,yi - real and imaginary part of function value
7144: Level: developer
7146: .keywords: TS, compute
7148: .seealso: TSSetRHSFunction(), TSComputeIFunction()
7149: @*/
7150: PetscErrorCode TSComputeLinearStability(TS ts,PetscReal xr,PetscReal xi,PetscReal *yr,PetscReal *yi)
7151: {
7156: if (!ts->ops->linearstability) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Linearized stability function not provided for this method");
7157: (*ts->ops->linearstability)(ts,xr,xi,yr,yi);
7158: return(0);
7159: }
7161: /* ------------------------------------------------------------------------*/
7162: /*@C
7163: TSMonitorEnvelopeCtxCreate - Creates a context for use with TSMonitorEnvelope()
7165: Collective on TS
7167: Input Parameters:
7168: . ts - the ODE solver object
7170: Output Parameter:
7171: . ctx - the context
7173: Level: intermediate
7175: .keywords: TS, monitor, line graph, residual, seealso
7177: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError()
7179: @*/
7180: PetscErrorCode TSMonitorEnvelopeCtxCreate(TS ts,TSMonitorEnvelopeCtx *ctx)
7181: {
7185: PetscNew(ctx);
7186: return(0);
7187: }
7189: /*@C
7190: TSMonitorEnvelope - Monitors the maximum and minimum value of each component of the solution
7192: Collective on TS
7194: Input Parameters:
7195: + ts - the TS context
7196: . step - current time-step
7197: . ptime - current time
7198: . u - current solution
7199: - dctx - the envelope context
7201: Options Database:
7202: . -ts_monitor_envelope
7204: Level: intermediate
7206: Notes:
7207: after a solve you can use TSMonitorEnvelopeGetBounds() to access the envelope
7209: .keywords: TS, vector, monitor, view
7211: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxCreate()
7212: @*/
7213: PetscErrorCode TSMonitorEnvelope(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
7214: {
7215: PetscErrorCode ierr;
7216: TSMonitorEnvelopeCtx ctx = (TSMonitorEnvelopeCtx)dctx;
7219: if (!ctx->max) {
7220: VecDuplicate(u,&ctx->max);
7221: VecDuplicate(u,&ctx->min);
7222: VecCopy(u,ctx->max);
7223: VecCopy(u,ctx->min);
7224: } else {
7225: VecPointwiseMax(ctx->max,u,ctx->max);
7226: VecPointwiseMin(ctx->min,u,ctx->min);
7227: }
7228: return(0);
7229: }
7231: /*@C
7232: TSMonitorEnvelopeGetBounds - Gets the bounds for the components of the solution
7234: Collective on TS
7236: Input Parameter:
7237: . ts - the TS context
7239: Output Parameter:
7240: + max - the maximum values
7241: - min - the minimum values
7243: Notes:
7244: If the TS does not have a TSMonitorEnvelopeCtx associated with it then this function is ignored
7246: Level: intermediate
7248: .keywords: TS, vector, monitor, view
7250: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables()
7251: @*/
7252: PetscErrorCode TSMonitorEnvelopeGetBounds(TS ts,Vec *max,Vec *min)
7253: {
7254: PetscInt i;
7257: if (max) *max = NULL;
7258: if (min) *min = NULL;
7259: for (i=0; i<ts->numbermonitors; i++) {
7260: if (ts->monitor[i] == TSMonitorEnvelope) {
7261: TSMonitorEnvelopeCtx ctx = (TSMonitorEnvelopeCtx) ts->monitorcontext[i];
7262: if (max) *max = ctx->max;
7263: if (min) *min = ctx->min;
7264: break;
7265: }
7266: }
7267: return(0);
7268: }
7270: /*@C
7271: TSMonitorEnvelopeCtxDestroy - Destroys a context that was created with TSMonitorEnvelopeCtxCreate().
7273: Collective on TSMonitorEnvelopeCtx
7275: Input Parameter:
7276: . ctx - the monitor context
7278: Level: intermediate
7280: .keywords: TS, monitor, line graph, destroy
7282: .seealso: TSMonitorLGCtxCreate(), TSMonitorSet(), TSMonitorLGTimeStep()
7283: @*/
7284: PetscErrorCode TSMonitorEnvelopeCtxDestroy(TSMonitorEnvelopeCtx *ctx)
7285: {
7289: VecDestroy(&(*ctx)->min);
7290: VecDestroy(&(*ctx)->max);
7291: PetscFree(*ctx);
7292: return(0);
7293: }
7295: /*@
7296: TSRestartStep - Flags the solver to restart the next step
7298: Collective on TS
7300: Input Parameter:
7301: . ts - the TS context obtained from TSCreate()
7303: Level: advanced
7305: Notes:
7306: Multistep methods like BDF or Runge-Kutta methods with FSAL property require restarting the solver in the event of
7307: discontinuities. These discontinuities may be introduced as a consequence of explicitly modifications to the solution
7308: vector (which PETSc attempts to detect and handle) or problem coefficients (which PETSc is not able to detect). For
7309: the sake of correctness and maximum safety, users are expected to call TSRestart() whenever they introduce
7310: discontinuities in callback routines (e.g. prestep and poststep routines, or implicit/rhs function routines with
7311: discontinuous source terms).
7313: .keywords: TS, timestep, restart
7315: .seealso: TSSolve(), TSSetPreStep(), TSSetPostStep()
7316: @*/
7317: PetscErrorCode TSRestartStep(TS ts)
7318: {
7321: ts->steprestart = PETSC_TRUE;
7322: return(0);
7323: }
7325: /*@
7326: TSRollBack - Rolls back one time step
7328: Collective on TS
7330: Input Parameter:
7331: . ts - the TS context obtained from TSCreate()
7333: Level: advanced
7335: .keywords: TS, timestep, rollback
7337: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSInterpolate()
7338: @*/
7339: PetscErrorCode TSRollBack(TS ts)
7340: {
7345: if (ts->steprollback) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"TSRollBack already called");
7346: if (!ts->ops->rollback) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSRollBack not implemented for type '%s'",((PetscObject)ts)->type_name);
7347: (*ts->ops->rollback)(ts);
7348: ts->time_step = ts->ptime - ts->ptime_prev;
7349: ts->ptime = ts->ptime_prev;
7350: ts->ptime_prev = ts->ptime_prev_rollback;
7351: ts->steps--;
7352: ts->steprollback = PETSC_TRUE;
7353: return(0);
7354: }
7356: /*@
7357: TSGetStages - Get the number of stages and stage values
7359: Input Parameter:
7360: . ts - the TS context obtained from TSCreate()
7362: Output Parameters:
7363: + ns - the number of stages
7364: - Y - the current stage vectors
7366: Level: advanced
7368: Notes: Both ns and Y can be NULL.
7370: .keywords: TS, getstages
7372: .seealso: TSCreate()
7373: @*/
7374: PetscErrorCode TSGetStages(TS ts,PetscInt *ns,Vec **Y)
7375: {
7382: if (!ts->ops->getstages) {
7383: if (ns) *ns = 0;
7384: if (Y) *Y = NULL;
7385: } else {
7386: (*ts->ops->getstages)(ts,ns,Y);
7387: }
7388: return(0);
7389: }
7391: /*@C
7392: TSComputeIJacobianDefaultColor - Computes the Jacobian using finite differences and coloring to exploit matrix sparsity.
7394: Collective on SNES
7396: Input Parameters:
7397: + ts - the TS context
7398: . t - current timestep
7399: . U - state vector
7400: . Udot - time derivative of state vector
7401: . shift - shift to apply, see note below
7402: - ctx - an optional user context
7404: Output Parameters:
7405: + J - Jacobian matrix (not altered in this routine)
7406: - B - newly computed Jacobian matrix to use with preconditioner (generally the same as J)
7408: Level: intermediate
7410: Notes:
7411: If F(t,U,Udot)=0 is the DAE, the required Jacobian is
7413: dF/dU + shift*dF/dUdot
7415: Most users should not need to explicitly call this routine, as it
7416: is used internally within the nonlinear solvers.
7418: This will first try to get the coloring from the DM. If the DM type has no coloring
7419: routine, then it will try to get the coloring from the matrix. This requires that the
7420: matrix have nonzero entries precomputed.
7422: .keywords: TS, finite differences, Jacobian, coloring, sparse
7423: .seealso: TSSetIJacobian(), MatFDColoringCreate(), MatFDColoringSetFunction()
7424: @*/
7425: PetscErrorCode TSComputeIJacobianDefaultColor(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat J,Mat B,void *ctx)
7426: {
7427: SNES snes;
7428: MatFDColoring color;
7429: PetscBool hascolor, matcolor = PETSC_FALSE;
7433: PetscOptionsGetBool(((PetscObject)ts)->options,((PetscObject) ts)->prefix, "-ts_fd_color_use_mat", &matcolor, NULL);
7434: PetscObjectQuery((PetscObject) B, "TSMatFDColoring", (PetscObject *) &color);
7435: if (!color) {
7436: DM dm;
7437: ISColoring iscoloring;
7439: TSGetDM(ts, &dm);
7440: DMHasColoring(dm, &hascolor);
7441: if (hascolor && !matcolor) {
7442: DMCreateColoring(dm, IS_COLORING_GLOBAL, &iscoloring);
7443: MatFDColoringCreate(B, iscoloring, &color);
7444: MatFDColoringSetFunction(color, (PetscErrorCode (*)(void)) SNESTSFormFunction, (void *) ts);
7445: MatFDColoringSetFromOptions(color);
7446: MatFDColoringSetUp(B, iscoloring, color);
7447: ISColoringDestroy(&iscoloring);
7448: } else {
7449: MatColoring mc;
7451: MatColoringCreate(B, &mc);
7452: MatColoringSetDistance(mc, 2);
7453: MatColoringSetType(mc, MATCOLORINGSL);
7454: MatColoringSetFromOptions(mc);
7455: MatColoringApply(mc, &iscoloring);
7456: MatColoringDestroy(&mc);
7457: MatFDColoringCreate(B, iscoloring, &color);
7458: MatFDColoringSetFunction(color, (PetscErrorCode (*)(void)) SNESTSFormFunction, (void *) ts);
7459: MatFDColoringSetFromOptions(color);
7460: MatFDColoringSetUp(B, iscoloring, color);
7461: ISColoringDestroy(&iscoloring);
7462: }
7463: PetscObjectCompose((PetscObject) B, "TSMatFDColoring", (PetscObject) color);
7464: PetscObjectDereference((PetscObject) color);
7465: }
7466: TSGetSNES(ts, &snes);
7467: MatFDColoringApply(B, color, U, snes);
7468: if (J != B) {
7469: MatAssemblyBegin(J, MAT_FINAL_ASSEMBLY);
7470: MatAssemblyEnd(J, MAT_FINAL_ASSEMBLY);
7471: }
7472: return(0);
7473: }
7475: /*@
7476: TSSetFunctionDomainError - Set the function testing if the current state vector is valid
7478: Input Parameters:
7479: ts - the TS context
7480: func - function called within TSFunctionDomainError
7482: Level: intermediate
7484: .keywords: TS, state, domain
7485: .seealso: TSAdaptCheckStage(), TSFunctionDomainError()
7486: @*/
7488: PetscErrorCode TSSetFunctionDomainError(TS ts, PetscErrorCode (*func)(TS,PetscReal,Vec,PetscBool*))
7489: {
7492: ts->functiondomainerror = func;
7493: return(0);
7494: }
7496: /*@
7497: TSFunctionDomainError - Check if the current state is valid
7499: Input Parameters:
7500: ts - the TS context
7501: stagetime - time of the simulation
7502: Y - state vector to check.
7504: Output Parameter:
7505: accept - Set to PETSC_FALSE if the current state vector is valid.
7507: Note:
7508: This function should be used to ensure the state is in a valid part of the space.
7509: For example, one can ensure here all values are positive.
7511: Level: advanced
7512: @*/
7513: PetscErrorCode TSFunctionDomainError(TS ts,PetscReal stagetime,Vec Y,PetscBool* accept)
7514: {
7517: *accept = PETSC_TRUE;
7518: if (ts->functiondomainerror) {
7519: PetscStackCallStandard((*ts->functiondomainerror),(ts,stagetime,Y,accept));
7520: }
7521: return(0);
7522: }
7524: /*@C
7525: TSClone - This function clones a time step object.
7527: Collective on MPI_Comm
7529: Input Parameter:
7530: . tsin - The input TS
7532: Output Parameter:
7533: . tsout - The output TS (cloned)
7535: Notes:
7536: This function is used to create a clone of a TS object. It is used in ARKIMEX for initializing the slope for first stage explicit methods. It will likely be replaced in the future with a mechanism of switching methods on the fly.
7538: When using TSDestroy() on a clone the user has to first reset the correct TS reference in the embedded SNES object: e.g.: by running SNES snes_dup=NULL; TSGetSNES(ts,&snes_dup); TSSetSNES(ts,snes_dup);
7540: Level: developer
7542: .keywords: TS, clone
7543: .seealso: TSCreate(), TSSetType(), TSSetUp(), TSDestroy(), TSSetProblemType()
7544: @*/
7545: PetscErrorCode TSClone(TS tsin, TS *tsout)
7546: {
7547: TS t;
7549: SNES snes_start;
7550: DM dm;
7551: TSType type;
7555: *tsout = NULL;
7557: PetscHeaderCreate(t, TS_CLASSID, "TS", "Time stepping", "TS", PetscObjectComm((PetscObject)tsin), TSDestroy, TSView);
7559: /* General TS description */
7560: t->numbermonitors = 0;
7561: t->setupcalled = 0;
7562: t->ksp_its = 0;
7563: t->snes_its = 0;
7564: t->nwork = 0;
7565: t->rhsjacobian.time = -1e20;
7566: t->rhsjacobian.scale = 1.;
7567: t->ijacobian.shift = 1.;
7569: TSGetSNES(tsin,&snes_start);
7570: TSSetSNES(t,snes_start);
7572: TSGetDM(tsin,&dm);
7573: TSSetDM(t,dm);
7575: t->adapt = tsin->adapt;
7576: PetscObjectReference((PetscObject)t->adapt);
7578: t->trajectory = tsin->trajectory;
7579: PetscObjectReference((PetscObject)t->trajectory);
7581: t->event = tsin->event;
7582: if (t->event) t->event->refct++;
7584: t->problem_type = tsin->problem_type;
7585: t->ptime = tsin->ptime;
7586: t->ptime_prev = tsin->ptime_prev;
7587: t->time_step = tsin->time_step;
7588: t->max_time = tsin->max_time;
7589: t->steps = tsin->steps;
7590: t->max_steps = tsin->max_steps;
7591: t->equation_type = tsin->equation_type;
7592: t->atol = tsin->atol;
7593: t->rtol = tsin->rtol;
7594: t->max_snes_failures = tsin->max_snes_failures;
7595: t->max_reject = tsin->max_reject;
7596: t->errorifstepfailed = tsin->errorifstepfailed;
7598: TSGetType(tsin,&type);
7599: TSSetType(t,type);
7601: t->vec_sol = NULL;
7603: t->cfltime = tsin->cfltime;
7604: t->cfltime_local = tsin->cfltime_local;
7605: t->exact_final_time = tsin->exact_final_time;
7607: PetscMemcpy(t->ops,tsin->ops,sizeof(struct _TSOps));
7609: if (((PetscObject)tsin)->fortran_func_pointers) {
7610: PetscInt i;
7611: PetscMalloc((10)*sizeof(void(*)(void)),&((PetscObject)t)->fortran_func_pointers);
7612: for (i=0; i<10; i++) {
7613: ((PetscObject)t)->fortran_func_pointers[i] = ((PetscObject)tsin)->fortran_func_pointers[i];
7614: }
7615: }
7616: *tsout = t;
7617: return(0);
7618: }
7620: static PetscErrorCode RHSWrapperFunction_TSRHSJacobianTest(void* ctx,Vec x,Vec y)
7621: {
7623: TS ts = (TS) ctx;
7626: TSComputeRHSFunction(ts,0,x,y);
7627: return(0);
7628: }
7630: /*@
7631: TSRHSJacobianTest - Compares the multiply routine provided to the MATSHELL with differencing on the TS given RHS function.
7633: Logically Collective on TS and Mat
7635: Input Parameters:
7636: TS - the time stepping routine
7638: Output Parameter:
7639: . flg - PETSC_TRUE if the multiply is likely correct
7641: Options Database:
7642: . -ts_rhs_jacobian_test_mult -mat_shell_test_mult_view - run the test at each timestep of the integrator
7644: Level: advanced
7646: Notes:
7647: This only works for problems defined only the RHS function and Jacobian NOT IFunction and IJacobian
7649: .seealso: MatCreateShell(), MatShellGetContext(), MatShellGetOperation(), MatShellTestMultTranspose(), TSRHSJacobianTestTranspose()
7650: @*/
7651: PetscErrorCode TSRHSJacobianTest(TS ts,PetscBool *flg)
7652: {
7653: Mat J,B;
7655: TSRHSJacobian func;
7656: void* ctx;
7659: TSGetRHSJacobian(ts,&J,&B,&func,&ctx);
7660: (*func)(ts,0.0,ts->vec_sol,J,B,ctx);
7661: MatShellTestMult(J,RHSWrapperFunction_TSRHSJacobianTest,ts->vec_sol,ts,flg);
7662: return(0);
7663: }
7665: /*@C
7666: TSRHSJacobianTestTranspose - Compares the multiply transpose routine provided to the MATSHELL with differencing on the TS given RHS function.
7668: Logically Collective on TS and Mat
7670: Input Parameters:
7671: TS - the time stepping routine
7673: Output Parameter:
7674: . flg - PETSC_TRUE if the multiply is likely correct
7676: Options Database:
7677: . -ts_rhs_jacobian_test_mult_transpose -mat_shell_test_mult_transpose_view - run the test at each timestep of the integrator
7679: Notes:
7680: This only works for problems defined only the RHS function and Jacobian NOT IFunction and IJacobian
7682: Level: advanced
7684: .seealso: MatCreateShell(), MatShellGetContext(), MatShellGetOperation(), MatShellTestMultTranspose(), TSRHSJacobianTest()
7685: @*/
7686: PetscErrorCode TSRHSJacobianTestTranspose(TS ts,PetscBool *flg)
7687: {
7688: Mat J,B;
7690: void *ctx;
7691: TSRHSJacobian func;
7694: TSGetRHSJacobian(ts,&J,&B,&func,&ctx);
7695: (*func)(ts,0.0,ts->vec_sol,J,B,ctx);
7696: MatShellTestMultTranspose(J,RHSWrapperFunction_TSRHSJacobianTest,ts->vec_sol,ts,flg);
7697: return(0);
7698: }