Actual source code: da3.c
petsc-3.11.4 2019-09-28
2: /*
3: Code for manipulating distributed regular 3d arrays in parallel.
4: File created by Peter Mell 7/14/95
5: */
7: #include <petsc/private/dmdaimpl.h>
9: #include <petscdraw.h>
10: static PetscErrorCode DMView_DA_3d(DM da,PetscViewer viewer)
11: {
13: PetscMPIInt rank;
14: PetscBool iascii,isdraw,isglvis,isbinary;
15: DM_DA *dd = (DM_DA*)da->data;
16: #if defined(PETSC_HAVE_MATLAB_ENGINE)
17: PetscBool ismatlab;
18: #endif
21: MPI_Comm_rank(PetscObjectComm((PetscObject)da),&rank);
23: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
24: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
25: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERGLVIS,&isglvis);
26: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
27: #if defined(PETSC_HAVE_MATLAB_ENGINE)
28: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERMATLAB,&ismatlab);
29: #endif
30: if (iascii) {
31: PetscViewerFormat format;
33: PetscViewerASCIIPushSynchronized(viewer);
34: PetscViewerGetFormat(viewer, &format);
35: if (format == PETSC_VIEWER_LOAD_BALANCE) {
36: PetscInt i,nmax = 0,nmin = PETSC_MAX_INT,navg = 0,*nz,nzlocal;
37: DMDALocalInfo info;
38: PetscMPIInt size;
39: MPI_Comm_size(PetscObjectComm((PetscObject)da),&size);
40: DMDAGetLocalInfo(da,&info);
41: nzlocal = info.xm*info.ym*info.zm;
42: PetscMalloc1(size,&nz);
43: MPI_Allgather(&nzlocal,1,MPIU_INT,nz,1,MPIU_INT,PetscObjectComm((PetscObject)da));
44: for (i=0; i<(PetscInt)size; i++) {
45: nmax = PetscMax(nmax,nz[i]);
46: nmin = PetscMin(nmin,nz[i]);
47: navg += nz[i];
48: }
49: PetscFree(nz);
50: navg = navg/size;
51: PetscViewerASCIIPrintf(viewer," Load Balance - Grid Points: Min %D avg %D max %D\n",nmin,navg,nmax);
52: return(0);
53: }
54: if (format != PETSC_VIEWER_ASCII_VTK && format != PETSC_VIEWER_ASCII_VTK_CELL && format != PETSC_VIEWER_ASCII_GLVIS) {
55: DMDALocalInfo info;
56: DMDAGetLocalInfo(da,&info);
57: PetscViewerASCIISynchronizedPrintf(viewer,"Processor [%d] M %D N %D P %D m %D n %D p %D w %D s %D\n",rank,dd->M,dd->N,dd->P,dd->m,dd->n,dd->p,dd->w,dd->s);
58: PetscViewerASCIISynchronizedPrintf(viewer,"X range of indices: %D %D, Y range of indices: %D %D, Z range of indices: %D %D\n",
59: info.xs,info.xs+info.xm,info.ys,info.ys+info.ym,info.zs,info.zs+info.zm);
60: #if !defined(PETSC_USE_COMPLEX)
61: if (da->coordinates) {
62: PetscInt last;
63: const PetscReal *coors;
64: VecGetArrayRead(da->coordinates,&coors);
65: VecGetLocalSize(da->coordinates,&last);
66: last = last - 3;
67: PetscViewerASCIISynchronizedPrintf(viewer,"Lower left corner %g %g %g : Upper right %g %g %g\n",(double)coors[0],(double)coors[1],(double)coors[2],(double)coors[last],(double)coors[last+1],(double)coors[last+2]);
68: VecRestoreArrayRead(da->coordinates,&coors);
69: }
70: #endif
71: PetscViewerFlush(viewer);
72: PetscViewerASCIIPopSynchronized(viewer);
73: } else if (format == PETSC_VIEWER_ASCII_GLVIS) {
74: DMView_DA_GLVis(da,viewer);
75: } else {
76: DMView_DA_VTK(da,viewer);
77: }
78: } else if (isdraw) {
79: PetscDraw draw;
80: PetscReal ymin = -1.0,ymax = (PetscReal)dd->N;
81: PetscReal xmin = -1.0,xmax = (PetscReal)((dd->M+2)*dd->P),x,y,ycoord,xcoord;
82: PetscInt k,plane,base;
83: const PetscInt *idx;
84: char node[10];
85: PetscBool isnull;
87: PetscViewerDrawGetDraw(viewer,0,&draw);
88: PetscDrawIsNull(draw,&isnull);
89: if (isnull) return(0);
91: PetscDrawCheckResizedWindow(draw);
92: PetscDrawClear(draw);
93: PetscDrawSetCoordinates(draw,xmin,ymin,xmax,ymax);
95: PetscDrawCollectiveBegin(draw);
96: /* first processor draw all node lines */
97: if (!rank) {
98: for (k=0; k<dd->P; k++) {
99: ymin = 0.0; ymax = (PetscReal)(dd->N - 1);
100: for (xmin=(PetscReal)(k*(dd->M+1)); xmin<(PetscReal)(dd->M+(k*(dd->M+1))); xmin++) {
101: PetscDrawLine(draw,xmin,ymin,xmin,ymax,PETSC_DRAW_BLACK);
102: }
103: xmin = (PetscReal)(k*(dd->M+1)); xmax = xmin + (PetscReal)(dd->M - 1);
104: for (ymin=0; ymin<(PetscReal)dd->N; ymin++) {
105: PetscDrawLine(draw,xmin,ymin,xmax,ymin,PETSC_DRAW_BLACK);
106: }
107: }
108: }
109: PetscDrawCollectiveEnd(draw);
110: PetscDrawFlush(draw);
111: PetscDrawPause(draw);
113: PetscDrawCollectiveBegin(draw);
114: /*Go through and draw for each plane*/
115: for (k=0; k<dd->P; k++) {
116: if ((k >= dd->zs) && (k < dd->ze)) {
117: /* draw my box */
118: ymin = dd->ys;
119: ymax = dd->ye - 1;
120: xmin = dd->xs/dd->w + (dd->M+1)*k;
121: xmax =(dd->xe-1)/dd->w + (dd->M+1)*k;
123: PetscDrawLine(draw,xmin,ymin,xmax,ymin,PETSC_DRAW_RED);
124: PetscDrawLine(draw,xmin,ymin,xmin,ymax,PETSC_DRAW_RED);
125: PetscDrawLine(draw,xmin,ymax,xmax,ymax,PETSC_DRAW_RED);
126: PetscDrawLine(draw,xmax,ymin,xmax,ymax,PETSC_DRAW_RED);
128: xmin = dd->xs/dd->w;
129: xmax =(dd->xe-1)/dd->w;
131: /* identify which processor owns the box */
132: PetscSNPrintf(node,sizeof(node),"%d",(int)rank);
133: PetscDrawString(draw,xmin+(dd->M+1)*k+.2,ymin+.3,PETSC_DRAW_RED,node);
134: /* put in numbers*/
135: base = (dd->base+(dd->xe-dd->xs)*(dd->ye-dd->ys)*(k-dd->zs))/dd->w;
136: for (y=ymin; y<=ymax; y++) {
137: for (x=xmin+(dd->M+1)*k; x<=xmax+(dd->M+1)*k; x++) {
138: PetscSNPrintf(node,sizeof(node),"%d",(int)base++);
139: PetscDrawString(draw,x,y,PETSC_DRAW_BLACK,node);
140: }
141: }
143: }
144: }
145: PetscDrawCollectiveEnd(draw);
146: PetscDrawFlush(draw);
147: PetscDrawPause(draw);
149: PetscDrawCollectiveBegin(draw);
150: for (k=0-dd->s; k<dd->P+dd->s; k++) {
151: /* Go through and draw for each plane */
152: if ((k >= dd->Zs) && (k < dd->Ze)) {
153: /* overlay ghost numbers, useful for error checking */
154: base = (dd->Xe-dd->Xs)*(dd->Ye-dd->Ys)*(k-dd->Zs)/dd->w;
155: ISLocalToGlobalMappingGetBlockIndices(da->ltogmap,&idx);
156: plane=k;
157: /* Keep z wrap around points on the drawing */
158: if (k<0) plane=dd->P+k;
159: if (k>=dd->P) plane=k-dd->P;
160: ymin = dd->Ys; ymax = dd->Ye;
161: xmin = (dd->M+1)*plane*dd->w;
162: xmax = (dd->M+1)*plane*dd->w+dd->M*dd->w;
163: for (y=ymin; y<ymax; y++) {
164: for (x=xmin+dd->Xs; x<xmin+dd->Xe; x+=dd->w) {
165: sprintf(node,"%d",(int)(idx[base]));
166: ycoord = y;
167: /*Keep y wrap around points on drawing */
168: if (y<0) ycoord = dd->N+y;
169: if (y>=dd->N) ycoord = y-dd->N;
170: xcoord = x; /* Keep x wrap points on drawing */
171: if (x<xmin) xcoord = xmax - (xmin-x);
172: if (x>=xmax) xcoord = xmin + (x-xmax);
173: PetscDrawString(draw,xcoord/dd->w,ycoord,PETSC_DRAW_BLUE,node);
174: base++;
175: }
176: }
177: ISLocalToGlobalMappingRestoreBlockIndices(da->ltogmap,&idx);
178: }
179: }
180: PetscDrawCollectiveEnd(draw);
181: PetscDrawFlush(draw);
182: PetscDrawPause(draw);
183: PetscDrawSave(draw);
184: } else if (isglvis) {
185: DMView_DA_GLVis(da,viewer);
186: } else if (isbinary) {
187: DMView_DA_Binary(da,viewer);
188: #if defined(PETSC_HAVE_MATLAB_ENGINE)
189: } else if (ismatlab) {
190: DMView_DA_Matlab(da,viewer);
191: #endif
192: }
193: return(0);
194: }
196: PetscErrorCode DMSetUp_DA_3D(DM da)
197: {
198: DM_DA *dd = (DM_DA*)da->data;
199: const PetscInt M = dd->M;
200: const PetscInt N = dd->N;
201: const PetscInt P = dd->P;
202: PetscInt m = dd->m;
203: PetscInt n = dd->n;
204: PetscInt p = dd->p;
205: const PetscInt dof = dd->w;
206: const PetscInt s = dd->s;
207: DMBoundaryType bx = dd->bx;
208: DMBoundaryType by = dd->by;
209: DMBoundaryType bz = dd->bz;
210: DMDAStencilType stencil_type = dd->stencil_type;
211: PetscInt *lx = dd->lx;
212: PetscInt *ly = dd->ly;
213: PetscInt *lz = dd->lz;
214: MPI_Comm comm;
215: PetscMPIInt rank,size;
216: PetscInt xs = 0,xe,ys = 0,ye,zs = 0,ze,x = 0,y = 0,z = 0;
217: PetscInt Xs,Xe,Ys,Ye,Zs,Ze,IXs,IXe,IYs,IYe,IZs,IZe,pm;
218: PetscInt left,right,up,down,bottom,top,i,j,k,*idx,nn;
219: PetscInt n0,n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,n14;
220: PetscInt n15,n16,n17,n18,n19,n20,n21,n22,n23,n24,n25,n26;
221: PetscInt *bases,*ldims,base,x_t,y_t,z_t,s_t,count,s_x,s_y,s_z;
222: PetscInt sn0 = 0,sn1 = 0,sn2 = 0,sn3 = 0,sn5 = 0,sn6 = 0,sn7 = 0;
223: PetscInt sn8 = 0,sn9 = 0,sn11 = 0,sn15 = 0,sn24 = 0,sn25 = 0,sn26 = 0;
224: PetscInt sn17 = 0,sn18 = 0,sn19 = 0,sn20 = 0,sn21 = 0,sn23 = 0;
225: Vec local,global;
226: VecScatter gtol;
227: IS to,from;
228: PetscBool twod;
229: PetscErrorCode ierr;
233: if (stencil_type == DMDA_STENCIL_BOX && (bx == DM_BOUNDARY_MIRROR || by == DM_BOUNDARY_MIRROR || bz == DM_BOUNDARY_MIRROR)) SETERRQ(PetscObjectComm((PetscObject)da),PETSC_ERR_SUP,"Mirror boundary and box stencil");
234: PetscObjectGetComm((PetscObject) da, &comm);
235: #if !defined(PETSC_USE_64BIT_INDICES)
236: if (((PetscInt64) M)*((PetscInt64) N)*((PetscInt64) P)*((PetscInt64) dof) > (PetscInt64) PETSC_MPI_INT_MAX) SETERRQ4(comm,PETSC_ERR_INT_OVERFLOW,"Mesh of %D by %D by %D by %D (dof) is too large for 32 bit indices",M,N,P,dof);
237: #endif
239: MPI_Comm_size(comm,&size);
240: MPI_Comm_rank(comm,&rank);
242: if (m != PETSC_DECIDE) {
243: if (m < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in X direction: %D",m);
244: else if (m > size) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in X direction: %D %d",m,size);
245: }
246: if (n != PETSC_DECIDE) {
247: if (n < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in Y direction: %D",n);
248: else if (n > size) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in Y direction: %D %d",n,size);
249: }
250: if (p != PETSC_DECIDE) {
251: if (p < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in Z direction: %D",p);
252: else if (p > size) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in Z direction: %D %d",p,size);
253: }
254: if ((m > 0) && (n > 0) && (p > 0) && (m*n*p != size)) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"m %D * n %D * p %D != size %d",m,n,p,size);
256: /* Partition the array among the processors */
257: if (m == PETSC_DECIDE && n != PETSC_DECIDE && p != PETSC_DECIDE) {
258: m = size/(n*p);
259: } else if (m != PETSC_DECIDE && n == PETSC_DECIDE && p != PETSC_DECIDE) {
260: n = size/(m*p);
261: } else if (m != PETSC_DECIDE && n != PETSC_DECIDE && p == PETSC_DECIDE) {
262: p = size/(m*n);
263: } else if (m == PETSC_DECIDE && n == PETSC_DECIDE && p != PETSC_DECIDE) {
264: /* try for squarish distribution */
265: m = (int)(0.5 + PetscSqrtReal(((PetscReal)M)*((PetscReal)size)/((PetscReal)N*p)));
266: if (!m) m = 1;
267: while (m > 0) {
268: n = size/(m*p);
269: if (m*n*p == size) break;
270: m--;
271: }
272: if (!m) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"bad p value: p = %D",p);
273: if (M > N && m < n) {PetscInt _m = m; m = n; n = _m;}
274: } else if (m == PETSC_DECIDE && n != PETSC_DECIDE && p == PETSC_DECIDE) {
275: /* try for squarish distribution */
276: m = (int)(0.5 + PetscSqrtReal(((PetscReal)M)*((PetscReal)size)/((PetscReal)P*n)));
277: if (!m) m = 1;
278: while (m > 0) {
279: p = size/(m*n);
280: if (m*n*p == size) break;
281: m--;
282: }
283: if (!m) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"bad n value: n = %D",n);
284: if (M > P && m < p) {PetscInt _m = m; m = p; p = _m;}
285: } else if (m != PETSC_DECIDE && n == PETSC_DECIDE && p == PETSC_DECIDE) {
286: /* try for squarish distribution */
287: n = (int)(0.5 + PetscSqrtReal(((PetscReal)N)*((PetscReal)size)/((PetscReal)P*m)));
288: if (!n) n = 1;
289: while (n > 0) {
290: p = size/(m*n);
291: if (m*n*p == size) break;
292: n--;
293: }
294: if (!n) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"bad m value: m = %D",n);
295: if (N > P && n < p) {PetscInt _n = n; n = p; p = _n;}
296: } else if (m == PETSC_DECIDE && n == PETSC_DECIDE && p == PETSC_DECIDE) {
297: /* try for squarish distribution */
298: n = (PetscInt)(0.5 + PetscPowReal(((PetscReal)N*N)*((PetscReal)size)/((PetscReal)P*M),(PetscReal)(1./3.)));
299: if (!n) n = 1;
300: while (n > 0) {
301: pm = size/n;
302: if (n*pm == size) break;
303: n--;
304: }
305: if (!n) n = 1;
306: m = (PetscInt)(0.5 + PetscSqrtReal(((PetscReal)M)*((PetscReal)size)/((PetscReal)P*n)));
307: if (!m) m = 1;
308: while (m > 0) {
309: p = size/(m*n);
310: if (m*n*p == size) break;
311: m--;
312: }
313: if (M > P && m < p) {PetscInt _m = m; m = p; p = _m;}
314: } else if (m*n*p != size) SETERRQ(PetscObjectComm((PetscObject)da),PETSC_ERR_ARG_OUTOFRANGE,"Given Bad partition");
316: if (m*n*p != size) SETERRQ(PetscObjectComm((PetscObject)da),PETSC_ERR_PLIB,"Could not find good partition");
317: if (M < m) SETERRQ2(PetscObjectComm((PetscObject)da),PETSC_ERR_ARG_OUTOFRANGE,"Partition in x direction is too fine! %D %D",M,m);
318: if (N < n) SETERRQ2(PetscObjectComm((PetscObject)da),PETSC_ERR_ARG_OUTOFRANGE,"Partition in y direction is too fine! %D %D",N,n);
319: if (P < p) SETERRQ2(PetscObjectComm((PetscObject)da),PETSC_ERR_ARG_OUTOFRANGE,"Partition in z direction is too fine! %D %D",P,p);
321: /*
322: Determine locally owned region
323: [x, y, or z]s is the first local node number, [x, y, z] is the number of local nodes
324: */
326: if (!lx) {
327: PetscMalloc1(m, &dd->lx);
328: lx = dd->lx;
329: for (i=0; i<m; i++) lx[i] = M/m + ((M % m) > (i % m));
330: }
331: x = lx[rank % m];
332: xs = 0;
333: for (i=0; i<(rank%m); i++) xs += lx[i];
334: if ((x < s) && ((m > 1) || (bx == DM_BOUNDARY_PERIODIC))) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local x-width of domain x %D is smaller than stencil width s %D",x,s);
336: if (!ly) {
337: PetscMalloc1(n, &dd->ly);
338: ly = dd->ly;
339: for (i=0; i<n; i++) ly[i] = N/n + ((N % n) > (i % n));
340: }
341: y = ly[(rank % (m*n))/m];
342: if ((y < s) && ((n > 1) || (by == DM_BOUNDARY_PERIODIC))) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local y-width of domain y %D is smaller than stencil width s %D",y,s);
344: ys = 0;
345: for (i=0; i<(rank % (m*n))/m; i++) ys += ly[i];
347: if (!lz) {
348: PetscMalloc1(p, &dd->lz);
349: lz = dd->lz;
350: for (i=0; i<p; i++) lz[i] = P/p + ((P % p) > (i % p));
351: }
352: z = lz[rank/(m*n)];
354: /* note this is different than x- and y-, as we will handle as an important special
355: case when p=P=1 and DM_BOUNDARY_PERIODIC and s > z. This is to deal with 2D problems
356: in a 3D code. Additional code for this case is noted with "2d case" comments */
357: twod = PETSC_FALSE;
358: if (P == 1) twod = PETSC_TRUE;
359: else if ((z < s) && ((p > 1) || (bz == DM_BOUNDARY_PERIODIC))) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local z-width of domain z %D is smaller than stencil width s %D",z,s);
360: zs = 0;
361: for (i=0; i<(rank/(m*n)); i++) zs += lz[i];
362: ye = ys + y;
363: xe = xs + x;
364: ze = zs + z;
366: /* determine ghost region (Xs) and region scattered into (IXs) */
367: if (xs-s > 0) {
368: Xs = xs - s; IXs = xs - s;
369: } else {
370: if (bx) Xs = xs - s;
371: else Xs = 0;
372: IXs = 0;
373: }
374: if (xe+s <= M) {
375: Xe = xe + s; IXe = xe + s;
376: } else {
377: if (bx) {
378: Xs = xs - s; Xe = xe + s;
379: } else Xe = M;
380: IXe = M;
381: }
383: if (bx == DM_BOUNDARY_PERIODIC || bx == DM_BOUNDARY_MIRROR) {
384: IXs = xs - s;
385: IXe = xe + s;
386: Xs = xs - s;
387: Xe = xe + s;
388: }
390: if (ys-s > 0) {
391: Ys = ys - s; IYs = ys - s;
392: } else {
393: if (by) Ys = ys - s;
394: else Ys = 0;
395: IYs = 0;
396: }
397: if (ye+s <= N) {
398: Ye = ye + s; IYe = ye + s;
399: } else {
400: if (by) Ye = ye + s;
401: else Ye = N;
402: IYe = N;
403: }
405: if (by == DM_BOUNDARY_PERIODIC || by == DM_BOUNDARY_MIRROR) {
406: IYs = ys - s;
407: IYe = ye + s;
408: Ys = ys - s;
409: Ye = ye + s;
410: }
412: if (zs-s > 0) {
413: Zs = zs - s; IZs = zs - s;
414: } else {
415: if (bz) Zs = zs - s;
416: else Zs = 0;
417: IZs = 0;
418: }
419: if (ze+s <= P) {
420: Ze = ze + s; IZe = ze + s;
421: } else {
422: if (bz) Ze = ze + s;
423: else Ze = P;
424: IZe = P;
425: }
427: if (bz == DM_BOUNDARY_PERIODIC || bz == DM_BOUNDARY_MIRROR) {
428: IZs = zs - s;
429: IZe = ze + s;
430: Zs = zs - s;
431: Ze = ze + s;
432: }
434: /* Resize all X parameters to reflect w */
435: s_x = s;
436: s_y = s;
437: s_z = s;
439: /* determine starting point of each processor */
440: nn = x*y*z;
441: PetscMalloc2(size+1,&bases,size,&ldims);
442: MPI_Allgather(&nn,1,MPIU_INT,ldims,1,MPIU_INT,comm);
443: bases[0] = 0;
444: for (i=1; i<=size; i++) bases[i] = ldims[i-1];
445: for (i=1; i<=size; i++) bases[i] += bases[i-1];
446: base = bases[rank]*dof;
448: /* allocate the base parallel and sequential vectors */
449: dd->Nlocal = x*y*z*dof;
450: VecCreateMPIWithArray(comm,dof,dd->Nlocal,PETSC_DECIDE,NULL,&global);
451: dd->nlocal = (Xe-Xs)*(Ye-Ys)*(Ze-Zs)*dof;
452: VecCreateSeqWithArray(PETSC_COMM_SELF,dof,dd->nlocal,NULL,&local);
454: /* generate global to local vector scatter and local to global mapping*/
456: /* global to local must include ghost points within the domain,
457: but not ghost points outside the domain that aren't periodic */
458: PetscMalloc1((IXe-IXs)*(IYe-IYs)*(IZe-IZs),&idx);
459: if (stencil_type == DMDA_STENCIL_BOX) {
460: left = IXs - Xs; right = left + (IXe-IXs);
461: bottom = IYs - Ys; top = bottom + (IYe-IYs);
462: down = IZs - Zs; up = down + (IZe-IZs);
463: count = 0;
464: for (i=down; i<up; i++) {
465: for (j=bottom; j<top; j++) {
466: for (k=left; k<right; k++) {
467: idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
468: }
469: }
470: }
471: ISCreateBlock(comm,dof,count,idx,PETSC_OWN_POINTER,&to);
472: } else {
473: /* This is way ugly! We need to list the funny cross type region */
474: left = xs - Xs; right = left + x;
475: bottom = ys - Ys; top = bottom + y;
476: down = zs - Zs; up = down + z;
477: count = 0;
478: /* the bottom chunck */
479: for (i=(IZs-Zs); i<down; i++) {
480: for (j=bottom; j<top; j++) {
481: for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
482: }
483: }
484: /* the middle piece */
485: for (i=down; i<up; i++) {
486: /* front */
487: for (j=(IYs-Ys); j<bottom; j++) {
488: for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
489: }
490: /* middle */
491: for (j=bottom; j<top; j++) {
492: for (k=IXs-Xs; k<IXe-Xs; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
493: }
494: /* back */
495: for (j=top; j<top+IYe-ye; j++) {
496: for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
497: }
498: }
499: /* the top piece */
500: for (i=up; i<up+IZe-ze; i++) {
501: for (j=bottom; j<top; j++) {
502: for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
503: }
504: }
505: ISCreateBlock(comm,dof,count,idx,PETSC_OWN_POINTER,&to);
506: }
508: /* determine who lies on each side of use stored in n24 n25 n26
509: n21 n22 n23
510: n18 n19 n20
512: n15 n16 n17
513: n12 n14
514: n9 n10 n11
516: n6 n7 n8
517: n3 n4 n5
518: n0 n1 n2
519: */
521: /* Solve for X,Y, and Z Periodic Case First, Then Modify Solution */
522: /* Assume Nodes are Internal to the Cube */
523: n0 = rank - m*n - m - 1;
524: n1 = rank - m*n - m;
525: n2 = rank - m*n - m + 1;
526: n3 = rank - m*n -1;
527: n4 = rank - m*n;
528: n5 = rank - m*n + 1;
529: n6 = rank - m*n + m - 1;
530: n7 = rank - m*n + m;
531: n8 = rank - m*n + m + 1;
533: n9 = rank - m - 1;
534: n10 = rank - m;
535: n11 = rank - m + 1;
536: n12 = rank - 1;
537: n14 = rank + 1;
538: n15 = rank + m - 1;
539: n16 = rank + m;
540: n17 = rank + m + 1;
542: n18 = rank + m*n - m - 1;
543: n19 = rank + m*n - m;
544: n20 = rank + m*n - m + 1;
545: n21 = rank + m*n - 1;
546: n22 = rank + m*n;
547: n23 = rank + m*n + 1;
548: n24 = rank + m*n + m - 1;
549: n25 = rank + m*n + m;
550: n26 = rank + m*n + m + 1;
552: /* Assume Pieces are on Faces of Cube */
554: if (xs == 0) { /* First assume not corner or edge */
555: n0 = rank -1 - (m*n);
556: n3 = rank + m -1 - (m*n);
557: n6 = rank + 2*m -1 - (m*n);
558: n9 = rank -1;
559: n12 = rank + m -1;
560: n15 = rank + 2*m -1;
561: n18 = rank -1 + (m*n);
562: n21 = rank + m -1 + (m*n);
563: n24 = rank + 2*m -1 + (m*n);
564: }
566: if (xe == M) { /* First assume not corner or edge */
567: n2 = rank -2*m +1 - (m*n);
568: n5 = rank - m +1 - (m*n);
569: n8 = rank +1 - (m*n);
570: n11 = rank -2*m +1;
571: n14 = rank - m +1;
572: n17 = rank +1;
573: n20 = rank -2*m +1 + (m*n);
574: n23 = rank - m +1 + (m*n);
575: n26 = rank +1 + (m*n);
576: }
578: if (ys==0) { /* First assume not corner or edge */
579: n0 = rank + m * (n-1) -1 - (m*n);
580: n1 = rank + m * (n-1) - (m*n);
581: n2 = rank + m * (n-1) +1 - (m*n);
582: n9 = rank + m * (n-1) -1;
583: n10 = rank + m * (n-1);
584: n11 = rank + m * (n-1) +1;
585: n18 = rank + m * (n-1) -1 + (m*n);
586: n19 = rank + m * (n-1) + (m*n);
587: n20 = rank + m * (n-1) +1 + (m*n);
588: }
590: if (ye == N) { /* First assume not corner or edge */
591: n6 = rank - m * (n-1) -1 - (m*n);
592: n7 = rank - m * (n-1) - (m*n);
593: n8 = rank - m * (n-1) +1 - (m*n);
594: n15 = rank - m * (n-1) -1;
595: n16 = rank - m * (n-1);
596: n17 = rank - m * (n-1) +1;
597: n24 = rank - m * (n-1) -1 + (m*n);
598: n25 = rank - m * (n-1) + (m*n);
599: n26 = rank - m * (n-1) +1 + (m*n);
600: }
602: if (zs == 0) { /* First assume not corner or edge */
603: n0 = size - (m*n) + rank - m - 1;
604: n1 = size - (m*n) + rank - m;
605: n2 = size - (m*n) + rank - m + 1;
606: n3 = size - (m*n) + rank - 1;
607: n4 = size - (m*n) + rank;
608: n5 = size - (m*n) + rank + 1;
609: n6 = size - (m*n) + rank + m - 1;
610: n7 = size - (m*n) + rank + m;
611: n8 = size - (m*n) + rank + m + 1;
612: }
614: if (ze == P) { /* First assume not corner or edge */
615: n18 = (m*n) - (size-rank) - m - 1;
616: n19 = (m*n) - (size-rank) - m;
617: n20 = (m*n) - (size-rank) - m + 1;
618: n21 = (m*n) - (size-rank) - 1;
619: n22 = (m*n) - (size-rank);
620: n23 = (m*n) - (size-rank) + 1;
621: n24 = (m*n) - (size-rank) + m - 1;
622: n25 = (m*n) - (size-rank) + m;
623: n26 = (m*n) - (size-rank) + m + 1;
624: }
626: if ((xs==0) && (zs==0)) { /* Assume an edge, not corner */
627: n0 = size - m*n + rank + m-1 - m;
628: n3 = size - m*n + rank + m-1;
629: n6 = size - m*n + rank + m-1 + m;
630: }
632: if ((xs==0) && (ze==P)) { /* Assume an edge, not corner */
633: n18 = m*n - (size - rank) + m-1 - m;
634: n21 = m*n - (size - rank) + m-1;
635: n24 = m*n - (size - rank) + m-1 + m;
636: }
638: if ((xs==0) && (ys==0)) { /* Assume an edge, not corner */
639: n0 = rank + m*n -1 - m*n;
640: n9 = rank + m*n -1;
641: n18 = rank + m*n -1 + m*n;
642: }
644: if ((xs==0) && (ye==N)) { /* Assume an edge, not corner */
645: n6 = rank - m*(n-1) + m-1 - m*n;
646: n15 = rank - m*(n-1) + m-1;
647: n24 = rank - m*(n-1) + m-1 + m*n;
648: }
650: if ((xe==M) && (zs==0)) { /* Assume an edge, not corner */
651: n2 = size - (m*n-rank) - (m-1) - m;
652: n5 = size - (m*n-rank) - (m-1);
653: n8 = size - (m*n-rank) - (m-1) + m;
654: }
656: if ((xe==M) && (ze==P)) { /* Assume an edge, not corner */
657: n20 = m*n - (size - rank) - (m-1) - m;
658: n23 = m*n - (size - rank) - (m-1);
659: n26 = m*n - (size - rank) - (m-1) + m;
660: }
662: if ((xe==M) && (ys==0)) { /* Assume an edge, not corner */
663: n2 = rank + m*(n-1) - (m-1) - m*n;
664: n11 = rank + m*(n-1) - (m-1);
665: n20 = rank + m*(n-1) - (m-1) + m*n;
666: }
668: if ((xe==M) && (ye==N)) { /* Assume an edge, not corner */
669: n8 = rank - m*n +1 - m*n;
670: n17 = rank - m*n +1;
671: n26 = rank - m*n +1 + m*n;
672: }
674: if ((ys==0) && (zs==0)) { /* Assume an edge, not corner */
675: n0 = size - m + rank -1;
676: n1 = size - m + rank;
677: n2 = size - m + rank +1;
678: }
680: if ((ys==0) && (ze==P)) { /* Assume an edge, not corner */
681: n18 = m*n - (size - rank) + m*(n-1) -1;
682: n19 = m*n - (size - rank) + m*(n-1);
683: n20 = m*n - (size - rank) + m*(n-1) +1;
684: }
686: if ((ye==N) && (zs==0)) { /* Assume an edge, not corner */
687: n6 = size - (m*n-rank) - m * (n-1) -1;
688: n7 = size - (m*n-rank) - m * (n-1);
689: n8 = size - (m*n-rank) - m * (n-1) +1;
690: }
692: if ((ye==N) && (ze==P)) { /* Assume an edge, not corner */
693: n24 = rank - (size-m) -1;
694: n25 = rank - (size-m);
695: n26 = rank - (size-m) +1;
696: }
698: /* Check for Corners */
699: if ((xs==0) && (ys==0) && (zs==0)) n0 = size -1;
700: if ((xs==0) && (ys==0) && (ze==P)) n18 = m*n-1;
701: if ((xs==0) && (ye==N) && (zs==0)) n6 = (size-1)-m*(n-1);
702: if ((xs==0) && (ye==N) && (ze==P)) n24 = m-1;
703: if ((xe==M) && (ys==0) && (zs==0)) n2 = size-m;
704: if ((xe==M) && (ys==0) && (ze==P)) n20 = m*n-m;
705: if ((xe==M) && (ye==N) && (zs==0)) n8 = size-m*n;
706: if ((xe==M) && (ye==N) && (ze==P)) n26 = 0;
708: /* Check for when not X,Y, and Z Periodic */
710: /* If not X periodic */
711: if (bx != DM_BOUNDARY_PERIODIC) {
712: if (xs==0) n0 = n3 = n6 = n9 = n12 = n15 = n18 = n21 = n24 = -2;
713: if (xe==M) n2 = n5 = n8 = n11 = n14 = n17 = n20 = n23 = n26 = -2;
714: }
716: /* If not Y periodic */
717: if (by != DM_BOUNDARY_PERIODIC) {
718: if (ys==0) n0 = n1 = n2 = n9 = n10 = n11 = n18 = n19 = n20 = -2;
719: if (ye==N) n6 = n7 = n8 = n15 = n16 = n17 = n24 = n25 = n26 = -2;
720: }
722: /* If not Z periodic */
723: if (bz != DM_BOUNDARY_PERIODIC) {
724: if (zs==0) n0 = n1 = n2 = n3 = n4 = n5 = n6 = n7 = n8 = -2;
725: if (ze==P) n18 = n19 = n20 = n21 = n22 = n23 = n24 = n25 = n26 = -2;
726: }
728: PetscMalloc1(27,&dd->neighbors);
730: dd->neighbors[0] = n0;
731: dd->neighbors[1] = n1;
732: dd->neighbors[2] = n2;
733: dd->neighbors[3] = n3;
734: dd->neighbors[4] = n4;
735: dd->neighbors[5] = n5;
736: dd->neighbors[6] = n6;
737: dd->neighbors[7] = n7;
738: dd->neighbors[8] = n8;
739: dd->neighbors[9] = n9;
740: dd->neighbors[10] = n10;
741: dd->neighbors[11] = n11;
742: dd->neighbors[12] = n12;
743: dd->neighbors[13] = rank;
744: dd->neighbors[14] = n14;
745: dd->neighbors[15] = n15;
746: dd->neighbors[16] = n16;
747: dd->neighbors[17] = n17;
748: dd->neighbors[18] = n18;
749: dd->neighbors[19] = n19;
750: dd->neighbors[20] = n20;
751: dd->neighbors[21] = n21;
752: dd->neighbors[22] = n22;
753: dd->neighbors[23] = n23;
754: dd->neighbors[24] = n24;
755: dd->neighbors[25] = n25;
756: dd->neighbors[26] = n26;
758: /* If star stencil then delete the corner neighbors */
759: if (stencil_type == DMDA_STENCIL_STAR) {
760: /* save information about corner neighbors */
761: sn0 = n0; sn1 = n1; sn2 = n2; sn3 = n3; sn5 = n5; sn6 = n6; sn7 = n7;
762: sn8 = n8; sn9 = n9; sn11 = n11; sn15 = n15; sn17 = n17; sn18 = n18;
763: sn19 = n19; sn20 = n20; sn21 = n21; sn23 = n23; sn24 = n24; sn25 = n25;
764: sn26 = n26;
765: n0 = n1 = n2 = n3 = n5 = n6 = n7 = n8 = n9 = n11 = n15 = n17 = n18 = n19 = n20 = n21 = n23 = n24 = n25 = n26 = -1;
766: }
768: PetscMalloc1((Xe-Xs)*(Ye-Ys)*(Ze-Zs),&idx);
770: nn = 0;
771: /* Bottom Level */
772: for (k=0; k<s_z; k++) {
773: for (i=1; i<=s_y; i++) {
774: if (n0 >= 0) { /* left below */
775: x_t = lx[n0 % m];
776: y_t = ly[(n0 % (m*n))/m];
777: z_t = lz[n0 / (m*n)];
778: s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x - (s_z-k-1)*x_t*y_t;
779: if (twod && (s_t < 0)) s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x; /* 2D case */
780: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
781: }
782: if (n1 >= 0) { /* directly below */
783: x_t = x;
784: y_t = ly[(n1 % (m*n))/m];
785: z_t = lz[n1 / (m*n)];
786: s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
787: if (twod && (s_t < 0)) s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t; /* 2D case */
788: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
789: }
790: if (n2 >= 0) { /* right below */
791: x_t = lx[n2 % m];
792: y_t = ly[(n2 % (m*n))/m];
793: z_t = lz[n2 / (m*n)];
794: s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
795: if (twod && (s_t < 0)) s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t; /* 2D case */
796: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
797: }
798: }
800: for (i=0; i<y; i++) {
801: if (n3 >= 0) { /* directly left */
802: x_t = lx[n3 % m];
803: y_t = y;
804: z_t = lz[n3 / (m*n)];
805: s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
806: if (twod && (s_t < 0)) s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - x_t*y_t; /* 2D case */
807: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
808: }
810: if (n4 >= 0) { /* middle */
811: x_t = x;
812: y_t = y;
813: z_t = lz[n4 / (m*n)];
814: s_t = bases[n4] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
815: if (twod && (s_t < 0)) s_t = bases[n4] + i*x_t + x_t*y_t*z_t - x_t*y_t; /* 2D case */
816: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
817: } else if (bz == DM_BOUNDARY_MIRROR) {
818: for (j=0; j<x; j++) idx[nn++] = bases[rank] + j + x*i + (s_z - k - 1)*x*y;
819: }
821: if (n5 >= 0) { /* directly right */
822: x_t = lx[n5 % m];
823: y_t = y;
824: z_t = lz[n5 / (m*n)];
825: s_t = bases[n5] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
826: if (twod && (s_t < 0)) s_t = bases[n5] + i*x_t + x_t*y_t*z_t - x_t*y_t; /* 2D case */
827: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
828: }
829: }
831: for (i=1; i<=s_y; i++) {
832: if (n6 >= 0) { /* left above */
833: x_t = lx[n6 % m];
834: y_t = ly[(n6 % (m*n))/m];
835: z_t = lz[n6 / (m*n)];
836: s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
837: if (twod && (s_t < 0)) s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - x_t*y_t; /* 2D case */
838: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
839: }
840: if (n7 >= 0) { /* directly above */
841: x_t = x;
842: y_t = ly[(n7 % (m*n))/m];
843: z_t = lz[n7 / (m*n)];
844: s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
845: if (twod && (s_t < 0)) s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - x_t*y_t; /* 2D case */
846: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
847: }
848: if (n8 >= 0) { /* right above */
849: x_t = lx[n8 % m];
850: y_t = ly[(n8 % (m*n))/m];
851: z_t = lz[n8 / (m*n)];
852: s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
853: if (twod && (s_t < 0)) s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - x_t*y_t; /* 2D case */
854: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
855: }
856: }
857: }
859: /* Middle Level */
860: for (k=0; k<z; k++) {
861: for (i=1; i<=s_y; i++) {
862: if (n9 >= 0) { /* left below */
863: x_t = lx[n9 % m];
864: y_t = ly[(n9 % (m*n))/m];
865: /* z_t = z; */
866: s_t = bases[n9] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
867: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
868: }
869: if (n10 >= 0) { /* directly below */
870: x_t = x;
871: y_t = ly[(n10 % (m*n))/m];
872: /* z_t = z; */
873: s_t = bases[n10] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
874: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
875: } else if (by == DM_BOUNDARY_MIRROR) {
876: for (j=0; j<x; j++) idx[nn++] = bases[rank] + j + k*x*y + (s_y - i)*x;
877: }
878: if (n11 >= 0) { /* right below */
879: x_t = lx[n11 % m];
880: y_t = ly[(n11 % (m*n))/m];
881: /* z_t = z; */
882: s_t = bases[n11] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
883: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
884: }
885: }
887: for (i=0; i<y; i++) {
888: if (n12 >= 0) { /* directly left */
889: x_t = lx[n12 % m];
890: y_t = y;
891: /* z_t = z; */
892: s_t = bases[n12] + (i+1)*x_t - s_x + k*x_t*y_t;
893: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
894: } else if (bx == DM_BOUNDARY_MIRROR) {
895: for (j=0; j<s_x; j++) idx[nn++] = bases[rank] + s_x - j - 1 + k*x*y + i*x;
896: }
898: /* Interior */
899: s_t = bases[rank] + i*x + k*x*y;
900: for (j=0; j<x; j++) idx[nn++] = s_t++;
902: if (n14 >= 0) { /* directly right */
903: x_t = lx[n14 % m];
904: y_t = y;
905: /* z_t = z; */
906: s_t = bases[n14] + i*x_t + k*x_t*y_t;
907: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
908: } else if (bx == DM_BOUNDARY_MIRROR) {
909: for (j=0; j<s_x; j++) idx[nn++] = bases[rank] + x - j - 1 + k*x*y + i*x;
910: }
911: }
913: for (i=1; i<=s_y; i++) {
914: if (n15 >= 0) { /* left above */
915: x_t = lx[n15 % m];
916: y_t = ly[(n15 % (m*n))/m];
917: /* z_t = z; */
918: s_t = bases[n15] + i*x_t - s_x + k*x_t*y_t;
919: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
920: }
921: if (n16 >= 0) { /* directly above */
922: x_t = x;
923: y_t = ly[(n16 % (m*n))/m];
924: /* z_t = z; */
925: s_t = bases[n16] + (i-1)*x_t + k*x_t*y_t;
926: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
927: } else if (by == DM_BOUNDARY_MIRROR) {
928: for (j=0; j<x; j++) idx[nn++] = bases[rank] + j + k*x*y + (y-i)*x;
929: }
930: if (n17 >= 0) { /* right above */
931: x_t = lx[n17 % m];
932: y_t = ly[(n17 % (m*n))/m];
933: /* z_t = z; */
934: s_t = bases[n17] + (i-1)*x_t + k*x_t*y_t;
935: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
936: }
937: }
938: }
940: /* Upper Level */
941: for (k=0; k<s_z; k++) {
942: for (i=1; i<=s_y; i++) {
943: if (n18 >= 0) { /* left below */
944: x_t = lx[n18 % m];
945: y_t = ly[(n18 % (m*n))/m];
946: /* z_t = lz[n18 / (m*n)]; */
947: s_t = bases[n18] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
948: if (twod && (s_t >= M*N*P)) s_t = bases[n18] - (s_y-i)*x_t -s_x + x_t*y_t; /* 2d case */
949: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
950: }
951: if (n19 >= 0) { /* directly below */
952: x_t = x;
953: y_t = ly[(n19 % (m*n))/m];
954: /* z_t = lz[n19 / (m*n)]; */
955: s_t = bases[n19] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
956: if (twod && (s_t >= M*N*P)) s_t = bases[n19] - (s_y+1-i)*x_t + x_t*y_t; /* 2d case */
957: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
958: }
959: if (n20 >= 0) { /* right below */
960: x_t = lx[n20 % m];
961: y_t = ly[(n20 % (m*n))/m];
962: /* z_t = lz[n20 / (m*n)]; */
963: s_t = bases[n20] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
964: if (twod && (s_t >= M*N*P)) s_t = bases[n20] - (s_y+1-i)*x_t + x_t*y_t; /* 2d case */
965: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
966: }
967: }
969: for (i=0; i<y; i++) {
970: if (n21 >= 0) { /* directly left */
971: x_t = lx[n21 % m];
972: y_t = y;
973: /* z_t = lz[n21 / (m*n)]; */
974: s_t = bases[n21] + (i+1)*x_t - s_x + k*x_t*y_t;
975: if (twod && (s_t >= M*N*P)) s_t = bases[n21] + (i+1)*x_t - s_x; /* 2d case */
976: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
977: }
979: if (n22 >= 0) { /* middle */
980: x_t = x;
981: y_t = y;
982: /* z_t = lz[n22 / (m*n)]; */
983: s_t = bases[n22] + i*x_t + k*x_t*y_t;
984: if (twod && (s_t >= M*N*P)) s_t = bases[n22] + i*x_t; /* 2d case */
985: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
986: } else if (bz == DM_BOUNDARY_MIRROR) {
987: for (j=0; j<x; j++) idx[nn++] = bases[rank] + j + (z-k-1)*x*y + i*x;
988: }
990: if (n23 >= 0) { /* directly right */
991: x_t = lx[n23 % m];
992: y_t = y;
993: /* z_t = lz[n23 / (m*n)]; */
994: s_t = bases[n23] + i*x_t + k*x_t*y_t;
995: if (twod && (s_t >= M*N*P)) s_t = bases[n23] + i*x_t; /* 2d case */
996: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
997: }
998: }
1000: for (i=1; i<=s_y; i++) {
1001: if (n24 >= 0) { /* left above */
1002: x_t = lx[n24 % m];
1003: y_t = ly[(n24 % (m*n))/m];
1004: /* z_t = lz[n24 / (m*n)]; */
1005: s_t = bases[n24] + i*x_t - s_x + k*x_t*y_t;
1006: if (twod && (s_t >= M*N*P)) s_t = bases[n24] + i*x_t - s_x; /* 2d case */
1007: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1008: }
1009: if (n25 >= 0) { /* directly above */
1010: x_t = x;
1011: y_t = ly[(n25 % (m*n))/m];
1012: /* z_t = lz[n25 / (m*n)]; */
1013: s_t = bases[n25] + (i-1)*x_t + k*x_t*y_t;
1014: if (twod && (s_t >= M*N*P)) s_t = bases[n25] + (i-1)*x_t; /* 2d case */
1015: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1016: }
1017: if (n26 >= 0) { /* right above */
1018: x_t = lx[n26 % m];
1019: y_t = ly[(n26 % (m*n))/m];
1020: /* z_t = lz[n26 / (m*n)]; */
1021: s_t = bases[n26] + (i-1)*x_t + k*x_t*y_t;
1022: if (twod && (s_t >= M*N*P)) s_t = bases[n26] + (i-1)*x_t; /* 2d case */
1023: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1024: }
1025: }
1026: }
1028: ISCreateBlock(comm,dof,nn,idx,PETSC_USE_POINTER,&from);
1029: VecScatterCreate(global,from,local,to,>ol);
1030: PetscLogObjectParent((PetscObject)da,(PetscObject)gtol);
1031: ISDestroy(&to);
1032: ISDestroy(&from);
1034: if (stencil_type == DMDA_STENCIL_STAR) {
1035: n0 = sn0; n1 = sn1; n2 = sn2; n3 = sn3; n5 = sn5; n6 = sn6; n7 = sn7;
1036: n8 = sn8; n9 = sn9; n11 = sn11; n15 = sn15; n17 = sn17; n18 = sn18;
1037: n19 = sn19; n20 = sn20; n21 = sn21; n23 = sn23; n24 = sn24; n25 = sn25;
1038: n26 = sn26;
1039: }
1041: if (((stencil_type == DMDA_STENCIL_STAR) || (bx != DM_BOUNDARY_PERIODIC && bx) || (by != DM_BOUNDARY_PERIODIC && by) || (bz != DM_BOUNDARY_PERIODIC && bz))) {
1042: /*
1043: Recompute the local to global mappings, this time keeping the
1044: information about the cross corner processor numbers.
1045: */
1046: nn = 0;
1047: /* Bottom Level */
1048: for (k=0; k<s_z; k++) {
1049: for (i=1; i<=s_y; i++) {
1050: if (n0 >= 0) { /* left below */
1051: x_t = lx[n0 % m];
1052: y_t = ly[(n0 % (m*n))/m];
1053: z_t = lz[n0 / (m*n)];
1054: s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x - (s_z-k-1)*x_t*y_t;
1055: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1056: } else if (Xs-xs < 0 && Ys-ys < 0 && Zs-zs < 0) {
1057: for (j=0; j<s_x; j++) idx[nn++] = -1;
1058: }
1059: if (n1 >= 0) { /* directly below */
1060: x_t = x;
1061: y_t = ly[(n1 % (m*n))/m];
1062: z_t = lz[n1 / (m*n)];
1063: s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1064: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1065: } else if (Ys-ys < 0 && Zs-zs < 0) {
1066: for (j=0; j<x; j++) idx[nn++] = -1;
1067: }
1068: if (n2 >= 0) { /* right below */
1069: x_t = lx[n2 % m];
1070: y_t = ly[(n2 % (m*n))/m];
1071: z_t = lz[n2 / (m*n)];
1072: s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1073: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1074: } else if (xe-Xe < 0 && Ys-ys < 0 && Zs-zs < 0) {
1075: for (j=0; j<s_x; j++) idx[nn++] = -1;
1076: }
1077: }
1079: for (i=0; i<y; i++) {
1080: if (n3 >= 0) { /* directly left */
1081: x_t = lx[n3 % m];
1082: y_t = y;
1083: z_t = lz[n3 / (m*n)];
1084: s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1085: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1086: } else if (Xs-xs < 0 && Zs-zs < 0) {
1087: for (j=0; j<s_x; j++) idx[nn++] = -1;
1088: }
1090: if (n4 >= 0) { /* middle */
1091: x_t = x;
1092: y_t = y;
1093: z_t = lz[n4 / (m*n)];
1094: s_t = bases[n4] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1095: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1096: } else if (Zs-zs < 0) {
1097: if (bz == DM_BOUNDARY_MIRROR) {
1098: for (j=0; j<x; j++) idx[nn++] = bases[rank] + j + x*i + (s_z - k - 1)*x*y;
1099: } else {
1100: for (j=0; j<x; j++) idx[nn++] = -1;
1101: }
1102: }
1104: if (n5 >= 0) { /* directly right */
1105: x_t = lx[n5 % m];
1106: y_t = y;
1107: z_t = lz[n5 / (m*n)];
1108: s_t = bases[n5] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1109: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1110: } else if (xe-Xe < 0 && Zs-zs < 0) {
1111: for (j=0; j<s_x; j++) idx[nn++] = -1;
1112: }
1113: }
1115: for (i=1; i<=s_y; i++) {
1116: if (n6 >= 0) { /* left above */
1117: x_t = lx[n6 % m];
1118: y_t = ly[(n6 % (m*n))/m];
1119: z_t = lz[n6 / (m*n)];
1120: s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1121: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1122: } else if (Xs-xs < 0 && ye-Ye < 0 && Zs-zs < 0) {
1123: for (j=0; j<s_x; j++) idx[nn++] = -1;
1124: }
1125: if (n7 >= 0) { /* directly above */
1126: x_t = x;
1127: y_t = ly[(n7 % (m*n))/m];
1128: z_t = lz[n7 / (m*n)];
1129: s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1130: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1131: } else if (ye-Ye < 0 && Zs-zs < 0) {
1132: for (j=0; j<x; j++) idx[nn++] = -1;
1133: }
1134: if (n8 >= 0) { /* right above */
1135: x_t = lx[n8 % m];
1136: y_t = ly[(n8 % (m*n))/m];
1137: z_t = lz[n8 / (m*n)];
1138: s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1139: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1140: } else if (xe-Xe < 0 && ye-Ye < 0 && Zs-zs < 0) {
1141: for (j=0; j<s_x; j++) idx[nn++] = -1;
1142: }
1143: }
1144: }
1146: /* Middle Level */
1147: for (k=0; k<z; k++) {
1148: for (i=1; i<=s_y; i++) {
1149: if (n9 >= 0) { /* left below */
1150: x_t = lx[n9 % m];
1151: y_t = ly[(n9 % (m*n))/m];
1152: /* z_t = z; */
1153: s_t = bases[n9] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1154: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1155: } else if (Xs-xs < 0 && Ys-ys < 0) {
1156: for (j=0; j<s_x; j++) idx[nn++] = -1;
1157: }
1158: if (n10 >= 0) { /* directly below */
1159: x_t = x;
1160: y_t = ly[(n10 % (m*n))/m];
1161: /* z_t = z; */
1162: s_t = bases[n10] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1163: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1164: } else if (Ys-ys < 0) {
1165: if (by == DM_BOUNDARY_MIRROR) {
1166: for (j=0; j<x; j++) idx[nn++] = bases[rank] + j + k*x*y + (s_y - i)*x;;
1167: } else {
1168: for (j=0; j<x; j++) idx[nn++] = -1;
1169: }
1170: }
1171: if (n11 >= 0) { /* right below */
1172: x_t = lx[n11 % m];
1173: y_t = ly[(n11 % (m*n))/m];
1174: /* z_t = z; */
1175: s_t = bases[n11] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1176: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1177: } else if (xe-Xe < 0 && Ys-ys < 0) {
1178: for (j=0; j<s_x; j++) idx[nn++] = -1;
1179: }
1180: }
1182: for (i=0; i<y; i++) {
1183: if (n12 >= 0) { /* directly left */
1184: x_t = lx[n12 % m];
1185: y_t = y;
1186: /* z_t = z; */
1187: s_t = bases[n12] + (i+1)*x_t - s_x + k*x_t*y_t;
1188: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1189: } else if (Xs-xs < 0) {
1190: if (bx == DM_BOUNDARY_MIRROR) {
1191: for (j=0; j<s_x; j++) idx[nn++] = bases[rank] + s_x - j - 1 + k*x*y + i*x;
1192: } else {
1193: for (j=0; j<s_x; j++) idx[nn++] = -1;
1194: }
1195: }
1197: /* Interior */
1198: s_t = bases[rank] + i*x + k*x*y;
1199: for (j=0; j<x; j++) idx[nn++] = s_t++;
1201: if (n14 >= 0) { /* directly right */
1202: x_t = lx[n14 % m];
1203: y_t = y;
1204: /* z_t = z; */
1205: s_t = bases[n14] + i*x_t + k*x_t*y_t;
1206: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1207: } else if (xe-Xe < 0) {
1208: if (bx == DM_BOUNDARY_MIRROR) {
1209: for (j=0; j<s_x; j++) idx[nn++] = bases[rank] + x - j - 1 + k*x*y + i*x;
1210: } else {
1211: for (j=0; j<s_x; j++) idx[nn++] = -1;
1212: }
1213: }
1214: }
1216: for (i=1; i<=s_y; i++) {
1217: if (n15 >= 0) { /* left above */
1218: x_t = lx[n15 % m];
1219: y_t = ly[(n15 % (m*n))/m];
1220: /* z_t = z; */
1221: s_t = bases[n15] + i*x_t - s_x + k*x_t*y_t;
1222: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1223: } else if (Xs-xs < 0 && ye-Ye < 0) {
1224: for (j=0; j<s_x; j++) idx[nn++] = -1;
1225: }
1226: if (n16 >= 0) { /* directly above */
1227: x_t = x;
1228: y_t = ly[(n16 % (m*n))/m];
1229: /* z_t = z; */
1230: s_t = bases[n16] + (i-1)*x_t + k*x_t*y_t;
1231: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1232: } else if (ye-Ye < 0) {
1233: if (by == DM_BOUNDARY_MIRROR) {
1234: for (j=0; j<x; j++) idx[nn++] = bases[rank] + j + k*x*y + (y-i)*x;
1235: } else {
1236: for (j=0; j<x; j++) idx[nn++] = -1;
1237: }
1238: }
1239: if (n17 >= 0) { /* right above */
1240: x_t = lx[n17 % m];
1241: y_t = ly[(n17 % (m*n))/m];
1242: /* z_t = z; */
1243: s_t = bases[n17] + (i-1)*x_t + k*x_t*y_t;
1244: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1245: } else if (xe-Xe < 0 && ye-Ye < 0) {
1246: for (j=0; j<s_x; j++) idx[nn++] = -1;
1247: }
1248: }
1249: }
1251: /* Upper Level */
1252: for (k=0; k<s_z; k++) {
1253: for (i=1; i<=s_y; i++) {
1254: if (n18 >= 0) { /* left below */
1255: x_t = lx[n18 % m];
1256: y_t = ly[(n18 % (m*n))/m];
1257: /* z_t = lz[n18 / (m*n)]; */
1258: s_t = bases[n18] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1259: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1260: } else if (Xs-xs < 0 && Ys-ys < 0 && ze-Ze < 0) {
1261: for (j=0; j<s_x; j++) idx[nn++] = -1;
1262: }
1263: if (n19 >= 0) { /* directly below */
1264: x_t = x;
1265: y_t = ly[(n19 % (m*n))/m];
1266: /* z_t = lz[n19 / (m*n)]; */
1267: s_t = bases[n19] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1268: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1269: } else if (Ys-ys < 0 && ze-Ze < 0) {
1270: for (j=0; j<x; j++) idx[nn++] = -1;
1271: }
1272: if (n20 >= 0) { /* right below */
1273: x_t = lx[n20 % m];
1274: y_t = ly[(n20 % (m*n))/m];
1275: /* z_t = lz[n20 / (m*n)]; */
1276: s_t = bases[n20] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1277: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1278: } else if (xe-Xe < 0 && Ys-ys < 0 && ze-Ze < 0) {
1279: for (j=0; j<s_x; j++) idx[nn++] = -1;
1280: }
1281: }
1283: for (i=0; i<y; i++) {
1284: if (n21 >= 0) { /* directly left */
1285: x_t = lx[n21 % m];
1286: y_t = y;
1287: /* z_t = lz[n21 / (m*n)]; */
1288: s_t = bases[n21] + (i+1)*x_t - s_x + k*x_t*y_t;
1289: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1290: } else if (Xs-xs < 0 && ze-Ze < 0) {
1291: for (j=0; j<s_x; j++) idx[nn++] = -1;
1292: }
1294: if (n22 >= 0) { /* middle */
1295: x_t = x;
1296: y_t = y;
1297: /* z_t = lz[n22 / (m*n)]; */
1298: s_t = bases[n22] + i*x_t + k*x_t*y_t;
1299: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1300: } else if (ze-Ze < 0) {
1301: if (bz == DM_BOUNDARY_MIRROR) {
1302: for (j=0; j<x; j++) idx[nn++] = bases[rank] + j + (z-k-1)*x*y + i*x;
1303: } else {
1304: for (j=0; j<x; j++) idx[nn++] = -1;
1305: }
1306: }
1308: if (n23 >= 0) { /* directly right */
1309: x_t = lx[n23 % m];
1310: y_t = y;
1311: /* z_t = lz[n23 / (m*n)]; */
1312: s_t = bases[n23] + i*x_t + k*x_t*y_t;
1313: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1314: } else if (xe-Xe < 0 && ze-Ze < 0) {
1315: for (j=0; j<s_x; j++) idx[nn++] = -1;
1316: }
1317: }
1319: for (i=1; i<=s_y; i++) {
1320: if (n24 >= 0) { /* left above */
1321: x_t = lx[n24 % m];
1322: y_t = ly[(n24 % (m*n))/m];
1323: /* z_t = lz[n24 / (m*n)]; */
1324: s_t = bases[n24] + i*x_t - s_x + k*x_t*y_t;
1325: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1326: } else if (Xs-xs < 0 && ye-Ye < 0 && ze-Ze < 0) {
1327: for (j=0; j<s_x; j++) idx[nn++] = -1;
1328: }
1329: if (n25 >= 0) { /* directly above */
1330: x_t = x;
1331: y_t = ly[(n25 % (m*n))/m];
1332: /* z_t = lz[n25 / (m*n)]; */
1333: s_t = bases[n25] + (i-1)*x_t + k*x_t*y_t;
1334: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1335: } else if (ye-Ye < 0 && ze-Ze < 0) {
1336: for (j=0; j<x; j++) idx[nn++] = -1;
1337: }
1338: if (n26 >= 0) { /* right above */
1339: x_t = lx[n26 % m];
1340: y_t = ly[(n26 % (m*n))/m];
1341: /* z_t = lz[n26 / (m*n)]; */
1342: s_t = bases[n26] + (i-1)*x_t + k*x_t*y_t;
1343: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1344: } else if (xe-Xe < 0 && ye-Ye < 0 && ze-Ze < 0) {
1345: for (j=0; j<s_x; j++) idx[nn++] = -1;
1346: }
1347: }
1348: }
1349: }
1350: /*
1351: Set the local to global ordering in the global vector, this allows use
1352: of VecSetValuesLocal().
1353: */
1354: ISLocalToGlobalMappingCreate(comm,dof,nn,idx,PETSC_OWN_POINTER,&da->ltogmap);
1355: PetscLogObjectParent((PetscObject)da,(PetscObject)da->ltogmap);
1357: PetscFree2(bases,ldims);
1358: dd->m = m; dd->n = n; dd->p = p;
1359: /* note petsc expects xs/xe/Xs/Xe to be multiplied by #dofs in many places */
1360: dd->xs = xs*dof; dd->xe = xe*dof; dd->ys = ys; dd->ye = ye; dd->zs = zs; dd->ze = ze;
1361: dd->Xs = Xs*dof; dd->Xe = Xe*dof; dd->Ys = Ys; dd->Ye = Ye; dd->Zs = Zs; dd->Ze = Ze;
1363: VecDestroy(&local);
1364: VecDestroy(&global);
1366: dd->gtol = gtol;
1367: dd->base = base;
1368: da->ops->view = DMView_DA_3d;
1369: dd->ltol = NULL;
1370: dd->ao = NULL;
1371: return(0);
1372: }
1375: /*@C
1376: DMDACreate3d - Creates an object that will manage the communication of three-dimensional
1377: regular array data that is distributed across some processors.
1379: Collective on MPI_Comm
1381: Input Parameters:
1382: + comm - MPI communicator
1383: . bx,by,bz - type of ghost nodes the array have.
1384: Use one of DM_BOUNDARY_NONE, DM_BOUNDARY_GHOSTED, DM_BOUNDARY_PERIODIC.
1385: . stencil_type - Type of stencil (DMDA_STENCIL_STAR or DMDA_STENCIL_BOX)
1386: . M,N,P - global dimension in each direction of the array
1387: . m,n,p - corresponding number of processors in each dimension
1388: (or PETSC_DECIDE to have calculated)
1389: . dof - number of degrees of freedom per node
1390: . s - stencil width
1391: - lx, ly, lz - arrays containing the number of nodes in each cell along
1392: the x, y, and z coordinates, or NULL. If non-null, these
1393: must be of length as m,n,p and the corresponding
1394: m,n, or p cannot be PETSC_DECIDE. Sum of the lx[] entries must be M, sum of
1395: the ly[] must N, sum of the lz[] must be P
1397: Output Parameter:
1398: . da - the resulting distributed array object
1400: Options Database Key:
1401: + -dm_view - Calls DMView() at the conclusion of DMDACreate3d()
1402: . -da_grid_x <nx> - number of grid points in x direction
1403: . -da_grid_y <ny> - number of grid points in y direction
1404: . -da_grid_z <nz> - number of grid points in z direction
1405: . -da_processors_x <MX> - number of processors in x direction
1406: . -da_processors_y <MY> - number of processors in y direction
1407: . -da_processors_z <MZ> - number of processors in z direction
1408: . -da_refine_x <rx> - refinement ratio in x direction
1409: . -da_refine_y <ry> - refinement ratio in y direction
1410: . -da_refine_z <rz>- refinement ratio in z directio
1411: - -da_refine <n> - refine the DMDA n times before creating it
1413: Level: beginner
1415: Notes:
1416: The stencil type DMDA_STENCIL_STAR with width 1 corresponds to the
1417: standard 7-pt stencil, while DMDA_STENCIL_BOX with width 1 denotes
1418: the standard 27-pt stencil.
1420: The array data itself is NOT stored in the DMDA, it is stored in Vec objects;
1421: The appropriate vector objects can be obtained with calls to DMCreateGlobalVector()
1422: and DMCreateLocalVector() and calls to VecDuplicate() if more are needed.
1424: You must call DMSetUp() after this call before using this DM.
1426: If you wish to use the options database to change values in the DMDA call DMSetFromOptions() after this call
1427: but before DMSetUp().
1429: .keywords: distributed array, create, three-dimensional
1431: .seealso: DMDestroy(), DMView(), DMDACreate1d(), DMDACreate2d(), DMGlobalToLocalBegin(), DMDAGetRefinementFactor(),
1432: DMGlobalToLocalEnd(), DMLocalToGlobalBegin(), DMLocalToLocalBegin(), DMLocalToLocalEnd(), DMDASetRefinementFactor(),
1433: DMDAGetInfo(), DMCreateGlobalVector(), DMCreateLocalVector(), DMDACreateNaturalVector(), DMLoad(), DMDAGetOwnershipRanges()
1435: @*/
1436: PetscErrorCode DMDACreate3d(MPI_Comm comm,DMBoundaryType bx,DMBoundaryType by,DMBoundaryType bz,DMDAStencilType stencil_type,PetscInt M,
1437: PetscInt N,PetscInt P,PetscInt m,PetscInt n,PetscInt p,PetscInt dof,PetscInt s,const PetscInt lx[],const PetscInt ly[],const PetscInt lz[],DM *da)
1438: {
1442: DMDACreate(comm, da);
1443: DMSetDimension(*da, 3);
1444: DMDASetSizes(*da, M, N, P);
1445: DMDASetNumProcs(*da, m, n, p);
1446: DMDASetBoundaryType(*da, bx, by, bz);
1447: DMDASetDof(*da, dof);
1448: DMDASetStencilType(*da, stencil_type);
1449: DMDASetStencilWidth(*da, s);
1450: DMDASetOwnershipRanges(*da, lx, ly, lz);
1451: return(0);
1452: }