Actual source code: da3.c

petsc-3.11.4 2019-09-28
Report Typos and Errors

  2: /*
  3:    Code for manipulating distributed regular 3d arrays in parallel.
  4:    File created by Peter Mell  7/14/95
  5:  */

  7:  #include <petsc/private/dmdaimpl.h>

  9:  #include <petscdraw.h>
 10: static PetscErrorCode DMView_DA_3d(DM da,PetscViewer viewer)
 11: {
 13:   PetscMPIInt    rank;
 14:   PetscBool      iascii,isdraw,isglvis,isbinary;
 15:   DM_DA          *dd = (DM_DA*)da->data;
 16: #if defined(PETSC_HAVE_MATLAB_ENGINE)
 17:   PetscBool ismatlab;
 18: #endif

 21:   MPI_Comm_rank(PetscObjectComm((PetscObject)da),&rank);

 23:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
 24:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
 25:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERGLVIS,&isglvis);
 26:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
 27: #if defined(PETSC_HAVE_MATLAB_ENGINE)
 28:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERMATLAB,&ismatlab);
 29: #endif
 30:   if (iascii) {
 31:     PetscViewerFormat format;

 33:     PetscViewerASCIIPushSynchronized(viewer);
 34:     PetscViewerGetFormat(viewer, &format);
 35:     if (format == PETSC_VIEWER_LOAD_BALANCE) {
 36:       PetscInt      i,nmax = 0,nmin = PETSC_MAX_INT,navg = 0,*nz,nzlocal;
 37:       DMDALocalInfo info;
 38:       PetscMPIInt   size;
 39:       MPI_Comm_size(PetscObjectComm((PetscObject)da),&size);
 40:       DMDAGetLocalInfo(da,&info);
 41:       nzlocal = info.xm*info.ym*info.zm;
 42:       PetscMalloc1(size,&nz);
 43:       MPI_Allgather(&nzlocal,1,MPIU_INT,nz,1,MPIU_INT,PetscObjectComm((PetscObject)da));
 44:       for (i=0; i<(PetscInt)size; i++) {
 45:         nmax = PetscMax(nmax,nz[i]);
 46:         nmin = PetscMin(nmin,nz[i]);
 47:         navg += nz[i];
 48:       }
 49:       PetscFree(nz);
 50:       navg = navg/size;
 51:       PetscViewerASCIIPrintf(viewer,"  Load Balance - Grid Points: Min %D  avg %D  max %D\n",nmin,navg,nmax);
 52:       return(0);
 53:     }
 54:     if (format != PETSC_VIEWER_ASCII_VTK && format != PETSC_VIEWER_ASCII_VTK_CELL && format != PETSC_VIEWER_ASCII_GLVIS) {
 55:       DMDALocalInfo info;
 56:       DMDAGetLocalInfo(da,&info);
 57:       PetscViewerASCIISynchronizedPrintf(viewer,"Processor [%d] M %D N %D P %D m %D n %D p %D w %D s %D\n",rank,dd->M,dd->N,dd->P,dd->m,dd->n,dd->p,dd->w,dd->s);
 58:       PetscViewerASCIISynchronizedPrintf(viewer,"X range of indices: %D %D, Y range of indices: %D %D, Z range of indices: %D %D\n",
 59:                                                 info.xs,info.xs+info.xm,info.ys,info.ys+info.ym,info.zs,info.zs+info.zm);
 60: #if !defined(PETSC_USE_COMPLEX)
 61:       if (da->coordinates) {
 62:         PetscInt        last;
 63:         const PetscReal *coors;
 64:         VecGetArrayRead(da->coordinates,&coors);
 65:         VecGetLocalSize(da->coordinates,&last);
 66:         last = last - 3;
 67:         PetscViewerASCIISynchronizedPrintf(viewer,"Lower left corner %g %g %g : Upper right %g %g %g\n",(double)coors[0],(double)coors[1],(double)coors[2],(double)coors[last],(double)coors[last+1],(double)coors[last+2]);
 68:         VecRestoreArrayRead(da->coordinates,&coors);
 69:       }
 70: #endif
 71:       PetscViewerFlush(viewer);
 72:       PetscViewerASCIIPopSynchronized(viewer);
 73:     } else if (format == PETSC_VIEWER_ASCII_GLVIS) {
 74:       DMView_DA_GLVis(da,viewer);
 75:     } else {
 76:       DMView_DA_VTK(da,viewer);
 77:     }
 78:   } else if (isdraw) {
 79:     PetscDraw      draw;
 80:     PetscReal      ymin = -1.0,ymax = (PetscReal)dd->N;
 81:     PetscReal      xmin = -1.0,xmax = (PetscReal)((dd->M+2)*dd->P),x,y,ycoord,xcoord;
 82:     PetscInt       k,plane,base;
 83:     const PetscInt *idx;
 84:     char           node[10];
 85:     PetscBool      isnull;

 87:     PetscViewerDrawGetDraw(viewer,0,&draw);
 88:     PetscDrawIsNull(draw,&isnull);
 89:     if (isnull) return(0);

 91:     PetscDrawCheckResizedWindow(draw);
 92:     PetscDrawClear(draw);
 93:     PetscDrawSetCoordinates(draw,xmin,ymin,xmax,ymax);

 95:     PetscDrawCollectiveBegin(draw);
 96:     /* first processor draw all node lines */
 97:     if (!rank) {
 98:       for (k=0; k<dd->P; k++) {
 99:         ymin = 0.0; ymax = (PetscReal)(dd->N - 1);
100:         for (xmin=(PetscReal)(k*(dd->M+1)); xmin<(PetscReal)(dd->M+(k*(dd->M+1))); xmin++) {
101:           PetscDrawLine(draw,xmin,ymin,xmin,ymax,PETSC_DRAW_BLACK);
102:         }
103:         xmin = (PetscReal)(k*(dd->M+1)); xmax = xmin + (PetscReal)(dd->M - 1);
104:         for (ymin=0; ymin<(PetscReal)dd->N; ymin++) {
105:           PetscDrawLine(draw,xmin,ymin,xmax,ymin,PETSC_DRAW_BLACK);
106:         }
107:       }
108:     }
109:     PetscDrawCollectiveEnd(draw);
110:     PetscDrawFlush(draw);
111:     PetscDrawPause(draw);

113:     PetscDrawCollectiveBegin(draw);
114:     /*Go through and draw for each plane*/
115:     for (k=0; k<dd->P; k++) {
116:       if ((k >= dd->zs) && (k < dd->ze)) {
117:         /* draw my box */
118:         ymin = dd->ys;
119:         ymax = dd->ye - 1;
120:         xmin = dd->xs/dd->w    + (dd->M+1)*k;
121:         xmax =(dd->xe-1)/dd->w + (dd->M+1)*k;

123:         PetscDrawLine(draw,xmin,ymin,xmax,ymin,PETSC_DRAW_RED);
124:         PetscDrawLine(draw,xmin,ymin,xmin,ymax,PETSC_DRAW_RED);
125:         PetscDrawLine(draw,xmin,ymax,xmax,ymax,PETSC_DRAW_RED);
126:         PetscDrawLine(draw,xmax,ymin,xmax,ymax,PETSC_DRAW_RED);

128:         xmin = dd->xs/dd->w;
129:         xmax =(dd->xe-1)/dd->w;

131:         /* identify which processor owns the box */
132:         PetscSNPrintf(node,sizeof(node),"%d",(int)rank);
133:         PetscDrawString(draw,xmin+(dd->M+1)*k+.2,ymin+.3,PETSC_DRAW_RED,node);
134:         /* put in numbers*/
135:         base = (dd->base+(dd->xe-dd->xs)*(dd->ye-dd->ys)*(k-dd->zs))/dd->w;
136:         for (y=ymin; y<=ymax; y++) {
137:           for (x=xmin+(dd->M+1)*k; x<=xmax+(dd->M+1)*k; x++) {
138:             PetscSNPrintf(node,sizeof(node),"%d",(int)base++);
139:             PetscDrawString(draw,x,y,PETSC_DRAW_BLACK,node);
140:           }
141:         }

143:       }
144:     }
145:     PetscDrawCollectiveEnd(draw);
146:     PetscDrawFlush(draw);
147:     PetscDrawPause(draw);

149:     PetscDrawCollectiveBegin(draw);
150:     for (k=0-dd->s; k<dd->P+dd->s; k++) {
151:       /* Go through and draw for each plane */
152:       if ((k >= dd->Zs) && (k < dd->Ze)) {
153:         /* overlay ghost numbers, useful for error checking */
154:         base = (dd->Xe-dd->Xs)*(dd->Ye-dd->Ys)*(k-dd->Zs)/dd->w;
155:         ISLocalToGlobalMappingGetBlockIndices(da->ltogmap,&idx);
156:         plane=k;
157:         /* Keep z wrap around points on the drawing */
158:         if (k<0) plane=dd->P+k;
159:         if (k>=dd->P) plane=k-dd->P;
160:         ymin = dd->Ys; ymax = dd->Ye;
161:         xmin = (dd->M+1)*plane*dd->w;
162:         xmax = (dd->M+1)*plane*dd->w+dd->M*dd->w;
163:         for (y=ymin; y<ymax; y++) {
164:           for (x=xmin+dd->Xs; x<xmin+dd->Xe; x+=dd->w) {
165:             sprintf(node,"%d",(int)(idx[base]));
166:             ycoord = y;
167:             /*Keep y wrap around points on drawing */
168:             if (y<0) ycoord = dd->N+y;
169:             if (y>=dd->N) ycoord = y-dd->N;
170:             xcoord = x;   /* Keep x wrap points on drawing */
171:             if (x<xmin) xcoord = xmax - (xmin-x);
172:             if (x>=xmax) xcoord = xmin + (x-xmax);
173:             PetscDrawString(draw,xcoord/dd->w,ycoord,PETSC_DRAW_BLUE,node);
174:             base++;
175:           }
176:         }
177:         ISLocalToGlobalMappingRestoreBlockIndices(da->ltogmap,&idx);
178:       }
179:     }
180:     PetscDrawCollectiveEnd(draw);
181:     PetscDrawFlush(draw);
182:     PetscDrawPause(draw);
183:     PetscDrawSave(draw);
184:   } else if (isglvis) {
185:     DMView_DA_GLVis(da,viewer);
186:   } else if (isbinary) {
187:     DMView_DA_Binary(da,viewer);
188: #if defined(PETSC_HAVE_MATLAB_ENGINE)
189:   } else if (ismatlab) {
190:     DMView_DA_Matlab(da,viewer);
191: #endif
192:   }
193:   return(0);
194: }

196: PetscErrorCode  DMSetUp_DA_3D(DM da)
197: {
198:   DM_DA            *dd          = (DM_DA*)da->data;
199:   const PetscInt   M            = dd->M;
200:   const PetscInt   N            = dd->N;
201:   const PetscInt   P            = dd->P;
202:   PetscInt         m            = dd->m;
203:   PetscInt         n            = dd->n;
204:   PetscInt         p            = dd->p;
205:   const PetscInt   dof          = dd->w;
206:   const PetscInt   s            = dd->s;
207:   DMBoundaryType   bx           = dd->bx;
208:   DMBoundaryType   by           = dd->by;
209:   DMBoundaryType   bz           = dd->bz;
210:   DMDAStencilType  stencil_type = dd->stencil_type;
211:   PetscInt         *lx          = dd->lx;
212:   PetscInt         *ly          = dd->ly;
213:   PetscInt         *lz          = dd->lz;
214:   MPI_Comm         comm;
215:   PetscMPIInt      rank,size;
216:   PetscInt         xs = 0,xe,ys = 0,ye,zs = 0,ze,x = 0,y = 0,z = 0;
217:   PetscInt         Xs,Xe,Ys,Ye,Zs,Ze,IXs,IXe,IYs,IYe,IZs,IZe,pm;
218:   PetscInt         left,right,up,down,bottom,top,i,j,k,*idx,nn;
219:   PetscInt         n0,n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,n14;
220:   PetscInt         n15,n16,n17,n18,n19,n20,n21,n22,n23,n24,n25,n26;
221:   PetscInt         *bases,*ldims,base,x_t,y_t,z_t,s_t,count,s_x,s_y,s_z;
222:   PetscInt         sn0  = 0,sn1 = 0,sn2 = 0,sn3 = 0,sn5 = 0,sn6 = 0,sn7 = 0;
223:   PetscInt         sn8  = 0,sn9 = 0,sn11 = 0,sn15 = 0,sn24 = 0,sn25 = 0,sn26 = 0;
224:   PetscInt         sn17 = 0,sn18 = 0,sn19 = 0,sn20 = 0,sn21 = 0,sn23 = 0;
225:   Vec              local,global;
226:   VecScatter       gtol;
227:   IS               to,from;
228:   PetscBool        twod;
229:   PetscErrorCode   ierr;


233:   if (stencil_type == DMDA_STENCIL_BOX && (bx == DM_BOUNDARY_MIRROR || by == DM_BOUNDARY_MIRROR || bz == DM_BOUNDARY_MIRROR)) SETERRQ(PetscObjectComm((PetscObject)da),PETSC_ERR_SUP,"Mirror boundary and box stencil");
234:   PetscObjectGetComm((PetscObject) da, &comm);
235: #if !defined(PETSC_USE_64BIT_INDICES)
236:   if (((PetscInt64) M)*((PetscInt64) N)*((PetscInt64) P)*((PetscInt64) dof) > (PetscInt64) PETSC_MPI_INT_MAX) SETERRQ4(comm,PETSC_ERR_INT_OVERFLOW,"Mesh of %D by %D by %D by %D (dof) is too large for 32 bit indices",M,N,P,dof);
237: #endif

239:   MPI_Comm_size(comm,&size);
240:   MPI_Comm_rank(comm,&rank);

242:   if (m != PETSC_DECIDE) {
243:     if (m < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in X direction: %D",m);
244:     else if (m > size) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in X direction: %D %d",m,size);
245:   }
246:   if (n != PETSC_DECIDE) {
247:     if (n < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in Y direction: %D",n);
248:     else if (n > size) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in Y direction: %D %d",n,size);
249:   }
250:   if (p != PETSC_DECIDE) {
251:     if (p < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in Z direction: %D",p);
252:     else if (p > size) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in Z direction: %D %d",p,size);
253:   }
254:   if ((m > 0) && (n > 0) && (p > 0) && (m*n*p != size)) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"m %D * n %D * p %D != size %d",m,n,p,size);

256:   /* Partition the array among the processors */
257:   if (m == PETSC_DECIDE && n != PETSC_DECIDE && p != PETSC_DECIDE) {
258:     m = size/(n*p);
259:   } else if (m != PETSC_DECIDE && n == PETSC_DECIDE && p != PETSC_DECIDE) {
260:     n = size/(m*p);
261:   } else if (m != PETSC_DECIDE && n != PETSC_DECIDE && p == PETSC_DECIDE) {
262:     p = size/(m*n);
263:   } else if (m == PETSC_DECIDE && n == PETSC_DECIDE && p != PETSC_DECIDE) {
264:     /* try for squarish distribution */
265:     m = (int)(0.5 + PetscSqrtReal(((PetscReal)M)*((PetscReal)size)/((PetscReal)N*p)));
266:     if (!m) m = 1;
267:     while (m > 0) {
268:       n = size/(m*p);
269:       if (m*n*p == size) break;
270:       m--;
271:     }
272:     if (!m) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"bad p value: p = %D",p);
273:     if (M > N && m < n) {PetscInt _m = m; m = n; n = _m;}
274:   } else if (m == PETSC_DECIDE && n != PETSC_DECIDE && p == PETSC_DECIDE) {
275:     /* try for squarish distribution */
276:     m = (int)(0.5 + PetscSqrtReal(((PetscReal)M)*((PetscReal)size)/((PetscReal)P*n)));
277:     if (!m) m = 1;
278:     while (m > 0) {
279:       p = size/(m*n);
280:       if (m*n*p == size) break;
281:       m--;
282:     }
283:     if (!m) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"bad n value: n = %D",n);
284:     if (M > P && m < p) {PetscInt _m = m; m = p; p = _m;}
285:   } else if (m != PETSC_DECIDE && n == PETSC_DECIDE && p == PETSC_DECIDE) {
286:     /* try for squarish distribution */
287:     n = (int)(0.5 + PetscSqrtReal(((PetscReal)N)*((PetscReal)size)/((PetscReal)P*m)));
288:     if (!n) n = 1;
289:     while (n > 0) {
290:       p = size/(m*n);
291:       if (m*n*p == size) break;
292:       n--;
293:     }
294:     if (!n) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"bad m value: m = %D",n);
295:     if (N > P && n < p) {PetscInt _n = n; n = p; p = _n;}
296:   } else if (m == PETSC_DECIDE && n == PETSC_DECIDE && p == PETSC_DECIDE) {
297:     /* try for squarish distribution */
298:     n = (PetscInt)(0.5 + PetscPowReal(((PetscReal)N*N)*((PetscReal)size)/((PetscReal)P*M),(PetscReal)(1./3.)));
299:     if (!n) n = 1;
300:     while (n > 0) {
301:       pm = size/n;
302:       if (n*pm == size) break;
303:       n--;
304:     }
305:     if (!n) n = 1;
306:     m = (PetscInt)(0.5 + PetscSqrtReal(((PetscReal)M)*((PetscReal)size)/((PetscReal)P*n)));
307:     if (!m) m = 1;
308:     while (m > 0) {
309:       p = size/(m*n);
310:       if (m*n*p == size) break;
311:       m--;
312:     }
313:     if (M > P && m < p) {PetscInt _m = m; m = p; p = _m;}
314:   } else if (m*n*p != size) SETERRQ(PetscObjectComm((PetscObject)da),PETSC_ERR_ARG_OUTOFRANGE,"Given Bad partition");

316:   if (m*n*p != size) SETERRQ(PetscObjectComm((PetscObject)da),PETSC_ERR_PLIB,"Could not find good partition");
317:   if (M < m) SETERRQ2(PetscObjectComm((PetscObject)da),PETSC_ERR_ARG_OUTOFRANGE,"Partition in x direction is too fine! %D %D",M,m);
318:   if (N < n) SETERRQ2(PetscObjectComm((PetscObject)da),PETSC_ERR_ARG_OUTOFRANGE,"Partition in y direction is too fine! %D %D",N,n);
319:   if (P < p) SETERRQ2(PetscObjectComm((PetscObject)da),PETSC_ERR_ARG_OUTOFRANGE,"Partition in z direction is too fine! %D %D",P,p);

321:   /*
322:      Determine locally owned region
323:      [x, y, or z]s is the first local node number, [x, y, z] is the number of local nodes
324:   */

326:   if (!lx) {
327:     PetscMalloc1(m, &dd->lx);
328:     lx   = dd->lx;
329:     for (i=0; i<m; i++) lx[i] = M/m + ((M % m) > (i % m));
330:   }
331:   x  = lx[rank % m];
332:   xs = 0;
333:   for (i=0; i<(rank%m); i++) xs += lx[i];
334:   if ((x < s) && ((m > 1) || (bx == DM_BOUNDARY_PERIODIC))) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local x-width of domain x %D is smaller than stencil width s %D",x,s);

336:   if (!ly) {
337:     PetscMalloc1(n, &dd->ly);
338:     ly   = dd->ly;
339:     for (i=0; i<n; i++) ly[i] = N/n + ((N % n) > (i % n));
340:   }
341:   y = ly[(rank % (m*n))/m];
342:   if ((y < s) && ((n > 1) || (by == DM_BOUNDARY_PERIODIC))) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local y-width of domain y %D is smaller than stencil width s %D",y,s);

344:   ys = 0;
345:   for (i=0; i<(rank % (m*n))/m; i++) ys += ly[i];

347:   if (!lz) {
348:     PetscMalloc1(p, &dd->lz);
349:     lz = dd->lz;
350:     for (i=0; i<p; i++) lz[i] = P/p + ((P % p) > (i % p));
351:   }
352:   z = lz[rank/(m*n)];

354:   /* note this is different than x- and y-, as we will handle as an important special
355:    case when p=P=1 and DM_BOUNDARY_PERIODIC and s > z.  This is to deal with 2D problems
356:    in a 3D code.  Additional code for this case is noted with "2d case" comments */
357:   twod = PETSC_FALSE;
358:   if (P == 1) twod = PETSC_TRUE;
359:   else if ((z < s) && ((p > 1) || (bz == DM_BOUNDARY_PERIODIC))) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local z-width of domain z %D is smaller than stencil width s %D",z,s);
360:   zs = 0;
361:   for (i=0; i<(rank/(m*n)); i++) zs += lz[i];
362:   ye = ys + y;
363:   xe = xs + x;
364:   ze = zs + z;

366:   /* determine ghost region (Xs) and region scattered into (IXs)  */
367:   if (xs-s > 0) {
368:     Xs = xs - s; IXs = xs - s;
369:   } else {
370:     if (bx) Xs = xs - s;
371:     else Xs = 0;
372:     IXs = 0;
373:   }
374:   if (xe+s <= M) {
375:     Xe = xe + s; IXe = xe + s;
376:   } else {
377:     if (bx) {
378:       Xs = xs - s; Xe = xe + s;
379:     } else Xe = M;
380:     IXe = M;
381:   }

383:   if (bx == DM_BOUNDARY_PERIODIC || bx == DM_BOUNDARY_MIRROR) {
384:     IXs = xs - s;
385:     IXe = xe + s;
386:     Xs  = xs - s;
387:     Xe  = xe + s;
388:   }

390:   if (ys-s > 0) {
391:     Ys = ys - s; IYs = ys - s;
392:   } else {
393:     if (by) Ys = ys - s;
394:     else Ys = 0;
395:     IYs = 0;
396:   }
397:   if (ye+s <= N) {
398:     Ye = ye + s; IYe = ye + s;
399:   } else {
400:     if (by) Ye = ye + s;
401:     else Ye = N;
402:     IYe = N;
403:   }

405:   if (by == DM_BOUNDARY_PERIODIC || by == DM_BOUNDARY_MIRROR) {
406:     IYs = ys - s;
407:     IYe = ye + s;
408:     Ys  = ys - s;
409:     Ye  = ye + s;
410:   }

412:   if (zs-s > 0) {
413:     Zs = zs - s; IZs = zs - s;
414:   } else {
415:     if (bz) Zs = zs - s;
416:     else Zs = 0;
417:     IZs = 0;
418:   }
419:   if (ze+s <= P) {
420:     Ze = ze + s; IZe = ze + s;
421:   } else {
422:     if (bz) Ze = ze + s;
423:     else Ze = P;
424:     IZe = P;
425:   }

427:   if (bz == DM_BOUNDARY_PERIODIC || bz == DM_BOUNDARY_MIRROR) {
428:     IZs = zs - s;
429:     IZe = ze + s;
430:     Zs  = zs - s;
431:     Ze  = ze + s;
432:   }

434:   /* Resize all X parameters to reflect w */
435:   s_x = s;
436:   s_y = s;
437:   s_z = s;

439:   /* determine starting point of each processor */
440:   nn       = x*y*z;
441:   PetscMalloc2(size+1,&bases,size,&ldims);
442:   MPI_Allgather(&nn,1,MPIU_INT,ldims,1,MPIU_INT,comm);
443:   bases[0] = 0;
444:   for (i=1; i<=size; i++) bases[i] = ldims[i-1];
445:   for (i=1; i<=size; i++) bases[i] += bases[i-1];
446:   base = bases[rank]*dof;

448:   /* allocate the base parallel and sequential vectors */
449:   dd->Nlocal = x*y*z*dof;
450:   VecCreateMPIWithArray(comm,dof,dd->Nlocal,PETSC_DECIDE,NULL,&global);
451:   dd->nlocal = (Xe-Xs)*(Ye-Ys)*(Ze-Zs)*dof;
452:   VecCreateSeqWithArray(PETSC_COMM_SELF,dof,dd->nlocal,NULL,&local);

454:   /* generate global to local vector scatter and local to global mapping*/

456:   /* global to local must include ghost points within the domain,
457:      but not ghost points outside the domain that aren't periodic */
458:   PetscMalloc1((IXe-IXs)*(IYe-IYs)*(IZe-IZs),&idx);
459:   if (stencil_type == DMDA_STENCIL_BOX) {
460:     left   = IXs - Xs; right = left + (IXe-IXs);
461:     bottom = IYs - Ys; top = bottom + (IYe-IYs);
462:     down   = IZs - Zs; up  = down + (IZe-IZs);
463:     count  = 0;
464:     for (i=down; i<up; i++) {
465:       for (j=bottom; j<top; j++) {
466:         for (k=left; k<right; k++) {
467:           idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
468:         }
469:       }
470:     }
471:     ISCreateBlock(comm,dof,count,idx,PETSC_OWN_POINTER,&to);
472:   } else {
473:     /* This is way ugly! We need to list the funny cross type region */
474:     left   = xs - Xs; right = left + x;
475:     bottom = ys - Ys; top = bottom + y;
476:     down   = zs - Zs;   up  = down + z;
477:     count  = 0;
478:     /* the bottom chunck */
479:     for (i=(IZs-Zs); i<down; i++) {
480:       for (j=bottom; j<top; j++) {
481:         for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
482:       }
483:     }
484:     /* the middle piece */
485:     for (i=down; i<up; i++) {
486:       /* front */
487:       for (j=(IYs-Ys); j<bottom; j++) {
488:         for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
489:       }
490:       /* middle */
491:       for (j=bottom; j<top; j++) {
492:         for (k=IXs-Xs; k<IXe-Xs; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
493:       }
494:       /* back */
495:       for (j=top; j<top+IYe-ye; j++) {
496:         for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
497:       }
498:     }
499:     /* the top piece */
500:     for (i=up; i<up+IZe-ze; i++) {
501:       for (j=bottom; j<top; j++) {
502:         for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
503:       }
504:     }
505:     ISCreateBlock(comm,dof,count,idx,PETSC_OWN_POINTER,&to);
506:   }

508:   /* determine who lies on each side of use stored in    n24 n25 n26
509:                                                          n21 n22 n23
510:                                                          n18 n19 n20

512:                                                          n15 n16 n17
513:                                                          n12     n14
514:                                                          n9  n10 n11

516:                                                          n6  n7  n8
517:                                                          n3  n4  n5
518:                                                          n0  n1  n2
519:   */

521:   /* Solve for X,Y, and Z Periodic Case First, Then Modify Solution */
522:   /* Assume Nodes are Internal to the Cube */
523:   n0 = rank - m*n - m - 1;
524:   n1 = rank - m*n - m;
525:   n2 = rank - m*n - m + 1;
526:   n3 = rank - m*n -1;
527:   n4 = rank - m*n;
528:   n5 = rank - m*n + 1;
529:   n6 = rank - m*n + m - 1;
530:   n7 = rank - m*n + m;
531:   n8 = rank - m*n + m + 1;

533:   n9  = rank - m - 1;
534:   n10 = rank - m;
535:   n11 = rank - m + 1;
536:   n12 = rank - 1;
537:   n14 = rank + 1;
538:   n15 = rank + m - 1;
539:   n16 = rank + m;
540:   n17 = rank + m + 1;

542:   n18 = rank + m*n - m - 1;
543:   n19 = rank + m*n - m;
544:   n20 = rank + m*n - m + 1;
545:   n21 = rank + m*n - 1;
546:   n22 = rank + m*n;
547:   n23 = rank + m*n + 1;
548:   n24 = rank + m*n + m - 1;
549:   n25 = rank + m*n + m;
550:   n26 = rank + m*n + m + 1;

552:   /* Assume Pieces are on Faces of Cube */

554:   if (xs == 0) { /* First assume not corner or edge */
555:     n0  = rank       -1 - (m*n);
556:     n3  = rank + m   -1 - (m*n);
557:     n6  = rank + 2*m -1 - (m*n);
558:     n9  = rank       -1;
559:     n12 = rank + m   -1;
560:     n15 = rank + 2*m -1;
561:     n18 = rank       -1 + (m*n);
562:     n21 = rank + m   -1 + (m*n);
563:     n24 = rank + 2*m -1 + (m*n);
564:   }

566:   if (xe == M) { /* First assume not corner or edge */
567:     n2  = rank -2*m +1 - (m*n);
568:     n5  = rank - m  +1 - (m*n);
569:     n8  = rank      +1 - (m*n);
570:     n11 = rank -2*m +1;
571:     n14 = rank - m  +1;
572:     n17 = rank      +1;
573:     n20 = rank -2*m +1 + (m*n);
574:     n23 = rank - m  +1 + (m*n);
575:     n26 = rank      +1 + (m*n);
576:   }

578:   if (ys==0) { /* First assume not corner or edge */
579:     n0  = rank + m * (n-1) -1 - (m*n);
580:     n1  = rank + m * (n-1)    - (m*n);
581:     n2  = rank + m * (n-1) +1 - (m*n);
582:     n9  = rank + m * (n-1) -1;
583:     n10 = rank + m * (n-1);
584:     n11 = rank + m * (n-1) +1;
585:     n18 = rank + m * (n-1) -1 + (m*n);
586:     n19 = rank + m * (n-1)    + (m*n);
587:     n20 = rank + m * (n-1) +1 + (m*n);
588:   }

590:   if (ye == N) { /* First assume not corner or edge */
591:     n6  = rank - m * (n-1) -1 - (m*n);
592:     n7  = rank - m * (n-1)    - (m*n);
593:     n8  = rank - m * (n-1) +1 - (m*n);
594:     n15 = rank - m * (n-1) -1;
595:     n16 = rank - m * (n-1);
596:     n17 = rank - m * (n-1) +1;
597:     n24 = rank - m * (n-1) -1 + (m*n);
598:     n25 = rank - m * (n-1)    + (m*n);
599:     n26 = rank - m * (n-1) +1 + (m*n);
600:   }

602:   if (zs == 0) { /* First assume not corner or edge */
603:     n0 = size - (m*n) + rank - m - 1;
604:     n1 = size - (m*n) + rank - m;
605:     n2 = size - (m*n) + rank - m + 1;
606:     n3 = size - (m*n) + rank - 1;
607:     n4 = size - (m*n) + rank;
608:     n5 = size - (m*n) + rank + 1;
609:     n6 = size - (m*n) + rank + m - 1;
610:     n7 = size - (m*n) + rank + m;
611:     n8 = size - (m*n) + rank + m + 1;
612:   }

614:   if (ze == P) { /* First assume not corner or edge */
615:     n18 = (m*n) - (size-rank) - m - 1;
616:     n19 = (m*n) - (size-rank) - m;
617:     n20 = (m*n) - (size-rank) - m + 1;
618:     n21 = (m*n) - (size-rank) - 1;
619:     n22 = (m*n) - (size-rank);
620:     n23 = (m*n) - (size-rank) + 1;
621:     n24 = (m*n) - (size-rank) + m - 1;
622:     n25 = (m*n) - (size-rank) + m;
623:     n26 = (m*n) - (size-rank) + m + 1;
624:   }

626:   if ((xs==0) && (zs==0)) { /* Assume an edge, not corner */
627:     n0 = size - m*n + rank + m-1 - m;
628:     n3 = size - m*n + rank + m-1;
629:     n6 = size - m*n + rank + m-1 + m;
630:   }

632:   if ((xs==0) && (ze==P)) { /* Assume an edge, not corner */
633:     n18 = m*n - (size - rank) + m-1 - m;
634:     n21 = m*n - (size - rank) + m-1;
635:     n24 = m*n - (size - rank) + m-1 + m;
636:   }

638:   if ((xs==0) && (ys==0)) { /* Assume an edge, not corner */
639:     n0  = rank + m*n -1 - m*n;
640:     n9  = rank + m*n -1;
641:     n18 = rank + m*n -1 + m*n;
642:   }

644:   if ((xs==0) && (ye==N)) { /* Assume an edge, not corner */
645:     n6  = rank - m*(n-1) + m-1 - m*n;
646:     n15 = rank - m*(n-1) + m-1;
647:     n24 = rank - m*(n-1) + m-1 + m*n;
648:   }

650:   if ((xe==M) && (zs==0)) { /* Assume an edge, not corner */
651:     n2 = size - (m*n-rank) - (m-1) - m;
652:     n5 = size - (m*n-rank) - (m-1);
653:     n8 = size - (m*n-rank) - (m-1) + m;
654:   }

656:   if ((xe==M) && (ze==P)) { /* Assume an edge, not corner */
657:     n20 = m*n - (size - rank) - (m-1) - m;
658:     n23 = m*n - (size - rank) - (m-1);
659:     n26 = m*n - (size - rank) - (m-1) + m;
660:   }

662:   if ((xe==M) && (ys==0)) { /* Assume an edge, not corner */
663:     n2  = rank + m*(n-1) - (m-1) - m*n;
664:     n11 = rank + m*(n-1) - (m-1);
665:     n20 = rank + m*(n-1) - (m-1) + m*n;
666:   }

668:   if ((xe==M) && (ye==N)) { /* Assume an edge, not corner */
669:     n8  = rank - m*n +1 - m*n;
670:     n17 = rank - m*n +1;
671:     n26 = rank - m*n +1 + m*n;
672:   }

674:   if ((ys==0) && (zs==0)) { /* Assume an edge, not corner */
675:     n0 = size - m + rank -1;
676:     n1 = size - m + rank;
677:     n2 = size - m + rank +1;
678:   }

680:   if ((ys==0) && (ze==P)) { /* Assume an edge, not corner */
681:     n18 = m*n - (size - rank) + m*(n-1) -1;
682:     n19 = m*n - (size - rank) + m*(n-1);
683:     n20 = m*n - (size - rank) + m*(n-1) +1;
684:   }

686:   if ((ye==N) && (zs==0)) { /* Assume an edge, not corner */
687:     n6 = size - (m*n-rank) - m * (n-1) -1;
688:     n7 = size - (m*n-rank) - m * (n-1);
689:     n8 = size - (m*n-rank) - m * (n-1) +1;
690:   }

692:   if ((ye==N) && (ze==P)) { /* Assume an edge, not corner */
693:     n24 = rank - (size-m) -1;
694:     n25 = rank - (size-m);
695:     n26 = rank - (size-m) +1;
696:   }

698:   /* Check for Corners */
699:   if ((xs==0) && (ys==0) && (zs==0)) n0  = size -1;
700:   if ((xs==0) && (ys==0) && (ze==P)) n18 = m*n-1;
701:   if ((xs==0) && (ye==N) && (zs==0)) n6  = (size-1)-m*(n-1);
702:   if ((xs==0) && (ye==N) && (ze==P)) n24 = m-1;
703:   if ((xe==M) && (ys==0) && (zs==0)) n2  = size-m;
704:   if ((xe==M) && (ys==0) && (ze==P)) n20 = m*n-m;
705:   if ((xe==M) && (ye==N) && (zs==0)) n8  = size-m*n;
706:   if ((xe==M) && (ye==N) && (ze==P)) n26 = 0;

708:   /* Check for when not X,Y, and Z Periodic */

710:   /* If not X periodic */
711:   if (bx != DM_BOUNDARY_PERIODIC) {
712:     if (xs==0) n0 = n3 = n6 = n9  = n12 = n15 = n18 = n21 = n24 = -2;
713:     if (xe==M) n2 = n5 = n8 = n11 = n14 = n17 = n20 = n23 = n26 = -2;
714:   }

716:   /* If not Y periodic */
717:   if (by != DM_BOUNDARY_PERIODIC) {
718:     if (ys==0) n0 = n1 = n2 = n9  = n10 = n11 = n18 = n19 = n20 = -2;
719:     if (ye==N) n6 = n7 = n8 = n15 = n16 = n17 = n24 = n25 = n26 = -2;
720:   }

722:   /* If not Z periodic */
723:   if (bz != DM_BOUNDARY_PERIODIC) {
724:     if (zs==0) n0  = n1  = n2  = n3  = n4  = n5  = n6  = n7  = n8  = -2;
725:     if (ze==P) n18 = n19 = n20 = n21 = n22 = n23 = n24 = n25 = n26 = -2;
726:   }

728:   PetscMalloc1(27,&dd->neighbors);

730:   dd->neighbors[0]  = n0;
731:   dd->neighbors[1]  = n1;
732:   dd->neighbors[2]  = n2;
733:   dd->neighbors[3]  = n3;
734:   dd->neighbors[4]  = n4;
735:   dd->neighbors[5]  = n5;
736:   dd->neighbors[6]  = n6;
737:   dd->neighbors[7]  = n7;
738:   dd->neighbors[8]  = n8;
739:   dd->neighbors[9]  = n9;
740:   dd->neighbors[10] = n10;
741:   dd->neighbors[11] = n11;
742:   dd->neighbors[12] = n12;
743:   dd->neighbors[13] = rank;
744:   dd->neighbors[14] = n14;
745:   dd->neighbors[15] = n15;
746:   dd->neighbors[16] = n16;
747:   dd->neighbors[17] = n17;
748:   dd->neighbors[18] = n18;
749:   dd->neighbors[19] = n19;
750:   dd->neighbors[20] = n20;
751:   dd->neighbors[21] = n21;
752:   dd->neighbors[22] = n22;
753:   dd->neighbors[23] = n23;
754:   dd->neighbors[24] = n24;
755:   dd->neighbors[25] = n25;
756:   dd->neighbors[26] = n26;

758:   /* If star stencil then delete the corner neighbors */
759:   if (stencil_type == DMDA_STENCIL_STAR) {
760:     /* save information about corner neighbors */
761:     sn0 = n0; sn1 = n1; sn2 = n2; sn3 = n3; sn5 = n5; sn6 = n6; sn7 = n7;
762:     sn8 = n8; sn9 = n9; sn11 = n11; sn15 = n15; sn17 = n17; sn18 = n18;
763:     sn19 = n19; sn20 = n20; sn21 = n21; sn23 = n23; sn24 = n24; sn25 = n25;
764:     sn26 = n26;
765:     n0 = n1 = n2 = n3 = n5 = n6 = n7 = n8 = n9 = n11 = n15 = n17 = n18 = n19 = n20 = n21 = n23 = n24 = n25 = n26 = -1;
766:   }

768:   PetscMalloc1((Xe-Xs)*(Ye-Ys)*(Ze-Zs),&idx);

770:   nn = 0;
771:   /* Bottom Level */
772:   for (k=0; k<s_z; k++) {
773:     for (i=1; i<=s_y; i++) {
774:       if (n0 >= 0) { /* left below */
775:         x_t = lx[n0 % m];
776:         y_t = ly[(n0 % (m*n))/m];
777:         z_t = lz[n0 / (m*n)];
778:         s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x - (s_z-k-1)*x_t*y_t;
779:         if (twod && (s_t < 0)) s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x; /* 2D case */
780:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
781:       }
782:       if (n1 >= 0) { /* directly below */
783:         x_t = x;
784:         y_t = ly[(n1 % (m*n))/m];
785:         z_t = lz[n1 / (m*n)];
786:         s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
787:         if (twod && (s_t < 0)) s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t; /* 2D case */
788:         for (j=0; j<x_t; j++) idx[nn++] = s_t++;
789:       }
790:       if (n2 >= 0) { /* right below */
791:         x_t = lx[n2 % m];
792:         y_t = ly[(n2 % (m*n))/m];
793:         z_t = lz[n2 / (m*n)];
794:         s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
795:         if (twod && (s_t < 0)) s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t; /* 2D case */
796:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
797:       }
798:     }

800:     for (i=0; i<y; i++) {
801:       if (n3 >= 0) { /* directly left */
802:         x_t = lx[n3 % m];
803:         y_t = y;
804:         z_t = lz[n3 / (m*n)];
805:         s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
806:         if (twod && (s_t < 0)) s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - x_t*y_t; /* 2D case */
807:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
808:       }

810:       if (n4 >= 0) { /* middle */
811:         x_t = x;
812:         y_t = y;
813:         z_t = lz[n4 / (m*n)];
814:         s_t = bases[n4] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
815:         if (twod && (s_t < 0)) s_t = bases[n4] + i*x_t + x_t*y_t*z_t - x_t*y_t; /* 2D case */
816:         for (j=0; j<x_t; j++) idx[nn++] = s_t++;
817:       } else if (bz == DM_BOUNDARY_MIRROR) {
818:         for (j=0; j<x; j++) idx[nn++] = bases[rank] + j + x*i + (s_z - k - 1)*x*y;
819:       }

821:       if (n5 >= 0) { /* directly right */
822:         x_t = lx[n5 % m];
823:         y_t = y;
824:         z_t = lz[n5 / (m*n)];
825:         s_t = bases[n5] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
826:         if (twod && (s_t < 0)) s_t = bases[n5] + i*x_t + x_t*y_t*z_t - x_t*y_t; /* 2D case */
827:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
828:       }
829:     }

831:     for (i=1; i<=s_y; i++) {
832:       if (n6 >= 0) { /* left above */
833:         x_t = lx[n6 % m];
834:         y_t = ly[(n6 % (m*n))/m];
835:         z_t = lz[n6 / (m*n)];
836:         s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
837:         if (twod && (s_t < 0)) s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - x_t*y_t; /* 2D case */
838:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
839:       }
840:       if (n7 >= 0) { /* directly above */
841:         x_t = x;
842:         y_t = ly[(n7 % (m*n))/m];
843:         z_t = lz[n7 / (m*n)];
844:         s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
845:         if (twod && (s_t < 0)) s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - x_t*y_t; /* 2D case */
846:         for (j=0; j<x_t; j++) idx[nn++] = s_t++;
847:       }
848:       if (n8 >= 0) { /* right above */
849:         x_t = lx[n8 % m];
850:         y_t = ly[(n8 % (m*n))/m];
851:         z_t = lz[n8 / (m*n)];
852:         s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
853:         if (twod && (s_t < 0)) s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - x_t*y_t; /* 2D case */
854:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
855:       }
856:     }
857:   }

859:   /* Middle Level */
860:   for (k=0; k<z; k++) {
861:     for (i=1; i<=s_y; i++) {
862:       if (n9 >= 0) { /* left below */
863:         x_t = lx[n9 % m];
864:         y_t = ly[(n9 % (m*n))/m];
865:         /* z_t = z; */
866:         s_t = bases[n9] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
867:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
868:       }
869:       if (n10 >= 0) { /* directly below */
870:         x_t = x;
871:         y_t = ly[(n10 % (m*n))/m];
872:         /* z_t = z; */
873:         s_t = bases[n10] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
874:         for (j=0; j<x_t; j++) idx[nn++] = s_t++;
875:       }  else if (by == DM_BOUNDARY_MIRROR) {
876:         for (j=0; j<x; j++) idx[nn++] = bases[rank] + j + k*x*y + (s_y - i)*x;
877:       }
878:       if (n11 >= 0) { /* right below */
879:         x_t = lx[n11 % m];
880:         y_t = ly[(n11 % (m*n))/m];
881:         /* z_t = z; */
882:         s_t = bases[n11] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
883:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
884:       }
885:     }

887:     for (i=0; i<y; i++) {
888:       if (n12 >= 0) { /* directly left */
889:         x_t = lx[n12 % m];
890:         y_t = y;
891:         /* z_t = z; */
892:         s_t = bases[n12] + (i+1)*x_t - s_x + k*x_t*y_t;
893:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
894:       }  else if (bx == DM_BOUNDARY_MIRROR) {
895:         for (j=0; j<s_x; j++) idx[nn++] = bases[rank] + s_x - j - 1 + k*x*y + i*x;
896:       }

898:       /* Interior */
899:       s_t = bases[rank] + i*x + k*x*y;
900:       for (j=0; j<x; j++) idx[nn++] = s_t++;

902:       if (n14 >= 0) { /* directly right */
903:         x_t = lx[n14 % m];
904:         y_t = y;
905:         /* z_t = z; */
906:         s_t = bases[n14] + i*x_t + k*x_t*y_t;
907:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
908:       } else if (bx == DM_BOUNDARY_MIRROR) {
909:         for (j=0; j<s_x; j++) idx[nn++] = bases[rank] + x - j - 1 + k*x*y + i*x;
910:       }
911:     }

913:     for (i=1; i<=s_y; i++) {
914:       if (n15 >= 0) { /* left above */
915:         x_t = lx[n15 % m];
916:         y_t = ly[(n15 % (m*n))/m];
917:         /* z_t = z; */
918:         s_t = bases[n15] + i*x_t - s_x + k*x_t*y_t;
919:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
920:       }
921:       if (n16 >= 0) { /* directly above */
922:         x_t = x;
923:         y_t = ly[(n16 % (m*n))/m];
924:         /* z_t = z; */
925:         s_t = bases[n16] + (i-1)*x_t + k*x_t*y_t;
926:         for (j=0; j<x_t; j++) idx[nn++] = s_t++;
927:       } else if (by == DM_BOUNDARY_MIRROR) {
928:         for (j=0; j<x; j++) idx[nn++] = bases[rank] + j + k*x*y + (y-i)*x;
929:       }
930:       if (n17 >= 0) { /* right above */
931:         x_t = lx[n17 % m];
932:         y_t = ly[(n17 % (m*n))/m];
933:         /* z_t = z; */
934:         s_t = bases[n17] + (i-1)*x_t + k*x_t*y_t;
935:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
936:       }
937:     }
938:   }

940:   /* Upper Level */
941:   for (k=0; k<s_z; k++) {
942:     for (i=1; i<=s_y; i++) {
943:       if (n18 >= 0) { /* left below */
944:         x_t = lx[n18 % m];
945:         y_t = ly[(n18 % (m*n))/m];
946:         /* z_t = lz[n18 / (m*n)]; */
947:         s_t = bases[n18] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
948:         if (twod && (s_t >= M*N*P)) s_t = bases[n18] - (s_y-i)*x_t -s_x + x_t*y_t; /* 2d case */
949:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
950:       }
951:       if (n19 >= 0) { /* directly below */
952:         x_t = x;
953:         y_t = ly[(n19 % (m*n))/m];
954:         /* z_t = lz[n19 / (m*n)]; */
955:         s_t = bases[n19] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
956:         if (twod && (s_t >= M*N*P)) s_t = bases[n19] - (s_y+1-i)*x_t + x_t*y_t; /* 2d case */
957:         for (j=0; j<x_t; j++) idx[nn++] = s_t++;
958:       }
959:       if (n20 >= 0) { /* right below */
960:         x_t = lx[n20 % m];
961:         y_t = ly[(n20 % (m*n))/m];
962:         /* z_t = lz[n20 / (m*n)]; */
963:         s_t = bases[n20] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
964:         if (twod && (s_t >= M*N*P)) s_t = bases[n20] - (s_y+1-i)*x_t + x_t*y_t; /* 2d case */
965:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
966:       }
967:     }

969:     for (i=0; i<y; i++) {
970:       if (n21 >= 0) { /* directly left */
971:         x_t = lx[n21 % m];
972:         y_t = y;
973:         /* z_t = lz[n21 / (m*n)]; */
974:         s_t = bases[n21] + (i+1)*x_t - s_x + k*x_t*y_t;
975:         if (twod && (s_t >= M*N*P)) s_t = bases[n21] + (i+1)*x_t - s_x;  /* 2d case */
976:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
977:       }

979:       if (n22 >= 0) { /* middle */
980:         x_t = x;
981:         y_t = y;
982:         /* z_t = lz[n22 / (m*n)]; */
983:         s_t = bases[n22] + i*x_t + k*x_t*y_t;
984:         if (twod && (s_t >= M*N*P)) s_t = bases[n22] + i*x_t; /* 2d case */
985:         for (j=0; j<x_t; j++) idx[nn++] = s_t++;
986:       } else if (bz == DM_BOUNDARY_MIRROR) {
987:         for (j=0; j<x; j++) idx[nn++] = bases[rank] + j + (z-k-1)*x*y + i*x;
988:       }

990:       if (n23 >= 0) { /* directly right */
991:         x_t = lx[n23 % m];
992:         y_t = y;
993:         /* z_t = lz[n23 / (m*n)]; */
994:         s_t = bases[n23] + i*x_t + k*x_t*y_t;
995:         if (twod && (s_t >= M*N*P)) s_t = bases[n23] + i*x_t; /* 2d case */
996:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
997:       }
998:     }

1000:     for (i=1; i<=s_y; i++) {
1001:       if (n24 >= 0) { /* left above */
1002:         x_t = lx[n24 % m];
1003:         y_t = ly[(n24 % (m*n))/m];
1004:         /* z_t = lz[n24 / (m*n)]; */
1005:         s_t = bases[n24] + i*x_t - s_x + k*x_t*y_t;
1006:         if (twod && (s_t >= M*N*P)) s_t = bases[n24] + i*x_t - s_x; /* 2d case */
1007:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1008:       }
1009:       if (n25 >= 0) { /* directly above */
1010:         x_t = x;
1011:         y_t = ly[(n25 % (m*n))/m];
1012:         /* z_t = lz[n25 / (m*n)]; */
1013:         s_t = bases[n25] + (i-1)*x_t + k*x_t*y_t;
1014:         if (twod && (s_t >= M*N*P)) s_t = bases[n25] + (i-1)*x_t; /* 2d case */
1015:         for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1016:       }
1017:       if (n26 >= 0) { /* right above */
1018:         x_t = lx[n26 % m];
1019:         y_t = ly[(n26 % (m*n))/m];
1020:         /* z_t = lz[n26 / (m*n)]; */
1021:         s_t = bases[n26] + (i-1)*x_t + k*x_t*y_t;
1022:         if (twod && (s_t >= M*N*P)) s_t = bases[n26] + (i-1)*x_t; /* 2d case */
1023:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1024:       }
1025:     }
1026:   }

1028:   ISCreateBlock(comm,dof,nn,idx,PETSC_USE_POINTER,&from);
1029:   VecScatterCreate(global,from,local,to,&gtol);
1030:   PetscLogObjectParent((PetscObject)da,(PetscObject)gtol);
1031:   ISDestroy(&to);
1032:   ISDestroy(&from);

1034:   if (stencil_type == DMDA_STENCIL_STAR) {
1035:     n0  = sn0;  n1  = sn1;  n2  = sn2;  n3  = sn3;  n5  = sn5;  n6  = sn6; n7 = sn7;
1036:     n8  = sn8;  n9  = sn9;  n11 = sn11; n15 = sn15; n17 = sn17; n18 = sn18;
1037:     n19 = sn19; n20 = sn20; n21 = sn21; n23 = sn23; n24 = sn24; n25 = sn25;
1038:     n26 = sn26;
1039:   }

1041:   if (((stencil_type == DMDA_STENCIL_STAR) || (bx != DM_BOUNDARY_PERIODIC && bx) || (by != DM_BOUNDARY_PERIODIC && by) || (bz != DM_BOUNDARY_PERIODIC && bz))) {
1042:     /*
1043:         Recompute the local to global mappings, this time keeping the
1044:       information about the cross corner processor numbers.
1045:     */
1046:     nn = 0;
1047:     /* Bottom Level */
1048:     for (k=0; k<s_z; k++) {
1049:       for (i=1; i<=s_y; i++) {
1050:         if (n0 >= 0) { /* left below */
1051:           x_t = lx[n0 % m];
1052:           y_t = ly[(n0 % (m*n))/m];
1053:           z_t = lz[n0 / (m*n)];
1054:           s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x - (s_z-k-1)*x_t*y_t;
1055:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1056:         } else if (Xs-xs < 0 && Ys-ys < 0 && Zs-zs < 0) {
1057:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1058:         }
1059:         if (n1 >= 0) { /* directly below */
1060:           x_t = x;
1061:           y_t = ly[(n1 % (m*n))/m];
1062:           z_t = lz[n1 / (m*n)];
1063:           s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1064:           for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1065:         } else if (Ys-ys < 0 && Zs-zs < 0) {
1066:           for (j=0; j<x; j++) idx[nn++] = -1;
1067:         }
1068:         if (n2 >= 0) { /* right below */
1069:           x_t = lx[n2 % m];
1070:           y_t = ly[(n2 % (m*n))/m];
1071:           z_t = lz[n2 / (m*n)];
1072:           s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1073:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1074:         } else if (xe-Xe < 0 && Ys-ys < 0 && Zs-zs < 0) {
1075:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1076:         }
1077:       }

1079:       for (i=0; i<y; i++) {
1080:         if (n3 >= 0) { /* directly left */
1081:           x_t = lx[n3 % m];
1082:           y_t = y;
1083:           z_t = lz[n3 / (m*n)];
1084:           s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1085:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1086:         } else if (Xs-xs < 0 && Zs-zs < 0) {
1087:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1088:         }

1090:         if (n4 >= 0) { /* middle */
1091:           x_t = x;
1092:           y_t = y;
1093:           z_t = lz[n4 / (m*n)];
1094:           s_t = bases[n4] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1095:           for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1096:         } else if (Zs-zs < 0) {
1097:           if (bz == DM_BOUNDARY_MIRROR) {
1098:             for (j=0; j<x; j++) idx[nn++] = bases[rank] + j + x*i + (s_z - k - 1)*x*y;
1099:           } else {
1100:             for (j=0; j<x; j++) idx[nn++] = -1;
1101:           }
1102:         }

1104:         if (n5 >= 0) { /* directly right */
1105:           x_t = lx[n5 % m];
1106:           y_t = y;
1107:           z_t = lz[n5 / (m*n)];
1108:           s_t = bases[n5] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1109:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1110:         } else if (xe-Xe < 0 && Zs-zs < 0) {
1111:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1112:         }
1113:       }

1115:       for (i=1; i<=s_y; i++) {
1116:         if (n6 >= 0) { /* left above */
1117:           x_t = lx[n6 % m];
1118:           y_t = ly[(n6 % (m*n))/m];
1119:           z_t = lz[n6 / (m*n)];
1120:           s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1121:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1122:         } else if (Xs-xs < 0 && ye-Ye < 0 && Zs-zs < 0) {
1123:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1124:         }
1125:         if (n7 >= 0) { /* directly above */
1126:           x_t = x;
1127:           y_t = ly[(n7 % (m*n))/m];
1128:           z_t = lz[n7 / (m*n)];
1129:           s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1130:           for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1131:         } else if (ye-Ye < 0 && Zs-zs < 0) {
1132:           for (j=0; j<x; j++) idx[nn++] = -1;
1133:         }
1134:         if (n8 >= 0) { /* right above */
1135:           x_t = lx[n8 % m];
1136:           y_t = ly[(n8 % (m*n))/m];
1137:           z_t = lz[n8 / (m*n)];
1138:           s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1139:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1140:         } else if (xe-Xe < 0 && ye-Ye < 0 && Zs-zs < 0) {
1141:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1142:         }
1143:       }
1144:     }

1146:     /* Middle Level */
1147:     for (k=0; k<z; k++) {
1148:       for (i=1; i<=s_y; i++) {
1149:         if (n9 >= 0) { /* left below */
1150:           x_t = lx[n9 % m];
1151:           y_t = ly[(n9 % (m*n))/m];
1152:           /* z_t = z; */
1153:           s_t = bases[n9] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1154:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1155:         } else if (Xs-xs < 0 && Ys-ys < 0) {
1156:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1157:         }
1158:         if (n10 >= 0) { /* directly below */
1159:           x_t = x;
1160:           y_t = ly[(n10 % (m*n))/m];
1161:           /* z_t = z; */
1162:           s_t = bases[n10] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1163:           for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1164:         } else if (Ys-ys < 0) {
1165:           if (by == DM_BOUNDARY_MIRROR) {
1166:             for (j=0; j<x; j++) idx[nn++] = bases[rank] + j + k*x*y + (s_y - i)*x;;
1167:           } else {
1168:             for (j=0; j<x; j++) idx[nn++] = -1;
1169:           }
1170:         }
1171:         if (n11 >= 0) { /* right below */
1172:           x_t = lx[n11 % m];
1173:           y_t = ly[(n11 % (m*n))/m];
1174:           /* z_t = z; */
1175:           s_t = bases[n11] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1176:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1177:         } else if (xe-Xe < 0 && Ys-ys < 0) {
1178:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1179:         }
1180:       }

1182:       for (i=0; i<y; i++) {
1183:         if (n12 >= 0) { /* directly left */
1184:           x_t = lx[n12 % m];
1185:           y_t = y;
1186:           /* z_t = z; */
1187:           s_t = bases[n12] + (i+1)*x_t - s_x + k*x_t*y_t;
1188:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1189:         } else if (Xs-xs < 0) {
1190:           if (bx == DM_BOUNDARY_MIRROR) {
1191:             for (j=0; j<s_x; j++) idx[nn++] = bases[rank] + s_x - j - 1 + k*x*y + i*x;
1192:           } else {
1193:             for (j=0; j<s_x; j++) idx[nn++] = -1;
1194:           }
1195:         }

1197:         /* Interior */
1198:         s_t = bases[rank] + i*x + k*x*y;
1199:         for (j=0; j<x; j++) idx[nn++] = s_t++;

1201:         if (n14 >= 0) { /* directly right */
1202:           x_t = lx[n14 % m];
1203:           y_t = y;
1204:           /* z_t = z; */
1205:           s_t = bases[n14] + i*x_t + k*x_t*y_t;
1206:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1207:         } else if (xe-Xe < 0) {
1208:           if (bx == DM_BOUNDARY_MIRROR) {
1209:             for (j=0; j<s_x; j++) idx[nn++] = bases[rank] + x - j - 1 + k*x*y + i*x;
1210:           } else {
1211:             for (j=0; j<s_x; j++) idx[nn++] = -1;
1212:           }
1213:         }
1214:       }

1216:       for (i=1; i<=s_y; i++) {
1217:         if (n15 >= 0) { /* left above */
1218:           x_t = lx[n15 % m];
1219:           y_t = ly[(n15 % (m*n))/m];
1220:           /* z_t = z; */
1221:           s_t = bases[n15] + i*x_t - s_x + k*x_t*y_t;
1222:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1223:         } else if (Xs-xs < 0 && ye-Ye < 0) {
1224:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1225:         }
1226:         if (n16 >= 0) { /* directly above */
1227:           x_t = x;
1228:           y_t = ly[(n16 % (m*n))/m];
1229:           /* z_t = z; */
1230:           s_t = bases[n16] + (i-1)*x_t + k*x_t*y_t;
1231:           for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1232:         } else if (ye-Ye < 0) {
1233:           if (by == DM_BOUNDARY_MIRROR) {
1234:             for (j=0; j<x; j++) idx[nn++] = bases[rank] + j + k*x*y + (y-i)*x;
1235:           } else {
1236:             for (j=0; j<x; j++) idx[nn++] = -1;
1237:           }
1238:         }
1239:         if (n17 >= 0) { /* right above */
1240:           x_t = lx[n17 % m];
1241:           y_t = ly[(n17 % (m*n))/m];
1242:           /* z_t = z; */
1243:           s_t = bases[n17] + (i-1)*x_t + k*x_t*y_t;
1244:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1245:         } else if (xe-Xe < 0 && ye-Ye < 0) {
1246:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1247:         }
1248:       }
1249:     }

1251:     /* Upper Level */
1252:     for (k=0; k<s_z; k++) {
1253:       for (i=1; i<=s_y; i++) {
1254:         if (n18 >= 0) { /* left below */
1255:           x_t = lx[n18 % m];
1256:           y_t = ly[(n18 % (m*n))/m];
1257:           /* z_t = lz[n18 / (m*n)]; */
1258:           s_t = bases[n18] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1259:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1260:         } else if (Xs-xs < 0 && Ys-ys < 0 && ze-Ze < 0) {
1261:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1262:         }
1263:         if (n19 >= 0) { /* directly below */
1264:           x_t = x;
1265:           y_t = ly[(n19 % (m*n))/m];
1266:           /* z_t = lz[n19 / (m*n)]; */
1267:           s_t = bases[n19] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1268:           for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1269:         } else if (Ys-ys < 0 && ze-Ze < 0) {
1270:           for (j=0; j<x; j++) idx[nn++] = -1;
1271:         }
1272:         if (n20 >= 0) { /* right below */
1273:           x_t = lx[n20 % m];
1274:           y_t = ly[(n20 % (m*n))/m];
1275:           /* z_t = lz[n20 / (m*n)]; */
1276:           s_t = bases[n20] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1277:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1278:         } else if (xe-Xe < 0 && Ys-ys < 0 && ze-Ze < 0) {
1279:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1280:         }
1281:       }

1283:       for (i=0; i<y; i++) {
1284:         if (n21 >= 0) { /* directly left */
1285:           x_t = lx[n21 % m];
1286:           y_t = y;
1287:           /* z_t = lz[n21 / (m*n)]; */
1288:           s_t = bases[n21] + (i+1)*x_t - s_x + k*x_t*y_t;
1289:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1290:         } else if (Xs-xs < 0 && ze-Ze < 0) {
1291:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1292:         }

1294:         if (n22 >= 0) { /* middle */
1295:           x_t = x;
1296:           y_t = y;
1297:           /* z_t = lz[n22 / (m*n)]; */
1298:           s_t = bases[n22] + i*x_t + k*x_t*y_t;
1299:           for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1300:         } else if (ze-Ze < 0) {
1301:           if (bz == DM_BOUNDARY_MIRROR) {
1302:             for (j=0; j<x; j++) idx[nn++] = bases[rank] + j + (z-k-1)*x*y + i*x;
1303:           } else {
1304:             for (j=0; j<x; j++) idx[nn++] = -1;
1305:           }
1306:         }

1308:         if (n23 >= 0) { /* directly right */
1309:           x_t = lx[n23 % m];
1310:           y_t = y;
1311:           /* z_t = lz[n23 / (m*n)]; */
1312:           s_t = bases[n23] + i*x_t + k*x_t*y_t;
1313:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1314:         } else if (xe-Xe < 0 && ze-Ze < 0) {
1315:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1316:         }
1317:       }

1319:       for (i=1; i<=s_y; i++) {
1320:         if (n24 >= 0) { /* left above */
1321:           x_t = lx[n24 % m];
1322:           y_t = ly[(n24 % (m*n))/m];
1323:           /* z_t = lz[n24 / (m*n)]; */
1324:           s_t = bases[n24] + i*x_t - s_x + k*x_t*y_t;
1325:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1326:         } else if (Xs-xs < 0 && ye-Ye < 0 && ze-Ze < 0) {
1327:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1328:         }
1329:         if (n25 >= 0) { /* directly above */
1330:           x_t = x;
1331:           y_t = ly[(n25 % (m*n))/m];
1332:           /* z_t = lz[n25 / (m*n)]; */
1333:           s_t = bases[n25] + (i-1)*x_t + k*x_t*y_t;
1334:           for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1335:         } else if (ye-Ye < 0 && ze-Ze < 0) {
1336:           for (j=0; j<x; j++) idx[nn++] = -1;
1337:         }
1338:         if (n26 >= 0) { /* right above */
1339:           x_t = lx[n26 % m];
1340:           y_t = ly[(n26 % (m*n))/m];
1341:           /* z_t = lz[n26 / (m*n)]; */
1342:           s_t = bases[n26] + (i-1)*x_t + k*x_t*y_t;
1343:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1344:         } else if (xe-Xe < 0 && ye-Ye < 0 && ze-Ze < 0) {
1345:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1346:         }
1347:       }
1348:     }
1349:   }
1350:   /*
1351:      Set the local to global ordering in the global vector, this allows use
1352:      of VecSetValuesLocal().
1353:   */
1354:   ISLocalToGlobalMappingCreate(comm,dof,nn,idx,PETSC_OWN_POINTER,&da->ltogmap);
1355:   PetscLogObjectParent((PetscObject)da,(PetscObject)da->ltogmap);

1357:   PetscFree2(bases,ldims);
1358:   dd->m = m;  dd->n  = n;  dd->p  = p;
1359:   /* note petsc expects xs/xe/Xs/Xe to be multiplied by #dofs in many places */
1360:   dd->xs = xs*dof; dd->xe = xe*dof; dd->ys = ys; dd->ye = ye; dd->zs = zs; dd->ze = ze;
1361:   dd->Xs = Xs*dof; dd->Xe = Xe*dof; dd->Ys = Ys; dd->Ye = Ye; dd->Zs = Zs; dd->Ze = Ze;

1363:   VecDestroy(&local);
1364:   VecDestroy(&global);

1366:   dd->gtol      = gtol;
1367:   dd->base      = base;
1368:   da->ops->view = DMView_DA_3d;
1369:   dd->ltol      = NULL;
1370:   dd->ao        = NULL;
1371:   return(0);
1372: }


1375: /*@C
1376:    DMDACreate3d - Creates an object that will manage the communication of three-dimensional
1377:    regular array data that is distributed across some processors.

1379:    Collective on MPI_Comm

1381:    Input Parameters:
1382: +  comm - MPI communicator
1383: .  bx,by,bz - type of ghost nodes the array have.
1384:          Use one of DM_BOUNDARY_NONE, DM_BOUNDARY_GHOSTED, DM_BOUNDARY_PERIODIC.
1385: .  stencil_type - Type of stencil (DMDA_STENCIL_STAR or DMDA_STENCIL_BOX)
1386: .  M,N,P - global dimension in each direction of the array 
1387: .  m,n,p - corresponding number of processors in each dimension
1388:            (or PETSC_DECIDE to have calculated)
1389: .  dof - number of degrees of freedom per node
1390: .  s - stencil width
1391: -  lx, ly, lz - arrays containing the number of nodes in each cell along
1392:           the x, y, and z coordinates, or NULL. If non-null, these
1393:           must be of length as m,n,p and the corresponding
1394:           m,n, or p cannot be PETSC_DECIDE. Sum of the lx[] entries must be M, sum of
1395:           the ly[] must N, sum of the lz[] must be P

1397:    Output Parameter:
1398: .  da - the resulting distributed array object

1400:    Options Database Key:
1401: +  -dm_view - Calls DMView() at the conclusion of DMDACreate3d()
1402: .  -da_grid_x <nx> - number of grid points in x direction
1403: .  -da_grid_y <ny> - number of grid points in y direction
1404: .  -da_grid_z <nz> - number of grid points in z direction
1405: .  -da_processors_x <MX> - number of processors in x direction
1406: .  -da_processors_y <MY> - number of processors in y direction
1407: .  -da_processors_z <MZ> - number of processors in z direction
1408: .  -da_refine_x <rx> - refinement ratio in x direction
1409: .  -da_refine_y <ry> - refinement ratio in y direction
1410: .  -da_refine_z <rz>- refinement ratio in z directio
1411: -  -da_refine <n> - refine the DMDA n times before creating it

1413:    Level: beginner

1415:    Notes:
1416:    The stencil type DMDA_STENCIL_STAR with width 1 corresponds to the
1417:    standard 7-pt stencil, while DMDA_STENCIL_BOX with width 1 denotes
1418:    the standard 27-pt stencil.

1420:    The array data itself is NOT stored in the DMDA, it is stored in Vec objects;
1421:    The appropriate vector objects can be obtained with calls to DMCreateGlobalVector()
1422:    and DMCreateLocalVector() and calls to VecDuplicate() if more are needed.

1424:    You must call DMSetUp() after this call before using this DM.

1426:    If you wish to use the options database to change values in the DMDA call DMSetFromOptions() after this call
1427:    but before DMSetUp().

1429: .keywords: distributed array, create, three-dimensional

1431: .seealso: DMDestroy(), DMView(), DMDACreate1d(), DMDACreate2d(), DMGlobalToLocalBegin(), DMDAGetRefinementFactor(),
1432:           DMGlobalToLocalEnd(), DMLocalToGlobalBegin(), DMLocalToLocalBegin(), DMLocalToLocalEnd(), DMDASetRefinementFactor(),
1433:           DMDAGetInfo(), DMCreateGlobalVector(), DMCreateLocalVector(), DMDACreateNaturalVector(), DMLoad(), DMDAGetOwnershipRanges()

1435: @*/
1436: PetscErrorCode  DMDACreate3d(MPI_Comm comm,DMBoundaryType bx,DMBoundaryType by,DMBoundaryType bz,DMDAStencilType stencil_type,PetscInt M,
1437:                PetscInt N,PetscInt P,PetscInt m,PetscInt n,PetscInt p,PetscInt dof,PetscInt s,const PetscInt lx[],const PetscInt ly[],const PetscInt lz[],DM *da)
1438: {

1442:   DMDACreate(comm, da);
1443:   DMSetDimension(*da, 3);
1444:   DMDASetSizes(*da, M, N, P);
1445:   DMDASetNumProcs(*da, m, n, p);
1446:   DMDASetBoundaryType(*da, bx, by, bz);
1447:   DMDASetDof(*da, dof);
1448:   DMDASetStencilType(*da, stencil_type);
1449:   DMDASetStencilWidth(*da, s);
1450:   DMDASetOwnershipRanges(*da, lx, ly, lz);
1451:   return(0);
1452: }