Actual source code: da1.c
petsc-3.11.4 2019-09-28
2: /*
3: Code for manipulating distributed regular 1d arrays in parallel.
4: This file was created by Peter Mell 6/30/95
5: */
7: #include <petsc/private/dmdaimpl.h>
9: #include <petscdraw.h>
10: static PetscErrorCode DMView_DA_1d(DM da,PetscViewer viewer)
11: {
13: PetscMPIInt rank;
14: PetscBool iascii,isdraw,isglvis,isbinary;
15: DM_DA *dd = (DM_DA*)da->data;
16: #if defined(PETSC_HAVE_MATLAB_ENGINE)
17: PetscBool ismatlab;
18: #endif
21: MPI_Comm_rank(PetscObjectComm((PetscObject)da),&rank);
23: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
24: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
25: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERGLVIS,&isglvis);
26: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
27: #if defined(PETSC_HAVE_MATLAB_ENGINE)
28: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERMATLAB,&ismatlab);
29: #endif
30: if (iascii) {
31: PetscViewerFormat format;
33: PetscViewerGetFormat(viewer, &format);
34: if (format == PETSC_VIEWER_LOAD_BALANCE) {
35: PetscInt i,nmax = 0,nmin = PETSC_MAX_INT,navg = 0,*nz,nzlocal;
36: DMDALocalInfo info;
37: PetscMPIInt size;
38: MPI_Comm_size(PetscObjectComm((PetscObject)da),&size);
39: DMDAGetLocalInfo(da,&info);
40: nzlocal = info.xm;
41: PetscMalloc1(size,&nz);
42: MPI_Allgather(&nzlocal,1,MPIU_INT,nz,1,MPIU_INT,PetscObjectComm((PetscObject)da));
43: for (i=0; i<(PetscInt)size; i++) {
44: nmax = PetscMax(nmax,nz[i]);
45: nmin = PetscMin(nmin,nz[i]);
46: navg += nz[i];
47: }
48: PetscFree(nz);
49: navg = navg/size;
50: PetscViewerASCIIPrintf(viewer," Load Balance - Grid Points: Min %D avg %D max %D\n",nmin,navg,nmax);
51: return(0);
52: }
53: if (format != PETSC_VIEWER_ASCII_VTK && format != PETSC_VIEWER_ASCII_VTK_CELL && format != PETSC_VIEWER_ASCII_GLVIS) {
54: DMDALocalInfo info;
55: DMDAGetLocalInfo(da,&info);
56: PetscViewerASCIIPushSynchronized(viewer);
57: PetscViewerASCIISynchronizedPrintf(viewer,"Processor [%d] M %D m %D w %D s %D\n",rank,dd->M,dd->m,dd->w,dd->s);
58: PetscViewerASCIISynchronizedPrintf(viewer,"X range of indices: %D %D\n",info.xs,info.xs+info.xm);
59: PetscViewerFlush(viewer);
60: PetscViewerASCIIPopSynchronized(viewer);
61: } else if (format == PETSC_VIEWER_ASCII_GLVIS) {
62: DMView_DA_GLVis(da,viewer);
63: } else {
64: DMView_DA_VTK(da, viewer);
65: }
66: } else if (isdraw) {
67: PetscDraw draw;
68: double ymin = -1,ymax = 1,xmin = -1,xmax = dd->M,x;
69: PetscInt base;
70: char node[10];
71: PetscBool isnull;
73: PetscViewerDrawGetDraw(viewer,0,&draw);
74: PetscDrawIsNull(draw,&isnull);
75: if (isnull) return(0);
77: PetscDrawCheckResizedWindow(draw);
78: PetscDrawClear(draw);
79: PetscDrawSetCoordinates(draw,xmin,ymin,xmax,ymax);
81: PetscDrawCollectiveBegin(draw);
82: /* first processor draws all node lines */
83: if (!rank) {
84: PetscInt xmin_tmp;
85: ymin = 0.0; ymax = 0.3;
86: for (xmin_tmp=0; xmin_tmp < dd->M; xmin_tmp++) {
87: PetscDrawLine(draw,(double)xmin_tmp,ymin,(double)xmin_tmp,ymax,PETSC_DRAW_BLACK);
88: }
89: xmin = 0.0; xmax = dd->M - 1;
90: PetscDrawLine(draw,xmin,ymin,xmax,ymin,PETSC_DRAW_BLACK);
91: PetscDrawLine(draw,xmin,ymax,xmax,ymax,PETSC_DRAW_BLACK);
92: }
93: PetscDrawCollectiveEnd(draw);
94: PetscDrawFlush(draw);
95: PetscDrawPause(draw);
97: PetscDrawCollectiveBegin(draw);
98: /* draw my box */
99: ymin = 0; ymax = 0.3; xmin = dd->xs / dd->w; xmax = (dd->xe / dd->w) - 1;
100: PetscDrawLine(draw,xmin,ymin,xmax,ymin,PETSC_DRAW_RED);
101: PetscDrawLine(draw,xmin,ymin,xmin,ymax,PETSC_DRAW_RED);
102: PetscDrawLine(draw,xmin,ymax,xmax,ymax,PETSC_DRAW_RED);
103: PetscDrawLine(draw,xmax,ymin,xmax,ymax,PETSC_DRAW_RED);
104: /* Put in index numbers */
105: base = dd->base / dd->w;
106: for (x=xmin; x<=xmax; x++) {
107: PetscSNPrintf(node,sizeof(node),"%d",(int)base++);
108: PetscDrawString(draw,x,ymin,PETSC_DRAW_RED,node);
109: }
110: PetscDrawCollectiveEnd(draw);
111: PetscDrawFlush(draw);
112: PetscDrawPause(draw);
113: PetscDrawSave(draw);
114: } else if (isglvis) {
115: DMView_DA_GLVis(da,viewer);
116: } else if (isbinary) {
117: DMView_DA_Binary(da,viewer);
118: #if defined(PETSC_HAVE_MATLAB_ENGINE)
119: } else if (ismatlab) {
120: DMView_DA_Matlab(da,viewer);
121: #endif
122: }
123: return(0);
124: }
127: PetscErrorCode DMSetUp_DA_1D(DM da)
128: {
129: DM_DA *dd = (DM_DA*)da->data;
130: const PetscInt M = dd->M;
131: const PetscInt dof = dd->w;
132: const PetscInt s = dd->s;
133: const PetscInt sDist = s; /* stencil distance in points */
134: const PetscInt *lx = dd->lx;
135: DMBoundaryType bx = dd->bx;
136: MPI_Comm comm;
137: Vec local, global;
138: VecScatter gtol;
139: IS to, from;
140: PetscBool flg1 = PETSC_FALSE, flg2 = PETSC_FALSE;
141: PetscMPIInt rank, size;
142: PetscInt i,*idx,nn,left,xs,xe,x,Xs,Xe,start,m,IXs,IXe;
143: PetscErrorCode ierr;
146: PetscObjectGetComm((PetscObject) da, &comm);
147: MPI_Comm_size(comm,&size);
148: MPI_Comm_rank(comm,&rank);
150: dd->p = 1;
151: dd->n = 1;
152: dd->m = size;
153: m = dd->m;
155: if (s > 0) {
156: /* if not communicating data then should be ok to have nothing on some processes */
157: if (M < m) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"More processes than data points! %D %D",m,M);
158: if ((M-1) < s && size > 1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Array is too small for stencil! %D %D",M-1,s);
159: }
161: /*
162: Determine locally owned region
163: xs is the first local node number, x is the number of local nodes
164: */
165: if (!lx) {
166: PetscMalloc1(m, &dd->lx);
167: PetscOptionsGetBool(((PetscObject)da)->options,((PetscObject)da)->prefix,"-da_partition_blockcomm",&flg1,NULL);
168: PetscOptionsGetBool(((PetscObject)da)->options,((PetscObject)da)->prefix,"-da_partition_nodes_at_end",&flg2,NULL);
169: if (flg1) { /* Block Comm type Distribution */
170: xs = rank*M/m;
171: x = (rank + 1)*M/m - xs;
172: } else if (flg2) { /* The odd nodes are evenly distributed across last nodes */
173: x = (M + rank)/m;
174: if (M/m == x) xs = rank*x;
175: else xs = rank*(x-1) + (M+rank)%(x*m);
176: } else { /* The odd nodes are evenly distributed across the first k nodes */
177: /* Regular PETSc Distribution */
178: x = M/m + ((M % m) > rank);
179: if (rank >= (M % m)) xs = (rank * (PetscInt)(M/m) + M % m);
180: else xs = rank * (PetscInt)(M/m) + rank;
181: }
182: MPI_Allgather(&xs,1,MPIU_INT,dd->lx,1,MPIU_INT,comm);
183: for (i=0; i<m-1; i++) dd->lx[i] = dd->lx[i+1] - dd->lx[i];
184: dd->lx[m-1] = M - dd->lx[m-1];
185: } else {
186: x = lx[rank];
187: xs = 0;
188: for (i=0; i<rank; i++) xs += lx[i];
189: /* verify that data user provided is consistent */
190: left = xs;
191: for (i=rank; i<size; i++) left += lx[i];
192: if (left != M) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Sum of lx across processors not equal to M %D %D",left,M);
193: }
195: /*
196: check if the scatter requires more than one process neighbor or wraps around
197: the domain more than once
198: */
199: if ((x < s) & ((M > 1) | (bx == DM_BOUNDARY_PERIODIC))) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local x-width of domain x %D is smaller than stencil width s %D",x,s);
201: xe = xs + x;
203: /* determine ghost region (Xs) and region scattered into (IXs) */
204: if (xs-sDist > 0) {
205: Xs = xs - sDist;
206: IXs = xs - sDist;
207: } else {
208: if (bx) Xs = xs - sDist;
209: else Xs = 0;
210: IXs = 0;
211: }
212: if (xe+sDist <= M) {
213: Xe = xe + sDist;
214: IXe = xe + sDist;
215: } else {
216: if (bx) Xe = xe + sDist;
217: else Xe = M;
218: IXe = M;
219: }
221: if (bx == DM_BOUNDARY_PERIODIC || bx == DM_BOUNDARY_MIRROR) {
222: Xs = xs - sDist;
223: Xe = xe + sDist;
224: IXs = xs - sDist;
225: IXe = xe + sDist;
226: }
228: /* allocate the base parallel and sequential vectors */
229: dd->Nlocal = dof*x;
230: VecCreateMPIWithArray(comm,dof,dd->Nlocal,PETSC_DECIDE,NULL,&global);
231: dd->nlocal = dof*(Xe-Xs);
232: VecCreateSeqWithArray(PETSC_COMM_SELF,dof,dd->nlocal,NULL,&local);
234: VecGetOwnershipRange(global,&start,NULL);
236: /* Create Global to Local Vector Scatter Context */
237: /* global to local must retrieve ghost points */
238: ISCreateStride(comm,dof*(IXe-IXs),dof*(IXs-Xs),1,&to);
240: PetscMalloc1(x+2*sDist,&idx);
241: PetscLogObjectMemory((PetscObject)da,(x+2*(sDist))*sizeof(PetscInt));
243: for (i=0; i<IXs-Xs; i++) idx[i] = -1; /* prepend with -1s if needed for ghosted case*/
245: nn = IXs-Xs;
246: if (bx == DM_BOUNDARY_PERIODIC) { /* Handle all cases with periodic first */
247: for (i=0; i<sDist; i++) { /* Left ghost points */
248: if ((xs-sDist+i)>=0) idx[nn++] = xs-sDist+i;
249: else idx[nn++] = M+(xs-sDist+i);
250: }
252: for (i=0; i<x; i++) idx [nn++] = xs + i; /* Non-ghost points */
254: for (i=0; i<sDist; i++) { /* Right ghost points */
255: if ((xe+i)<M) idx [nn++] = xe+i;
256: else idx [nn++] = (xe+i) - M;
257: }
258: } else if (bx == DM_BOUNDARY_MIRROR) { /* Handle all cases with periodic first */
259: for (i=0; i<(sDist); i++) { /* Left ghost points */
260: if ((xs-sDist+i)>=0) idx[nn++] = xs-sDist+i;
261: else idx[nn++] = sDist - i;
262: }
264: for (i=0; i<x; i++) idx [nn++] = xs + i; /* Non-ghost points */
266: for (i=0; i<(sDist); i++) { /* Right ghost points */
267: if ((xe+i)<M) idx[nn++] = xe+i;
268: else idx[nn++] = M - (i + 2);
269: }
270: } else { /* Now do all cases with no periodicity */
271: if (0 <= xs-sDist) {
272: for (i=0; i<sDist; i++) idx[nn++] = xs - sDist + i;
273: } else {
274: for (i=0; i<xs; i++) idx[nn++] = i;
275: }
277: for (i=0; i<x; i++) idx [nn++] = xs + i;
279: if ((xe+sDist)<=M) {
280: for (i=0; i<sDist; i++) idx[nn++]=xe+i;
281: } else {
282: for (i=xe; i<M; i++) idx[nn++]=i;
283: }
284: }
286: ISCreateBlock(comm,dof,nn-IXs+Xs,&idx[IXs-Xs],PETSC_USE_POINTER,&from);
287: VecScatterCreate(global,from,local,to,>ol);
288: PetscLogObjectParent((PetscObject)da,(PetscObject)gtol);
289: ISDestroy(&to);
290: ISDestroy(&from);
291: VecDestroy(&local);
292: VecDestroy(&global);
294: dd->xs = dof*xs; dd->xe = dof*xe; dd->ys = 0; dd->ye = 1; dd->zs = 0; dd->ze = 1;
295: dd->Xs = dof*Xs; dd->Xe = dof*Xe; dd->Ys = 0; dd->Ye = 1; dd->Zs = 0; dd->Ze = 1;
297: dd->gtol = gtol;
298: dd->base = dof*xs;
299: da->ops->view = DMView_DA_1d;
301: /*
302: Set the local to global ordering in the global vector, this allows use
303: of VecSetValuesLocal().
304: */
305: for (i=0; i<Xe-IXe; i++) idx[nn++] = -1; /* pad with -1s if needed for ghosted case*/
307: ISLocalToGlobalMappingCreate(comm,dof,nn,idx,PETSC_OWN_POINTER,&da->ltogmap);
308: PetscLogObjectParent((PetscObject)da,(PetscObject)da->ltogmap);
310: return(0);
311: }
314: /*@C
315: DMDACreate1d - Creates an object that will manage the communication of one-dimensional
316: regular array data that is distributed across some processors.
318: Collective on MPI_Comm
320: Input Parameters:
321: + comm - MPI communicator
322: . bx - type of ghost cells at the boundary the array should have, if any. Use
323: DM_BOUNDARY_NONE, DM_BOUNDARY_GHOSTED, or DM_BOUNDARY_PERIODIC.
324: . M - global dimension of the array (that is the number of grid points)
325: from the command line with -da_grid_x <M>)
326: . dof - number of degrees of freedom per node
327: . s - stencil width
328: - lx - array containing number of nodes in the X direction on each processor,
329: or NULL. If non-null, must be of length as the number of processes in the MPI_Comm.
330: The sum of these entries must equal M
332: Output Parameter:
333: . da - the resulting distributed array object
335: Options Database Key:
336: + -dm_view - Calls DMView() at the conclusion of DMDACreate1d()
337: . -da_grid_x <nx> - number of grid points in x direction
338: . -da_refine_x <rx> - refinement factor
339: - -da_refine <n> - refine the DMDA n times before creating it
341: Level: beginner
343: Notes:
344: The array data itself is NOT stored in the DMDA, it is stored in Vec objects;
345: The appropriate vector objects can be obtained with calls to DMCreateGlobalVector()
346: and DMCreateLocalVector() and calls to VecDuplicate() if more are needed.
348: You must call DMSetUp() after this call before using this DM.
350: If you wish to use the options database to change values in the DMDA call DMSetFromOptions() after this call
351: but before DMSetUp().
353: .keywords: distributed array, create, one-dimensional
355: .seealso: DMDestroy(), DMView(), DMDACreate2d(), DMDACreate3d(), DMGlobalToLocalBegin(), DMDASetRefinementFactor(),
356: DMGlobalToLocalEnd(), DMLocalToGlobalBegin(), DMLocalToLocalBegin(), DMLocalToLocalEnd(), DMDAGetRefinementFactor(),
357: DMDAGetInfo(), DMCreateGlobalVector(), DMCreateLocalVector(), DMDACreateNaturalVector(), DMLoad(), DMDAGetOwnershipRanges()
359: @*/
360: PetscErrorCode DMDACreate1d(MPI_Comm comm, DMBoundaryType bx, PetscInt M, PetscInt dof, PetscInt s, const PetscInt lx[], DM *da)
361: {
363: PetscMPIInt size;
366: DMDACreate(comm, da);
367: DMSetDimension(*da, 1);
368: DMDASetSizes(*da, M, 1, 1);
369: MPI_Comm_size(comm, &size);
370: DMDASetNumProcs(*da, size, PETSC_DECIDE, PETSC_DECIDE);
371: DMDASetBoundaryType(*da, bx, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE);
372: DMDASetDof(*da, dof);
373: DMDASetStencilWidth(*da, s);
374: DMDASetOwnershipRanges(*da, lx, NULL, NULL);
375: return(0);
376: }